JP2019073984A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2019073984A
JP2019073984A JP2017198694A JP2017198694A JP2019073984A JP 2019073984 A JP2019073984 A JP 2019073984A JP 2017198694 A JP2017198694 A JP 2017198694A JP 2017198694 A JP2017198694 A JP 2017198694A JP 2019073984 A JP2019073984 A JP 2019073984A
Authority
JP
Japan
Prior art keywords
urea
urea water
addition
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017198694A
Other languages
Japanese (ja)
Inventor
隆徳 中野
Takanori Nakano
隆徳 中野
正憲 坂井
Masanori Sakai
正憲 坂井
土屋 富久
Tomihisa Tsuchiya
富久 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017198694A priority Critical patent/JP2019073984A/en
Publication of JP2019073984A publication Critical patent/JP2019073984A/en
Pending legal-status Critical Current

Links

Abstract

To provide an exhaust emission control device which can effectively suppress the urea corrosion of a urea water addition valve.SOLUTION: An exhaust emission control device comprises: a urea water addition valve 15 for adding urea water into exhaust emission; a catalyst device 20 for purifying NOx in the exhaust emission by selective catalyst reduction with ammonia produced by the thermal decomposition of the urea water as a reductant; and an addition control part 23 for calculating a cooling addition amount as an addition amount of the urea water necessary for cooling the urea water addition valve 15, and controlling the addition amount of the urea water of the urea water addition valve 15 so as to reach an amount not smaller than the cooling addition amount. The exhaust emission control device also comprises a urea concentration sensor 19 for detecting a urea concentration of the urea water, and the addition control part 23 is constituted so that an amount which is larger than that when the urea concentration is low is calculated as the cooling addition amount when the urea concentration is high.SELECTED DRAWING: Figure 1

Description

本発明は、尿素水を添加する尿素水添加弁と、尿素水の熱分解により生成されたアンモニアを還元剤とした選択的触媒還元により排気中の窒素酸化物(NOx)を浄化する触媒装置と、を備える排気浄化装置に関する。   The present invention relates to a urea water addition valve for adding urea water, and a catalyst device for purifying nitrogen oxides (NOx) in exhaust gas by selective catalytic reduction using ammonia generated by thermal decomposition of urea water as a reducing agent. And an exhaust gas purification apparatus.

上記のような、いわゆる尿素SCR(Selective Catalytic Reduction)システムを採用する排気浄化装置として、特許文献1に記載の装置が知られている。同文献に記載の排気浄化装置では、エンジンの運転状態から同エンジンのNOxの排出量を求めるとともに、その排出量に対してNOxの浄化率を目標とする値(目標浄化率)とするために必要な量のアンモニアが触媒装置に供給されるように尿素水添加弁の尿素水添加量を決定している。   An apparatus described in Patent Document 1 is known as an exhaust gas purification apparatus adopting the so-called urea SCR (Selective Catalytic Reduction) system as described above. In the exhaust gas purification device described in the same document, the NOx emission amount of the engine is determined from the operating state of the engine, and the NOx purification rate is set to a target value (target purification rate) with respect to the emission amount. The amount of urea water to be added to the urea water addition valve is determined so that the necessary amount of ammonia is supplied to the catalyst device.

なお、同文献に記載の排気浄化装置では、上記尿素水添加量の決定を、尿素水添加弁が排気中に添加する尿素水の尿素濃度を考慮して行っている。尿素水添加量が同じでも、尿素濃度が高いほど、触媒装置に供給されるアンモニアの量は多くなる。そのため、尿素濃度が高い場合には、同尿素濃度が低い場合よりも、目標浄化率の実現に必要な尿素水添加量が少なくなる。   In the exhaust gas purification apparatus described in the same document, the determination of the addition amount of urea water is performed in consideration of the urea concentration of urea water to be added to the exhaust gas by the urea water addition valve. Even if the amount of urea water added is the same, the higher the concentration of urea, the greater the amount of ammonia supplied to the catalytic converter. Therefore, when the urea concentration is high, the amount of urea water addition necessary for achieving the target purification rate is smaller than when the urea concentration is low.

特開2014−005745号公報JP, 2014-005745, A

ところで、エンジンの運転中に高温の排気に曝されて尿素水添加弁の温度が上昇すると、尿素水中の尿素による尿素水添加弁の腐食が進行しやすくなる。こうした高温環境下での尿素による尿素水添加弁の腐食速度は、尿素水の尿素濃度が高い場合に特に高くなる。   By the way, when the temperature of the urea water addition valve is increased by being exposed to high temperature exhaust during operation of the engine, the corrosion of the urea water addition valve by the urea in the urea water tends to progress. The corrosion rate of the urea water addition valve by urea under such a high temperature environment is particularly high when the urea concentration of the urea water is high.

なお、尿素添加量が十分に多い状態にあれば、尿素水添加弁内での尿素水の入れ替わりが多くなって、尿素水による尿素水添加弁の冷却が進むため、尿素水添加弁の温度上昇が抑えられる。これに対して、上記文献の排気浄化装置のように、尿素濃度を考慮してNOx浄化に必要な尿素水添加量を決定する場合、尿素濃度が高くて腐食が進みやすい状況にあるときに尿素水添加量が少なくなり、尿素水添加弁の温度上昇を抑えにくくなるため、尿素腐食が特に進みやすくなる。   If the amount of urea added is sufficiently large, replacement of urea water in the urea water addition valve increases and cooling of the urea water addition valve by urea water proceeds, so the temperature rise of the urea water addition valve Is reduced. On the other hand, when the amount of urea water addition necessary for NOx purification is determined in consideration of the urea concentration as in the exhaust gas purification device of the above-mentioned document, the urea concentration is high and corrosion is likely to proceed. As the amount of water added decreases and it becomes difficult to suppress the temperature rise of the urea water addition valve, urea corrosion particularly easily progresses.

本発明は、こうした実情に鑑みてなされたものであり、その解決しようとする課題は、尿素水添加弁の尿素腐食を効果的に抑制できる排気浄化装置を提供することにある。   The present invention has been made in view of these circumstances, and an object of the present invention is to provide an exhaust purification system capable of effectively suppressing urea corrosion of a urea water addition valve.

上記課題を解決する排気浄化装置は、エンジンの排気通路に設置されて排気中に尿素水を添加する尿素水添加弁と、排気通路における尿素水添加弁よりも下流側の部分に設置されて尿素水の熱分解により生成されたアンモニアを還元剤とした選択的触媒還元により排気中の窒素酸化物を浄化する触媒装置と、尿素水添加弁の冷却に必要な尿素水の添加量である冷却用添加量を演算するとともに、冷却用添加量以上の量となるように尿素水添加弁の尿素水添加量を制御する添加制御部と、を備えている。   The exhaust gas purification apparatus to solve the above problems is a urea water addition valve installed in the exhaust passage of the engine and adding urea water into the exhaust, and a portion downstream of the urea water addition valve in the exhaust passage. A catalytic device for purifying nitrogen oxides in exhaust gas by selective catalytic reduction using ammonia generated by thermal decomposition of water as a reducing agent, and for cooling, which is the addition amount of urea water necessary for cooling the urea water addition valve And an addition control unit that calculates the addition amount and controls the addition amount of urea water of the urea water addition valve so as to be equal to or more than the addition amount for cooling.

こうした排気浄化装置の尿素水添加弁では、NOxの浄化に必要な尿素水添加量に拘らず、冷却用添加量以上の量の尿素水添加が行われる。そのため、冷却用添加量として適切な量を設定すれば、尿素水添加弁の温度を、腐食を抑制可能な温度以下に抑えることが可能となる。   In the urea water addition valve of such an exhaust gas purification device, regardless of the urea water addition amount necessary for purification of NOx, urea water addition of an amount equal to or more than the cooling addition amount is performed. Therefore, if an appropriate amount is set as the cooling addition amount, the temperature of the urea water addition valve can be suppressed to a temperature that can suppress corrosion or less.

なお、尿素水添加弁が排気中に添加する尿素水の尿素濃度が高いほど、低い温度で尿素水添加弁の尿素腐食は進行するようになる。これに対して上記排気浄化装置は、尿素水の尿素濃度を検出する尿素濃度検出部を備えている。そして、上記添加制御部は、尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように冷却用添加量を演算している。そのため、尿素濃度が高いときには、同尿素濃度が低いときよりも、尿素水添加弁の温度が低い温度に保たれるようになる。したがって、上記排気浄化装置によれば、尿素水添加弁の尿素腐食を効果的に抑制できる。   The higher the urea concentration of the urea water added to the exhaust gas by the urea water addition valve, the more the urea corrosion of the urea water addition valve progresses at a lower temperature. On the other hand, the above-mentioned exhaust purification system is provided with a urea concentration detection part which detects urea concentration of urea water. Then, the addition control unit calculates the cooling addition amount so that when the urea concentration is high, the amount becomes larger than when the urea concentration is low. Therefore, when the urea concentration is high, the temperature of the aqueous urea solution addition valve is maintained at a lower temperature than when the urea concentration is low. Therefore, according to the exhaust gas purification apparatus, it is possible to effectively suppress urea corrosion of the urea water addition valve.

排気浄化装置の一実施形態の構成を示す略図。The schematic diagram which shows the structure of one Embodiment of an exhaust gas purification device. 同排気浄化装置に設けられた添加制御部の制御構造を示すブロック図。The block diagram which shows the control structure of the addition control part provided in the same exhaust gas purification device. 上記添加制御部が尿素水添加弁の尿素水添加量の制御に際して演算する濃度補正係数と尿素濃度との関係を示すグラフ。The graph which shows the relation between the concentration amendment coefficient and the urea concentration which the above-mentioned addition control part computes when controlling the amount of urea water addition of a urea water addition valve.

以下、排気浄化装置の一実施形態を、図1〜図3を参照して詳細に説明する。
図1に示すように、本実施形態の排気浄化装置が適用される車載用のエンジン10の吸気通路11には、同吸気通路11を流れる吸気の流量を検出するエアフローメータ12が設けられている。また、吸気通路11におけるエアフローメータ12よりも下流側の部分には、吸気流量を調整するための弁であるスロットルバルブ13が設けられている。
Hereinafter, one embodiment of the exhaust gas purification apparatus will be described in detail with reference to FIGS. 1 to 3.
As shown in FIG. 1, an air flow meter 12 for detecting the flow rate of intake air flowing through the intake passage 11 is provided in the intake passage 11 of the on-vehicle engine 10 to which the exhaust gas purification device of the present embodiment is applied. . A throttle valve 13, which is a valve for adjusting the intake flow rate, is provided at a portion of the intake passage 11 downstream of the air flow meter 12.

本実施形態の排気装置は、エンジン10の排気通路14に設けられた尿素水添加弁15と、同排気通路14における尿素水添加弁15よりも下流側の部分に設けられた選択的触媒還元型の触媒装置20と、を備える。尿素水添加弁15は、尿素水ポンプ17によって尿素水タンク16から送られた尿素水を噴射することで、排気通路14を流れる排気中に尿素水を添加する。なお、尿素水タンク16には、その内部に蓄えられた尿素水の温度を検出する尿素水温度センサ18と、同尿素水の尿素濃度を検出する尿素濃度センサ19とが設けられている。触媒装置20は、選択的触媒還元により排気中の窒素酸化物(NOx)を浄化する。こうした触媒装置20によるNOxの選択的触媒還元は、尿素水添加弁15が添加した尿素水が熱分解して生成されたアンモニアを還元剤として行われる。なお、排気通路14における尿素水添加弁15よりも上流側の部分には、同部分を流れる排気の温度を検出する排気温度センサ21と、排気中のNOxの濃度を検出するNOx濃度センサ22と、が設けられている。   The exhaust system according to the present embodiment includes a urea water addition valve 15 provided in the exhaust passage 14 of the engine 10 and a selective catalytic reduction type provided downstream of the urea water addition valve 15 in the exhaust passage 14. And the catalyst device 20 of The urea aqueous solution addition valve 15 injects the urea aqueous solution sent from the urea aqueous solution tank 16 by the urea aqueous solution pump 17 to add urea aqueous solution into the exhaust gas flowing through the exhaust passage 14. The urea aqueous solution tank 16 is provided with a urea aqueous solution temperature sensor 18 for detecting the temperature of the urea aqueous solution stored therein and a urea concentration sensor 19 for detecting the urea concentration of the urea aqueous solution. The catalytic converter 20 purifies nitrogen oxides (NOx) in the exhaust gas by selective catalytic reduction. The selective catalytic reduction of NOx by the catalytic converter 20 is performed using ammonia generated by thermal decomposition of urea water added by the urea water addition valve 15 as a reducing agent. An exhaust temperature sensor 21 for detecting the temperature of exhaust flowing through the exhaust passage 14 and an NOx concentration sensor 22 for detecting the concentration of NOx in the exhaust are provided in a portion on the upstream side of the urea water addition valve 15 in the exhaust passage 14 , Is provided.

さらに、本実施形態の排気浄化装置は、尿素水添加弁15による排気中への尿素水の添加制御を行う添加制御部23を備えている。添加制御部23には、上記エアフローメータ12、尿素水温度センサ18、尿素濃度センサ19、排気温度センサ21、NOx濃度センサ22の検出結果が入力されている。さらに、添加制御部23には、エンジン10の出力軸であるクランクシャフト24の回転位相を検出するクランク角センサ25、及び同エンジン10が搭載された車両の走行速度(車速)を検出する車速センサ26の検出結果が入力されている。実際には、添加制御部23は、尿素水の添加制御を専門に行う独立した制御ユニットではなく、エンジン制御用の電子制御ユニットがエンジン制御の一環として添加制御部23としての処理を行っている。   Furthermore, the exhaust purification system of the present embodiment includes the addition control unit 23 that controls addition of urea water to the exhaust gas by the urea water addition valve 15. The addition control unit 23 receives detection results of the air flow meter 12, the urea water temperature sensor 18, the urea concentration sensor 19, the exhaust temperature sensor 21, and the NOx concentration sensor 22. Further, the addition control unit 23 includes a crank angle sensor 25 that detects the rotational phase of the crankshaft 24, which is an output shaft of the engine 10, and a vehicle speed sensor that detects the traveling speed (vehicle speed) of the vehicle on which the engine 10 is mounted. 26 detection results are input. Actually, the addition control unit 23 is not an independent control unit specialized in addition control of urea water, but an electronic control unit for engine control performs processing as the addition control unit 23 as a part of engine control. .

なお、添加制御部23は、クランク角センサ25の検出結果からクランクシャフト24の回転速度、すなわちエンジン回転数を求めている。また、添加制御部23は、エアフローメータ12が検出した吸気流量やエンジン回転数に基づき、排気通路14を流れる排気の流量(排気流量)を求めている。   The addition control unit 23 obtains the rotational speed of the crankshaft 24, that is, the engine speed from the detection result of the crank angle sensor 25. Further, the addition control unit 23 obtains the flow rate (exhaust flow rate) of the exhaust flowing through the exhaust passage 14 based on the intake flow rate and the engine rotational speed detected by the air flow meter 12.

図2に示すように、添加制御部23は、浄化用添加量演算処理P100、先端温度演算処理P110、冷却用添加量演算処理P120、濃度補正処理P130、添加量指令値演算処理P140、及び添加弁駆動処理P150を通じて、尿素水添加弁15の尿素水の添加制御を行う。なお、排気中への尿素水の添加は、エンジン10の運転状態に応じて設定された周期毎に尿素水添加弁15が尿素水を噴射することで行われている。以下の説明における尿素水の添加量は、単位時間に尿素水添加弁15が噴射する尿素水の総量を、すなわち1回当たりの尿素水の噴射量に単位時間の噴射回数を乗算した積を表している。   As shown in FIG. 2, the addition control unit 23 includes a purification addition amount calculation process P100, a tip temperature calculation process P110, a cooling addition amount calculation process P120, a concentration correction process P130, an addition amount command value calculation process P140, and addition. The addition control of the urea water of the urea water addition valve 15 is performed through the valve drive process P150. The addition of urea water to the exhaust gas is performed by the urea water addition valve 15 injecting urea water at each cycle set in accordance with the operating state of the engine 10. The addition amount of urea water in the following description represents the product of the total amount of urea water injected by the urea water addition valve 15 per unit time, that is, the injection amount of urea water per injection multiplied by the number of injections per unit time. ing.

浄化用添加量演算処理P100では、触媒装置20でのNOxの浄化に必要な尿素水の添加量である浄化用添加量の演算が行われる。浄化用添加量の演算に際してはまず、排気流量とNOx濃度とに基づき、触媒装置20に流入するNOxの流量が求められる。そして、その流量分のNOxの浄化に必要な量のアンモニアを供給可能な尿素水の添加量が、浄化用添加量の値として演算される。   In the purification addition amount calculation process P100, calculation of the purification addition amount, which is the addition amount of urea water necessary for purification of NOx in the catalyst device 20, is performed. In calculating the addition amount for purification, first, the flow rate of NOx flowing into the catalyst device 20 is obtained based on the exhaust flow rate and the NOx concentration. Then, the addition amount of urea water capable of supplying an amount of ammonia necessary for the purification of NOx corresponding to the flow rate is calculated as the value of the purification addition amount.

先端温度演算処理P110では、排気に曝される尿素水添加弁15の先端部分の温度(先端温度)の演算が行われる。先端温度の演算に際してはまず、排気通路14における排気温度センサ21の設置位置から尿素水添加弁15の設置位置までの区間での、走行風の冷却による排気温度の低下量が車速に基づき求められる。続いて、その求めた低下量を排気温度センサ21の排気温度の検出値から引いた差が、排気通路14の尿素水添加弁15の設置位置における排気の温度として求められる。さらに、排気流量と尿素水添加弁15の設置位置の排気温度とに基づき、排気からの尿素水添加弁15の受熱量が、尿素水温度に基づき、尿素水添加弁15から尿素水への放熱量がそれぞれ求められる。そして、こうした受熱量、放熱量から尿素水添加弁15の先端温度が演算されている。   In the tip temperature calculation process P110, calculation of the temperature (tip temperature) of the tip portion of the urea water addition valve 15 exposed to the exhaust is performed. When calculating the tip temperature, first, the amount of decrease in exhaust temperature due to cooling of the traveling wind in the section from the installation position of the exhaust temperature sensor 21 in the exhaust passage 14 to the installation position of the urea water addition valve 15 is determined based on the vehicle speed. . Subsequently, a difference obtained by subtracting the calculated amount of decrease from the detected value of the exhaust gas temperature of the exhaust gas temperature sensor 21 is obtained as the temperature of the exhaust gas at the installation position of the urea water addition valve 15 in the exhaust gas passage 14. Further, based on the exhaust flow rate and the exhaust temperature at the installation position of the urea water addition valve 15, the heat reception amount of the urea water addition valve 15 from the exhaust is discharged from the urea water addition valve 15 to the urea water based on the urea water temperature. The amount of heat is determined respectively. Then, the tip temperature of the urea water addition valve 15 is calculated from the heat reception amount and the heat release amount.

冷却用添加量演算処理P120では、尿素水添加弁15の冷却に必要な尿素水の添加量である冷却用添加量の演算が行われる。このときの冷却用添加量は、先端温度演算処理P110で演算した尿素水添加弁15の先端温度に基づき、同先端温度が高いほど多い量となるように演算される。なお、冷却用添加量演算処理P120では、尿素水添加弁15の先端温度を既定の基準温度以下とするために必要な尿素水の添加量が、冷却用添加量の値として演算される。ここでの基準温度は、尿素水添加弁15が添加する尿素水の尿素濃度が既定の基準濃度である場合に、尿素水の尿素による腐食の進行を抑制可能な尿素水添加弁15の先端温度の上限値となっている。すなわち、冷却用添加量演算処理P120では、尿素水の尿素濃度が基準濃度であることを前提として、冷却用添加量を演算している。   In the cooling addition amount calculation process P120, calculation of a cooling addition amount which is an addition amount of urea water necessary for cooling the urea water addition valve 15 is performed. The addition amount for cooling at this time is calculated based on the tip temperature of the urea water addition valve 15 calculated in the tip temperature calculation process P110 so that the amount increases as the tip temperature increases. In addition, in the cooling addition amount calculation process P120, the addition amount of urea water necessary to make the tip temperature of the urea water addition valve 15 equal to or lower than the predetermined reference temperature is calculated as the value of the cooling addition amount. The reference temperature here is the tip temperature of the urea water addition valve 15 capable of suppressing the progress of the corrosion of urea water due to urea when the urea concentration of the urea water added by the urea water addition valve 15 is a predetermined reference concentration. Is the upper limit value of. That is, in the cooling addition amount calculation process P120, the cooling addition amount is calculated on the premise that the urea concentration of the urea water is the reference concentration.

濃度補正処理P130では、冷却用添加量演算処理P120が演算した冷却用添加量に対して、尿素濃度センサ19が検出した尿素水の尿素濃度に基づく補正(濃度補正)が行われる。濃度補正処理P130ではまず、尿素濃度に基づき濃度補正係数の値が演算される。そして、冷却用添加量演算処理P120が演算した冷却用添加量の値にその濃度補正係数の値を乗算した積を、濃度補正後の冷却用添加量の値とすることで濃度補正が行われる。なお、濃度補正係数の演算は、添加制御部23に予め記憶された演算マップM1を参照して行われる。   In the concentration correction process P130, correction (concentration correction) based on the urea concentration of the urea water detected by the urea concentration sensor 19 is performed on the cooling addition amount calculated by the cooling addition amount calculation process P120. In the concentration correction process P130, first, the value of the concentration correction coefficient is calculated based on the urea concentration. Then, the density correction is performed by using the product of the value of the cooling addition amount calculated by the cooling addition amount calculation process P120 multiplied by the value of the concentration correction coefficient as the value of the cooling addition amount after the concentration correction. . The calculation of the concentration correction coefficient is performed with reference to the calculation map M1 stored in advance in the addition control unit 23.

図3に示すように、演算マップM1は、尿素濃度が基準濃度であるときの濃度補正係数の値が「1」となるように設定されている。そして、演算マップM1は、尿素濃度を基準濃度から高濃度側に変化させていったときに濃度補正係数の値が「1」から次第に大きくなっていき、尿素濃度を基準濃度から低濃度側に変化させていったときに濃度補正係数の値は「1」から次第に小さくなっていくように設定されている。   As shown in FIG. 3, the calculation map M1 is set such that the value of the concentration correction coefficient when the urea concentration is the reference concentration is "1". Then, in the calculation map M 1, when the urea concentration is changed from the reference concentration to the high concentration side, the value of the concentration correction coefficient gradually increases from “1”, and the urea concentration from the reference concentration to the low concentration side The value of the density correction coefficient is set to gradually decrease from "1" when changing.

これに対して、添加量指令値演算処理P140では、浄化用添加量演算処理P100で演算した浄化用添加量の値と、濃度補正処理P130による濃度補正後の冷却用添加量の値との2つの値のうち、より大きい方の値が添加量指令値の値として演算される。そして、添加弁駆動処理P150では、添加量指令値の値が示す量分の尿素水の添加が単位時間に行われるように尿素水添加弁15の駆動制御が行われる。   On the other hand, in the addition amount command value calculation processing P140, 2 of the value of the addition amount for purification calculated in the addition amount calculation processing for purification P100 and the value of the addition amount for cooling after concentration correction in the concentration correction processing P130. Of the two values, the larger one is calculated as the addition amount command value. And in addition valve drive processing P150, drive control of urea water addition valve 15 is performed so that addition of the amount of urea water for the quantity which the value of addition amount command value shows is performed in unit time.

なお、添加量指令値演算処理P140では、濃度補正後の冷却用添加量の値が浄化用添加量の値よりも小さい場合、浄化用添加量の値が添加量指令値の値として演算される。一方、濃度補正後の冷却用添加量の値が浄化用添加量の値よりも大きい場合、濃度補正後の冷却用添加量の値が添加量指令値の値として演算される。このように、いずれの場合にも、添加量指令値には、濃度補正後の冷却用添加量の値以上の値が設定される。   In addition, in the addition amount command value calculation process P140, when the value of the cooling addition amount after concentration correction is smaller than the value of the purification addition amount, the value of the purification addition amount is calculated as the value of the addition amount command value. . On the other hand, when the value of the cooling addition amount after concentration correction is larger than the value of the purification addition amount, the value of the cooling addition amount after concentration correction is calculated as the value of the addition amount command value. As described above, in any case, a value greater than or equal to the value of the cooling addition amount after concentration correction is set as the addition amount command value.

(本実施形態の作用効果)
以上のように構成された本実施形態の排気浄化装置の作用、効果を説明する。
上記のような排気浄化装置に設けられた尿素水添加弁15の内部には、常に一定量の尿素水が存在している。こうした尿素水添加弁15の内部の尿素水の温度が上昇すると、尿素水の尿素による尿素水添加弁15の腐食が進行するようになる。一方、尿素水添加弁15が尿素水を噴射すると、内部に存在する尿素水のうち、噴射した量分の尿素水が尿素水タンク16から送られた低温の尿素水に入れ替わる。そのため、尿素水添加量が多いほど、尿素水添加弁15の先端温度の上昇が抑えられる。
(Operation and effect of the present embodiment)
The operation and effects of the exhaust gas purification apparatus of the present embodiment configured as described above will be described.
A fixed amount of urea water is always present inside the urea water addition valve 15 provided in the exhaust gas purification device as described above. When the temperature of the aqueous urea solution inside the aqueous urea solution addition valve 15 rises, the corrosion of the aqueous urea solution addition valve 15 by the urea of the aqueous urea solution proceeds. On the other hand, when the urea aqueous solution addition valve 15 injects urea aqueous solution, an amount of urea aqueous solution in the injected aqueous urea solution is replaced with low temperature urea aqueous solution sent from the urea aqueous solution tank 16. Therefore, the increase in the tip temperature of the urea water addition valve 15 can be suppressed as the urea water addition amount increases.

これに対して、本実施形態の排気浄化装置では、尿素水添加弁15の先端温度を腐食の進行を抑制可能な温度域に維持するために必要な尿素水の添加量を冷却用添加量として演算している。そして、尿素水添加弁15の尿素水の添加量を、冷却用添加量以上の量とすることで、腐食の進行を抑えている。   On the other hand, in the exhaust purification system of the present embodiment, the amount of addition of urea water necessary to maintain the tip temperature of the urea water addition valve 15 in a temperature range that can suppress the progress of corrosion is the addition amount for cooling. It is computing. Then, by setting the addition amount of the urea water of the urea water addition valve 15 to an amount of the cooling addition amount or more, the progress of the corrosion is suppressed.

なお、尿素水の尿素濃度が高いほどその腐食性も高くなるため、尿素濃度が高い場合には、腐食の進行を抑制可能な尿素水添加弁15の先端温度の上限が低くなる。その点、本実施形態の排気浄化装置では、濃度補正処理P130による濃度補正を通じて、尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように冷却用添加量を演算している。そのため、尿素濃度が高いときには、同尿素濃度が低いときよりも、尿素水添加弁15の先端温度が低い温度に保たれるようになる。したがって、本実施形態の排気浄化装置によれば、尿素水添加弁15の尿素腐食を効果的に抑制できる。   The higher the concentration of urea in the aqueous urea solution, the higher its corrosiveness. Therefore, when the concentration of urea is high, the upper limit of the tip temperature of the aqueous urea solution addition valve 15 that can suppress the progress of corrosion decreases. In that respect, in the exhaust purification system of the present embodiment, through the concentration correction by the concentration correction processing P130, when the urea concentration is high, the addition amount for cooling is calculated so as to be a larger amount than when the urea concentration is low. . Therefore, when the urea concentration is high, the tip temperature of the urea water addition valve 15 is maintained at a lower temperature than when the urea concentration is low. Therefore, according to the exhaust purification system of the present embodiment, urea corrosion of the urea water addition valve 15 can be effectively suppressed.

なお、上記実施形態は、以下のように変更して実施することもできる。
・上記実施形態では、濃度補正処理P130において、尿素濃度の変化に対して線形的に変化する値として濃度補正係数を演算していた。こうした尿素濃度と濃度補正係数の値との関係は、適用する排気浄化装置における尿素水添加弁15の先端温度、尿素腐食の速度、添加量の関係に応じて適宜に設定するものであり、尿素濃度の変化に対して非線形に変化する値となるように濃度補正係数を設定することが望ましい場合もある。また、尿素濃度の変化に対して不連続に変化する値、すなわち段階的に変化する値として、濃度補正係数を設定してもよい。
The above embodiment can be modified as follows.
In the above embodiment, in the concentration correction process P130, the concentration correction coefficient is calculated as a value that changes linearly with respect to a change in urea concentration. The relationship between the urea concentration and the value of the concentration correction coefficient is appropriately set according to the relationship between the tip temperature of the urea water addition valve 15 in the exhaust gas purification apparatus to be applied, the rate of urea corrosion, and the addition amount. In some cases it may be desirable to set the density correction factor to be a value that changes non-linearly with changes in density. Alternatively, the concentration correction coefficient may be set as a value that changes discontinuously with respect to a change in urea concentration, that is, a value that changes stepwise.

・上記実施形態では、冷却用添加量演算処理P120、濃度補正処理P130の2つの処理を通じて、尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように冷却用添加量を演算していた。すなわち、尿素濃度が基準濃度である場合の冷却用添加量をまず演算し、その演算した値を尿素濃度に応じて演算した濃度補正係数にて補正することで、尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように冷却用添加量を演算していた。こうした冷却用添加量の演算を、単一の処理で行うようにしてもよい。すなわち、濃度補正処理P130を割愛し、冷却用添加量演算処理P120において先端温度と尿素濃度とに基づき冷却用添加量を演算する。こうした場合にも、冷却用添加量演算処理P120での冷却用添加量の演算が、尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように行われるようになっていれば、尿素水添加弁15の尿素腐食を効果的に抑制することができる。   In the above embodiment, when the urea concentration is high, the cooling addition amount is calculated so as to be a larger amount than when the urea concentration is low through the two processes of the cooling addition amount calculation process P120 and the concentration correction process P130. Was. That is, when the urea concentration is high, the addition amount for cooling when the urea concentration is the reference concentration is first calculated, and the calculated value is corrected by the concentration correction coefficient calculated according to the urea concentration. The amount of cooling addition was calculated so that the amount would be larger than when the concentration was low. Such calculation of the cooling addition amount may be performed in a single process. That is, the concentration correction process P130 is omitted, and the cooling addition amount is calculated based on the tip temperature and the urea concentration in the cooling addition amount calculation process P120. Also in this case, if the calculation of the addition amount for cooling in the addition amount calculation process for cooling P120 is performed so as to be a larger amount when the urea concentration is high than when the urea concentration is low. The urea corrosion of the urea water addition valve 15 can be effectively suppressed.

10…エンジン、11…吸気通路、12…エアフローメータ、13…スロットルバルブ、14…排気通路、15…尿素水添加弁、16…尿素水タンク、17…尿素水ポンプ、18…尿素水温度センサ、19…尿素濃度センサ(尿素濃度検出部)、20…触媒装置、21…排気温度センサ、22…NOx濃度センサ、23…添加制御部、24…クランクシャフト、25…クランク角センサ、26…車速センサ。   DESCRIPTION OF SYMBOLS 10 ... Engine 11, 11 ... intake passage, 12 ... Air flow meter, 13 ... Throttle valve, 14 ... Exhaust passage, 15 ... Urea water addition valve, 16 ... Urea water tank, 17 ... Urea water pump, 18 ... Urea water temperature sensor, 19: Urea concentration sensor (urea concentration detection unit), 20: catalytic device, 21: exhaust temperature sensor, 22: NOx concentration sensor, 23: addition control unit, 24: crankshaft, 25: crank angle sensor, 26: vehicle speed sensor .

Claims (1)

エンジンの排気通路に設置されて排気中に尿素水を添加する尿素水添加弁と、前記排気通路における前記尿素水添加弁よりも下流側の部分に設置されて前記尿素水の熱分解により生成されたアンモニアを還元剤とした選択的触媒還元により排気中の窒素酸化物を浄化する触媒装置と、を備える排気浄化装置において、
前記尿素水添加弁の冷却に必要な前記尿素水の添加量である冷却用添加量を演算するとともに、前記冷却用添加量以上の量となるように前記尿素水添加弁の尿素水添加量を制御する添加制御部と、
前記尿素水の尿素濃度を検出する尿素濃度検出部と、
を備えており、且つ前記添加制御部は、前記尿素濃度が高いときには、同尿素濃度が低いときよりも多い量となるように前記冷却用添加量を演算する
排気浄化装置。
Urea water addition valve installed in the exhaust passage of the engine and adding urea water into the exhaust, and installed in a portion on the downstream side of the urea water addition valve in the exhaust passage and generated by thermal decomposition of the urea water A catalyst device for purifying nitrogen oxides in exhaust gas by selective catalytic reduction using ammonia as a reducing agent;
While calculating the addition amount for cooling which is the addition amount of the urea water necessary for cooling the urea water addition valve, the urea water addition amount of the urea water addition valve is set to be equal to or more than the cooling addition amount. An addition control unit that controls
A urea concentration detection unit that detects the urea concentration of the urea water;
And the addition control unit calculates the amount of cooling addition so as to be larger when the urea concentration is high than when the urea concentration is low.
JP2017198694A 2017-10-12 2017-10-12 Exhaust emission control device Pending JP2019073984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017198694A JP2019073984A (en) 2017-10-12 2017-10-12 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198694A JP2019073984A (en) 2017-10-12 2017-10-12 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2019073984A true JP2019073984A (en) 2019-05-16

Family

ID=66545107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198694A Pending JP2019073984A (en) 2017-10-12 2017-10-12 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2019073984A (en)

Similar Documents

Publication Publication Date Title
JP5653618B2 (en) Control of selective catalytic reduction
JP5949954B2 (en) Exhaust gas purification device for internal combustion engine
US20080306673A1 (en) Exhaust emission control device for internal combustion engine
US10138786B2 (en) Exhaust gas purification apparatus of internal combustion engine
JP2009150290A (en) Exhaust gas purification apparatus for engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP4305643B2 (en) Exhaust gas purification device for internal combustion engine
JP2008303821A (en) Exhaust emission control device for internal combustion engine
JP2008196340A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JP5398372B2 (en) Engine exhaust purification system
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
JP2007113403A (en) Outside air temperature detecting device and exhaust emission control device
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
WO2014097391A1 (en) System for purifying exhaust of internal combustion engine
US10077699B2 (en) Exhaust purifying system
JP5904274B2 (en) Exhaust gas purification device for internal combustion engine
KR101664702B1 (en) Control method for UREA injection of SCR system
JP5880593B2 (en) Exhaust gas purification device for internal combustion engine
JP2019073984A (en) Exhaust emission control device
JP2010084670A (en) Air-fuel ratio control device of internal combustion engine
JP2016037903A (en) Internal combustion engine exhaust purification device
JP2011132919A (en) Exhaust emission control device
WO2011122316A1 (en) Exhaust purification control system for internal combustion engine
WO2011125421A1 (en) Exhaust purification control system for internal combustion engine
JP2019070351A (en) Abnormality diagnostic device for exhaust emission control device for internal combustion engine