JP2019074536A - Multi-color detection device - Google Patents

Multi-color detection device Download PDF

Info

Publication number
JP2019074536A
JP2019074536A JP2018237484A JP2018237484A JP2019074536A JP 2019074536 A JP2019074536 A JP 2019074536A JP 2018237484 A JP2018237484 A JP 2018237484A JP 2018237484 A JP2018237484 A JP 2018237484A JP 2019074536 A JP2019074536 A JP 2019074536A
Authority
JP
Japan
Prior art keywords
detection device
light
light emitting
parallel
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018237484A
Other languages
Japanese (ja)
Other versions
JP6975704B2 (en
Inventor
穴沢 隆
Takashi Anazawa
隆 穴沢
高橋 智
Satoshi Takahashi
智 高橋
基博 山崎
Motohiro Yamazaki
基博 山崎
佳孝 児玉
Yoshitaka Kodama
佳孝 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016572971A external-priority patent/JP6456983B2/en
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2018237484A priority Critical patent/JP6975704B2/en
Publication of JP2019074536A publication Critical patent/JP2019074536A/en
Application granted granted Critical
Publication of JP6975704B2 publication Critical patent/JP6975704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide a small size device for detecting multiple colors of light emitted from an array of light emission points capable of detecting multiple colors with high sensitivity and low crosstalk at lower manufacturing cost.SOLUTION: The device is for detecting multiple colors of light emitted from an array of light emission points using an individual condenser lens and a common wavelength dispersion element. The multi-color detection device comprises: a condenser lens array 17 in which multiple condenser lenses 18 are arranged for independently forming parallel luminous flux respectively from light 16 emitted from respective emission points of the array of light emission points where multiple light emission points 15 are arranged; at least one common spectroscopic element (common transmission grating 21) on which the parallel luminous fluxes 19 are incident in parallel; and at least one common sensor surface 27 on which light fluxes 22 separated by the spectroscopic element are incident in parallel.SELECTED DRAWING: Figure 7

Description

本発明は,複数のキャピラリ又はマイクロチップ内部に設けられた複数のチャンネルにレーザビーム等の光を照射し,キャピラリ又はチャンネルの内部に存在する物質が出射する蛍光,燐光,散乱光等を高感度に検出する多色検出装置に関する。   The present invention irradiates light such as a laser beam to a plurality of channels provided inside a plurality of capillaries or microchips, and highly sensitive to fluorescence, phosphorescence, scattered light, etc. emitted from substances present inside the capillaries or channels. Relates to a multicolor detection device for detecting

分離媒体を充填した複数のキャピラリ(外径100〜400μm,内径25〜100μmのガラス毛細管)による電気泳動分析を並列処理することによって個々のキャピラリで異なるDNAサンプルの塩基配列解読を一括して行うキャピラリアレイDNAシーケンサが広く利用されている。この機構について次に説明する。市販のキャピラリは,柔軟性を持たせるため,外表面にポリイミドの被覆膜を形成している。各キャピラリの電気泳動路長が一定の部分,例えばキャピラリの試料注入端から30cmの距離の位置近傍を,被覆膜を除去した状態で同一平面上に揃えて並べ,レーザビームを上記のキャピラリ配列平面に沿って側面方向から照射することで,複数のキャピラリを同時に照射する。以降,本明細書では,上記のキャピラリ配列平面を,単に,配列平面と呼ぶことがある。上記の各キャピラリ内部を電気泳動する蛍光標識DNAは,レーザビームを通過する際,レーザ照射による励起を受けて蛍光を発光する。ここで,DNAは,A,C,G,Tの塩基種に応じて4色の蛍光体に染め分けられている。その結果,各キャピラリのレーザ照射位置は発光点となり,複数の発光点が間隔pで直線上に並ぶ。以降,これを発光点アレイと呼ぶ。発光点の数(キャピラリの本数)をnとすると,発光点アレイの全幅Wは,W=p*(n−1)である。例えば,p=0.36mm,n=24のとき,W=8.28mmである。蛍光検出装置は,発光点アレイからの各発光を分光しながら一括検出する。この装置構成は,特許文献1の図3に示されている。   Capillary performing batchwise decipherment of base sequences of different DNA samples by individual capillaries by parallel processing of electrophoresis analysis by a plurality of capillaries (glass capillaries with an outer diameter of 100 to 400 μm and an inner diameter of 25 to 100 μm) filled with a separation medium Array DNA sequencers are widely used. This mechanism is described next. A commercially available capillary forms a polyimide coating film on the outer surface to give flexibility. A portion where the electrophoresis path length of each capillary is constant, for example, a position near a distance of 30 cm from the sample injection end of the capillary is aligned on the same plane with the coating film removed, and the laser beam is arranged in the above capillary arrangement By irradiating from the side direction along the plane, multiple capillaries are irradiated simultaneously. Hereinafter, in the present specification, the above-mentioned capillary array plane may be simply referred to as an array plane. The fluorescence labeled DNA which electrophoreses the inside of each of the above-mentioned capillaries receives fluorescence excitation upon receiving a laser beam and emits fluorescence. Here, the DNA is dyed into four-color phosphors according to the A, C, G, T base species. As a result, the laser irradiation position of each capillary becomes a light emitting point, and a plurality of light emitting points are arranged on a straight line at an interval p. Hereinafter, this is called a light emitting point array. Assuming that the number of light emitting points (the number of capillaries) is n, the total width W of the light emitting point array is W = p * (n−1). For example, when p = 0.36 mm and n = 24, W = 8.28 mm. The fluorescence detection device collectively detects each light emission from the light emission point array while dispersing it. This device configuration is shown in FIG. 3 of Patent Document 1.

まず,共通集光レンズによって各発光を平行光束化する。以降,「共通」という表現は,複数(n個)の発光点について1個の光学素子を用いる(n:1の対応)という意味で用いる。反対に,「個別」という表現は,1つの発光点について1個の光学素子を用いる(1:1の対応)という意味で用いる。ここで,共通集光レンズの焦点距離をf,有効径をD1とすると,W<f,W<D1である。例えば,f=50mm,D1=36mmである。次に,平行光束をロングパスフィルタに通してレーザビームの波長をカットし,さらに共通透過型回折格子を透過させて各キャピラリの長軸方向,すなわち発光点アレイの配列方向及び共通集光レンズの光軸の両者に直交する方向に波長分散させる。ここで,共通透過型回折格子の有効径をDGとすると,検出効率を低下させないためには,D1≦DGである必要がある。例えば,DG=50mmである。続いて,共通結像レンズで各平行光束を2次元センサ上に結像させる。ここで,共通結像レンズの有効径をD2とすると,検出効率を低下させないためには,D1≦D2である必要がある。例えば,D2=36mmである。以上により,発光点アレイからの各発光の波長分散スペクトルを一括して取得できる。最後に,各波長分散スペクトルの時間変化を分析することによって4色の蛍光強度の時間変化を求め,塩基種の順番,すなわち塩基配列を決定する。   First, each light emission is collimated by a common condenser lens. Hereinafter, the expression “common” is used in the sense that one optical element is used for a plurality of (n) light emitting points (corresponding to n: 1). On the contrary, the expression "individual" is used in the sense that one optical element is used for one light emitting point (1: 1 correspondence). Here, assuming that the focal length of the common condenser lens is f and the effective diameter is D1, W <f, W <D1. For example, f = 50 mm and D1 = 36 mm. Next, a parallel beam is passed through a long pass filter to cut the wavelength of the laser beam, and the common transmission type diffraction grating is further transmitted to make the major axis direction of each capillary, ie, the arrangement direction of the light emission point array and the light of the common condenser lens Wavelength dispersion is performed in the direction orthogonal to both axes. Here, assuming that the effective diameter of the common transmission type diffraction grating is DG, in order not to reduce the detection efficiency, it is necessary to satisfy D1 ≦ DG. For example, DG = 50 mm. Subsequently, each collimated light beam is imaged on a two-dimensional sensor by a common imaging lens. Here, assuming that the effective diameter of the common imaging lens is D2, in order not to lower the detection efficiency, it is necessary to satisfy D1 ≦ D2. For example, D2 = 36 mm. As described above, the wavelength dispersion spectrum of each light emission from the light emitting point array can be acquired at once. Finally, the time change of the fluorescence intensity of four colors is determined by analyzing the time change of each wavelength dispersion spectrum, and the order of the base species, that is, the base sequence is determined.

4色の蛍光を同時に検出する他の手段が,非特許文献1の図2に示されている。まず,1個の発光領域からの発光を1個の集光レンズ(ここでは,対物レンズ)によって平行光束化する。ここで,発光領域の全幅をW,対物レンズの焦点距離をf,有効径をD1とすると,W<f,W<D1である。用いられている対物レンズは,オリンパスのUPLSAPO 60× Wであり,W=0.44mm,f=3mm,D1=20mmである。次に,平行光束を1組の3種類のダイクロイックミラーによって4色の4つの平行光束に分割させる。続いて,各平行光束を1組の4個の結像レンズで4つの2次元センサ上にそれぞれ結像させる。ここで,各結像レンズの有効径をD2とすると,検出効率を低下させないためには,D1≦D2である必要がある。以上により,発光領域の4色の4分割像を一括して取得できる。   Another means of simultaneously detecting four colors of fluorescence is shown in FIG. 2 of Non-Patent Document 1. First, light emitted from one light emitting region is collimated by one condensing lens (here, an objective lens). Here, assuming that the total width of the light emitting region is W, the focal length of the objective lens is f, and the effective diameter is D1, W <f, W <D1. The objective used is an Olympus UPLSAPO 60 × W, W = 0.44 mm, f = 3 mm, D1 = 20 mm. Next, the parallel light flux is divided into four parallel light fluxes of four colors by one set of three types of dichroic mirrors. Subsequently, each collimated light beam is imaged on each of four two-dimensional sensors by one set of four imaging lenses. Here, assuming that the effective diameter of each imaging lens is D2, in order not to lower the detection efficiency, it is necessary to satisfy D1 ≦ D2. According to the above, it is possible to acquire four-color divided images of the light emitting area collectively.

一方,発光点アレイからの発光を同時に検出する他の手段が,特許文献2の図1に示されている。まず,個別集光レンズアレイによって発光点アレイからの各発光を平行光束化する。ここで,発光点の間隔をp,発光点の数をnとすると,発光点アレイの全幅はW=p*(n−1)であり,各集光レンズの有効径をD1とすると,D1<Wである。また,D1<pとすることによって,各集光レンズが直線上に並んだ個別集光レンズアレイとすることができる。次に,各平行光束を個別センサアレイのそれぞれの個別センサに入射させる。以上により,発光点アレイからの発光強度を一括して取得できる。   On the other hand, another means for simultaneously detecting the light emission from the light emitting point array is shown in FIG. 1 of Patent Document 2. First, each light emission from the light emitting point array is collimated by an individual condensing lens array. Here, assuming that the distance between light emitting points is p and the number of light emitting points is n, the total width of the light emitting point array is W = p * (n-1), and the effective diameter of each condenser lens is D1. It is <W. Further, by setting D1 <p, it is possible to obtain an individual condensing lens array in which each condensing lens is arranged in a straight line. Next, each collimated light beam is incident on each individual sensor of an individual sensor array. Thus, the light emission intensity from the light emission point array can be acquired collectively.

特開2007−171214号公報JP 2007-171214 A 特開2011−59095号公報JP 2011-59095 A

Rev Sci Instrum., 2011 Feb;82(2):023701.Rev Sci Instrum., 2011 Feb; 82 (2): 023701.

特許文献1の蛍光検出装置は,各発光点からの発光の集光効率(共通集光レンズによる集光効率),検出効率(集光効率,ロングパスフィルタの透過率,回折格子の回折効率等を踏まえた,センサによる蛍光検出に寄与する発光のトータルの利用効率)が高く,また,回折格子による分光精度も高い。しかしながら,2つの共通レンズ(カメラレンズを利用)を含み,W<f,W<D1≦D2の関係があることから,W一定とすると,装置の全体サイズが非常に大きく,装置の製造コストが高いことが課題である。例えば,f=50mm,D1=36mm,D2=36mmの場合,蛍光検出装置の全体サイズは,直径100mm,高さ200mmの円柱の体積(1.6×10mm)よりも大きくなる。本明細書では,蛍光検出装置の全体サイズを,発光点から結像点までの光学系の占有体積で表現し,センサ自体の占有体積は含めないことにする。また,W≪f,W≪D1とすることはできないため(実現するためには巨大なカメラレンズが必要),光軸付近の発光点(発光点アレイの中央付近に位置する発光点)の検出効率と比較して,光軸から離れた発光点(発光点アレイの端付近に位置する発光点)の検出効率が低下し,発光点毎に感度にばらつきが生じる課題がある。 In the fluorescence detection device of Patent Document 1, the light collection efficiency of light emission from each light emitting point (light collection efficiency by common light collecting lens), detection efficiency (light collection efficiency, transmittance of long pass filter, diffraction efficiency of diffraction grating, etc. Based on the above, the total utilization efficiency of the light emission contributing to the fluorescence detection by the sensor is high, and the spectral accuracy by the diffraction grating is also high. However, since there is a relationship of W <f, W <D1 ≦ D2 including two common lenses (using a camera lens), if W is constant, the overall size of the device is very large, and the manufacturing cost of the device is High is the problem. For example, in the case of f = 50 mm, D1 = 36 mm, D2 = 36 mm, the overall size of the fluorescence detection device is larger than the volume (1.6 × 10 6 mm 3 ) of a cylinder with a diameter of 100 mm and a height of 200 mm. In this specification, the overall size of the fluorescence detection apparatus is expressed by the occupied volume of the optical system from the light emission point to the imaging point, and the occupied volume of the sensor itself is not included. Since W << f and W <D1 can not be satisfied (a huge camera lens is required to realize this), detection of the light emitting point near the optical axis (light emitting point located near the center of the light emitting point array) Compared with the efficiency, the detection efficiency of the light emitting point (light emitting point located near the end of the light emitting point array) away from the optical axis is lowered, and there is a problem that the sensitivity varies for each light emitting point.

しかし,これらの課題を解決すること,すなわち,発光点アレイからの4色の発光を同時に識別しながら検出する装置を小型化及び低コスト化し,各発光の感度ばらつきを低減することはこれまで行われてこなかった。蛍光検出装置を小型化できれば,キャピラリアレイDNAシーケンサを小さな領域に設置できたり,持ち運びできるようになったり,あるいは使い勝手が向上したりする。また,蛍光検出装置の部品点数が減ったり,各部品のサイズが小さくなったりすることによって製造コストが低減される。さらに,各発光点の感度ばらつきを低減することにより,各キャピラリで分析されるサンプルの定量的な比較が可能になり,発光点アレイのトータルの感度及びダイナミックレンジを向上させることができる。これらの結果,キャピラリアレイDNAシーケンサはさらに普及し,より一層,世の中に貢献することができる。   However, to solve these problems, ie, to miniaturize and reduce the cost of a device that simultaneously detects four colors of light emitted from a light emitting point array and to reduce the cost variation of each light emission, I did not come. If the size of the fluorescence detection apparatus can be reduced, the capillary array DNA sequencer can be installed in a small area, can be carried around, or the usability can be improved. In addition, the number of parts of the fluorescence detection device is reduced, and the size of each part is reduced, whereby the manufacturing cost is reduced. Furthermore, by reducing the sensitivity variation of each light emitting point, it becomes possible to make a quantitative comparison of the samples analyzed by each capillary, and it is possible to improve the total sensitivity and dynamic range of the light emitting point array. As a result of these, the capillary array DNA sequencer can further spread and contribute to the world.

非特許文献1に示される蛍光検出装置を用いて,同様の発光点アレイからの4色発光の同時蛍光検出を行うことができる。ただし,ここで用いられている対物レンズでは,W=0.44mmであるため,例えば,発光点アレイの全幅W=8.28mmの一部しか検出できない。そこで,対物レンズ及び4つの個別結像レンズの代わりに,キャピラリアレイDNAシーケンサと同様に共通集光レンズ及び4つの共通結像レンズを用いる。このとき,3種類のダイクロイックミラーの有効径をDMとすると,平行光束に対して45°傾けて配置するため,検出効率を低下させないためには,√2×D1≦DMである必要がある。例えばDM=71mmである。したがって,4つのカメラを含めなくても,蛍光検出装置の全体サイズは特許文献1の場合よりもさらに大きくなり,それだけ製造コストも高くなる。これに加えて,4つのカメラが占める空間は大きく,そのコストも非常に高い。発光点毎の感度ばらつきの課題もそのまま残る。   The fluorescence detection apparatus shown in Non-Patent Document 1 can be used to perform simultaneous fluorescence detection of four-color light emission from a similar light emitting point array. However, with the objective lens used here, since W = 0.44 mm, for example, only a part of the full width W = 8.28 mm of the light emitting point array can be detected. Therefore, instead of the objective lens and the four individual imaging lenses, a common condenser lens and four common imaging lenses are used as in the capillary array DNA sequencer. At this time, assuming that the effective diameters of the three types of dichroic mirrors are DM, they are arranged to be inclined 45 ° with respect to the parallel light flux, and in order not to reduce the detection efficiency, it is necessary to satisfy √2 × D1 ≦ DM. For example, DM = 71 mm. Therefore, even if the four cameras are not included, the overall size of the fluorescence detection device becomes larger than in the case of Patent Document 1, and the manufacturing cost increases accordingly. In addition to this, the space occupied by the four cameras is large and the cost is very high. The problem of sensitivity variation for each light emitting point also remains.

一方,特許文献2に示される蛍光検出装置を用いることは,D1<Wのため,装置サイズを小さくできる可能性があるが,1色の蛍光検出のみに対応していることが課題である。そこで,特許文献1に倣い,回折格子による波長分散と組み合わせることを考える。n個の発光点からの発光を,n個の個別集光レンズで平行光束とし,それぞれをn個の個別透過型回折格子を透過させて波長分散させ,n個の個別結像レンズでn個の1次元又は2次元の個別センサ上に結像させる。すなわち,特許文献1の蛍光検出装置を小型化し,それをn個並列に並べた構成である。ここで,D1<p,p=0.36mmのため,例えば,D1=0.3mmとする。透過型回折格子の有効径DGは,D1≦DGと同時に,隣接する回折格子との立体障害を受けないため,DG<pとする必要があり,例えば,DG=0.3mmとすれば良い。以上の蛍光検出装置は,特許文献1の場合と比較して装置の小型化が可能であるが,微細な光学部品をそれぞれn個ずつ作製し,それぞれを所定の位置に配列することは困難であり,それだけ製造コストが高くなる。また,DG=0.3mmの透過型回折格子を作製すること自体が困難である。   On the other hand, using the fluorescence detection device disclosed in Patent Document 2 may reduce the device size because D1 <W, but the problem is that it corresponds to only one-color fluorescence detection. Therefore, following Patent Document 1 and combining with wavelength dispersion by a diffraction grating will be considered. Light emitted from n light emitting points is collimated by n individual condenser lenses, each of which is transmitted through n individual transmission type diffraction gratings for wavelength dispersion, and n n imaging lenses Image on a one-dimensional or two-dimensional individual sensor. That is, the fluorescence detection device of Patent Document 1 is miniaturized, and n pieces of the fluorescence detection device are arranged in parallel. Here, since D1 <p, p = 0.36 mm, for example, D1 = 0.3 mm. The effective diameter DG of the transmission type diffraction grating does not receive steric hindrance with the adjacent diffraction grating simultaneously with D1 ≦ DG, so it is necessary to set DG <p, for example, it may be DG = 0.3 mm. The above fluorescence detection device can be miniaturized as compared with the case of Patent Document 1, but it is difficult to produce n pieces of fine optical components and to arrange each in a predetermined position. Yes, and the manufacturing cost is higher. In addition, it is difficult to fabricate a transmission grating of DG = 0.3 mm.

次に,非特許文献2に倣い,3種類のダイクロイックミラーと組み合わせることを考える。n個の発光点からの発光を,n個の個別集光レンズで平行光束とし,n個の平行光束をそれぞれ,n組×3種類の個別ダイクロイックミラーを用いて,n組の4色の4分割平行光とし,n組×4個の個別結像レンズでn組×4個の個別センサ上に結像させる。すなわち,非特許文献1の蛍光検出装置を小型化し,それをn個並列に並べた構成である。ここで,D1<p,p=0.36mmのため,例えば,D1=0.25mmとする。各ダイクロイックミラーの有効径DMは,√2×D1≦DMと同時に,隣接するダイクロイックミラーとの立体障害を受けないため,DM<pとする必要があり,例えば,DM=0.35mmとすれば良い。以上の蛍光検出装置は,特許文献1の場合と比較して発光点による感度のばらつきは低減されるが,微細な光学部品をぞれぞれn個又はn組ずつ作製し,それぞれを所定の位置に配列することは困難であり,それだけ製造コストが高くなる。また,n個の4分割像を立体障害を避けながら配置すること自体が困難である。さらに,DM=0.35mmのダイクロイックミラーを作製すること自体も困難である。   Next, according to Non-Patent Document 2, consider combining with three types of dichroic mirrors. Light emitted from n light emitting points is converted into parallel light beams by n individual condenser lenses, and n parallel light beams are divided into 4 groups of 4 colors using n groups × 3 types of individual dichroic mirrors. The divided parallel light is formed, and images are formed on n sets × 4 individual sensors by n sets × 4 individual imaging lenses. That is, the fluorescence detection device of Non-Patent Document 1 is miniaturized, and n pieces of the fluorescence detection device are arranged in parallel. Here, since D1 <p, p = 0.36 mm, for example, D1 = 0.25 mm. The effective diameter DM of each dichroic mirror does not receive a steric hindrance with the adjacent dichroic mirror at the same time as 2 2 × D 1, DM, so it is necessary to set DM <p. For example, if DM = 0.35 mm good. Although the above-mentioned fluorescence detection device reduces the variation in sensitivity due to the light emission point compared to the case of Patent Document 1, n pieces or n sets of fine optical components are prepared, and each of them is set to a predetermined value. It is difficult to arrange in position, and the manufacturing cost is higher. In addition, it is difficult to arrange n four-divided images while avoiding steric hindrance. Furthermore, it is also difficult to fabricate a dichroic mirror with DM = 0.35 mm.

以上では,キャピラリアレイDNAシーケンサの蛍光検出装置に適用することを想定して4色蛍光検出について述べたが,課題はキャピラリあるいは4色蛍光検出に限定されるものではなく,任意の発光点アレイからの発光について2色以上の多色発光検出する場合に共通のものである。   In the above, four-color fluorescence detection has been described on the assumption that the present invention is applied to a fluorescence detector of a capillary array DNA sequencer, but the problem is not limited to capillary or four-color fluorescence detection. Is common to the case of detecting multicolor emission of two or more colors.

本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする複数の集光レンズが配列した集光レンズアレイと,その平行光束がそれぞれ並列に入射される,共通かつ少なくとも1個の分光素子と,分光素子によって分光された光束がそれぞれ並列に入射される,共通かつ少なくとも1個のセンサと,を有する。   The multicolor detection device according to the present invention comprises a condenser lens array in which a plurality of condenser lenses are arrayed for individually making parallel luminous flux emitted from each luminous point of a luminous point array in which a plurality of luminous points are arrayed It has a common and at least one dispersive element in which the luminous fluxes are respectively incident in parallel and a common and at least one sensor in which the luminous fluxes separated by the dispersive elements are respectively incident in parallel.

分光素子としては,回折格子,プリズム,あるいはダイクロイックミラーを用いることができる。   A diffraction grating, a prism, or a dichroic mirror can be used as the spectral element.

また,本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする複数の集光レンズが配列した集光レンズアレイと,その平行光束がそれぞれ並列に入射される,共通かつ少なくとも1個のカラーセンサと,を有する。   In the multicolor detection device according to the present invention, there is provided a condenser lens array in which a plurality of condenser lenses are arranged to individually make parallel luminous flux emitted from each luminous point of the luminous point array in which a plurality of luminous points are arrayed; Common and at least one color sensor, in which the parallel luminous fluxes are respectively incident in parallel.

また,本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする複数の集光レンズが配列した集光レンズアレイと,その平行光束がそれぞれ並列に入射される,共通かつ少なくとも1個のセンサとを有し,発光点の有効径の平均をd,集光レンズの焦点距離の平均をf,集光レンズの有効径の平均をD,集光レンズとセンサの光学的な距離の平均をgとするとき,
f≦−0.20*(d/D)*g+2.8*D
を満足する。
In the multicolor detection device according to the present invention, there is provided a condenser lens array in which a plurality of condenser lenses are arranged to individually make parallel luminous flux emitted from each luminous point of the luminous point array in which a plurality of luminous points are arrayed; The parallel luminous flux has a common and at least one sensor, each of which is incident in parallel, the average of the effective diameter of the light emitting point is d, the average of the focal length of the focusing lens is f, the effective diameter of the focusing lens Let D be the average of and g be the average of the optical distance between the condenser lens and the sensor,
f ≦ −0.20 * (d / D) * g + 2.8 * D
Satisfy.

また,本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする集光レンズが配列した集光レンズアレイと,その平行光束がそれぞれ並列に入射される,共通かつ少なくとも1個のセンサとを有し,発光点の有効径の平均をd,発光点の配列間隔の平均をp,集光レンズと前記センサの光学的な距離の平均をgとするとき,
f≧0.95*(d/p)*g
を満足する。
Further, the multicolor detection device according to the present invention comprises a condenser lens array in which condenser lenses are arrayed individually to make light emitted from each luminous point of the luminous point array in which plural luminous points are arrayed into parallel luminous flux, and the parallel With common and at least one sensor, in which the luminous fluxes are respectively incident in parallel, the average of the effective diameter of the light emission point is d, the average of the arrangement interval of the light emission points is p, the condenser lens and the optical of the sensor Let g be the average of various distances,
f ≧ 0.95 * (d / p) * g
Satisfy.

また,本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする集光レンズが配列した集光レンズアレイと,その平行光束を,それぞれ個別に集光束とする複数の結像レンズが配列した結像レンズアレイと,集光束がそれぞれ並列に入射される,共通かつ少なくとも1個のセンサとを有し,発光点の有効径の平均をd,集光レンズの焦点距離の平均をf,集光レンズの有効径の平均をD,集光レンズと当該集光レンズに対応する結像レンズとの間の光学的な距離の平均をgとするとき,
f≦−0.20*(d/D)*g+2.8*D
を満足する。
Further, the multicolor detection device according to the present invention comprises a condenser lens array in which condenser lenses are arrayed individually to make light emitted from each luminous point of the luminous point array in which plural luminous points are arrayed into parallel luminous flux, and the parallel It has an imaging lens array in which a plurality of imaging lenses individually arraying luminous fluxes, and a common and at least one sensor into which the luminous fluxes are incident in parallel, and the luminous point is effective The average of the diameter d, the average of the focal length of the focusing lens f, the average of the effective diameter of the focusing lens D, the optical distance between the focusing lens and the imaging lens corresponding to the focusing lens Let g be the average of
f ≦ −0.20 * (d / D) * g + 2.8 * D
Satisfy.

また,本発明による多色検出装置は,複数の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に平行光束とする集光レンズが配列した集光レンズアレイと,その平行光束を,それぞれ個別に集光束とする複数の結像レンズが配列した結像レンズアレイと,集光束がそれぞれ並列に入射される,共通かつ少なくとも1個のセンサとを有し,発光点の有効径の平均をd,発光点の配列間隔の平均をp,集光レンズの焦点距離の平均をf,集光レンズと当該集光レンズに対応する結像レンズとの間の光学的な距離の平均をgとするとき,
f≧0.95*(d/p)*g
を満足する。
Further, the multicolor detection device according to the present invention comprises a condenser lens array in which condenser lenses are arrayed individually to make light emitted from each luminous point of the luminous point array in which plural luminous points are arrayed into parallel luminous flux, and the parallel It has an imaging lens array in which a plurality of imaging lenses individually arraying luminous fluxes, and a common and at least one sensor into which the luminous fluxes are incident in parallel, and the luminous point is effective D of average diameter, p of average arrangement distance of light emitting points, f of average focal distance of condenser lens, optical distance between the condenser lens and the imaging lens corresponding to the condenser lens Let g be the average,
f ≧ 0.95 * (d / p) * g
Satisfy.

また,本発明によるデバイスは,複数のチャンネルの少なくとも一部が同一平面上に配列したチャンネルアレイと,チャンネルアレイの各チャンネルからの発光をそれぞれ個別に平行光束とする集光レンズが配列した集光レンズアレイとが一体化されたものである。   Further, in the device according to the present invention, a channel array in which at least a part of a plurality of channels are arranged on the same plane, and a condensing lens in which condensing lenses individually making parallel light beams emitted from the respective channels of the channel array are arranged. The lens array is integrated.

複数のチャンネルは複数のキャピラリの内部であっても良いし,マイクロチップの内部に形成されていても良い。   The plurality of channels may be inside the plurality of capillaries or may be formed inside the microchip.

本発明によると,発光点アレイからの発光の多色検出を行う装置を小型化することができ,これを用いた様々な装置の全体サイズを小型化することができる。したがって,装置を置くスペースを削減でき,装置の持ち運びも可能となり,装置の使い勝手が向上する。また,装置を構成する部品点数が削減され,部品そのものを小型化することによって,製造コストを低減することが可能である。   According to the present invention, it is possible to miniaturize a device for performing multicolor detection of light emission from a light emitting point array, and to miniaturize the overall size of various devices using this. Therefore, the space for placing the device can be reduced, the device can be carried, and the usability of the device is improved. Further, the number of parts constituting the apparatus can be reduced, and the manufacturing cost can be reduced by miniaturizing the parts themselves.

上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.

発光点アレイからの各発光を個別集光レンズでそれぞれ平行光束化し,センサ領域に入射させて検出する蛍光検出装置の構成例を示す模式図。The schematic diagram which shows the example of a structure of the fluorescence detection apparatus which parallelizes each light emission from a light emission point array with an individual condensing lens, makes it inject into a sensor area, and is detected. fをパラメータとして,gと相対検出光量の関係を示した図。The figure which showed the relationship of g and relative detection light quantity by making f as a parameter. Dをパラメータとして,相対検出光量が50%以上となるgとfの関係を示した図。The figure which showed the relationship of g and f from which relative detection light quantity becomes 50% or more by setting D as a parameter. pをパラメータとして,クロストーク信号強度比が25%以下となるgとfの関係を示した図。The figure which showed the relationship of g and f from which crosstalk signal strength ratio becomes 25% or less by making p into a parameter. D及びpをパラメータとして,相対検出光量が50%以上かつクロストーク信号強度比が25%以下となるgとfの関係を示した図。The figure which showed the relationship of g and f from which a relative detection light quantity becomes 50% or more, and crosstalk signal strength ratio becomes 25% or less by using D and p as a parameter. キャピラリアレイDNAシーケンサの装置構成例を示す模式図。The schematic diagram which shows the apparatus structural example of a capillary array DNA sequencer. 発光点アレイからの発光を,個別集光レンズ及び共通波長分散素子により多色検出する装置構成例を示す断面模式図。FIG. 5 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting the light emission from the light emitting point array with an individual condensing lens and a common wavelength dispersion element in multiple colors. 発光点アレイからの発光を,個別集光レンズ,共通波長分散素子,及び集光レンズの光軸に垂直に配置されたセンサにより多色検出する装置構成例を示す断面模式図。FIG. 7 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting light emitted from the light emitting point array by a multicolor detection by an individual condensing lens, a common wavelength dispersion element, and a sensor arranged perpendicularly to the optical axis of the condensing lens. 発光点アレイからの発光を,個別集光レンズ,共通凹面反射型回折格子,及び集光レンズの光軸に垂直に配置されたセンサにより多色検出する装置構成例を示す断面模式図。FIG. 7 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting light emitted from the light emitting point array by a multicolor detection by an individual condensing lens, a common concave reflection type diffraction grating, and a sensor arranged perpendicular to the optical axis of the condensing lens. 発光点アレイからの発光を,個別集光レンズ,共通ダイクロイックミラーセット,及びセンサにより多色検出する装置構成例を示す断面模式図。FIG. 5 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting the light emission from the light emission point array with an individual condensing lens, a common dichroic mirror set, and a multicolor sensor. 発光点アレイからの発光を,個別集光レンズ,共通ダイクロイックミラーセット,及びセンサにより,波長分散の場合と同等に多色検出する装置構成例を示す断面模式図。FIG. 7 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting light emission from the light emission point array with an individual condensing lens, a common dichroic mirror set, and a sensor as polychromatic in the same manner as wavelength dispersion. 発光点アレイからの発光を,個別集光レンズ,及びカラーセンサにより多色検出する装置構成例を示す断面模式図。The cross-sectional schematic diagram which shows the apparatus structural example which detects multiple colors of light emission from a light emission point array with an individual condensing lens and a color sensor. 複数のキャピラリを配列するV溝アレイと,個別集光レンズアレイを一体化したデバイスの構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of the device which integrated the V groove | channel array which arranges several capillaries, and the separate condensing lens array. 複数のキャピラリにそれぞれ個別集光レンズを接着したデバイスの構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of the device which adhere | attached the separate condensing lens to several capillaries, respectively. マルチチャンネルを有するマイクロチップと個別集光レンズアレイが一体化したデバイスの構成例を示す断面模式図。The cross-sectional schematic diagram which shows the structural example of the device which the microchip which has a multi-channel, and the separate condensing lens array were integrated. マルチチャンネルを有するマイクロチップと個別集光レンズアレイが一体化したデバイスと個別LED照明による発光点アレイからの発光を,共通ダイクロイックミラーセット,及びセンサにより多色検出する装置構成例を示す断面模式図。A schematic cross-sectional view showing an example of a device configuration in which light emission from a light emitting point array by a device in which a microchip having a multi-channel and an individual condensing lens array are integrated and individual LED illumination is detected by a common dichroic mirror set and a sensor .

本発明は,発光点アレイからの4色の発光を同時に識別しながら検出する装置を小型化及び低コスト化し,各発光の感度ばらつきを低減する手段を提供する。最初に,本発明を概観する。   The present invention provides a means for miniaturizing and reducing the cost of a device for simultaneously detecting four color light emissions from a light emitting point array while detecting the variations in sensitivity of each light emission. First, an overview of the present invention is given.

まず,発光点アレイからの各発光を個別集光レンズアレイによって平行光束化する。本明細書では,平行光束という表現を多用するが,構成する光要素が厳密な意味で互いに平行な光束を必ずしも意味するのではなく,発光点から全方位に出射した発光の光要素の互いになす角度が,集光レンズによって少なくとも減少し,ゼロに近づいている光束を意味する。ここで,発光点の間隔の平均をp,発光点の数及び個別集光レンズの数をnとすると,発光点アレイの全幅はW=p*(n−1)である。各集光レンズの焦点距離の平均をf,有効径の平均をD1とすると,D1<Wである。また,D1<pとすることによって,各集光レンズが直線上に並んだ集光レンズアレイとすることができる。p=0.36mm,n=24,W=8.28mmに対して,例えば,f=1mm,D1=0.3mmとする。   First, each light emission from the light emitting point array is collimated by an individual condensing lens array. In this specification, although the expression “parallel light flux” is often used, the constituent light elements do not necessarily mean light fluxes parallel to one another in a strict sense, but the light elements of light emission emitted in all directions from light emission points This means that the angle is at least reduced by the collecting lens and is approaching zero. Here, assuming that the average of the spacing of the light emitting points is p, the number of light emitting points and the number of individual condenser lenses are n, the total width of the light emitting point array is W = p * (n-1). Assuming that the average of the focal lengths of the focusing lenses is f and the average of the effective diameters is D1, D1 <W. Further, by setting D1 <p, it is possible to make a condensing lens array in which the respective condensing lenses are arranged in a straight line. For example, f = 1 mm and D1 = 0.3 mm for p = 0.36 mm, n = 24 and W = 8.28 mm.

次に,各平行光束を分光素子,例えば1個の共通透過型回折格子を透過させて波長分散させる。ここで,透過型回折格子の発光点アレイの配列方向の有効径をDG1,透過型回折格子の各キャピラリの長軸方向の有効径をDG2とすると,検出効率を低下させないため,(W+D1)≦DG1,D1≦DG2とする。例えば,DG1=10mm,DG2=1mmとすれば良い。このとき,24個の互いに分離した平行光束は,1個の共通透過型回折格子の異なる箇所に入射され,それぞれが並列に波長分散を受ける。各平行光束の径はD1=0.3mmであり,これは回折格子の格子定数と比較すると十分に大きいため,各平行光束はいずれも良好な波長分散を受けることができる。また,波長分散の方向は各キャピラリの長軸方向,すなわち,発光点アレイの配列方向及び各集光レンズの光軸の両者に垂直な方向とする。   Next, each parallel beam is transmitted through a spectral element, for example, a single common transmission diffraction grating to disperse the wavelength. Here, assuming that the effective diameter in the arrangement direction of the light emitting point array of the transmission type diffraction grating is DG1 and the effective diameter in the major axis direction of each capillary of the transmission type diffraction grating is DG2, the detection efficiency is not reduced. It is assumed that DG1 and D1 ≦ DG2. For example, DG1 = 10 mm and DG2 = 1 mm. At this time, the 24 parallel light beams separated from each other are incident on different portions of one common transmission type diffraction grating, and each receives wavelength dispersion in parallel. The diameter of each parallel beam is D1 = 0.3 mm, which is sufficiently large as compared with the grating constant of the diffraction grating, so that each parallel beam can receive good wavelength dispersion. The direction of wavelength dispersion is the direction of the major axis of each capillary, that is, the direction perpendicular to both the arrangement direction of the light emitting point array and the optical axis of each condenser lens.

続いて,波長分散を受けた各平行光束を,n個の個別結像レンズで,1個の共通2次元センサ上に結像させる。各結像レンズの有効径の平均D2は,検出効率を低下させないため,D1≦D2である必要がある。例えば,D2=0.3mmである。以上により,発光点アレイからの各発光の4色の蛍光検出を一括して行うことができる。   Subsequently, each collimated light beam subjected to wavelength dispersion is imaged on one common two-dimensional sensor by n individual imaging lenses. The average D2 of the effective diameter of each imaging lens needs to be D1 ≦ D2 in order not to reduce the detection efficiency. For example, D2 = 0.3 mm. As described above, the four-color fluorescence detection of each light emission from the light emitting point array can be performed collectively.

以上の蛍光検出装置によれば,装置サイズが特許文献1の場合と比較して小型化されるだけでなく,回折格子及びセンサを複数の発光点について共通化することによって装置構成が簡略化され,実装が容易化される。蛍光検出装置の全体サイズは,直径10mm,高さ20mmの円柱よりも小さくすることが可能である。また,回折格子とセンサを共通化しているにも関わらず,各発光点について蛍光検出光学系及び検出効率は等価であり,感度ばらつきを低減することが可能である。以上は,透過型回折格子を波長分散プリズムに置き換えても,同様に課題を解決することができる。   According to the above fluorescence detection device, not only the device size is miniaturized as compared with the case of Patent Document 1, but also the device configuration is simplified by making the diffraction grating and the sensor common to a plurality of light emitting points. , Implementation is facilitated. The overall size of the fluorescence detection device can be smaller than a cylinder with a diameter of 10 mm and a height of 20 mm. Further, although the diffraction grating and the sensor are shared, the fluorescence detection optical system and the detection efficiency are equivalent for each light emitting point, and it is possible to reduce the sensitivity variation. The above can similarly solve the problem even if the transmission type diffraction grating is replaced with a wavelength dispersive prism.

本発明の別の態様を説明する。まず,発光点アレイからの各発光を個別集光レンズアレイによって平行光束化する。ここで,発光点の間隔の平均をp,発光点の数及び集光レンズの数をnとすると,発光点アレイの全幅はW=p*(n−1)である。各集光レンズの焦点距離の平均をf,有効径の平均をD1とすると,D1<Wである。また,D1<pとすることによって,各集光レンズが直線上に並んだ集光レンズアレイとすることができる。p=0.36mm,n=24,W=8.28mmに対して,例えば,f=1mm,D1=0.3mmとする。   Another aspect of the present invention will be described. First, each light emission from the light emitting point array is collimated by an individual condensing lens array. Here, assuming that the average of the spacings of the light emitting points is p, the number of light emitting points and the number of condenser lenses are n, the total width of the light emitting point array is W = p * (n-1). Assuming that the average of the focal lengths of the focusing lenses is f and the average of the effective diameters is D1, D1 <W. Further, by setting D1 <p, it is possible to make a condensing lens array in which the respective condensing lenses are arranged in a straight line. For example, f = 1 mm and D1 = 0.3 mm for p = 0.36 mm, n = 24 and W = 8.28 mm.

次に,各平行光束を,1組の3種類の共通ダイクロイックミラー及び1個の全反射ミラーを各キャピラリの長軸方向,すなわち発光点アレイの配列方向及び各集光レンズの光軸の両者に直交する方向に平行に配列することにより,n組の4色の4分割した平行光束とし,これらの平行光束をキャピラリアレイの配列平面に垂直な方向,すなわち各集光レンズの光軸に平行な方向に進行させる。各ダイクロイックミラー及び全反射ミラーの発光点アレイの配列方向の有効径の平均をDM1,これと直交方向の有効径の平均をDM2とすると,検出効率を低下させないため,(W+D1)≦DM1,√2×D1≦DM2とする。例えば,DM1=10mm,DM2=1mmとすれば良い。このとき,24個の互いに分離した平行光束は,各種類について1個のダイクロイックミラーの異なる箇所に入射され,それぞれが透過光と反射光に2分割される。1個のダイクロイックミラーはどの箇所でも均一な性能が得られるため,各平行光束はいずれも良好な分光を受けることができる。なお,全反射ミラーはダイクロイックミラーで置き換えても良い。   Next, for each parallel beam, one set of three common dichroic mirrors and one total reflection mirror both in the major axis direction of each capillary, that is, both in the array direction of the light emission point array and in the optical axis of each condenser lens. By arranging in parallel in the orthogonal direction, n sets of four-color divided parallel luminous fluxes are obtained, and these parallel luminous fluxes are parallel to the direction perpendicular to the arrangement plane of the capillary array, that is, the optical axis of each condenser lens Advance in the direction. Assuming that the average of the effective diameters in the arrangement direction of the light emitting point arrays of each dichroic mirror and total reflection mirror is DM1 and the average of the effective diameters in the orthogonal direction is DM2, the detection efficiency is not reduced. It is assumed that 2 × D1 ≦ DM2. For example, DM1 = 10 mm and DM2 = 1 mm. At this time, the 24 parallel light fluxes separated from each other are made incident on different portions of one dichroic mirror for each type, and each of them is split into a transmitted light and a reflected light. Since one dichroic mirror can obtain uniform performance at any place, each collimated light beam can receive good spectral separation. The total reflection mirror may be replaced by a dichroic mirror.

続いて,n組の4色の4分割した平行光束を,結像させずに,1個の共通2次元センサ上に入射させる。回折格子やプリズムによる波長分散によって分光する場合,上述の通り,波長分散された平行光束を結像レンズを用いて結像しなければ所望の分光精度が得られない。これに対して,ダイクロイックミラーによって分光する場合は必ずしもその必要がないため,結像レンズを省くことが可能である。以上により,発光点アレイからの各発光の4色の蛍光検出を一括して行うことができる。   Subsequently, n sets of four color-divided parallel luminous fluxes are incident on one common two-dimensional sensor without imaging. In the case of spectral separation by wavelength dispersion by a diffraction grating or a prism, as described above, desired spectral accuracy can not be obtained unless an image of a wavelength-dispersed parallel light beam is imaged using an imaging lens. On the other hand, the imaging lens can be omitted because it is not always necessary in the case of splitting by a dichroic mirror. As described above, the four-color fluorescence detection of each light emission from the light emitting point array can be performed collectively.

以上の蛍光検出装置によれば,装置サイズが特許文献1の場合と比較して小型化されるだけでなく,ダイクロイックミラー及びセンサを複数の発光点について共通化することによって装置構成が簡略化され,実装が容易化される。蛍光検出装置の全体サイズは,直径10mm,高さ10mmの円柱よりも小さくすることが可能である。また,回折格子とセンサを共通化しているにも関わらず,各発光点について蛍光検出系及び検出効率は等価であり,感度ばらつきを低減することが可能である。   According to the above fluorescence detection device, not only the device size is miniaturized as compared with the case of Patent Document 1, but the device configuration is simplified by sharing the dichroic mirror and the sensor for a plurality of light emitting points. , Implementation is facilitated. The overall size of the fluorescence detection device can be smaller than a cylinder with a diameter of 10 mm and a height of 10 mm. Moreover, although the diffraction grating and the sensor are shared, the fluorescence detection system and the detection efficiency are equivalent for each light emitting point, and it is possible to reduce the sensitivity variation.

本発明の更に別の態様を説明する。まず,発光点アレイからの各発光を個別集光レンズアレイによって平行光束化する。ここで,発光点の間隔の平均をp,発光点の数及び集光レンズの数をnとすると,発光点アレイの全幅はW=p*(n−1)である。各集光レンズの焦点距離の平均をf,有効径の平均をD1とすると,D1<Wである。また,D1<pとすることによって,各集光レンズが直線上に並んだ集光レンズアレイとすることができる。p=0.36mm,n=24,W=8.28mmに対して,例えば,f=1mm,D1=0.35mmとする。   Another aspect of the present invention will be described. First, each light emission from the light emitting point array is collimated by an individual condensing lens array. Here, assuming that the average of the spacings of the light emitting points is p, the number of light emitting points and the number of condenser lenses are n, the total width of the light emitting point array is W = p * (n-1). Assuming that the average of the focal lengths of the focusing lenses is f and the average of the effective diameters is D1, D1 <W. Further, by setting D1 <p, it is possible to make a condensing lens array in which the respective condensing lenses are arranged in a straight line. For example, f = 1 mm and D1 = 0.35 mm for p = 0.36 mm, n = 24 and W = 8.28 mm.

続いて,各平行光束を,結像させずに,1個の単板の共通2次元カラーセンサに入射させる。カラーセンサは,4色をそれぞれ識別する少なくとも4種類の画素が2次元のセンサ面上にそれぞれ多数配列している,あるいは,多数配列する1種類の各画素で2次元のセンサ面に垂直方向(入射光の進行方向)で4色を識別するものである。ここで,各画素の径の平均をSとすると,S<D1である必要がある。各平行光束の径の平均はD1=0.35mmである。これに対して,4色を識別する4種類の画素が配列するセンサを用い,S=0.05mmとすると,各平行光束はカラーセンサ上の約40画素で検出される。このとき,1色を識別する1種類の画素あたり約10画素で検出されるため,これらを積算することによって色毎のばらつきを低減し,高精度な分光が可能になる。   Subsequently, each parallel luminous flux is made to enter a single two-plate common two-dimensional color sensor without imaging. In the color sensor, at least four kinds of pixels respectively identifying four colors are arranged in a large number on the two-dimensional sensor surface, or one type of each pixel in which a large number is arranged is perpendicular to the two-dimensional sensor surface ( Four colors are identified in the traveling direction of the incident light. Here, assuming that the average of the diameter of each pixel is S, it is necessary to satisfy S <D1. The average diameter of each collimated beam is D1 = 0.35 mm. On the other hand, using a sensor in which four types of pixels for identifying four colors are arrayed and S = 0.05 mm, each parallel luminous flux is detected at about 40 pixels on the color sensor. At this time, since detection is performed with about 10 pixels per one type of pixel for identifying one color, by integrating these, variation for each color can be reduced, and highly accurate spectroscopy can be performed.

これに対して,各平行光束を個別集光レンズアレイで結像し,例えば,結像スポットの径が0.05mmになったとすると,カラーセンサ上の約1画素でのみ検出されることになり,良好な分光が不可能になる。つまり,この態様では,結像レンズをあえて用いないことが,装置の小型化に寄与するだけでなく,分光精度を向上することにも寄与する。以上により,発光点アレイからの各発光の4色の蛍光検出を一括して行うことができる。   On the other hand, if each collimated beam is imaged by an individual condensing lens array, and the diameter of the imaging spot becomes 0.05 mm, for example, it will be detected only at about 1 pixel on the color sensor. , Good spectroscopy becomes impossible. That is, in this aspect, not intentionally using the imaging lens not only contributes to downsizing of the apparatus but also contributes to improving the spectral accuracy. As described above, the four-color fluorescence detection of each light emission from the light emitting point array can be performed collectively.

以上の蛍光検出装置によれば,装置サイズが特許文献1の場合と比較して小型化されるだけでなく,装置構成が極めて簡単である。蛍光検出装置の全体サイズを,直径10mm,高さ5mmの円柱よりも小さくすることが可能である。また,各発光点について蛍光検出系及び検出効率は等価であり,感度ばらつきを低減することが可能である。   According to the above fluorescence detection device, not only the device size is miniaturized as compared with the case of Patent Document 1, but also the device configuration is extremely simple. The overall size of the fluorescence detection device can be smaller than a cylinder with a diameter of 10 mm and a height of 5 mm. Further, the fluorescence detection system and the detection efficiency are equivalent for each light emitting point, and it is possible to reduce the sensitivity variation.

以上では,キャピラリアレイDNAシーケンサの蛍光検出装置に適用することを想定して4色蛍光検出について述べたが,課題の解決手段はキャピラリあるいは4色蛍光検出に限定されるものではなく,任意の発光点アレイからの発光について2色以上の多色発光検出に共通のものである。   In the above, four-color fluorescence detection has been described on the assumption that the present invention is applied to a fluorescence detector of a capillary array DNA sequencer, but the solution to the problem is not limited to capillary or four-color fluorescence detection. It is common to multicolor luminescence detection of two or more colors about luminescence from a point array.

以下,図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明が対象とする発光点アレイの各発光点のサイズは小さいとは言え,有限の大きさを有しており,蛍光検出装置を小型化する際には無視できない。図1は,発光点アレイからの各発光を個別集光レンズでそれぞれ平行光束化し,センサ領域に入射させて検出する蛍光検出装置の構成例を示す模式図である。図1は,平均の有効径dの発光点15からの発光を,平均の焦点距離f,平均の有効径Dの個別集光レンズ18で平行光束化し,個別集光レンズ18から平均の距離gに位置する,平均の有効径Dのセンサ領域28に入射させて検出する構成を示している。センサ領域28の平均の有効径Dは,センサの全体サイズを必ずしも示すものではなく,より大きなサイズのセンサの一部が上記発光点15の検出のために割り当てられた領域と考えることもできる。また,図1には示さないが,各平行光束を個別結像レンズによって再集光,又は結像してからセンサ領域に入射させて検出する蛍光検出装置の場合には,以降の議論では,センサ領域を個別結像レンズに置き換えれば良く,個別集光レンズと個別結像レンズの平均の距離をgとすれば良い。   Although the size of each light emitting point of the light emitting point array targeted by the present invention is small, it has a finite size and can not be ignored when the fluorescence detection device is miniaturized. FIG. 1 is a schematic view showing a configuration example of a fluorescence detection apparatus which collimates each light emission from a light emission point array by individual condenser lenses and makes the light incident on a sensor area for detection. FIG. 1 shows that the light emission from the light emitting point 15 of the average effective diameter d is collimated by the individual focusing lens 18 of the average focal length f and the average effective diameter D, and the average distance g from the individual focusing lens 18 The configuration is shown in which the sensor region 28 of the average effective diameter D is made incident and detected. The average effective diameter D of the sensor area 28 does not necessarily indicate the overall size of the sensor, and part of a larger sensor can be considered as an area allocated for detection of the light emitting point 15. Also, although not shown in FIG. 1, in the case of a fluorescence detection apparatus in which each collimated light beam is refocused or imaged by an individual imaging lens and then incident on a sensor area to be detected, in the following discussion, The sensor area may be replaced with an individual imaging lens, and the average distance between the individual condensing lens and the individual imaging lens may be g.

最初に,図1の左側の発光点15に着目する。発光点15の中心からの発光29が集光レンズ18によって平行光束30となり,センサ領域28上でスポット31を形成し,センサ領域28とスポット31は一致する。このとき検出される光量は,D一定とすると,fが小さいほど受光角θ1とともに大きくなる。より正確には,F=f/Dのとき,検出光量は1/Fに比例して大きくなる。一方,発光点15の左端からの発光32の平行光束33のスポット34はセンサ領域28から右側にずれる。つまり,スポット31はすべて検出されるが,スポット34は,スポット31と重なった比率でのみ検出される。この重なりが大きいほど発光点の全域について検出される光量が大きくなる。そのためには,平行光束30の光軸と平行光束33の光軸のなす角θ2が小さければ良く,さらにそのためには,d一定とすると,fが大きいほど良い。以上のように,発光点15の検出光量を大きくするためには,fを小さくした方が良い面と,fを大きくした方が良い面のトレードオフの関係があるが,どのようなfが最も良いかの検討はこれまでになされていない。そこで,次に,発光点15の検出光量を大きくするためのf及びgの条件を解明する。 First, focus on the light emitting point 15 on the left side of FIG. Light 29 emitted from the center of the light emitting point 15 is collimated by the condenser lens 18 to form a parallel light beam 30, and a spot 31 is formed on the sensor area 28, and the sensor area 28 and the spot 31 coincide. Assuming that D is constant, the amount of light detected at this time increases with the light receiving angle θ1 as f is smaller. More precisely, when F = f / D, the detected light quantity increases in proportion to 1 / F 2 . On the other hand, the spot 34 of the parallel luminous flux 33 of the light 32 emitted from the left end of the light emitting point 15 is shifted to the right from the sensor area 28. That is, although all the spots 31 are detected, the spots 34 are detected only at a ratio overlapping the spots 31. The larger the overlap, the larger the amount of light detected for the entire area of the light emitting point. For this purpose, the angle θ2 between the optical axis of the parallel light beam 30 and the optical axis of the parallel light beam 33 may be small, and for this purpose, assuming that d is constant, the larger the f, the better. As described above, in order to increase the amount of light detected at the light emitting point 15, there is a trade-off between the surface where it is better to reduce f and the surface where it is better to increase f. A study of the best has not been done so far. Therefore, the conditions of f and g for increasing the amount of light detected at the light emitting point 15 will be clarified next.

検出光量を評価するため,特許文献1の図3に示された蛍光検出装置を基準とする。この蛍光検出装置の典型例では,共通集光レンズの焦点距離はf=50mm,有効径はD1≧25mmである。このレンズの明るさはF=f/D1≦2.0である。そこで,F=2.0の集光レンズを用いた場合に,焦点に位置する無限小サイズの発光点からの発光が,このレンズによって平行光束化され,その光量がすべてロスなくセンサで検出されるとき,その検出光量を基準(100%)とする。以降では,任意の無限小サイズの発光点についての検出光量を上記基準に対する相対検出光量で評価する。また,平均の有効径dの有限サイズの発光点は,多数の無限小サイズの発光点で構成されていると考える。本明細書では,「有限サイズの発光点」は単に「発光点」と呼び,「無限小サイズの発光点」はその都度「無限小サイズの発光点」と呼ぶ。発光点の相対検出光量は,それを構成する多数の無限小サイズの発光点の相対検出光量の平均とする。例えば,上記の例で,集光レンズをF=1.4で置き換えると,集光効率が(F/F)=2.0倍になるので,上記無限小サイズの発光点の相対検出光量は200%となる。ただし,発光点から全方位に発光される全光量は一定とし,発光点の内部の発光密度は空間的に均一であると仮定する。また,本蛍光検出装置の典型例では,発光点アレイの発光点の間隔がp=0.36mm,発光点の数がn=24,発光点アレイの全幅がW=p*(n−1)=8.28mmであり,発光点アレイの中央に位置する発光点はレンズの焦点近傍に位置するため相対検出光量がほぼ100%になるが,発光点アレイの端に位置する発光点はレンズの焦点から離れるため相対検出光量が減少し,約50%となる。そこで,本発明では,各発光点の相対検出光量が50%以上になるようにして,各発光点の多色検出感度が従来と同等以上になるようにすることを目標とする。 In order to evaluate the amount of detected light, the fluorescence detection device shown in FIG. 3 of Patent Document 1 is used as a reference. In a typical example of this fluorescence detection apparatus, the focal length of the common condenser lens is f = 50 mm, and the effective diameter is D1 ≧ 25 mm. The brightness of this lens is F = f / D1 ≦ 2.0. Therefore, when a condenser lens of F 0 = 2.0 is used, the light emission from the infinitely small-sized light emission point located at the focal point is collimated by this lens, and all the light quantities are detected by the sensor without loss The detected light quantity is taken as a reference (100%). Hereinafter, the amount of light detected for a light emitting point of an infinitesimal small size is evaluated based on the amount of light detected relative to the above reference. In addition, it is considered that the light emitting point of finite size of the average effective diameter d is composed of many light emitting points of infinitely small size. In the present specification, the "light-emitting point of finite size" is simply referred to as "light-emitting point", and the "light-emitting point of infinitesimal size" is referred to as the "light-emitting point of infinitesimal size" each time. The relative detection light amount of the light emission point is an average of the relative detection light amounts of a large number of infinitely small-sized light emission points constituting the light emission point. For example, in the above example, when the condenser lens is replaced with F = 1.4, the light collection efficiency is (F 0 / F) 2 = 2.0 times, so the relative detection of the light emission point of infinitely small size The light amount is 200%. However, it is assumed that the total light quantity emitted in all directions from the light emitting point is constant, and the light emission density inside the light emitting point is spatially uniform. Moreover, in the typical example of the present fluorescence detection device, the spacing of the light emitting points of the light emitting point array is p = 0.36 mm, the number of light emitting points is n = 24, and the total width of the light emitting point array is W = p * (n-1) = 8.28 mm, and the light emitting point located at the center of the light emitting point array is located near the focal point of the lens, so the relative detection light amount is almost 100%, but the light emitting point located at the end of the light emitting point array is the lens The relative detection light amount decreases to be about 50% because it is away from the focal point. Therefore, in the present invention, it is an object of the present invention to set the multicolor detection sensitivity of each light emitting point to be equal to or more than the conventional one so that the relative detection light quantity of each light emitting point is 50% or more.

図2は,図1に示した構成において,fをパラメータとして,gと相対検出光量の関係を計算した結果の図である。ここで,発光点15の平均の有効径はd=0.05mmとした。また,個別集光レンズ18の平均の有効径をD=0.5mmとした。レンズの明るさF=f/0.05を考慮して相対検出光量を計算した。有効径d=0.05mmの発光点15を,0.1μm間隔の約500個の無限小サイズの発光点で構成し,各無限小サイズの発光点について,図1のスポット31とスポット34の重なり面積比と同じ考え方によって相対検出光量を計算し,それらの平均により発光点15の相対検出光量を求めた。その結果,fは小さいほど,またgは小さいほど相対検出光量が大きくなることを初めて見出した。これは,fを小さく(Fを小さく,θ1を大きく)することによって発光点15の中心に位置する無限小サイズの発光点の相対検出光量が増大する効果が,fを大きく(θ2を小さく)することによって上記の重なり面積比を増大する効果よりも大きいことを示している。また,任意のfに対して,gを小さくすることによって上記の重なり面積比を増大する効果が大きいことを示している。   FIG. 2 is a diagram showing the result of calculating the relationship between g and the relative amount of detected light with f as a parameter in the configuration shown in FIG. Here, the average effective diameter of the light emitting point 15 is d = 0.05 mm. Further, the average effective diameter of the individual condensing lens 18 is D = 0.5 mm. The relative detection light quantity was calculated in consideration of the lens brightness F = f / 0.05. The light-emitting point 15 of effective diameter d = 0.05 mm is composed of approximately 500 infinite-small-size light-emitting points spaced by 0.1 μm, and for each of the infinite-small-size light-emitting points, the spots 31 and 34 of FIG. The relative detection light amount was calculated according to the same concept as the overlapping area ratio, and the relative detection light amount of the light emitting point 15 was determined by averaging them. As a result, it was found for the first time that the relative detection light quantity becomes larger as f is smaller and g is smaller. The effect of increasing the relative detection light quantity of the infinitesimally-sized light emitting point located at the center of the light emitting point 15 by making f small (F small and θ1 large) increases f large (small θ2) By doing this, it is shown that the effect of increasing the above-mentioned overlapping area ratio is greater. It also shows that the effect of increasing the overlapping area ratio is large by decreasing g for any f.

図3は,図2の計算結果を踏まえて,相対検出光量が50%以上の条件を満たすgとfの関係を,横軸g,縦軸fのグラフで示したものである。ここでは,Dをパラメータとしている。Dがいずれの値の場合も,負の傾きを持つ直線より下側の領域のgとfであれば相対検出光量が50%以上となることが分かった。Dが大きくなるほど,境界となる直線の縦軸切片が大きくなり,傾きが小さくなるため,条件を満たす領域が大きくなった。詳細に解析した結果,条件を満たす領域は,一般に,
f≦−0.20*(d/D)*g+2.8*D (1)
で表せることが分かった。図2の結果と同様に,fとgはそれぞれ小さいほど,つまり図3の原点に近いほど相対検出光量が大きくなる。しかし,実際には様々な物理的な制約があるため,図3に示す領域の中から,適当なfとgを設定するのが良い。
FIG. 3 shows the relationship between g and f that satisfies the condition of 50% or more of the relative detection light amount based on the calculation result of FIG. 2 as a graph of the horizontal axis g and the vertical axis f. Here, D is a parameter. It was found that the relative detection light amount would be 50% or more if g and f were in the region below the straight line having a negative slope, even if D was any value. The larger the value of D, the larger the intercept of the vertical line of the boundary line, and the smaller the inclination, so the area satisfying the condition becomes larger. As a result of detailed analysis, the region that satisfies the condition is generally
f ≦ −0.20 * (d / D) * g + 2.8 * D (1)
It turned out that it can express with. Similar to the result of FIG. 2, the relative detection light amount increases as f and g decrease, that is, as it approaches the origin of FIG. However, since there are various physical restrictions in practice, it is preferable to set appropriate f and g from the area shown in FIG.

一方,図1において,左側の発光点15と同様に,右側の発光点15の中心からの発光35は,集光レンズ18によって平行光束36とされ,そのスポット37はセンサ領域28と一致してロスなく検出される。しかしながら,左側の発光点15の左端からの発光32の平行光束33のスポット34はセンサ領域から右側にずれ,右側の発光点のセンサ領域に重なる場合があり,右側の発光点の検出におけるクロストークとなる。クロストークは,スポット37とスポット34の重なる比率で示される。ここで,d,f,D,gの各パラメータは左側の発光点と右側の発光点で等しく,両発光点の平均の間隔はpである。また,図1に示さないが,右側の発光点のさらに右側に隣接する発光点の右端からの発光の平行光束のスポットは,同様に,スポット37と重なり,右側の発光点15の検出におけるクロストークとなる。各発光点からの発光を良好に検出するためには,クロストークは小さいほど良く,少なくとも信号強度より小さくなければならない。そこで,本発明では,注目する発光点の両隣の発光点からのクロストークは同等に発生するため,それぞれのクロストーク信号強度比を25%以下に抑えるようにして,各発光点の低クロストーク検出を実現することを目標とする。   On the other hand, in FIG. 1, similarly to the light emission point 15 on the left side, the light emission 35 from the center of the light emission point 15 on the right side is made a parallel light beam 36 by the condenser lens 18 and its spot 37 coincides with the sensor area 28 It is detected without any loss. However, the spot 34 of the parallel luminous flux 33 of the light emission 32 from the left end of the light emission point 15 on the left side may be shifted to the right from the sensor area and overlap the sensor area of the light emission point on the right. It becomes. Cross talk is indicated by the overlapping ratio of spots 37 and 34. Here, the parameters of d, f, D and g are equal at the light emitting point on the left side and at the light emitting point on the right side, and the average distance between both light emitting points is p. Also, although not shown in FIG. 1, the spot of parallel luminous flux emitted from the right end of the luminous point adjacent to the right of the luminous point on the right side similarly overlaps the spot 37 and crosses in detection of the luminous point 15 on the right It will be a talk. In order to detect light emission from each light emitting point well, the crosstalk should be as small as possible and at least smaller than the signal strength. Therefore, in the present invention, since crosstalk from the light emitting points on both sides of the light emitting point to be generated occurs equally, each crosstalk signal intensity ratio is suppressed to 25% or less to reduce the crosstalk of each light emitting point. The goal is to achieve detection.

図4は,クロストーク信号強度比が25%以下の条件を満たすgとfの関係を,横軸g,縦軸fのグラフで示したものである。ここで,発光点の平均の有効径はd=0.05mmとした。ここでは,pをパラメータとし,D=pとした。pがいずれの値の場合も,原点を通る正の傾きを持つ直線より上側の領域のgとfであればクロストーク信号強度比が25%以下となることが分かった。パラメータpが大きくなるほど,傾きが小さくなるため,条件を満たす領域が大きくなった。詳細に解析した結果,条件を満たす領域は,一般に,
f≧0.95*(d/p)*g (2)
で表せることが分かった。図3の相対検出光量の場合と異なり,fは大きいほど,gは小さいほどクロストークを低く抑えることができる。つまり,fについては,相対検出光量を大きくする場合と,クロストークを小さくする場合でトレードオフの関係になることが分かった。
FIG. 4 is a graph of the horizontal axis g and the vertical axis f showing the relationship between g and f that satisfy the crosstalk signal strength ratio of 25% or less. Here, the average effective diameter of the light emitting point is d = 0.05 mm. Here, p is a parameter and D = p. It was found that the crosstalk signal intensity ratio is 25% or less if g and f in the region above the straight line having a positive inclination passing through the origin, regardless of the value of p. The larger the parameter p, the smaller the slope, and the larger the area satisfying the condition. As a result of detailed analysis, the region that satisfies the condition is generally
f ≧ 0.95 * (d / p) * g (2)
It turned out that it can express with. Unlike in the case of the relative detection light amount of FIG. 3, the crosstalk can be suppressed to a lower value as f is larger and g is smaller. That is, for f, it was found that there is a trade-off relationship between increasing the relative detection light quantity and reducing the crosstalk.

図5(a)は,相対検出光量が50%以上,かつクロストーク信号強度比が25%以下の条件を満たすgとfの関係を,横軸g,縦軸fのグラフで示したものである。図5(b)は図5(a)の拡大図である。ここで,発光点の平均の有効径はd=0.05mmであり,D=pとした。この条件を満たす領域は,言うまでもなく,図3の領域と図4の領域が重なった領域である。パラメータD及びpが大きくなるほど,条件を満たす領域が大きくなった。この条件を満たす領域は,一般に,式(1)かつ式(2)で表すことができる。   FIG. 5 (a) shows the relationship between g and f satisfying the condition of 50% or more in relative detected light amount and 25% or less in crosstalk signal intensity ratio by the graphs of horizontal axis g and vertical axis f. is there. FIG. 5 (b) is an enlarged view of FIG. 5 (a). Here, the average effective diameter of the light emitting point is d = 0.05 mm, and D = p. Needless to say, the area satisfying this condition is an area where the area of FIG. 3 and the area of FIG. 4 overlap. The larger the parameters D and p, the larger the area satisfying the condition. A region that satisfies this condition can generally be expressed by Equation (1) and Equation (2).

以下,本発明の実施例を説明する。
[実施例1]
図6は,キャピラリアレイDNAシーケンサの装置構成例を示す模式図である。図6を用いて分析手順を説明する。まず,複数のキャピラリ1(図6では4本のキャピラリを示す)の試料注入端2を陰極側緩衝液4に浸し,試料溶出端3をポリマブロック9を介して陽極側緩衝液5に浸す。ポンプブロック9のバルブ14を閉じ,ポンプブロック9に接続されたシリンジ8により内部のポリマ溶液に加圧し,ポリマ溶液を各キャピラリ1の内部に,試料溶出端3から試料注入端2に向かって充填する。次に,バルブ14を開け,各試料注入端2から異なる試料を注入した後,陰極6と陽極7の間に電源13により高電圧を印加することにより,キャピラリ電気泳動を開始する。4色の蛍光体で標識されたDNAは試料注入端2から試料溶出端3に向かって電気泳動される。各キャピラリ1の,試料注入端2より一定距離電気泳動された位置(レーザ照射位置12)は,被覆が除去され,同一平面上に配列されており,レーザ光源10より発振されたレーザビーム11が,集光されてから,配列平面の側方より,配列平面に沿って導入され,各キャピラリ1のレーザ照射位置12が一括照射される。4色の蛍光体で標識されたDNAがレーザ照射位置12を通過する際に励起され,蛍光を発光する。各発光蛍光は,配列平面に対して垂直方向(図6の紙面に垂直方向)から蛍光検出装置によって検出される。なお,キャピラリの内部はチャンネルを構成している。従って,キャピラリアレイはチャンネルアレイの一種である。
Examples of the present invention will be described below.
Example 1
FIG. 6 is a schematic view showing a device configuration example of a capillary array DNA sequencer. The analysis procedure will be described with reference to FIG. First, the sample injection end 2 of a plurality of capillaries 1 (four capillaries are shown in FIG. 6) is immersed in the cathode side buffer 4, and the sample elution end 3 is immersed in the anode side buffer 5 via the polymer block 9. The valve 14 of the pump block 9 is closed, and the polymer solution inside is pressurized by the syringe 8 connected to the pump block 9 so that the polymer solution is filled in each capillary 1 from the sample elution end 3 toward the sample injection end 2 Do. Next, the valve 14 is opened, different samples are injected from each sample injection end 2, and capillary electrophoresis is started by applying a high voltage between the cathode 6 and the anode 7 by the power supply 13. The DNA labeled with four-color fluorophores is electrophoresed from the sample injection end 2 to the sample elution end 3. The position (laser irradiation position 12) of each capillary 1 electrophoresed at a certain distance from the sample injection end 2 (laser irradiation position 12) has its coating removed and arranged on the same plane, and the laser beam 11 oscillated from the laser light source 10 After being condensed, they are introduced along the array plane from the side of the array plane, and the laser irradiation positions 12 of the respective capillaries 1 are collectively irradiated. The four-color fluorescent substance-labeled DNA is excited when passing the laser irradiation position 12 and emits fluorescence. Each emitted fluorescence is detected by the fluorescence detection device from the direction perpendicular to the arrangement plane (the direction perpendicular to the sheet of FIG. 6). The inside of the capillary constitutes a channel. Thus, the capillary array is a kind of channel array.

図7は,発光点アレイからの発光を,個別集光レンズ,及び共通波長分散素子により多色検出する装置構成例を示す断面模式図である。図7(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図7(b)は任意の一つのキャピラリの長軸に平行な断面を示す。また,図7(c)は2次元センサで検出される画像を示す。   FIG. 7 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting the light emission from the light emitting point array by using individual condenser lenses and a common wavelength dispersion element. FIG. 7 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 7 (b) shows a cross section parallel to the long axis of any one capillary. FIG. 7C shows an image detected by the two-dimensional sensor.

図7に示すように,外径0.36mm,内径0.05mmの4本のキャピラリ1が,レーザ照射位置において,間隔p=1mmで同一平面上に配列し,径0.05mmに絞ったレーザビーム11を配列平面側方より照射することで,数n=4個,有効径d=0.05mmの発光点15が間隔p=1mmで配列する発光点アレイを得る。4本のキャピラリ1はキャピラリアレイ,すなわちチャンネルアレイを構成する。発光点アレイの全幅はW=p*(n−1)=3mmである。焦点距離f=2mm,有効径D=1mmの4個の集光レンズ18が間隔p=1mmで配列する個別集光レンズアレイ17を,各集光レンズ18の焦点位置と各発光点15が一致するように,また各集光レンズ17の光軸が配列平面と垂直になるように設置し,各発光点15からの発光16をそれぞれ集光して平行光束19とする。次に,各平行光束19を,配列平面に平行に配置された共通ロングパスフィルタ20を並列に透過させてレーザ光をカットする。続いて,各平行光束19を,配列平面に平行に配置された,格子周波数1000本/mm(格子定数1μm)の1個の共通透過型回折格子21を透過させて,各キャピラリ1の長軸方向に波長分散させる。透過型回折格子21の発光点アレイ方向の有効径はDG1=5mm,各キャピラリの長軸方向の有効径はDG2=3mmとする。   As shown in FIG. 7, the four capillaries 1 with an outer diameter of 0.36 mm and an inner diameter of 0.05 mm are arranged on the same plane at an interval p of 1 mm at the laser irradiation position and narrowed to a diameter of 0.05 mm. By irradiating the beam 11 from the side of the arrangement plane, a light emitting point array in which light emitting points 15 of several n = 4 pieces and effective diameter d = 0.05 mm are arranged at an interval p = 1 mm is obtained. The four capillaries 1 constitute a capillary array, ie, a channel array. The total width of the light emitting point array is W = p * (n-1) = 3 mm. The focal position of each condenser lens 18 and each light emitting point 15 coincide with the individual condenser lens array 17 in which four condenser lenses 18 of focal length f = 2 mm and effective diameter D = 1 mm are arranged at an interval p = 1 mm In addition, the optical axis of each condenser lens 17 is set so as to be perpendicular to the array plane, and the light emission 16 from each light emitting point 15 is condensed to form a parallel luminous flux 19. Next, the parallel light beams 19 are transmitted in parallel through the common long pass filter 20 disposed parallel to the arrangement plane to cut the laser light. Subsequently, each parallel luminous flux 19 is transmitted parallel to the array plane and transmitted through one common transmission diffraction grating 21 having a grating frequency of 1000 lines / mm (grating constant 1 μm), and the major axis of each capillary 1 Disperse wavelength in the direction. The effective diameter of the transmission type diffraction grating 21 in the light emitting point array direction is DG1 = 5 mm, and the effective diameter of each capillary in the major axis direction is DG2 = 3 mm.

このとき,500nm,600nm,700nmの発光の1次回折光は,図7(b)に示すように,配列平面の法線に対して,それぞれ30.0°,36.9°,44.4°の方向に進行する。続いて,焦点距離f’=2mm,有効径D’=1mmの4個の結像レンズ23が間隔p’=1mmで配列する個別結像レンズアレイを,各結像レンズ23の光軸を配列平面の法線に対して36.9°傾け,600nmの1次回折光の光軸とそれぞれ一致させ,透過型回折格子21と近接させて設置し,波長分散された各平行光束22を等倍に結像する。500nm,600nm,700nmの平行光束22は結像レンズ23によって,それぞれ集光束24,25,26となる。ここで,600nmの平行光束22を基準として,各集光レンズ18と対応する各結像レンズ23の間隔(光路長)をg=5mmとする。このとき,f=2mmに対して,−0.20*(d/D)*g+2.8*D=2.75mmとなり,式(1)が満足され,相対検出光量は96%(>50%)となる。また,0.95*(d/p)*g=0.24mmとなり,式(2)が満足され,クロストーク信号強度比が0.4%(<25%)となる。さらに,結像レンズアレイから2mm離れた位置に1個の共通2次元CCDのセンサ面27を結像レンズアレイと平行に設置し,各発光16の波長分散像47を検出する。   At this time, as shown in FIG. 7B, the first-order diffracted lights of 500 nm, 600 nm, and 700 nm are 30.0 °, 36.9 °, and 44.4 °, respectively, with respect to the normal of the array plane. Proceed in the direction of Subsequently, an individual imaging lens array in which four imaging lenses 23 of focal length f ′ = 2 mm and effective diameter D ′ = 1 mm are arranged at an interval p ′ = 1 mm, the optical axis of each imaging lens 23 is arrayed It is inclined by 36.9 ° with respect to the normal of the plane, aligned with the optical axis of the first order diffracted light of 600 nm, and placed close to the transmission type diffraction grating 21 to equalize each wavelength dispersed parallel beam 22 Imagine. Collimated light beams 22 of 500 nm, 600 nm, and 700 nm are focused by the imaging lens 23 into focused light fluxes 24, 25 and 26, respectively. Here, the distance (optical path length) between the focusing lenses 18 and the corresponding imaging lenses 23 is set to g = 5 mm with the parallel beam 22 of 600 nm as a reference. At this time, for f = 2 mm, −0.20 * (d / D) * g + 2.8 * D = 2.75 mm, and the equation (1) is satisfied, and the relative detection light amount is 96% (> 50%) ). Further, 0.95 * (d / p) * g = 0.24 mm, and the equation (2) is satisfied, and the crosstalk signal strength ratio becomes 0.4% (<25%). Further, the sensor surface 27 of one common two-dimensional CCD is disposed parallel to the imaging lens array at a position 2 mm away from the imaging lens array, and the wavelength dispersion image 47 of each light emission 16 is detected.

図7(c)は2次元CCDで検出される画像51を示しており,各発光16の各波長分散像47が1mm間隔で配列している。各波長分散像47には,500nm,600nm,700nmの集光束24,25,26の結像スポット48,49,50が含まれる。波長分散の方向と発光点アレイの方向は垂直であるため,各発光の波長分散像は互いに重なることなく,独立に検出される。CCDの画素サイズを0.05mm角とすると,約20nm/画素の波長分解能が得られる。また,各発光点15は等倍で結像されるため,波長分散されない場合の結像サイズは0.05mm,すなわち画素サイズと等しい。つまり,結像サイズが波長分解能を低下させることはない。4色検出を行う場合,各ピーク波長は,500〜700nmの範囲で,間隔が20〜30nmである場合が多い。したがって,各ピーク波長はCCD上で間隔が1画素以上となり,識別可能である。   FIG. 7C shows an image 51 detected by a two-dimensional CCD, and the wavelength dispersion images 47 of the respective light emission 16 are arranged at an interval of 1 mm. Each wavelength dispersion image 47 includes imaging spots 48, 49, 50 of 500 nm, 600 nm, and 700 nm focused fluxes 24, 25, 26, respectively. Since the direction of wavelength dispersion and the direction of the light emitting point array are perpendicular, the wavelength dispersion images of each light emission are detected independently without overlapping each other. Assuming that the pixel size of the CCD is 0.05 mm square, wavelength resolution of about 20 nm / pixel can be obtained. Further, since each light emitting point 15 is imaged at the same magnification, the imaging size in the case of not being wavelength dispersed is 0.05 mm, that is, equal to the pixel size. That is, the imaging size does not reduce the wavelength resolution. When four-color detection is performed, each peak wavelength is in the range of 500 to 700 nm, and the interval is often 20 to 30 nm. Therefore, each peak wavelength has an interval of one pixel or more on the CCD and can be identified.

各発光点に対応する波長分散像,すなわち波長分散スペクトルの時間変化を分析することによって,4色の蛍光強度の時間変化を求め,塩基種の順番,すなわち塩基配列を決定する。500〜700nmの波長分散像の長さは0.5mm程度であるため,2次元CCDのセンサ面のサイズは,発光点アレイ方向に5mm以上,波長分散方向に1mm以上あれば十分である。   By analyzing the time-dependent change of the wavelength dispersion image corresponding to each light emission point, that is, the time change of the wavelength dispersion spectrum, the time change of the fluorescence intensity of four colors is determined, and the order of base species, ie, the base sequence is determined. Since the length of the wavelength dispersion image of 500 to 700 nm is about 0.5 mm, it is sufficient that the size of the sensor surface of the two-dimensional CCD is 5 mm or more in the light emitting point array direction and 1 mm or more in the wavelength dispersion direction.

以上の蛍光検出装置の全体サイズは,キャピラリの長軸方向の幅が5mm,配列平面と垂直方向の幅が10mm,発光点アレイ方向の幅が5mmで規定される直方体の体積(250mm)よりも小さい。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/6,400倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。さらに,本蛍光検出装置による各発光の多色検出感度は高く,かつ均一であり,多色識別精度は高く,クロストークも低い。上記の実施例では発光点の数がn=4であったが,数に限りはなく,数が増えても同様の効果を発揮することができる。透過型の回折格子の代わりに分散プリズムを用いても良い。また,以上では,複数のキャピラリを用いた電気泳動によるDNAシーケンス,4色蛍光検出を対象としていたが,本発明の対象はキャピラリ,DNAシーケンス,4色蛍光検出のいずれにも限定されるものではなく,複数の発光点からの発光を多色検出する場合のすべてを対象としている。 The overall size of the fluorescence detection device described above is based on the volume (250 mm 2 ) of a rectangular solid defined with a width of 5 mm in the long axis direction of the capillary, 10 mm in the direction perpendicular to the array plane, and 5 mm in the light emitting point array direction. Too small. That is, as compared with the case of Patent Document 1, the overall size of the fluorescence detection device can be reduced to 1/6, 400 times. In addition, since all of the optical elements to be used are minute, significant cost reduction is possible. Furthermore, the multicolor detection sensitivity of each light emission by the present fluorescence detection device is high and uniform, the multicolor identification accuracy is high, and the crosstalk is also low. Although the number of light emitting points is n = 4 in the above embodiment, the number is not limited, and the same effect can be exhibited even if the number is increased. A dispersive prism may be used instead of the transmissive diffraction grating. In the above, the DNA sequence by electrophoresis using a plurality of capillaries and four-color fluorescence detection were targeted, but the object of the present invention is limited to any of capillary, DNA sequence, and four-color fluorescence detection Rather, it covers all cases of multicolor detection of light emission from multiple light emission points.

以上では,図7(b)に示すように,波長分散に伴い,各平行光束の光路が配列平面の法線から傾いている。このため,2次元CCDを配列平面に対して傾ける必要があるため,場合により,他の要素と立体障害を生じることがある。図7(b)に示すように,CCDのセンサ面は,波長分散方向の幅が1mm以上あれば良く,これが立体障害を引き起こす可能性は低いが,CCDの回路基板や筐体(いずれも図7に示さず)が立体障害を引き起こす可能性がある。例えば,図7の場合で,CCDの全体の波長分散方向の幅が27mmを超えると(センサ面は波長分散方向の幅の中央に位置すると仮定),CCDとキャピラリの配列平面が衝突する。このような問題を回避するためには,キャピラリの配列平面とCCDのセンサ面を平行に配置するのが良い。   In the above, as shown in FIG. 7B, the optical path of each parallel beam is inclined from the normal to the arrangement plane with wavelength dispersion. For this reason, since it is necessary to incline the two-dimensional CCD with respect to the array plane, in some cases, steric hindrance may occur with other elements. As shown in Fig. 7 (b), the sensor surface of the CCD may have a width of 1 mm or more in the wavelength dispersion direction, which is unlikely to cause steric hindrance, but the circuit board and housing of the CCD 7) can cause steric hindrance. For example, in the case of FIG. 7, when the width of the entire CCD in the wavelength dispersion direction exceeds 27 mm (assuming that the sensor surface is located at the center of the width in the wavelength dispersion direction), the arrangement planes of the CCD and capillary collide. In order to avoid such a problem, it is preferable to arrange the capillary array plane and the CCD sensor plane in parallel.

これを実現するため,図8のように低分散プリズム97を透過型回折格子21の後段に配置することによって,透過型回折格子21を透過した各平行光束22の進行方向と逆向きに屈折させ,低分散プリズム97を透過した各平行光束22の進行方向が配列平面と垂直になるようにする。低分散プリズム97の材質には,分散の小さいガラスを用いる。例えば,ガラス材がSK16(nd=1.62,νd=60.3),頂角50°の低分散プリズムの一辺を,配列平面と平行に,透過型回折格子21に近接させて配置する。このとき,波長600nmの平行光束は,低分散プリズム97に36.9°の入射角で一辺から入射し,他辺から50°の出射角で,つまり配列平面と垂直方向に出射する。各集光レンズ18と対応する各結像レンズ23の間の光路長はg=5mmのままとし,相対検出光量,クロストーク信号強度比は上記と同じとする。したがって,図7と同等の多色検出性能を有しながら,2次元CCDのセンサ面27とキャピラリ1の配列平面を平行にすることができ,2次元CCDと配列平面の立体障害を回避できる。このような構成は,蛍光検出装置を小型化すればするほど有効である。ここでは,透過型回折格子21の後段に低分散プリズム97を配置したが,他の位置に配置しても構わない。波長分散素子として回折格子の代わりに分散プリズムを用いる場合は,分散プリズムと低分散プリズムを組み合わせた直視プリズムとすれば良い。   In order to realize this, as shown in FIG. 8, the low dispersion prism 97 is disposed downstream of the transmission diffraction grating 21 so that it is refracted in the direction opposite to the traveling direction of each parallel light beam 22 transmitted through the transmission diffraction grating 21. The traveling directions of the parallel light beams 22 transmitted through the low dispersion prism 97 are perpendicular to the arrangement plane. As a material of the low dispersion prism 97, glass with small dispersion is used. For example, the glass material is SK16 (nd = 1.62, dd = 60.3), and one side of a low dispersion prism with an apex angle of 50 ° is disposed close to the transmission diffraction grating 21 in parallel with the array plane. At this time, a parallel beam with a wavelength of 600 nm enters the low dispersion prism 97 from one side at an incident angle of 36.9 °, and exits from the other side at an emission angle of 50 °, that is, in the direction perpendicular to the array plane. The optical path length between each condenser lens 18 and each corresponding imaging lens 23 is kept at g = 5 mm, and the relative detected light quantity and the crosstalk signal intensity ratio are the same as described above. Therefore, the sensor plane 27 of the two-dimensional CCD and the array plane of the capillary 1 can be made parallel while having multicolor detection performance equivalent to that of FIG. 7, and steric hindrance of the two-dimensional CCD and array plane can be avoided. Such a configuration is more effective as the fluorescence detection device is miniaturized. Although the low dispersion prism 97 is disposed downstream of the transmission diffraction grating 21 here, it may be disposed at another position. When a dispersion prism is used instead of the diffraction grating as the wavelength dispersion element, a direct view prism in which the dispersion prism and the low dispersion prism are combined may be used.

図9は,発光点アレイからの発光を,個別集光レンズ,共通凹面反射型回折格子,及び集光レンズの光軸に垂直に配置されたセンサにより多色検出する装置構成例を示す模式図である。図9(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図9(b)は任意の一つのキャピラリの長軸に平行な断面を示す。   FIG. 9 is a schematic diagram showing an example of a device configuration for detecting light emitted from the light emitting point array by a polychromatic lens, a common concave reflection type diffraction grating, and a sensor disposed perpendicularly to the optical axis of the condensing lens. It is. FIG. 9 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 9 (b) shows a cross section parallel to the long axis of any one capillary.

図9に示すように,共通透過型回折格子の代わりに共通凹面反射型回折格子38を用いれば,回折格子が結像レンズの役割を兼ねるため,個別結像レンズアレイを省くことができ,蛍光検出装置の一層の小型化が可能である。ここでも,2次元センサのセンサ面27とキャピラリの配列平面を平行になるように配置し,小型化に伴う立体障害を回避することができる。波長分散の方向は,上記と同様に,キャピラリの長軸方向と一致させる。各集光レンズ18は,焦点距離f=2mm,有効径D=1mm,間隔p=1mmは上記と同じであるが,各集光レンズ18と凹面反射型回折格子38の距離はg=2mm,凹面反射型回折格子38の焦点距離はf’=4mmとする。このとき,相対検出光量は98%に向上し,クロストーク信号強度比が0.1%に低減される。しかし,このままでは,結像レンズ(凹面反射型回折格子38)が共通化されているため,各平行光束19が同じ位置に結像され各発光16の波長分散像が2次元センサ上で一致するので,各発光16を独立に多色検出することができなくなる。ここでは,この課題を解決するため,個別集光レンズアレイ17の各集光レンズ18の光軸を平行から互いにずらすことにより,各平行光束19の結像位置をずらす。   As shown in FIG. 9, if a common concave reflection type diffraction grating 38 is used instead of the common transmission type diffraction grating, the diffraction grating doubles as an imaging lens, so that the individual imaging lens array can be omitted, and fluorescence Further miniaturization of the detection device is possible. Also in this case, the sensor plane 27 of the two-dimensional sensor and the array plane of the capillaries can be arranged in parallel to avoid steric hindrance caused by the miniaturization. The direction of wavelength dispersion is made to coincide with the long axis direction of the capillary, as described above. Each condenser lens 18 has the same focal length f = 2 mm, effective diameter D = 1 mm, interval p = 1 mm as above, but the distance between each condenser lens 18 and the concave reflection type diffraction grating 38 is g = 2 mm, The focal length of the concave reflection type diffraction grating 38 is f ′ = 4 mm. At this time, the relative detection light amount is improved to 98%, and the crosstalk signal intensity ratio is reduced to 0.1%. However, as it is, since the imaging lens (concave reflection type diffraction grating 38) is made common, each parallel luminous flux 19 is imaged at the same position, and the wavelength dispersive images of each light emission 16 coincide on the two-dimensional sensor Therefore, each light emission 16 can not be detected in multiple colors independently. Here, in order to solve this problem, the imaging positions of the respective parallel light beams 19 are shifted by mutually shifting the optical axes of the focusing lenses 18 of the individual focusing lens arrays 17 from parallel.

例えば,図9(a)に示すように,1点鎖線で示す各集光レンズ18の光軸と実線で示す配列平面の法線のなす角度を,θ=3°,θ=1°,θ=−1°,θ=−3°のように,互いに2°ずつずらし,各平行光束19が放射状に広がるようにする。ただし,各集光レンズ18の各焦点位置は各発光点15からずれないように配置する。このとき,各発光の結像位置は互いに0.14mmの距離だけ離れ,この距離は各発光の結像サイズ0.1mm(像倍率が2倍となるため)よりも大きいため,各発光を独立に多色検出することが可能となる。 For example, as shown in FIG. 9A, the angle formed by the optical axis of each condenser lens 18 indicated by the alternate long and short dash line and the normal to the array plane indicated by the solid line is θ 1 = 3 °, θ 2 = 1 ° , Θ 3 = −1 °, θ 4 = −3 °, so that each parallel luminous flux 19 is spread radially. However, the focal positions of the condenser lenses 18 are arranged so as not to shift from the light emitting points 15. At this time, the imaging positions of each light emission are separated from each other by a distance of 0.14 mm, and this distance is larger than the imaging size of each light emission 0.1 mm (because the image magnification is doubled). It is possible to detect in multiple colors.

図7のように,レーザビーム11を複数のキャピラリ1の配列平面の側方より照射する場合,各キャピラリの界面におけるレーザ反射によって,各キャピラリのレーザ照射強度が,レーザビーム11の入射側(図7(a)の右側)から出射側(図7(a)の左側)に向かって徐々に低下する。したがって,集光レンズ18以降の蛍光検出装置が各発光点15について同等の効率を有していたとしても,得られる蛍光検出強度,あるいは感度は,レーザビーム照射の後段のキャピラリ1(図7(a)の左側)ほど低くなる場合がある。このような不均一を解消するため,各集光レンズ18の集光効率を発光点15毎に変化させることが有効である。例えば,レーザビーム11の入射側の集光レンズ18の有効径を小さく,レーザビーム11の出射側の集光レンズ18の有効径を大きくすることは有効である。   As shown in FIG. 7, when the laser beam 11 is irradiated from the side of the array plane of the plurality of capillaries 1, the laser irradiation intensity of each capillary is the incident side of the laser beam 11 by the laser reflection at the interface of each capillary. It gradually decreases from the right side of 7 (a) to the emission side (left side of FIG. 7 (a)). Therefore, even if the fluorescence detection devices after the condenser lens 18 have the same efficiency for each light emitting point 15, the obtained fluorescence detection intensity or sensitivity is determined by the capillary 1 after the laser beam irradiation (see FIG. The left side of a) may become lower. In order to eliminate such nonuniformity, it is effective to change the condensing efficiency of each condensing lens 18 for each light emitting point 15. For example, it is effective to make the effective diameter of the condensing lens 18 on the incident side of the laser beam 11 smaller and make the effective diameter of the condensing lens 18 on the outgoing side of the laser beam 11 larger.

[実施例2]
図10は,発光点アレイからの発光を,個別集光レンズ,共通ダイクロイックミラーセット,及びセンサにより多色検出する装置構成例を示す模式図である。図10(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図10(b)は任意の一つのキャピラリの長軸に平行な断面を示す。また,図10(c)は2次元センサで検出される画像を示す。
Example 2
FIG. 10 is a schematic view showing an apparatus configuration example for detecting light emission from a light emission point array by using individual condenser lenses, a common dichroic mirror set, and a sensor. FIG. 10 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 10 (b) shows a cross section parallel to the long axis of any one capillary. Further, FIG. 10C shows an image detected by the two-dimensional sensor.

図10に示すように,外径0.36mm,内径0.05mmの4本のキャピラリ1のレーザ照射位置を間隔p=0.5mmで同一平面上に配列し,径0.05mmに絞ったレーザビーム11を配列平面側方より照射することで,数n=4個,有効径d=0.05mmの発光点15が間隔p=0.5mmで配列する発光点アレイを得る。ここで,レーザビーム11の波長は505nm,4色の蛍光(発光極大波長)は,A蛍光(540nm),B蛍光(570nm),C蛍光(600nm),及びD蛍光(630nm)とする。発光点アレイの全幅はW=p*(n−1)=1.5mmである。焦点距離f=1mm,有効径D=0.4mmの4個の集光レンズ18が間隔p=0.5mmで配列する個別集光レンズアレイ17を,各集光レンズ18の焦点位置と各発光点15が一致するように,また各集光レンズ18の光軸が配列平面と垂直になるように設置し,各発光点15からの発光をそれぞれ集光して平行光束19とする。   As shown in FIG. 10, the laser irradiation positions of four capillaries 1 having an outer diameter of 0.36 mm and an inner diameter of 0.05 mm are arranged on the same plane at an interval p of 0.5 mm and the diameter is narrowed to 0.05 mm. By irradiating the beam 11 from the side of the arrangement plane, a light emitting point array in which light emitting points 15 of several n = 4 and effective diameter d = 0.05 mm are arranged at an interval p = 0.5 mm is obtained. Here, the wavelength of the laser beam 11 is 505 nm, and the fluorescence (emission maximum wavelength) of four colors is A fluorescence (540 nm), B fluorescence (570 nm), C fluorescence (600 nm), and D fluorescence (630 nm). The total width of the light emitting point array is W = p * (n-1) = 1.5 mm. The individual condenser lens array 17 in which four condenser lenses 18 of focal length f = 1 mm and effective diameter D = 0.4 mm are arranged at an interval p = 0.5 mm, the focal position of each condenser lens 18 and each light emission The light beams from the respective light emitting points 15 are condensed to form parallel light beams 19 so that the points 15 coincide with one another and the optical axes of the respective condensing lenses 18 are perpendicular to the arrangement plane.

次に,各平行光束19を,光軸方向に直列に配列された1組の共通ダイクロイックミラーセットに並列に入射させる。ダイクロイックミラーセットは,ロングパスフィルタ56,Aダイクロイックミラー39,Bダイクロイックミラー41,Cダイクロイックミラー43,及びDダイクロイックミラー45の5点の要素で構成され,各要素はそれぞれ1個ずつであり,それぞれが各発光点について共通かつ並列に用いられる。ロングパスフィルタ56は,配列平面と平行に,各集光レンズ18から0.5mmの距離の位置に配置する。各ダイクロイックミラー39,41,43,45は,キャピラリの長軸と平行に1mm間隔で配置し,それぞれ法線が配列平面に対して45°傾くように配置する。また,Aダイクロイックミラー39の中心を各集光レンズから1mmの距離(ロングパスフィルタ56から0.5mmの距離)の位置に配置する。各要素のサイズは,発光点アレイの配列方向の有効径がDM1=3mm,これと直交方向の有効径がDM2=1.4mm(ロングパスフィルタのみDM2=1mm)である。   Next, each collimated light beam 19 is incident in parallel on a set of common dichroic mirrors arranged in series in the optical axis direction. The dichroic mirror set is composed of five elements of a long pass filter 56, an A dichroic mirror 39, a B dichroic mirror 41, a C dichroic mirror 43, and a D dichroic mirror 45, and each element is one each. It is used in common and in parallel for each light emitting point. The long pass filters 56 are arranged in parallel to the array plane at a distance of 0.5 mm from each condenser lens 18. The dichroic mirrors 39, 41, 43, 45 are disposed at intervals of 1 mm in parallel with the long axis of the capillary, and are disposed such that the normals are inclined 45 ° with respect to the array plane. Further, the center of the A dichroic mirror 39 is disposed at a distance of 1 mm from each condenser lens (a distance of 0.5 mm from the long pass filter 56). As for the size of each element, the effective diameter in the arrangement direction of the light emitting point array is DM1 = 3 mm, and the effective diameter in the orthogonal direction is DM2 = 1.4 mm (only DM2 = 1 mm for the long pass filter).

各平行光束19を,最初にロングパスフィルタ56に垂直に並列に入射させ,520nm以下の光をカットし,特にレーザビームの波長である505nmを大幅にカットする。ロングパスフィルタ56を透過した各平行光束を,次にAダイクロイックミラー39に45°で並列に入射させ,530〜550nmの光を透過させ,560nm以上の光を反射させる。Aダイクロイックミラー39の透過光である530〜550nmの各平行光束をA平行光束40と呼び,主にA蛍光(極大発光波長540nm)の検出に用いる。Aダイクロイックミラー39の反射光である各平行光束を,次にBダイクロイックミラー41に45°で並列に入射させ,560〜580nmの光を反射させ,590nm以上の光を透過させる。Bダイクロイックミラー41の反射光である560〜580nmの各平行光束をB平行光束42と呼び,主にB蛍光(極大発光波長570nm)の検出に用いる。   First, each collimated light beam 19 is vertically incident in parallel to the long pass filter 56 to cut light of 520 nm or less, and in particular to cut 505 nm which is the wavelength of the laser beam. The respective parallel light beams transmitted through the long pass filter 56 are then made to be incident in parallel at 45 ° to the A dichroic mirror 39 to transmit light of 530 to 550 nm and reflect light of 560 nm or more. Each parallel light flux of 530 to 550 nm, which is the transmitted light of the A dichroic mirror 39, is called an A parallel light flux 40 and is mainly used for detection of A fluorescence (maximum emission wavelength 540 nm). Next, parallel light fluxes reflected by the A dichroic mirror 39 are made to enter the B dichroic mirror 41 in parallel at 45 °, and light of 560 to 580 nm is reflected and light of 590 nm or more is transmitted. Each parallel light flux of 560 to 580 nm which is the reflected light of the B dichroic mirror 41 is called a B parallel light flux 42, and is mainly used for detection of B fluorescence (maximum emission wavelength 570 nm).

Bダイクロイックミラー41の透過光である各平行光束を,次にCダイクロイックミラー43に45°で並列に入射させ,590〜610nmの光を反射させ,620nm以上の光を透過させる。Cダイクロイックミラー43の反射光である590〜610nmの各平行光束をC平行光束44と呼び,主にC蛍光(極大発光波長600nm)の検出に用いる。Cダイクロイックミラー43の透過光である各平行光束を,次にDダイクロイックミラー45に45°で並列に入射させ,620〜640nmの光を反射させ,650nm以上の光を透過させる(図10に示さず)。Dダイクロイックミラー45の反射光である620〜640nmの平行光束をD平行光束46と呼び,主にD蛍光(極大発光波長630nm)の検出に用いる。4個の各発光点に対応する4組の各平行光束40,42,44,46はいずれも,配列平面と垂直方向に進行する。なお,Dダイクロイックミラー45は全反射ミラーで置き換えても良い。   Next, parallel light fluxes transmitted by the B dichroic mirror 41 are made to enter the C dichroic mirror 43 in parallel at 45 °, and light of 590 to 610 nm is reflected and light of 620 nm or more is transmitted. Each parallel light beam of 590 to 610 nm which is the reflected light of the C dichroic mirror 43 is called a C parallel light beam 44 and is mainly used for detection of C fluorescence (maximum emission wavelength 600 nm). Each parallel light flux which is the transmitted light of the C dichroic mirror 43 is then made to be incident in parallel at 45 ° to the D dichroic mirror 45 to reflect light of 620 to 640 nm and transmit light of 650 nm or more (shown in FIG. 10) ). A parallel light flux of 620 to 640 nm, which is the reflected light of the D dichroic mirror 45, is called a D parallel light flux 46 and is mainly used for detection of D fluorescence (maximum emission wavelength: 630 nm). All four parallel light beams 40, 42, 44, 46 corresponding to the four light emitting points travel in the direction perpendicular to the arrangement plane. The D dichroic mirror 45 may be replaced by a total reflection mirror.

続いて,共通2次元CCDのセンサ面27を配列平面と平行に,各集光レンズから2mmの距離(各ダイクロイックミラー39,41,43,45の中心から1mmの距離)の位置に配置し,4組の各平行光束40,42,44,46を結像させずにセンサ面27に並列に入射させる。図10(c)に示す2次元CCDで撮像した画像51上には,平行光束40,42,44,46に対応するスポット52,53,54,55がそれぞれ4組,合計16個のスポットが形成される。各スポットは,径0.4mm,発光点アレイ方向に0.5mm間隔,キャピラリ長軸方向に1mm間隔で格子状に配列され,それぞれが独立に検出される。したがって,2次元CCDのセンサ面27のサイズは,発光点アレイ方向に3mm以上,キャピラリ長軸方向に5mm以上あれば十分である。このとき,最も光路長の長いD平行光束46を基準とすると,各集光レンズ18とセンサ面27の距離はg=5mmである。f=1mmに対して,−0.20*(d/D)*g+2.8*D=1mmとなり,式(1)が満足され,相対検出光量は51%(>50%)となる。また,0.95*(d/p)*g=0.48mmとなり,式(2)が満足され,クロストーク信号強度比が0.1%(<25%)となる。各発光点に対応する4個のスポットの強度の時間変化を分析することによって,4色の蛍光強度の時間変化を求め,塩基種の順番,すなわち塩基配列を決定する。   Subsequently, the sensor surface 27 of the common two-dimensional CCD is disposed parallel to the array plane at a distance of 2 mm from each condenser lens (a distance of 1 mm from the center of each dichroic mirror 39, 41, 43, 45), The four sets of parallel light beams 40, 42, 44 and 46 are incident in parallel on the sensor surface 27 without imaging. On the image 51 captured by the two-dimensional CCD shown in FIG. 10C, four spots 52, 53, 54, and 55 corresponding to the parallel light beams 40, 42, 44, and 46, respectively, have a total of 16 spots. It is formed. The spots are arranged in a grid at a diameter of 0.4 mm, at an interval of 0.5 mm in the light emitting point array direction, and at an interval of 1 mm in the long axis direction of the capillary, and are independently detected. Therefore, the size of the sensor surface 27 of the two-dimensional CCD should be 3 mm or more in the light emitting point array direction and 5 mm or more in the capillary long axis direction. At this time, based on the D-parallel beam 46 with the longest optical path length, the distance between each condenser lens 18 and the sensor surface 27 is g = 5 mm. For f = 1 mm, −0.20 * (d / D) * g + 2.8 * D = 1 mm, and the equation (1) is satisfied, and the relative detection light amount is 51% (> 50%). In addition, 0.95 * (d / p) * g = 0.48 mm, and the equation (2) is satisfied, and the crosstalk signal strength ratio becomes 0.1% (<25%). By analyzing the time change of the intensity of the four spots corresponding to each light emission point, the time change of the fluorescence intensity of four colors is determined, and the order of the base species, that is, the base sequence is determined.

以上の蛍光検出装置の全体サイズは,キャピラリの長軸方向の幅が5mm,配列平面と垂直方向の幅が5mm,発光点アレイ方向の幅が3mmで規定される直方体の体積(75mm)よりも小さい。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/21,000倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。さらに,本蛍光検出装置による各発光の多色検出感度は高く,かつ均一であり,多色識別精度は高く,クロストークも低い。上記の実施例では発光点の数がn=4であったが,数に限りはなく,数が増えても同様の効果を発揮することができる。ダイクロイックミラーセットを用いて多色検出を行う他の効果は,特許文献1や実施例1で用いる回折格子の場合と比較して,実効的な検出光量が多いことである。回折格子を用いる場合は波長分散に活用できる回折効率は50%程度であるのに対して,ダイクロイックミラーセットを用いる場合は殆どロスがないため,実効的には,上記の相対検出光量の2倍程度の光量を得ることができる。 The overall size of the fluorescence detection device described above is based on the volume (75 mm 2 ) of a cuboid whose width in the long axis direction of the capillary is 5 mm, width in the direction perpendicular to the array plane is 5 mm, and width in the light emitting point array direction is 3 mm. Too small. That is, as compared with the case of Patent Document 1, the entire size of the fluorescence detection device can be reduced to 1 / 21,000 times. In addition, since all of the optical elements to be used are minute, significant cost reduction is possible. Furthermore, the multicolor detection sensitivity of each light emission by the present fluorescence detection device is high and uniform, the multicolor identification accuracy is high, and the crosstalk is also low. Although the number of light emitting points is n = 4 in the above embodiment, the number is not limited, and the same effect can be exhibited even if the number is increased. Another effect of performing multicolor detection using a dichroic mirror set is that the amount of effectively detected light is large as compared with the case of the diffraction grating used in Patent Document 1 and Example 1. When a diffraction grating is used, the diffraction efficiency that can be used for wavelength dispersion is about 50%, but when a dichroic mirror set is used, there is almost no loss. An amount of light can be obtained.

図11は,発光点アレイからの発光を,個別集光レンズ,共通ダイクロイックミラーセット,及びセンサにより,波長分散の場合と同等に多色検出する装置構成例を示す断面模式図である。   FIG. 11 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting light emission from the light emission point array with an individual condensing lens, a common dichroic mirror set, and a sensor as polychromatic in the same manner as wavelength dispersion.

図11は,上記の共通ダイクロイックミラーセットを発展させたものである。ダイクロイックミラーセットは,光軸方向に順番に配列されたロングパスフィルタ56,ダイクロイックミラー57,59,61,63,65,67,69,71の9点の要素で構成される。ダイクロイックミラー57は,520〜540nmの平行光束58を透過させ,540nm以上の光を反射させる。ダイクロイックミラー59は,540〜560nmの平行光束60を反射させ,560nm以上の光を透過させる。ダイクロイックミラー61は,560〜580nmの平行光束62を反射させ,580nm以上の光を透過させる。ダイクロイックミラー63は,580〜600nmの平行光束64を反射させ,600nm以上の光を透過させる。ダイクロイックミラー65は,600〜620nmの平行光束66を反射させ,620nm以上の光を透過させる。ダイクロイックミラー67は,620〜640nmの平行光束68を反射させ,640nm以上の光を透過させる。ダイクロイックミラー69は,640〜660nmの平行光束70を反射させ,660nm以上の光を透過させる。ダイクロイックミラー71は,660〜680nmの平行光束72を反射させ,680nm以上の光を透過させる。   FIG. 11 is a development of the above-mentioned common dichroic mirror set. The dichroic mirror set is composed of nine elements of a long pass filter 56 and dichroic mirrors 57, 59, 61, 63, 65, 67, 69, 71 arranged in order in the optical axis direction. The dichroic mirror 57 transmits parallel light beams 58 of 520 to 540 nm and reflects light of 540 nm or more. The dichroic mirror 59 reflects the parallel beam 60 of 540 to 560 nm and transmits light of 560 nm or more. The dichroic mirror 61 reflects the parallel light beam 62 of 560 to 580 nm and transmits light of 580 nm or more. The dichroic mirror 63 reflects the parallel beam 64 of 580 to 600 nm and transmits light of 600 nm or more. The dichroic mirror 65 reflects the parallel light beam 66 of 600 to 620 nm and transmits light of 620 nm or more. The dichroic mirror 67 reflects the parallel luminous flux 68 of 620 to 640 nm and transmits light of 640 nm or more. The dichroic mirror 69 reflects the parallel beam 70 of 640 to 660 nm and transmits light of 660 nm or more. The dichroic mirror 71 reflects the parallel light beam 72 of 660 to 680 nm and transmits light of 680 nm or more.

以上により,1つの発光点15からの発光がセンサ面27上に8個のスポットを形成し,これらの強度は520〜680nmの範囲の20nm幅の発光スペクトルを与える。このような構成にすることにより,用いる蛍光体の種類に応じてダイクロイックミラーを設計し直す必要がなくなり,520〜680nmの範囲の任意の蛍光を高感度,高精度に検出することが可能となる。各発光を分割するスポットの数,分割する波長幅は,上記の実施例に限らず,任意に設定できることは言うまでもない。   As described above, the light emission from one light emitting point 15 forms eight spots on the sensor surface 27, and these intensities give a 20 nm wide emission spectrum in the range of 520 to 680 nm. With such a configuration, it is not necessary to redesign the dichroic mirror according to the type of phosphor used, and it becomes possible to detect any fluorescence in the range of 520 to 680 nm with high sensitivity and high accuracy. . It goes without saying that the number of spots for dividing each light emission and the wavelength width for dividing are not limited to the above embodiment, and can be set arbitrarily.

[実施例3]
図12は,発光点アレイからの発光を,個別集光レンズ,及びカラーセンサにより多色検出する装置構成例を示す断面模式図である。図12(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図10(b)は2次元センサで検出される画像を示す。本実施例は,2次元センサ,例えば2次元CCDにカラーセンサ面73を用いる例である。
[Example 3]
FIG. 12 is a schematic cross-sectional view showing an example of the apparatus configuration for detecting the light emission from the light emission point array by using individual condenser lenses and color sensors. FIG. 12 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 10 (b) shows an image detected by the two-dimensional sensor. The present embodiment is an example in which a color sensor surface 73 is used for a two-dimensional sensor, for example, a two-dimensional CCD.

各発光点15からロングパスフィルタ56までは,実施例2の図10と同じ構成である。図12(a)に示すように,ロングパスフィルタ56を透過した各平行光束は直接,2次元CCDのカラーセンサ面73に入射される。各集光レンズ18とカラーセンサ面73の距離はg=1mmとする。このとき,f=1mmに対して,−0.20*(d/D)*g+2.8*D=1.1mmとなり,式(1)が満足され,相対検出光量は61%(>50%)となる。また,0.95*(d/p)*g=0.10mmとなり,式(2)が満足され,クロストーク信号強度比が0.0%(<25%)となる。   Each light emitting point 15 to the long pass filter 56 have the same configuration as that of FIG. 10 of the second embodiment. As shown in FIG. 12A, each parallel beam transmitted through the long pass filter 56 is directly incident on the color sensor surface 73 of the two-dimensional CCD. The distance between each condenser lens 18 and the color sensor surface 73 is g = 1 mm. At this time, for f = 1 mm, −0.20 * (d / D) * g + 2.8 * D = 1.1 mm, equation (1) is satisfied, and the relative detection light amount is 61% (> 50%) ). Further, 0.95 * (d / p) * g = 0.10 mm, and the equation (2) is satisfied, and the crosstalk signal strength ratio becomes 0.0% (<25%).

図12(b)に示すように,カラーセンサ面73の像74上には,各平行光束によるスポット75が形成される。各スポット75は,径D=0.4mm,発光点アレイ方向に0.5mm間隔で配列され,それぞれが独立に検出される。図12(b)の拡大図に模式的に示すように,カラーセンサ面73は,主にA蛍光(極大発光波長540nm)を検出するA画素76,主にB蛍光(極大発光波長570nm)を検出するB画素77,主にC蛍光(極大発光波長600nm)を検出するC画素78,主にD蛍光(極大発光波長630nm)を検出するD画素79の4種類の画素がそれぞれ多数個,規則正しく配列して構成されている。各画素76,77,78,79のサイズはいずれもS=0.05mmであり,S<Dを満たす。このとき,各スポット75は約80個の画素で検出され,1種類の画素あたり約20画素で検出される。このように,各種類の画素について,多数個の画素が各スポット75を検出することによって,各発光点15からの発光の多色検出を精度良く行うことができる。例えば,各種類の画素と,スポットの相対位置が変動したとしても問題にならない。あるいは,スポット内の光強度分布が不均一であったとしても,各色を均等に検出できる。   As shown in FIG. 12B, spots 75 of parallel light beams are formed on the image 74 of the color sensor surface 73. The spots 75 are arranged at a diameter D of 0.4 mm and at an interval of 0.5 mm in the light emitting point array direction, and each of the spots 75 is independently detected. As schematically shown in the enlarged view of FIG. 12 (b), the color sensor surface 73 mainly comprises an A pixel 76 for detecting A fluorescence (maximum emission wavelength 540 nm) and mainly B fluorescence (maximum emission wavelength 570 nm). The B pixel 77 to detect, the C pixel 78 mainly to detect C fluorescence (maximum emission wavelength 600 nm), and the D pixel 79 mainly to detect D fluorescence (maximum emission wavelength 630 nm) It is arranged and arranged. The size of each pixel 76, 77, 78, 79 is S = 0.05 mm, and S <D is satisfied. At this time, each spot 75 is detected by about 80 pixels, and is detected by about 20 pixels per one type of pixel. As described above, the multicolor detection of the light emission from each light emitting point 15 can be performed with high accuracy by the large number of pixels detecting each spot 75 for each type of pixel. For example, there is no problem even if the relative position of each type of pixel and spot changes. Alternatively, even if the light intensity distribution in the spot is nonuniform, each color can be detected uniformly.

以上の蛍光検出装置の全体サイズは,キャピラリの長軸方向の幅が3mm,配列平面と垂直方向の幅が2mm,発光点アレイ方向の幅が3mmで規定される直方体の体積(18mm)よりも小さい。すなわち,特許文献1の場合と比較して,蛍光検出装置の全体サイズを1/89,000倍に小型化できる。また,用いる光学素子はいずれも微細であるため,大幅な低コスト化が可能である。さらに,本蛍光検出装置による各発光の多色検出感度は高く,かつ均一であり,多色識別精度は高く,クロストークも低い。上記の実施例では発光点の数がn=4であったが,数に限りはなく,数が増えても同様の効果を発揮することができる。ただし,上記のようなカラーセンサを用いる場合は,センサ面に入射する光量の利用効率は1/4に低下する。回折格子を用いる実施例1の回折効率50%程度の場合と比較すると,実効的な効率は約半分となる。しかしながら,装置構成は非常に単純であり,一層の小型化が可能である。 The overall size of the fluorescence detection device described above is based on the volume (18 mm 2 ) of a cuboid whose width in the long axis direction of the capillary is 3 mm, width in the direction perpendicular to the array plane is 2 mm, and width in the light emitting point array direction is 3 mm. Too small. That is, as compared with the case of Patent Document 1, the entire size of the fluorescence detection device can be reduced to 1 / 89,000 times. In addition, since all of the optical elements to be used are minute, significant cost reduction is possible. Furthermore, the multicolor detection sensitivity of each light emission by the present fluorescence detection device is high and uniform, the multicolor identification accuracy is high, and the crosstalk is also low. Although the number of light emitting points is n = 4 in the above embodiment, the number is not limited, and the same effect can be exhibited even if the number is increased. However, when the color sensor as described above is used, the utilization efficiency of the amount of light incident on the sensor surface is reduced to 1⁄4. As compared with the case of the diffraction efficiency of about 50% of Example 1 using the diffraction grating, the effective efficiency is about half. However, the device configuration is very simple and further miniaturization is possible.

センサ面の入射する光量の利用効率を向上するためには,各色を検出する素子が図12のようにセンサ面と平行に配列するカラーセンサではなく,センサ面に垂直に配列するカラーセンサを用いることが有効である。この場合は必ずしもS<Dを満たす必要はない。   In order to improve the utilization efficiency of the light quantity incident on the sensor surface, instead of using a color sensor in which elements for detecting each color are arranged in parallel with the sensor surface as shown in FIG. Is effective. In this case, it is not necessary to satisfy S <D.

[実施例4]
本発明の実装上の課題のひとつは,各発光点と各集光レンズの位置合わせを如何に精度良く,簡便に行うかである。本実施例は,複数のキャピラリについて,これを実現する手段を示すものである。
Example 4
One of the mounting problems of the present invention is how to accurately align the light emitting points with the condenser lenses with ease. The present embodiment shows means for realizing this for a plurality of capillaries.

図13は,複数のキャピラリと,複数のキャピラリを配列するV溝アレイと,個別集光レンズアレイとを一体化したデバイスの構成例を示す断面模式図である。図13(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図13(b)はレーザ照射位置ではない個所における各キャピラリの長軸に垂直な断面を示し,図13(c)は任意の一つのキャピラリの長軸に平行な断面を示す。図13(a)は図13(c)のA−A断面に相当し,図13(b)は図13(c)のB−B断面に相当する。   FIG. 13 is a schematic cross-sectional view showing a configuration example of a device in which a plurality of capillaries, a V-groove array in which the plurality of capillaries are arranged, and an individual condensing lens array are integrated. 13 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 13 (b) shows a cross section perpendicular to the long axis of each capillary at a location not at the laser irradiation position. c) shows a cross section parallel to the long axis of any one capillary. 13 (a) corresponds to the cross section AA in FIG. 13 (c), and FIG. 13 (b) corresponds to the cross section BB in FIG. 13 (c).

図13に示すデバイスは,複数のキャピラリ1からなるキャピラリアレイと,サブデバイス80を含む。サブデバイス80は,複数のV溝81が間隔pで配列したV溝アレイと,複数の集光レンズ18が間隔pで配列した集光レンズアレイが同一デバイスに形成されたものであり,各V溝81と各集光レンズ18の中心軸を一致させてある。複数のキャピラリ1をそれぞれV溝81に押し当てることによって,簡便に,複数のキャピラリ1を所定の間隔pで同一平面上に配列させることができる。また,各キャピラリ1のレーザビーム11の照射位置である各発光点15と,各集光レンズ18の焦点が一致するように,サブデバイス80における各V溝81と各集光レンズ18の相対位置を調整しておく。これにより,発光点15からの発光が集光レンズ18によって平行光束19に変換される。   The device shown in FIG. 13 includes a capillary array consisting of a plurality of capillaries 1 and a sub device 80. In the sub device 80, a V groove array in which a plurality of V grooves 81 are arranged at an interval p and a condensing lens array in which a plurality of condensing lenses 18 are arranged at an interval p are formed in the same device. The central axes of the grooves 81 and the focusing lenses 18 are made to coincide with each other. The plurality of capillaries 1 can be arranged on the same plane at a predetermined interval p simply by pressing the plurality of capillaries 1 against the V groove 81 respectively. In addition, the relative positions of the V grooves 81 and the focusing lenses 18 in the sub device 80 such that the light emitting points 15 at which the laser beams 11 of the capillaries 1 are irradiated coincide with the focal points of the focusing lenses 18. Adjust the Thus, the light emitted from the light emitting point 15 is converted into a parallel light beam 19 by the condensing lens 18.

図13(a)に示すように,発光点15におけるキャピラリ1の断面には,サブデバイス80の集光レンズ18が存在し,V溝81が存在しない。一方,図13(b)に示すように,発光点15の両脇におけるキャピラリ1の断面には,サブデバイス80の集光レンズ18が存在せず,V溝81が存在する。図13(c)はキャピラリ1の長軸方向の断面を示し,サブデバイス80の中央に集光レンズ18が存在し,その両脇にV溝81が存在している。これは,V溝81によるキャピラリ1の高精度な位置合わせを実現しつつ,発光点15からの発光の検出をV溝81が邪魔をしないようにする工夫である。以上のようなサブデバイス80を予め作成しておけば,複数のキャピラリ1をそれぞれ各V溝81に押し付けるだけで,各発光点15と各集光レンズ18の高精度な位置合わせを簡便に行うことが可能となる。本実施例は,実施例1〜3のいずれの構成とも組み合わせることができる。V溝アレイと集光レンズアレイを一体化したサブデバイス80は,射出成形やインプリントのような加工法で一体成形することが可能であり,低コストに量産も可能である。もちろん,V溝81と集光レンズ18を別々に作製してから結合させることでサブデバイス80を完成させても良い。   As shown in FIG. 13A, the condenser lens 18 of the sub device 80 exists in the cross section of the capillary 1 at the light emitting point 15, and the V groove 81 does not exist. On the other hand, as shown in FIG. 13B, in the cross section of the capillary 1 on both sides of the light emitting point 15, the condenser lens 18 of the sub device 80 does not exist, and the V groove 81 exists. FIG. 13C shows a cross section of the capillary 1 in the long axis direction. A condenser lens 18 exists at the center of the sub device 80, and V grooves 81 exist at both sides thereof. This is a device to prevent the V groove 81 from disturbing the detection of the light emission from the light emitting point 15 while realizing highly accurate alignment of the capillary 1 by the V groove 81. If the sub device 80 as described above is prepared in advance, high precision alignment between each light emitting point 15 and each condenser lens 18 can be easily performed simply by pressing the plurality of capillaries 1 onto each V groove 81 respectively. It becomes possible. The present embodiment can be combined with any of the configurations of the first to third embodiments. The sub device 80 in which the V-groove array and the condenser lens array are integrated can be integrally molded by a processing method such as injection molding or imprint, and mass production is also possible at low cost. Of course, the sub-device 80 may be completed by separately fabricating the V-groove 81 and the condenser lens 18 and then combining them.

サブデバイスはV溝アレイが無い場合も有効である。例えば,サブデバイスのキャピラリ配列側の表面をV溝アレイではなく,平面としても良い。複数のキャピラリの配列間隔は別の手段によって調整する必要があるが,各キャピラリをサブデバイスの上記平面に押し付けることによって,各キャピラリと各集光レンズの距離,すなわち各発光点と各集光レンズの距離を制御することは可能である。あるいは,V溝ではなくても,キャピラリの位置を制御するための構造物をサブデバイスに設ければ良い。   The sub device is also effective when there is no V-groove array. For example, the surface on the capillary array side of the sub device may be a plane instead of the V-groove array. Although it is necessary to adjust the arrangement interval of the plurality of capillaries by another means, the distance between each capillary and each condensing lens, that is, each light emitting point and each condensing lens, is required by pressing each capillary against the above-mentioned plane of the subdevice. It is possible to control the distance of Alternatively, even if it is not the V groove, a structure for controlling the position of the capillary may be provided in the sub device.

各集光レンズ18の,発光点アレイ方向の焦点距離f1と,キャピラリの長軸方向の焦点距離f2とするとき,以上の実施例ではf1=f2としていたが,f1≠f2とすることも有効である。キャピラリ1は円筒形状をしているため,発光点アレイ方向にレンズ作用を持つが,長軸方向にはレンズ作用を持たない。したがって,発光点15からの発光を集光レンズ18で効率良く集光するためには,上記のキャピラリのレンズ作用の方向による違いをキャンセルすることが有効であり,そのためにはf1≠f2とすれば良い。これは,各集光レンズ18を非球面とすることで簡単に実現できる。また,各集光レンズ18をフレネルレンズとすることによって,レンズの厚みを低減し,蛍光検出装置をさらに小型化することも可能である。フレネルレンズの利用は,f1=f2の場合も,もちろん有効である。   The focal length f1 of each condenser lens 18 in the light emitting point array direction and the focal length f2 of the capillary in the long axis direction are f1 = f2 in the above embodiments, but f1 ≠ f2 is also effective. It is. Since the capillary 1 has a cylindrical shape, it has a lens action in the light emitting point array direction, but has no lens action in the long axis direction. Therefore, in order to efficiently condense the light emitted from the light emitting point 15 by the condenser lens 18, it is effective to cancel the difference due to the direction of the lens action of the above-mentioned capillary. Just do it. This can be easily realized by making each condenser lens 18 aspheric. In addition, by forming each condenser lens 18 as a Fresnel lens, it is possible to reduce the thickness of the lens and further miniaturize the fluorescence detection device. The use of a Fresnel lens is, of course, also effective when f1 = f2.

図14は,複数のキャピラリにそれぞれ個別集光レンズを接着したデバイスの構成例を示す断面模式図である。図14(a)はレーザ照射位置における各キャピラリの長軸に垂直な断面を示し,図14(c)は任意の一つのキャピラリの長軸に平行な断面を示す。ここでは,各発光点と各集光レンズの位置合わせを精度良く,簡便に行う他の方法を示す。   FIG. 14 is a schematic cross-sectional view showing a configuration example of a device in which individual condenser lenses are adhered to a plurality of capillaries. FIG. 14 (a) shows a cross section perpendicular to the long axis of each capillary at the laser irradiation position, and FIG. 14 (c) shows a cross section parallel to the long axis of any one capillary. Here, another method is described in which the alignment between each light emitting point and each condenser lens is performed accurately with ease.

個別集光レンズ18を各キャピラリ1に接着し,各集光レンズ18の焦点と各キャピラリ1の発光点15が一致するようにする。図14では,球状の集光レンズ18を用いているが,もちろん他の形状の集光レンズでも構わない。各集光レンズ18の各キャピラリ1への接着は,複数のキャピラリの同一平面上への配列が終わってから行う方が望ましい。これは,複数のキャピラリ1の配列工程で,複数の集光レンズ18が同一平面上に並ばなかったり,複数の集光レンズ18の光軸が互いに平行でなくなったりすることを避けられる効果を生む。また,上記の接着が終了した状態のキャピラリアレイをユーザに供給することによって,キャピラリアレイの搬送工程,蛍光検出装置への設置工程等で,各発光点15と各集光レンズ18の相対位置が所定の位置からずれることを防ぐことができる。   The individual condensing lenses 18 are adhered to the respective capillaries 1 so that the focal points of the respective condensing lenses 18 and the light emitting points 15 of the respective capillaries 1 coincide with each other. In FIG. 14, although the spherical condensing lens 18 is used, of course, the condensing lens of another shape may be used. The adhesion of each condenser lens 18 to each capillary 1 is preferably performed after the alignment of the plurality of capillaries on the same plane is completed. This has the effect of avoiding that the plurality of focusing lenses 18 are not aligned on the same plane or that the optical axes of the plurality of focusing lenses 18 are not parallel to each other in the step of arranging the plurality of capillaries 1 . In addition, by supplying the capillary array in a state in which the above adhesion has been completed to the user, the relative positions of each light emitting point 15 and each condensing lens 18 in the transportation step of the capillary array, the installation step to the fluorescence detection device, etc. It is possible to prevent deviation from the predetermined position.

[実施例5]
図15は,マルチチャンネルを有するマイクロチップと個別集光レンズアレイが一体化したデバイスの構成例を示す断面模式図である。本実施例は,複数のキャピラリではなく,マイクロチップ86に設けられた複数のチャンネル82,すなわちチャンネルアレイを対象とする。
[Example 5]
FIG. 15 is a schematic cross-sectional view showing a configuration example of a device in which a microchip having a multi-channel and an individual condensing lens array are integrated. In this embodiment, not a plurality of capillaries but a plurality of channels 82 provided in the microchip 86, that is, a channel array is targeted.

図示の例のマイクロチップ86は,表面に複数の角型の4個の溝が形成されたチャンネル基板83と,表面が平面である平面基板84を,それぞれの表面を対向させて張り合わせて作製される。チャンネル基板83と平面基板84の境界を張り合わせ面85と呼ぶ。上記の4個の溝は,張り合わせ面85で仕切られることによって,4個のチャンネル82を形成する。これらのチャンネル82は,径0.05mmであり,間隔p=0.5mmで同一平面上に配列する。本実施例では,複数のチャンネルの配列平面を,単に配列平面と呼ぶ。径0.05mmに絞ったレーザビーム11を配列平面側方より照射することで,数n=4個,有効径d=0.05mmの発光点15が間隔p=0.5mmで配列する発光点アレイを得る。発光点アレイの全幅はW=p*(n−1)=1.5mmである。本実施例では,さらに,チャンネル基板83の溝が形成された表面と反対側の裏面に4個の個別集光レンズ18を形成する。これらの集光レンズ18は,間隔p=0.5mmで配列平面と平行に,各光軸が配列平面と垂直になるように配列され,かつ各焦点が各発光点と一致するようにする。   The microchip 86 in the illustrated example is manufactured by bonding a channel substrate 83 having a plurality of rectangular four grooves formed on the surface thereof and a planar substrate 84 having a flat surface, with the surfaces thereof facing each other. Ru. The boundary between the channel substrate 83 and the flat substrate 84 is called a bonding surface 85. The four grooves described above are separated by a bonding surface 85 to form four channels 82. These channels 82 have a diameter of 0.05 mm and are arranged on the same plane at a spacing p = 0.5 mm. In this embodiment, the array plane of the plurality of channels is simply referred to as an array plane. By irradiating the laser beam 11 narrowed to a diameter of 0.05 mm from the side of the array plane, a light emitting point where several n = 4 light emitting points 15 of effective diameter d = 0.05 mm are arrayed at an interval p = 0.5 mm Get an array. The total width of the light emitting point array is W = p * (n-1) = 1.5 mm. Further, in the present embodiment, four individual condenser lenses 18 are formed on the back surface of the channel substrate 83 opposite to the surface on which the grooves are formed. These condenser lenses 18 are arranged parallel to the arrangement plane at an interval p = 0.5 mm so that each optical axis is perpendicular to the arrangement plane, and each focal point coincides with each light emission point.

チャンネル基板83を射出成形やインプリントで作製すれば,表面に溝,裏面に集光レンズ18を,それぞれの相対位置を上記の通りに精度良く合わせながら低コストに加工することが可能である。ここでは,集光レンズ18の焦点距離f=1mm,有効径D=0.4mmとする。集光レンズ18によって各発光点15からの発光をそれぞれ集光して平行光束19とする。それ以降は,これまで説明した,いずれの実施例の蛍光検出装置とも組み合わせることができる。各チャンネル82を用いて,上記の実施例と同様に電気泳動によるDNAシーケンスを行っても良いし,その他のアプリケーションに適用しても構わない。いずれの場合にも,4個の発光点からの発光を,従来と比較して大幅に小型化された蛍光検出装置を用いて,低クロストークかつ高感度に多色検出できる。   If the channel substrate 83 is manufactured by injection molding or imprinting, it is possible to process it at low cost while aligning the relative positions of the grooves on the front surface and the condensing lens 18 on the rear surface precisely as described above. Here, the focal length f of the condenser lens 18 is 1 mm, and the effective diameter D is 0.4 mm. The light emitted from each light emitting point 15 is condensed by the condensing lens 18 to form a parallel luminous flux 19. After that, it can be combined with the fluorescence detection device of any of the embodiments described above. The DNA sequence by electrophoresis may be performed using each channel 82 in the same manner as the above embodiment, or may be applied to other applications. In any case, light emission from the four light emission points can be detected with low color crosstalk and high sensitivity using the fluorescence detection device which is much smaller than that of the prior art.

次に,マイクロチップ86を用いた,より具体的な実施例を説明する。   Next, a more specific embodiment using the microchip 86 will be described.

図16は,マルチチャンネルを有するマイクロチップと個別集光レンズアレイが一体化したデバイスと個別LED照明による発光点アレイからの発光を,共通ダイクロイックミラーセット,及びセンサにより多色検出する装置構成例を示す断面模式図である。図16(a)はマイクロチップの上面模式図,図16(b)は任意の1個のチャンネルを側面から見た断面模式図,図16(c)は,蛍光標識されてチャンネル内部を流れる液滴と発光点の関係を示す説明図である。   FIG. 16 shows an apparatus configuration example for detecting multicolor light emission from a device in which a microchip having multichannels and an individual condensing lens array are integrated and light emission point array by individual LED illumination using a common dichroic mirror set and a sensor It is a cross-sectional schematic diagram shown. 16 (a) is a schematic top view of the microchip, FIG. 16 (b) is a schematic cross-sectional view of one arbitrary channel viewed from the side, and FIG. 16 (c) is a liquid that is fluorescently labeled and flows inside the channel It is an explanatory view showing a relation of a drop and a luminescence point.

図16(a)の上面模式図に示すように,図示の例のマイクロチップ86には,径0.1mm,長さ50mmの10個のチャンネル82が,間隔p=2mmで,平行かつ同一平面上に配列している。各チャンネル82の両端には,フロー入口87とフロー出口88が形成されている。各チャンネル82の中央に発光点15が位置している。   As shown in the schematic top view of FIG. 16A, in the microchip 86 of the illustrated example, ten channels 82 with a diameter of 0.1 mm and a length of 50 mm are parallel and in the same plane at an interval p = 2 mm. Arranged on top. At both ends of each channel 82, a flow inlet 87 and a flow outlet 88 are formed. A light emitting point 15 is located at the center of each channel 82.

図16(b)に示すように,これまでの実施例と異なり,本実施例では,励起光としてレーザビームの代わりにLED光を用い,落射蛍光検出の光学系を採用する。また,LED光源90は,チャンネル82毎に個別に準備する。個別LED光源90から発振した中心波長505nmのLED光は,焦点距離5mmの個別コリメートレンズ91によりLED平行光束92とされた後,共通LEDダイクロイックミラー89に45°の入射角で並列に入射して反射され,配列平面に向かって垂直に進む。LEDダイクロイックミラー89の中心は,各集光レンズ18から1mmの距離の位置に配置する。次に,各LED平行光束92は,焦点距離f=1mm,有効径D=1mmの個別集光レンズ18によって各発光点15の位置にそれぞれ集光される。このとき,LED光の集光サイズは径0.05mmとなるため,発光点のサイズもd=0.05mmとなり,チャンネル82の径0.1mmよりも小さくすることができる。これはクロストークを低減する上で有利となる。   As shown in FIG. 16 (b), unlike the previous embodiments, in this embodiment, LED light is used as excitation light instead of a laser beam, and an optical system for incident fluorescence detection is adopted. Also, the LED light sources 90 are individually prepared for each channel 82. The LED light having a center wavelength of 505 nm oscillated from the individual LED light source 90 is made into an LED parallel luminous flux 92 by the individual collimating lens 91 with a focal distance of 5 mm, and then incident in parallel to the common LED dichroic mirror 89 at an incident angle of 45 °. It is reflected and travels perpendicularly to the array plane. The center of the LED dichroic mirror 89 is disposed at a distance of 1 mm from each condenser lens 18. Next, each LED parallel luminous flux 92 is condensed at the position of each light emitting point 15 by an individual condensing lens 18 of focal length f = 1 mm and effective diameter D = 1 mm. At this time, since the condensed size of the LED light is 0.05 mm in diameter, the size of the light emitting point is also d = 0.05 mm, and the diameter of the channel 82 can be smaller than 0.1 mm. This is advantageous in reducing crosstalk.

各発光点15からの発光は,同一の個別集光レンズ18によりそれぞれ平行光束19とされ,共通LEDダイクロイックミラー89に45°の入射角で並列に入射し,LED光はLEDダイクロイックミラー89でそれぞれ反射してLED光源90の方向に進み,蛍光はLEDダイクロイックミラー89をそれぞれ透過する。以降の,Aダイクロイックミラー39,Bダイクロイックミラー41,Cダイクロイックミラー43,及びDダイクロイックミラー45の各要素を各発光点について共通かつ並列に用い,A蛍光,B蛍光,C蛍光,及びD蛍光を検出する点は実施例2と同等である。実施例2と異なる点は,Aダイクロイックミラー39の中心と各集光レンズ18の距離が2mmであること,各ダイクロイックミラー39,41,43,45の発光点アレイの配列方向の有効径がDM1=25mmであることである。このとき,各集光レンズ18とセンサ面27の距離はg=6mmである。f=1mmに対して,−0.20*(d/D)*g+2.8*D=2.74mmとなり,式(1)が満足され,相対検出光量は362%(>50%)となる。また,0.95*(d/p)*g=0.14mmとなり,式(2)が満足され,クロストーク信号強度比が0.0%(<25%)となる。   The light emitted from each light emitting point 15 is collimated by the same individual condenser lens 18 into parallel light beams 19 and incident in parallel to the common LED dichroic mirror 89 at an incident angle of 45 °, and the LED light is respectively reflected by the LED dichroic mirror 89 The light is reflected and travels in the direction of the LED light source 90, and the fluorescence is transmitted through the LED dichroic mirror 89, respectively. The following elements of A dichroic mirror 39, B dichroic mirror 41, C dichroic mirror 43, and D dichroic mirror 45 are used in common and in parallel for each light emitting point, and A fluorescence, B fluorescence, C fluorescence and D fluorescence are used. The point to be detected is the same as that of the second embodiment. The difference from the second embodiment is that the distance between the center of the A dichroic mirror 39 and each condenser lens 18 is 2 mm, and the effective diameter of the light emitting point array of each dichroic mirror 39, 41, 43, 45 is DM1. = 25 mm. At this time, the distance between each condenser lens 18 and the sensor surface 27 is g = 6 mm. For f = 1 mm, -0.20 * (d / D) * g + 2.8 * D = 2.74 mm, equation (1) is satisfied, and the relative detection light quantity is 362% (> 50%) . Further, 0.95 * (d / p) * g = 0.14 mm, and the equation (2) is satisfied, and the crosstalk signal strength ratio becomes 0.0% (<25%).

本実施例では,上記のマイクロチップ86及び蛍光検出装置をデジタルPCRの測定に用いる。デジタルPCRでは,オイル中に多数の液滴(エマルジョン)を形成し,各液滴にターゲットのDNA分子が0個か1個だけ含まれるようにする。この状態でPCRを行い,ターゲットが存在して増幅された場合に蛍光を発光するようにする。ひとつひとつの液滴の蛍光発光の有無を調べることによって,元のサンプル中に存在したターゲットの分子数を高精度に定量する。さらに,4色の蛍光検出を行うことによって,4種類のターゲットについて,独立にデジタルPCRを行うことが可能である。デジタルPCRの課題の一つはスループットの向上であり,多数の液滴の高スループットな多色検出が重要である。図16(c)は,チャンネル82の内部を,オイルとともに,A蛍光,B蛍光,C蛍光,及びD蛍光で標識された4種類の液滴93,94,95,96がフローし,発光点15を横切る際に励起を受けて各蛍光を発光する構成を示している。従来は,1個のチャンネルを用いた1色検出によりデジタルPCRの測定を行っていたが,本実施例では,10個のチャンネルを用いた4色検出によりデジタルPCRの測定を行えるため,スループットは40倍となる。しかも,マイクロチップ86及び蛍光検出装置は非常に小型であり,低コストに製造可能である。   In this embodiment, the microchip 86 and the fluorescence detection device described above are used for the measurement of digital PCR. In digital PCR, a large number of droplets (emulsion) are formed in oil, and each droplet contains zero or one target DNA molecule. In this state, PCR is performed to emit fluorescence when the target is present and amplified. The number of molecules of the target present in the original sample is quantified with high accuracy by examining the presence or absence of fluorescence of each droplet. Furthermore, by performing four-color fluorescence detection, it is possible to perform digital PCR independently for four types of targets. One of the problems of digital PCR is the improvement of throughput, and high throughput multicolor detection of many droplets is important. FIG. 16 (c) shows the flow of the light inside the channel 82 along with the oil, in which four types of droplets 93, 94, 95, 96 labeled with A fluorescence, B fluorescence, C fluorescence and D fluorescence flow. It shows a configuration in which each fluorescence is emitted upon excitation when crossing 15. Conventionally, digital PCR was measured by one-color detection using one channel, but in this example, digital PCR can be measured by four-color detection using ten channels, so the throughput It will be 40 times. Moreover, the microchip 86 and the fluorescence detection device are very compact and can be manufactured at low cost.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.

1 キャピラリ
10 レーザ光源
11 レーザビーム
12 レーザ照射位置
15 発光点
17 集光レンズアレイ
18 集光レンズ
20 ロングパスフィルタ
21 透過型回折格子
23 結像レンズ
27 センサ面
28 センサ領域
38 凹面反射型回折格子
39 Aダイクロイックミラー
41 Bダイクロイックミラー
43 Cダイクロイックミラー
45 Dダイクロイックミラー
47 波長分散像
56 ロングパスフィルタ
73 カラーセンサ面
80 サブデバイス
81 V溝
82 チャンネル
83 チャンネル基板
84 平面基板
86 マイクロチップ
90 LED光源
91 コリメートレンズ
97 低分散プリズム
Reference Signs List 1 capillary 10 laser light source 11 laser beam 12 laser irradiation position 15 light emitting point 17 condensing lens array 18 condensing lens 20 long pass filter 21 transmission type diffraction grating 23 imaging lens 27 sensor surface 28 sensor area 38 concave reflection type diffraction grating 39 A Dichroic mirror 41 B dichroic mirror 43 C dichroic mirror 45 D dichroic mirror 47 wavelength dispersion image 56 long pass filter 73 color sensor surface 80 sub-device 81 V groove 82 channel 83 channel substrate 84 planar substrate 86 microchip 90 LED light source 91 collimate lens 97 low Dispersing prism

Claims (22)

m,nをそれぞれ2以上の任意の整数として,
m個の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に集光してm個の光束とするm個の集光レンズが配列した集光レンズアレイと,
少なくとも第1のダイクロイックミラーと第2のダイクロイックミラーを含む,n個のダイクロイックミラーが略平行に配列したダイクロイックミラーアレイと,
少なくとも1個のセンサと,を備え,
前記m個の光束の少なくとも一部が前記第1のダイクロイックミラーにそれぞれ並列に入射され,前記第1のダイクロイックミラーが前記m個の光束の少なくとも一部をそれぞれ,m個の第1の透過光束と,m個の第1の反射光束に分割し,
前記m個の第1の反射光束の少なくとも一部が前記第2のダイクロイックミラーにそれぞれ並列に入射され,前記第2のダイクロイックミラーが前記m個の第1の反射光束の少なくとも一部をそれぞれ,少なくともm個の第2の反射光束に変換し,
前記m個の第1の透過光束の少なくとも一部と前記m個の第2の反射光束の少なくとも一部が,再集光されずに,前記センサにそれぞれ並列に入射される多色検出装置。
Let m and n be arbitrary integers of 2 or more, respectively
a condenser lens array in which m condenser lenses are arranged to individually condense the light emission from each light emission point of the light emission point array in which the m luminous points are arrayed into m luminous fluxes;
A dichroic mirror array in which n dichroic mirrors are arranged substantially in parallel, including at least a first dichroic mirror and a second dichroic mirror;
At least one sensor,
At least a portion of the m beams is incident in parallel to the first dichroic mirror, and the first dichroic mirror transmits at least a portion of the m beams to the m first transmitted beams. And m first reflected beams,
At least a portion of the m first reflected beams are respectively incident in parallel to the second dichroic mirror, and the second dichroic mirror is at least a portion of the m first reflected beams. Convert to at least m second reflected beams,
The multicolor detection device according to claim 1, wherein at least a part of the m first transmitted light beams and at least a part of the m second reflected light beams are incident on the sensor in parallel without being collected again.
請求項1に記載の多色検出装置において,
前記m個の集光レンズの光軸の方向と,前記センサのセンサ面が略垂直である多色検出装置。
In the multicolor detection device according to claim 1,
The multicolor detection device, wherein the direction of the optical axis of the m condenser lenses and the sensor surface of the sensor are substantially perpendicular.
請求項1又は2に記載の多色検出装置において,
前記m個の集光レンズの光軸の方向と,前記m個の集光レンズが配列する方向のそれぞれと,前記n個のダイクロイックミラーが配列する方向が略垂直である多色検出装置。
In the multicolor detection device according to claim 1 or 2,
A multicolor detection device in which the direction of the optical axis of the m condenser lenses, the direction in which the m condenser lenses are arranged, and the direction in which the n dichroic mirrors are arranged are substantially perpendicular.
請求項1に記載の多色検出装置において,
前記m個の発光点の有効径の平均をd,前記m個の集光レンズの焦点距離の平均をf,前記m個の集光レンズの有効径の平均をD,前記m個の第2の反射光束の,前記m個の集光レンズと前記センサの間の光路長の平均をgとするとき,
f≦−0.20*(d/D)*g+2.8*D
を満足する多色検出装置。
In the multicolor detection device according to claim 1,
The average of the effective diameters of the m light emitting points is d, the average of the focal distances of the m condenser lenses is f, the average of the effective diameters of the m condenser lenses is D, the m second Let g be the average of the optical path length between the m condenser lenses and the sensor of the reflected light flux of
f ≦ −0.20 * (d / D) * g + 2.8 * D
Satisfy multi-color detection device.
請求項4に記載の多色検出装置において,
前記m個の発光点の配列間隔の平均をpとするとき,
f≧0.95*(d/p)*g
を満足する多色検出装置。
In the multicolor detection device according to claim 4,
When the average of the arrangement interval of the m light emitting points is p,
f ≧ 0.95 * (d / p) * g
Satisfy multi-color detection device.
請求項1に記載の多色検出装置において,
前記m個の発光点の有効径の平均をd,前記m個の集光レンズの焦点距離の平均をf,前記m個の発光点の配列間隔の平均をp,前記m個の第2の反射光束の,前記m個の集光レンズと前記センサの間の光路長の平均をgとするとき,
f≧0.95*(d/p)*g
を満足する多色検出装置。
In the multicolor detection device according to claim 1,
The average of the effective diameters of the m light emitting points is d, the average of the focal lengths of the m condenser lenses is f, the average of the arrangement intervals of the m light emitting points is p, the m second Assuming that the average of the optical path length between the m condenser lenses and the sensor of the reflected light flux is g,
f ≧ 0.95 * (d / p) * g
Satisfy multi-color detection device.
請求項1に記載の多色検出装置において,
前記m個の発光点の配列間隔の平均をp,前記m個の集光レンズの有効径の平均をD,前記n個のダイクロイックミラーの前記m個の発光点の配列方向の有効径をDM1,前記n個のダイクロイックミラーの前記m個の発光点の配列方向と直交方向の有効径をDM2とするとき,
p*(m−1)+D≦DM1,及び
√2*D≦DM2
を満足する多色検出装置。
In the multicolor detection device according to claim 1,
The average of the arrangement interval of the m light emitting points is p, the average of the effective diameters of the m condenser lenses is D, and the effective diameter of the m light emitting points of the n dichroic mirrors is DM1 When an effective diameter in a direction orthogonal to the arrangement direction of the m light emitting points of the n dichroic mirrors is DM2,
p * (m-1) + D ≦ DM1, and √2 * D ≦ DM2
Satisfy multi-color detection device.
請求項1に記載の多色検出装置において,
前記m個の集光レンズの光軸が互いに平行ではない多色検出装置。
In the multicolor detection device according to claim 1,
The multicolor detection device in which the optical axes of the m condenser lenses are not parallel to one another.
請求項1に記載の多色検出装置において,
前記ダイクロイックミラーアレイに属さない,第3のダイクロイックミラーをさらに有し,
m個の照射光束が前記第3のダイクロイックミラーにそれぞれ並列に入射され,前記第3のダイクロイックミラーが前記m個の照射光束の少なくとも一部をそれぞれ,少なくともm個の第3の反射光束に変換し,
前記m個の第3の反射光束が,前記m個の集光レンズによってそれぞれ個別に集光され,前記m個の発光点をそれぞれ個別に照射し,
前記m個の光束が,前記m個の発光点からの発光を前記m個の集光レンズによってそれぞれ個別に集光し,前記第3のダイクロイックミラーを並列に透過させた光束である多色検出装置。
In the multicolor detection device according to claim 1,
Further comprising a third dichroic mirror not belonging to the dichroic mirror array;
m illumination beams are respectively incident on the third dichroic mirror in parallel, and the third dichroic mirror converts at least a portion of the m illumination beams into at least m third reflection beams. The
The m third reflected beams are individually condensed by the m condenser lenses, and the m light emitting points are individually irradiated,
Multicolor detection in which the m luminous fluxes are luminous fluxes in which light emissions from the m luminous points are individually condensed by the m condensing lenses and transmitted in parallel by the third dichroic mirror apparatus.
m,nをそれぞれ2以上の任意の整数として,
m個の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に集光してm個の光束とするm個の集光レンズが配列した集光レンズアレイと,
少なくとも第1のダイクロイックミラーと第2のダイクロイックミラーを含む,n個のダイクロイックミラーが略平行に配列したダイクロイックミラーアレイと,
少なくとも1個のセンサと,を備え,
前記m個の光束の少なくとも一部が前記第1のダイクロイックミラーにそれぞれ並列に入射され,前記第1のダイクロイックミラーが前記m個の光束の少なくとも一部をそれぞれ,m個の第1の透過光束と,m個の第1の反射光束に分割し,
前記m個の第1の透過光束の少なくとも一部が前記第2のダイクロイックミラーにそれぞれ並列に入射され,前記第2のダイクロイックミラーが前記m個の第1の透過光束の少なくとも一部をそれぞれ,少なくともm個の第2の反射光束に変換し,
前記m個の第1の反射光束の少なくとも一部と前記m個の第2の反射光束の少なくとも一部が,再集光されずに,前記センサにそれぞれ並列に入射される多色検出装置。
Let m and n be arbitrary integers of 2 or more, respectively
a condenser lens array in which m condenser lenses are arranged to individually condense the light emission from each light emission point of the light emission point array in which the m luminous points are arrayed into m luminous fluxes;
A dichroic mirror array in which n dichroic mirrors are arranged substantially in parallel, including at least a first dichroic mirror and a second dichroic mirror;
At least one sensor,
At least a portion of the m beams is incident in parallel to the first dichroic mirror, and the first dichroic mirror transmits at least a portion of the m beams to the m first transmitted beams. And m first reflected beams,
At least a portion of the m first transmitted beams are respectively incident in parallel to the second dichroic mirror, and the second dichroic mirror transmits at least a portion of the m first transmitted beams. Convert to at least m second reflected beams,
The multicolor detection device according to claim 1, wherein at least a part of the m first reflected light beams and at least a part of the m second reflected light beams are incident on the sensor in parallel without being collected again.
請求項10に記載の多色検出装置において,
前記m個の集光レンズの光軸の方向と,前記センサのセンサ面が略垂直である多色検出装置。
In the multicolor detection device according to claim 10,
The multicolor detection device, wherein the direction of the optical axis of the m condenser lenses and the sensor surface of the sensor are substantially perpendicular.
請求項10又は11に記載の多色検出装置において,
前記m個の集光レンズの光軸の方向と,前記m個の集光レンズが配列する方向のそれぞれと,前記n個のダイクロイックミラーが配列する方向が略垂直である多色検出装置。
In the multicolor detection device according to claim 10 or 11,
A multicolor detection device in which the direction of the optical axis of the m condenser lenses, the direction in which the m condenser lenses are arranged, and the direction in which the n dichroic mirrors are arranged are substantially perpendicular.
請求項10に記載の多色検出装置において,
前記m個の発光点の有効径の平均をd,前記m個の集光レンズの焦点距離の平均をf,前記m個の集光レンズの有効径の平均をD,前記m個の第2の反射光束の,前記m個の集光レンズと前記センサの間の光路長の平均をgとするとき,
f≦−0.20*(d/D)*g+2.8*D
を満足する多色検出装置。
In the multicolor detection device according to claim 10,
The average of the effective diameters of the m light emitting points is d, the average of the focal distances of the m condenser lenses is f, the average of the effective diameters of the m condenser lenses is D, the m second Let g be the average of the optical path length between the m condenser lenses and the sensor of the reflected light flux of
f ≦ −0.20 * (d / D) * g + 2.8 * D
Satisfy multi-color detection device.
請求項13に記載の多色検出装置において,
前記m個の発光点の配列間隔の平均をpとするとき,
f≧0.95*(d/p)*g
を満足する多色検出装置。
In the multicolor detection device according to claim 13,
When the average of the arrangement interval of the m light emitting points is p,
f ≧ 0.95 * (d / p) * g
Satisfy multi-color detection device.
請求項10に記載の多色検出装置において,
前記m個の発光点の有効径の平均をd,前記m個の発光点の配列間隔の平均をp,前記m個の集光レンズの焦点距離の平均をf,前記m個の第2の反射光束の,前記m個の集光レンズと前記センサの間の光路長の平均をgとするとき,
f≧0.95*(d/p)*g
を満足する多色検出装置。
In the multicolor detection device according to claim 10,
The average of the effective diameters of the m light emitting points is d, the average of the arrangement interval of the m light emitting points is p, the average of the focal distances of the m condensing lenses is f, and the m second Assuming that the average of the optical path length between the m condenser lenses and the sensor of the reflected light flux is g,
f ≧ 0.95 * (d / p) * g
Satisfy multi-color detection device.
請求項10に記載の多色検出装置において,
前記m個の発光点の配列間隔の平均をp,前記m個の集光レンズの有効径の平均をD,前記n個のダイクロイックミラーの前記m個の発光点の配列方向の有効径をDM1,前記n個のダイクロイックミラーの前記m個の発光点の配列方向と直交方向の有効径をDM2とするとき,
p*(m−1)+D≦DM1,及び
√2*D≦DM2
を満足する多色検出装置。
In the multicolor detection device according to claim 10,
The average of the arrangement interval of the m light emitting points is p, the average of the effective diameters of the m condenser lenses is D, and the effective diameter of the m light emitting points of the n dichroic mirrors is DM1 When an effective diameter in a direction orthogonal to the arrangement direction of the m light emitting points of the n dichroic mirrors is DM2,
p * (m-1) + D ≦ DM1, and √2 * D ≦ DM2
Satisfy multi-color detection device.
請求項10に記載の多色検出装置において,
前記m個の集光レンズの光軸が互いに平行ではない多色検出装置。
In the multicolor detection device according to claim 10,
The multicolor detection device in which the optical axes of the m condenser lenses are not parallel to one another.
請求項10に記載の多色検出装置において,
前記ダイクロイックミラーアレイに属さない,第3のダイクロイックミラーをさらに有し,
m個の照射光束が前記第3のダイクロイックミラーにそれぞれ並列に入射され,前記第3のダイクロイックミラーが前記m個の照射光束の少なくとも一部をそれぞれ,少なくともm個の第3の反射光束に変換し,
前記m個の第3の反射光束が,前記m個の集光レンズによってそれぞれ個別に集光され,前記m個の発光点をそれぞれ個別に照射し,
前記m個の光束が,前記m個の発光点からの発光を前記m個の集光レンズによってそれぞれ個別に集光し,前記第3のダイクロイックミラーを並列に透過させた光束である多色検出装置。
In the multicolor detection device according to claim 10,
Further comprising a third dichroic mirror not belonging to the dichroic mirror array;
m illumination beams are respectively incident on the third dichroic mirror in parallel, and the third dichroic mirror converts at least a portion of the m illumination beams into at least m third reflection beams. The
The m third reflected beams are individually condensed by the m condenser lenses, and the m light emitting points are individually irradiated,
Multicolor detection in which the m luminous fluxes are luminous fluxes in which light emissions from the m luminous points are individually condensed by the m condensing lenses and transmitted in parallel by the third dichroic mirror apparatus.
mを2以上の任意の整数として,
m個の発光点が配列した発光点アレイの各発光点からの発光をそれぞれ個別に集光してm個の光束とするm個の集光レンズが配列した集光レンズアレイと,
少なくとも1個のセンサと,を備え,
前記m個の光束の少なくとも一部が前記センサにそれぞれ並列に入射され,
前記m個の発光点がそれぞれ有限サイズであり,
前記m個の発光点の有効径の平均をd,前記m個の集光レンズの焦点距離の平均をf,前記m個の集光レンズの有効径の平均をD,前記m個の光束の,前記m個の集光レンズと前記センサの間の光路長の平均をgとするとき,
f≦−0.20*(d/D)*g+2.8*D
を満足する多色検出装置。
Let m be any integer greater than or equal to 2,
a condenser lens array in which m condenser lenses are arranged to individually condense the light emission from each light emission point of the light emission point array in which the m luminous points are arrayed into m luminous fluxes;
At least one sensor,
At least a part of the m luminous fluxes are respectively incident on the sensor in parallel;
Each of the m light emitting points has a finite size,
The average of the effective diameters of the m light emitting points is d, the average of the focal lengths of the m condenser lenses is f, the average of the effective diameters of the m condenser lenses is D, and the m luminous fluxes , Where g is the average of the optical path length between the m condenser lenses and the sensor,
f ≦ −0.20 * (d / D) * g + 2.8 * D
Satisfy multi-color detection device.
mを2以上の任意の整数として,
m個のキャピラリの少なくとも一部が同一平面上に配列したキャピラリアレイと,
前記同一平面上かつ前記m個のキャピラリからの発光を,それぞれ個別に集光してm個の光束とするm個の集光レンズが配列した集光レンズアレイと,
少なくとも1個のセンサと,を備え,
前記m個の光束の少なくとも一部が前記センサに,再集光されずに,それぞれ並列に入射され,
前記同一平面と前記センサのセンサ面が互いに略平行である多色検出装置。
Let m be any integer greater than or equal to 2,
a capillary array in which at least a portion of m capillaries are arranged on the same plane;
A condenser lens array in which m condenser lenses arranged to individually condense light emitted from the m capillaries on the same plane individually to form m luminous fluxes;
At least one sensor,
At least a portion of the m luminous fluxes are respectively incident on the sensor in parallel without refocusing,
The multicolor detection device in which the same plane and the sensor surface of the sensor are substantially parallel to each other.
請求項20に記載の多色検出装置において,
前記センサが,異なる分光感度特性を有する複数種類の画素が2次元状に配列して構成されている多色検出装置。
The multicolor detection device according to claim 20,
The multicolor detection device, wherein the sensor is configured by arranging a plurality of kinds of pixels having different spectral sensitivity characteristics in a two-dimensional manner.
請求項21に記載の多色検出装置において,
前記センサの画素サイズの平均をSとするとき,
S<D
を満足する多色検出装置。
In the multicolor detection device according to claim 21,
Let S be the average pixel size of the sensor,
S <D
Satisfy multi-color detection device.
JP2018237484A 2015-02-03 2018-12-19 Multicolor detector Active JP6975704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018237484A JP6975704B2 (en) 2015-02-03 2018-12-19 Multicolor detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016572971A JP6456983B2 (en) 2015-02-03 2015-02-03 Multicolor detector
JP2018237484A JP6975704B2 (en) 2015-02-03 2018-12-19 Multicolor detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016572971A Division JP6456983B2 (en) 2015-02-03 2015-02-03 Multicolor detector

Publications (2)

Publication Number Publication Date
JP2019074536A true JP2019074536A (en) 2019-05-16
JP6975704B2 JP6975704B2 (en) 2021-12-01

Family

ID=66544111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237484A Active JP6975704B2 (en) 2015-02-03 2018-12-19 Multicolor detector

Country Status (1)

Country Link
JP (1) JP6975704B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867533B1 (en) * 2020-05-20 2021-04-28 株式会社アルス Light source device
CN113840902A (en) * 2019-05-22 2021-12-24 株式会社日立高新技术 Analysis device and analysis method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209251A (en) * 1994-01-14 1995-08-11 Hitachi Ltd Electrophoretic device
JPH1151900A (en) * 1997-08-07 1999-02-26 Hitachi Electron Eng Co Ltd Fluorescence detector
JP2000162182A (en) * 1998-11-30 2000-06-16 Inst Of Physical & Chemical Res Capillary electrophoretic device
JP2000346828A (en) * 1999-06-02 2000-12-15 Hitachi Ltd Electrophoresis device
JP2005535871A (en) * 2002-06-03 2005-11-24 独立行政法人産業技術総合研究所 Solid state detector and optical system for microchip analyzer
WO2010122884A1 (en) * 2009-04-21 2010-10-28 オリンパスメディカルシステムズ株式会社 Fluorescence image device and fluorescence image acquiring method
JP2011505171A (en) * 2007-10-11 2011-02-24 モナ カ テクノロジー Modular imaging device, module for said device and method implemented by said device
US20120268573A1 (en) * 2009-06-10 2012-10-25 W.O.M. World Of Medicine Ag Imaging system and method for the fluorescence-optical visualization of an object
WO2014195917A2 (en) * 2013-06-07 2014-12-11 Malvern Instruments Limited Array based sample characterization
US20140374622A1 (en) * 2011-12-22 2014-12-25 Radisens Diagnostics Ltd. System and Method for High Resolution, Instantaneous Wide Dynamic Range, Multi-Colour Luminescence Detection of Biological Samples in a Microfluidic System
US20150009669A1 (en) * 2011-12-05 2015-01-08 Fred & Fred Light element
US20150024968A1 (en) * 2013-05-31 2015-01-22 Pacific Biosciences Of California, Inc. Analytical devices having compact lens train arrays

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209251A (en) * 1994-01-14 1995-08-11 Hitachi Ltd Electrophoretic device
JPH1151900A (en) * 1997-08-07 1999-02-26 Hitachi Electron Eng Co Ltd Fluorescence detector
JP2000162182A (en) * 1998-11-30 2000-06-16 Inst Of Physical & Chemical Res Capillary electrophoretic device
JP2000346828A (en) * 1999-06-02 2000-12-15 Hitachi Ltd Electrophoresis device
JP2005535871A (en) * 2002-06-03 2005-11-24 独立行政法人産業技術総合研究所 Solid state detector and optical system for microchip analyzer
JP2011505171A (en) * 2007-10-11 2011-02-24 モナ カ テクノロジー Modular imaging device, module for said device and method implemented by said device
WO2010122884A1 (en) * 2009-04-21 2010-10-28 オリンパスメディカルシステムズ株式会社 Fluorescence image device and fluorescence image acquiring method
US20120268573A1 (en) * 2009-06-10 2012-10-25 W.O.M. World Of Medicine Ag Imaging system and method for the fluorescence-optical visualization of an object
US20150009669A1 (en) * 2011-12-05 2015-01-08 Fred & Fred Light element
US20140374622A1 (en) * 2011-12-22 2014-12-25 Radisens Diagnostics Ltd. System and Method for High Resolution, Instantaneous Wide Dynamic Range, Multi-Colour Luminescence Detection of Biological Samples in a Microfluidic System
US20150024968A1 (en) * 2013-05-31 2015-01-22 Pacific Biosciences Of California, Inc. Analytical devices having compact lens train arrays
WO2014195917A2 (en) * 2013-06-07 2014-12-11 Malvern Instruments Limited Array based sample characterization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840902A (en) * 2019-05-22 2021-12-24 株式会社日立高新技术 Analysis device and analysis method
JP6867533B1 (en) * 2020-05-20 2021-04-28 株式会社アルス Light source device
WO2021145019A1 (en) * 2020-05-20 2021-07-22 株式会社アルス Light source device
JP2021182978A (en) * 2020-05-20 2021-12-02 株式会社アルス Light source device
US11849922B2 (en) 2020-05-20 2023-12-26 Ars Co., Ltd. Light source device

Also Published As

Publication number Publication date
JP6975704B2 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP6456983B2 (en) Multicolor detector
US11543355B2 (en) Light-emitting detection device
US6690467B1 (en) Optical system and method for optically analyzing light from a sample
US8149399B2 (en) Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US6800860B2 (en) Optical architectures for microvolume laser-scanning cytometers
US20070188750A1 (en) Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
US20240142366A1 (en) Methods and systems for fast recompensation of flow cytometery data
JP6975704B2 (en) Multicolor detector
US7177023B2 (en) Fluorescent light detection
WO2020075293A1 (en) Dichroic mirror array and light detecting device
JP7329658B2 (en) Luminescence detector
JP7075974B2 (en) Luminous detector
GB2578260A (en) Light-emitting detection device
GB2583307A (en) Light-emitting detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150