JP2019073756A - Film deposition apparatus and film deposition method - Google Patents
Film deposition apparatus and film deposition method Download PDFInfo
- Publication number
- JP2019073756A JP2019073756A JP2017199455A JP2017199455A JP2019073756A JP 2019073756 A JP2019073756 A JP 2019073756A JP 2017199455 A JP2017199455 A JP 2017199455A JP 2017199455 A JP2017199455 A JP 2017199455A JP 2019073756 A JP2019073756 A JP 2019073756A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- substrate
- target
- film
- magnetic circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000151 deposition Methods 0.000 title abstract description 11
- 230000008021 deposition Effects 0.000 title abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 183
- 230000008859 change Effects 0.000 claims abstract description 37
- 239000000696 magnetic material Substances 0.000 claims abstract description 31
- 230000004907 flux Effects 0.000 claims description 29
- 238000006073 displacement reaction Methods 0.000 claims description 24
- 238000004544 sputter deposition Methods 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims 1
- 230000005415 magnetization Effects 0.000 description 54
- 238000012360 testing method Methods 0.000 description 35
- 230000015572 biosynthetic process Effects 0.000 description 22
- 230000032258 transport Effects 0.000 description 18
- 238000001816 cooling Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
本発明は、磁性膜を形成する成膜装置、および、成膜方法に関する。 The present invention relates to a film forming apparatus for forming a magnetic film, and a film forming method.
磁性材料を含む磁性膜を形成する成膜装置として、磁性材料を含むターゲットと、チャンバ内におけるターゲットと対向する位置にて基板を支持する支持部と、ターゲットに対して支持部とは反対側に位置するとともに磁気回路を含む電極部とを備える成膜装置が知られている。成膜装置では、チャンバ内にスパッタガスが供給されている状態で電極部に電圧が印加されることによって、ターゲットがスパッタされる。これにより、基板のうち、ターゲットと対向する面に磁性膜が形成される(例えば、特許文献1参照)。 As a film forming apparatus for forming a magnetic film containing a magnetic material, a target containing a magnetic material, a support portion for supporting a substrate at a position facing the target in the chamber, and a side opposite to the support portion with respect to the target There is known a film forming apparatus including an electrode unit that is positioned and includes a magnetic circuit. In the film forming apparatus, the target is sputtered by applying a voltage to the electrode portion in a state where the sputtering gas is supplied into the chamber. Thus, a magnetic film is formed on the surface of the substrate facing the target (see, for example, Patent Document 1).
ところで、磁性膜には、磁性膜における特性の1つである一軸磁気異方性を有する磁性膜、すなわち磁性膜が広がる方向に平行な所定の方向として、磁化されやすい方向である磁化容易軸と、磁化されにくい方向である磁化困難軸とを有する軟磁性膜が知られている。軟磁性膜は、例えばインダクタなどの素子を形成するために用いられている。軟磁性膜では、軟磁性膜に占める素子を形成することが可能な領域の割合を高める上で、軟磁性膜が形成される基板の面内において、磁性膜における一軸磁気異方性のばらつきを抑えることが求められている。
本発明は、基板の面内において磁性膜における一軸磁気異方性のばらつきを抑えることを可能とした成膜装置、および、成膜方法を提供することを目的とする。
By the way, in the magnetic film, a magnetic film having uniaxial magnetic anisotropy which is one of the characteristics of the magnetic film, that is, as a predetermined direction parallel to the direction in which the magnetic film spreads, an easy magnetization axis which is a direction easy to be magnetized There is known a soft magnetic film having a hard axis of magnetization, which is a direction in which magnetization is hard to occur. The soft magnetic film is used, for example, to form an element such as an inductor. In the soft magnetic film, in order to increase the proportion of the region capable of forming an element in the soft magnetic film, variation in uniaxial magnetic anisotropy in the magnetic film is generated in the plane of the substrate on which the soft magnetic film is formed. It is required to reduce it.
An object of the present invention is to provide a film forming apparatus and a film forming method capable of suppressing variation in uniaxial magnetic anisotropy in a magnetic film in the plane of a substrate.
上記課題を解決するための成膜装置は、一軸磁気異方性を発現することが可能な磁性材料を含むターゲットと、前記ターゲットと対向する領域に所定のピッチで並ぶ複数の磁石を含み、前記ターゲットと前記複数の磁石との間に位置する基板に平行な水平磁場を前記基板と前記ターゲットとの間に形成する磁気回路と、前記基板に対する前記磁気回路の位置を、変位方向に沿って、第1位置と前記第1位置から前記ピッチ以下だけ離れた第2位置との間で変える位置変更部と、を備える。前記各磁石は、前記変位方向に沿って前記ピッチで並ぶ。 A film deposition apparatus for solving the above problems includes a target including a magnetic material capable of expressing uniaxial magnetic anisotropy, and a plurality of magnets aligned at a predetermined pitch in a region facing the target, A magnetic circuit for forming a horizontal magnetic field between the substrate and the target parallel to the substrate located between the target and the plurality of magnets, and a position of the magnetic circuit with respect to the substrate along a displacement direction, And a position change unit configured to change between a first position and a second position separated from the first position by the pitch or less. The magnets are arranged at the pitch along the displacement direction.
上記課題を解決するための成膜方法は、一軸磁気異方性を発現することが可能な磁性材料を含むターゲットをスパッタすることと、前記ターゲットと対向する領域に所定のピッチで並ぶ複数の磁石が基板と前記ターゲットとの間に形成する前記基板と平行な水平磁場の位置を、前記ターゲットがスパッタされている間に、変位方向に沿って、第1位置と前記第1位置から前記ピッチ以下だけ離れた第2位置との間で変えることと、を含む。前記水平磁場の位置を変えることでは、前記複数の磁石が前記変位方向に沿って前記ピッチで並んでいる。 The film forming method for solving the above problems comprises: sputtering a target containing a magnetic material capable of expressing uniaxial magnetic anisotropy; and arranging a plurality of magnets aligned in a region facing the target at a predetermined pitch The position of the horizontal magnetic field parallel to the substrate formed between the substrate and the target is less than the pitch from the first position and the first position along the displacement direction while the target is being sputtered And V. changing between second positions that are only apart. By changing the position of the horizontal magnetic field, the plurality of magnets are arranged at the pitch along the displacement direction.
基板に水平磁場を印加する磁気回路が、基板のほぼ全体に水平磁場を印加することが可能であっても、基板と磁気回路とが対向する方向において、基板のなかで、磁気回路が有する磁石と重なる部位には、水平磁場はほとんど印加されず、かつ、基板の広がる平面に対してほぼ垂直な磁場が印加される。そして、基板のなかで、磁気回路が有する磁石と重なる部分では、水平磁場がほとんど印加されないために、一軸磁気異方性の低い磁性膜が形成され、これにより、基板のなかで、水平磁場が印加された部位に形成された磁性膜との間で、一軸磁気異方性にばらつきが生じる。この点で、上記構成によれば、基板と磁気回路とが対向する方向において、基板のなかで磁石と重なる部位が固定されることが抑えられる。言い換えれば、磁気回路が形成する磁場の状態が、磁気回路の変位方向において固定されることが抑えられる。それゆえに、基板のなかで、垂直磁場が印加される部位が固定されることが抑えられ、結果として、基板の面内において磁性膜の一軸磁気異方性にばらつきが生じることが抑えられる。 Even if a magnetic circuit that applies a horizontal magnetic field to the substrate can apply a horizontal magnetic field to almost the entire substrate, the magnet that the magnetic circuit has in the substrate in the direction in which the substrate and the magnetic circuit face each other. The horizontal magnetic field is hardly applied and the magnetic field substantially perpendicular to the plane in which the substrate spreads is applied to the overlapping portion. Then, in the portion of the substrate overlapping with the magnet of the magnetic circuit, the horizontal magnetic field is hardly applied, so that a magnetic film with low uniaxial magnetic anisotropy is formed, whereby the horizontal magnetic field is generated in the substrate. A variation occurs in uniaxial magnetic anisotropy with the magnetic film formed at the applied portion. From this point of view, according to the above configuration, it is possible to suppress fixing of the portion overlapping the magnet in the substrate in the direction in which the substrate and the magnetic circuit face each other. In other words, the state of the magnetic field formed by the magnetic circuit is suppressed from being fixed in the displacement direction of the magnetic circuit. Therefore, fixing of the portion to which the perpendicular magnetic field is applied in the substrate is suppressed, and as a result, the occurrence of variation in uniaxial magnetic anisotropy of the magnetic film in the plane of the substrate is suppressed.
上記成膜装置において、前記変位方向において、前記第1位置と前記第2位置との間の距離は、前記磁石の幅以下であることが好ましい。 In the film forming apparatus, in the displacement direction, the distance between the first position and the second position is preferably equal to or less than the width of the magnet.
上記構成によれば、変位方向に沿って磁気回路を動かす距離が磁石の幅以下で済むため、基板に対して磁気回路を動かすために必要な機構の小型化を実現することができる。 According to the above configuration, the distance for moving the magnetic circuit along the displacement direction may be equal to or less than the width of the magnet, so the miniaturization of the mechanism necessary for moving the magnetic circuit with respect to the substrate can be realized.
上記成膜装置において、前記磁気回路は、前記磁気回路が前記第1位置に位置するときと、前記磁気回路が前記第2位置に位置するときとの間において、前記変位方向において前記基板の全体に重なる前記水平磁場が形成されるように構成されていることが好ましい。 In the film forming apparatus, the magnetic circuit is the entire substrate in the displacement direction between when the magnetic circuit is located at the first position and when the magnetic circuit is located at the second position. Preferably, the horizontal magnetic field is formed so as to overlap.
上記構成によれば、基板に対する磁気回路の変位量が、磁石の幅以下という小さい範囲であっても、第1位置であれ、第2位置であれ、基板の全体に重なる水平磁場が形成されるため、結果として、基板の面内での磁性膜における一軸磁気異方性のばらつきが変位方向の全体において抑えられる。 According to the above configuration, a horizontal magnetic field overlapping the entire substrate is formed regardless of whether the displacement of the magnetic circuit with respect to the substrate is within a small range equal to or less than the width of the magnet or at the first position or the second position. Therefore, as a result, the variation in uniaxial magnetic anisotropy of the magnetic film in the plane of the substrate is suppressed in the entire displacement direction.
上記成膜装置において、前記変位方向において、前記複数の磁石が位置する領域の長さは、前記基板が位置する領域の長さ以上であることが好ましい。 In the film forming apparatus, in the displacement direction, the length of the region where the plurality of magnets are located is preferably equal to or greater than the length of the region where the substrate is located.
上記構成によれば、変位方向において、基板の全体に重なる水平磁場がより確実に形成されやすくなり、結果として、基板の面内において磁性膜における一軸磁気異方性のばらつきがより抑えられる。 According to the above configuration, a horizontal magnetic field overlapping the entire substrate can be more reliably formed in the displacement direction, and as a result, the variation in uniaxial magnetic anisotropy in the magnetic film can be further suppressed in the plane of the substrate.
上記成膜装置において、前記位置変更部は、毎分300mm以上の速度で前記基板に対する前記磁気回路の位置を前記変位方向に沿って変えることが好ましい。 In the film forming apparatus, the position changing unit preferably changes the position of the magnetic circuit with respect to the substrate along the displacement direction at a speed of 300 mm or more per minute.
上記構成によれば、基板の各部位に印加される磁場の状態が固定されることがより確実に抑えられるため、基板の面内において磁性膜における一軸磁気異方性のばらつきがより抑えられる。 According to the above configuration, the fixed state of the magnetic field applied to each portion of the substrate can be more reliably suppressed, so that the variation in uniaxial magnetic anisotropy in the magnetic film can be further suppressed in the plane of the substrate.
上記成膜装置において、前記磁性材料は、鉄、コバルト、ニッケル、タンタル、モリブデン、銅、および、ジルコニウムのうち少なくとも1つを含む軟磁性材料であり、前記磁気回路は、前記水平磁場の磁束密度が0.4mT以上であるように構成されてもよい。 In the film forming apparatus, the magnetic material is a soft magnetic material containing at least one of iron, cobalt, nickel, tantalum, molybdenum, copper, and zirconium, and the magnetic circuit has a magnetic flux density of the horizontal magnetic field. May be configured to be 0.4 mT or more.
上記構成によれば、磁性材料が軟磁性材料であり、かつ、基板に印加される水平磁場における磁束密度が0.4mT以上であるため、軟磁性膜において一軸磁気異方性が高められ、結果として、基板の面内において軟磁性膜における一軸磁気異方性のばらつきが抑えられる。 According to the above configuration, since the magnetic material is a soft magnetic material and the magnetic flux density in the horizontal magnetic field applied to the substrate is 0.4 mT or more, the uniaxial magnetic anisotropy is enhanced in the soft magnetic film, and the result is As a result, variation in uniaxial magnetic anisotropy in the soft magnetic film can be suppressed in the plane of the substrate.
上記成膜装置において、前記ターゲットにおける被スパッタ面が露出するとともに、前記基板を収容する真空槽と、前記真空槽内に前記ターゲットをスパッタするためのプラズマを生成するプラズマ生成部と、前記位置変更部および前記プラズマ生成部の駆動を制御する制御部と、をさらに備える。前記制御部は、前記位置変更部に前記基板に対する前記磁気回路の位置の変更を開始させた後に、前記プラズマ生成部に前記プラズマを生成させることが好ましい。 In the film forming apparatus, a surface to be sputtered of the target is exposed, a vacuum chamber for accommodating the substrate, a plasma generation unit for generating plasma for sputtering the target in the vacuum chamber, and the position change A control unit that controls driving of the unit and the plasma generation unit. Preferably, the control unit causes the plasma generation unit to generate the plasma after the position change unit starts changing the position of the magnetic circuit with respect to the substrate.
上記構成によれば、位置変更部による磁気回路の位置の変更が開始された後にターゲットがスパッタされるため、磁性膜の形成が開始されたときから、基板における磁場の状態が固定されることが抑えられる。それゆえに、ターゲットのスパッタが開始された後に磁気回路の位置の変更が開始されるよりも、基板の面内において磁性膜における一軸磁気異方性のばらつきがより抑えられる。 According to the above configuration, since the target is sputtered after the change of the position of the magnetic circuit by the position change unit is started, the state of the magnetic field in the substrate is fixed when the formation of the magnetic film is started. It is suppressed. Therefore, the variation of uniaxial magnetic anisotropy in the magnetic film in the plane of the substrate is suppressed more than the change of the position of the magnetic circuit is started after the sputtering of the target is started.
図1から図13を参照して、成膜装置および成膜方法を具体化した一実施形態を説明する。以下では、成膜装置の構成、成膜チャンバの構成、および、試験例を順に説明する。 An embodiment in which the film forming apparatus and the film forming method are embodied will be described with reference to FIGS. 1 to 13. Below, the structure of a film-forming apparatus, the structure of a film-forming chamber, and a test example are demonstrated in order.
[スパッタ装置の構成]
図1を参照して、成膜装置の構成を説明する。
図1が示すように、成膜装置10は、1つの方向である第1方向D1に沿って並ぶロードロックチャンバ11と、成膜チャンバ12とを備えている。ロードロックチャンバ11と成膜チャンバ12との間には、ゲートバルブ13が位置し、ゲートバルブ13が開くことによって、ロードロックチャンバ11と成膜チャンバ12との間が連通され、ゲートバルブ13が閉じることによって、ロードロックチャンバ11と成膜チャンバ12との間での通気が遮断される。
[Configuration of sputtering apparatus]
The configuration of the film forming apparatus will be described with reference to FIG.
As FIG. 1 shows, the film-forming
成膜装置10の処理対象は基板Sであり、基板Sは、基板Sを支持するトレイTに取り付けられた状態で、成膜装置10内に搬入される。基板Sの形成材料は、例えば、ケイ素(Si)、ガラス、および、各種の合成樹脂などであり、トレイTの形成材料は、例えば金属などである。
The processing target of the
成膜装置10は、搬送部14を備え、搬送部14は、ロードロックチャンバ11から成膜チャンバ12までにわたって第1方向D1に沿って延び、ロードロックチャンバ11内、および、成膜チャンバ12内において、トレイTに取り付けられた状態の基板Sを第1方向D1に沿って搬送する。搬送部14は、成膜チャンバ12内における所定の位置において基板Sを支持することが可能であり、搬送部14は支持部の一例である。搬送部14は、基板Sのうち、処理対象となる面が水平方向に対してほぼ直交する状態で、言い換えれば、基板Sを起立させた状態で搬送する。
The
ロードロックチャンバ11は排気部15を備え、排気部15は、ロードロックチャンバ11の内部を所定の圧力にまで減圧する。ロードロックチャンバ11は、成膜装置10の外部から成膜前の基板Sを搬入し、成膜後の基板Sを成膜装置10の内部から搬出する。
The
成膜チャンバ12は、排気部16、冷却部17、第1位置変更部18、第1磁気回路20、および、カソード30を備えている。成膜チャンバ12は真空槽の一例であり、成膜チャンバ12では、カソード30が含むターゲットの被スパッタ面が露出し、成膜チャンバ12は基板Sを収容する。
The
排気部16は、ロードロックチャンバ11の排気部15と同様、成膜チャンバ12の内部を所定の圧力にまで減圧する。冷却部17は、基板Sに対する磁性膜の形成が行われているときに、基板Sを冷却する。
Similar to the
第1磁気回路20は、基板Sに対する磁性膜の形成が行われているときに、基板Sにおける処理対象となる面に、基板Sに平行な、言い換えれば第1方向D1と平行な水平磁場を形成する。第1位置変更部18は、第1方向D1において第1磁気回路20の位置を第1位置と第2位置との間で変える。搬送部14は、成膜チャンバ12の内部において、カソード30と対向する位置に、基板Sを配置する。成膜チャンバ12は、搬送部14の配置する基板Sに対して、磁性膜を形成する処理である成膜処理を施す。
When the formation of a magnetic film on the substrate S is being performed, the first
成膜装置10は、成膜装置10の駆動を制御する制御部10Cを備えている。制御部10Cは、カソード30を含むプラズマ生成部、および、第1位置変更部18などの各部に電気的に接続され、各部の駆動を制御している。プラズマ生成部は、ターゲットをスパッタするためのプラズマを生成する。制御部10Cは、プラズマ生成部を構成する各部の駆動を開始させるための開始信号、および、駆動を停止させるための停止信号を生成する。制御部10Cは、プラズマ生成部を構成する各部の駆動を開始させるタイミング、および、各部の駆動を停止させるタイミングに、各部に対して信号を出力する。
The
また、制御部10Cは、第1位置変更部18に第1磁気回路20の位置の変更を開始させるための開始信号、および、位置の変更を停止させるための停止信号を生成する。制御部10Cは、第1位置変更部18に第1磁気回路20の位置の変更を開始させるタイミング、および、位置の変更を停止させるタイミングに、第1位置変更部18に対して各信号を出力する。
Further, the control unit 10C generates a start signal for causing the first
これにより制御部10Cは、第1位置変更部18に基板Sに対する第1磁気回路20の位置の変更を開始させた後に、プラズマ生成部にプラズマを生成させる。このように、第1位置変更部18による第1磁気回路20の位置の変更が開始された後にターゲットがスパッタされるため、磁性膜の形成が開始されたときから、基板Sにおける磁場の状態が固定されることが抑えられる。それゆえに、ターゲットのスパッタが開始された後に第1磁気回路20の位置の変更が開始されるよりも、磁性膜の面内における一軸磁気異方性のばらつきがより抑えられる。
Thus, the control unit 10C causes the plasma generation unit to generate plasma after the first
なお、制御部10Cは、上述したゲートバルブ13および搬送部14の各々にも電気的に接続されている。制御部10Cは、ゲートバルブ13を開くための開信号、および、ゲートバルブ13を閉じるための閉信号を生成する。制御部10Cは、ゲートバルブ13を開くタイミング、および、ゲートバルブ13を閉じるタイミングに、各信号をゲートバルブ13に対して出力する。
The control unit 10C is also electrically connected to each of the
また、制御部10Cは、搬送部14にトレイTの搬送を開始させるための開始信号、および、搬送を停止させるための停止信号を生成する。制御部10Cは、搬送部14にトレイTの搬送を開始させるタイミング、および、搬送を停止させるタイミングに、搬送部14に各信号を出力する。
Further, the control unit 10C generates a start signal for causing the
こうした成膜装置10では、まず、成膜前の基板Sを支持するトレイTを、成膜装置10の外部からロードロックチャンバ11を介して成膜装置10の内部に搬入する。そして、制御部10Cが、ロードロックチャンバ11から成膜チャンバ12に向けたトレイTの搬送と、成膜チャンバ12内でのトレイTの支持を搬送部14に行わせる。
In the
次いで、制御部10Cは、第1位置変更部18に第1磁気回路20の位置の変更を開始させた後に、プラズマ生成部にプラズマを生成させることで、磁性膜の形成を開始させる。制御部10Cは、所定の時間が経過した後に、プラズマ生成部によるプラズマの生成と、第1位置変更部18による第1磁気回路20の位置の変更とを停止させる。
Next, after the control unit 10C causes the first
制御部10Cは、成膜チャンバ12からロードロックチャンバ11に向けて成膜後の基板Sを支持するトレイTを搬送部14に搬送させる。その後、ロードロックチャンバ11を介して成膜後の基板Sを成膜装置10の外部に搬出する。
The control unit 10C causes the
なお、成膜前の基板Sを支持するトレイTを成膜装置10に搬入すること、および、成膜後の基板Sを支持するトレイTを成膜装置10から搬出することは、成膜装置10が備えるロボットによって行われてもよいし、成膜装置10を使用する使用者によって行われてもよい。
In addition, carrying in the film-forming
また、成膜装置10は、少なくとも成膜チャンバ12を備えていればよく、ロードロックチャンバ11を備えていなくてもよい。また、成膜装置10は、ロードロックチャンバ11と成膜チャンバ12とに加えて、成膜チャンバ12よりも前に基板Sに対して所定の処理を行うチャンバや、成膜チャンバ12よりも後に基板Sに対して所定の処理を行うチャンバを備えていてもよい。
In addition, the
[成膜チャンバの構成]
図2から図6を参照して、成膜チャンバ12の構成をより詳しく説明する。
図2が示すように、成膜チャンバ12は、冷却部17とカソード30とが対向する対向方向において、冷却部17および第1磁気回路20の位置を変える第2位置変更部19を備えている。第2位置変更部19は、対向方向において、冷却部17および第1磁気回路20の位置を第3位置と第4位置との間で変える。第3位置は、冷却部17がトレイTに接することが可能な位置であり、第4位置は、冷却部17がトレイTから離れた位置である。
[Configuration of deposition chamber]
The configuration of the
As FIG. 2 shows, the film-forming
第2位置変更部19は、成膜チャンバ12内において、トレイTの位置が固定された後であって、基板Sに対する成膜処理が開始される前に、第4位置に位置する冷却部17および第1磁気回路20を第4位置から第3位置に移動させる。また、第2位置変更部19は、搬送部14が、成膜後の基板Sを支持するトレイTを成膜チャンバ12からロードロックチャンバ11に移動させる間、および、成膜前の基板Sを支持するトレイTをロードロックチャンバ11から成膜チャンバ12に移動させる間は、冷却部17および第1磁気回路20を第4位置に位置させる。
The second
このように、第2位置変更部19が第3位置に冷却部17を位置させることによって、基板Sを冷却する効率を高めることができる。また、第2位置変更部19が、冷却部17および第1磁気回路20を第4位置に配置することで、搬送部14によるトレイTの搬送に冷却部17および第1磁気回路20が干渉することが抑えられる。
As described above, the cooling position of the cooling
図3は、成膜チャンバ12が備える第1磁気回路20の構成、および、カソード30の構成をより詳しく示したブロック図である。なお、図3では、図示の便宜上、冷却部17および第2位置変更部19の図示が省略されている。
FIG. 3 is a block diagram showing in more detail the configuration of the first
図3が示すように、成膜チャンバ12は、ターゲット31、搬送部14、第1磁気回路20、および、第1位置変更部18を備えている。ターゲット31は、一軸磁気異方性を発現することが可能な磁性材料を含んでいる。搬送部14は、ターゲット31と対向する領域である配置領域Rに基板Sが位置するように基板Sを支持する。
As FIG. 3 shows, the film-forming
言い換えれば、搬送部14は、基板Sをターゲット31と第1磁気回路20との間に位置させ、基板Sをターゲット31と対向するように支持する。搬送部14は、基板Sにおけるターゲット31と対向する面に対する法線の方向と、ターゲット31における基板Sと対向する面に対する法線の方向とがほぼ平行である状態で、基板Sを成膜チャンバ12内における所定の位置に固定する。基板Sは、変位方向の一例である第1方向D1と、第1方向D1と直交する第2方向に沿って広がる板状を有している。
In other words, the
第1磁気回路20は、複数の磁石21と、複数の磁石21が固定されるヨーク22とを備えている。複数の磁石21は、ターゲット31と対向する領域に所定のピッチで並んでいる。第1磁気回路20は、ターゲット31と複数の磁石21との間に位置する基板Sに平行な水平磁場HMを基板Sとターゲット31との間に形成する。
The first
また、第1磁気回路20は、配置領域Rに対してターゲット31とは反対側に位置している。複数の磁石21において、第2方向D2に沿う長さが基板Sの長さ以上である。第1磁気回路20は、こうした複数の磁石21によって、第1方向D1に平行な水平磁場HMを配置領域Rに対してターゲット31が位置する側に形成する。言い換えれば、第1磁気回路20は、基板Sのうち、第1磁気回路20とは反対側の面であって、ターゲット31と対向する面上に水平磁場HMを形成する。
In addition, the first
各磁石21は永久磁石であり、例えばフェライト磁石、サマリウムコバルト磁石、および、ネオジム磁石などである。各磁石21において、ヨーク22に接する端部とは反対側の端部が先端である。複数の磁石21では、先端における磁極が異なる磁石21が交互に並んでいる。例えば、第1方向D1における一方の端に位置する磁石21から順に、先端の磁極がN極である磁石21とS極である磁石21とが交互に並んでいる。
Each
第1磁気回路20が備える磁石21の数は、3以上であることが好ましい。第1磁気回路20は、配置領域Rに対してターゲット31が位置する側における水平磁場HMの磁束密度が0.4mT以上であるように構成されている。言い換えれば、基板Sのうち、第1磁気回路20とは反対側の面であって、ターゲット31と対向する面上における水平磁場HMの磁束密度が0.4MT以上である。第1磁気回路20における水平磁場HMの磁束密度は、例えば、第1方向D1に沿う各磁石21の位置、第1方向D1および第2方向の各々に沿う各磁石21の大きさ、各磁石21の形状、および、各磁石21が有する磁力の大きさなどによって決まる。
The number of
第1位置変更部18は、基板Sに対する第1磁気回路20の位置を、第1方向D1に沿って、第1位置と、第1位置からピッチ以下だけ離れた第2位置との間で変える。第1磁気回路20は、第1磁気回路20が第1位置に位置するときと、第1磁気回路20が第2位置に位置するときとの間において、第1方向D1において基板Sの全体に重なる水平磁場HMが形成されるように構成されている。
The first
第1位置変更部18は、第1磁気回路20の位置を第1位置と第2位置との間で変える機構を含む。第1位置変更部18は、第1磁気回路20を第1方向D1に沿って揺らす揺動機構を含んでいる。こうした揺動機構は、例えば、第1磁気回路20のヨーク22と、成膜チャンバ12とに固定された支持部を備えている。支持部は、第1方向D1に沿って撓むことが可能な可撓性を有している。また、揺動機構は、成膜チャンバ12における第1磁気回路20の位置を固定し、かつ、第1磁気回路20の位置の固定を解除することが可能な位置固定部を含む。位置固定部は、第1磁気回路20の位置を固定することによって、支持部の撓みを停止させ、第1磁気回路20の位置の固定を解除することによって、支持部の撓みを開始させる。
The first
カソード30は、ターゲット31とバッキングプレート32とを備えている。ターゲット31は、上述したように一軸磁気異方性を発現することが可能な磁性材料を含む。ターゲット31の形成材料は、鉄、コバルト、ニッケル、タンタル、モリブデン、銅、および、ジルコニウムを少なくとも1つ含んでいる軟磁性材料であることが好ましい。ターゲット31において、形成材料のほとんどが磁性材料であることが好ましく、例えば75質量%以上が磁性材料であることが好ましい。
The
ターゲット31のうち、基板Sと対向する被スパッタ面がスパッタされることによって、磁性材料を含む磁性膜が基板Sに形成される。磁性膜は、磁性膜の結晶方向において、磁化しやすい結晶方向である磁化容易軸を有し、磁化容易軸以外の方向が磁化困難軸である。磁性膜は、磁化困難軸に沿う磁場が印加されたときと比べて、磁化容易軸と平行な磁場が印加されたときに磁化しやすい。磁性膜は、負の飽和磁化と正の飽和磁化とを有している。磁性膜の磁化を負の飽和磁化から正の飽和磁化に反転させたときの磁化曲線において、磁化容易軸における磁化曲線と、磁化困難軸における磁化曲線との乖離が大きいほど、磁性膜の一軸磁気異方性が高い。
The sputtering target surface of the
上述したように、第1方向D1における第1磁気回路20の位置に関わらず、基板Sの磁場形成面に形成された磁場における磁束密度が0.4mT以上である。しかも、ターゲット31が含む磁性材料が軟磁性材料であり、基板Sには軟磁性膜が形成される。そのため、軟磁性膜において一軸磁気異方性がより高められ、結果として、基板Sの面内において、軟磁性膜における一軸磁気異方性のばらつきが抑えられる。
As described above, regardless of the position of the first
バッキングプレート32は、ターゲット31のうち、配置領域Rと対向する面とは反対側の面に固定されている。バッキングプレート32の形成材料は、金属である。
The
成膜チャンバ12は、第2磁気回路41と揺動部42とをさらに備えている。第2磁気回路41は、ターゲット31に対して搬送部14とは反対側に位置している。第2磁気回路41は、ターゲット31に対して搬送部14の位置する側に磁場Mを形成する。言い換えれば、第2磁気回路41は、ターゲット31のうち、バッキングプレート32に固定された面とは反対側の面であって、基板Sと対向する面上に磁場Mを形成する。
The
第2磁気回路41は、2つの永久磁石である第1磁石41aおよび第2磁石41bと、2つの永久磁石が固定されるヨーク41cとを備えている。第1磁石41aは、第2方向D2に沿って延びる柱状を有し、第2磁石41bは、第2方向D2に沿って延びる環状を有して、第1磁石41aを取り囲んでいる。第1磁石41aおよび第2磁石41bの各々において、ヨーク41cに固定された端が基端であり、基端とは反対側の端であって、バッキングプレート32と対向する端が先端である。第1磁石41aの先端における磁極と、第2磁石41bの先端における磁極とは、互いに異なっている。第2磁気回路41における磁束密度は、ターゲット31における配置領域Rと対向する面において、例えば10mT以上であることが好ましい。
The second
揺動部42は、第1方向D1におけるターゲット31の一端と他端との間で第1方向D1に沿って磁場Mを揺動させる。揺動部42は、第2磁気回路41を揺動させるための動力を発生する動力部と、動力を第2磁気回路41まで伝達する伝達部と、動力部の駆動を制御する制御部とを備えている。
The swinging
制御部は、動力部の駆動を制御するための制御信号を動力部に出力し、動力部は、制御信号に応じて駆動される。伝達部は、例えば、第1方向D1に沿って延びるねじ軸と、ねじ軸に噛み合い、かつ、第2磁気回路41に固定されたナットとを含み、動力部は、例えばねじ軸を回転させるモータである。モータは、第1回転方向と第1回転方向とは逆の方向である第2回転方向とにねじ軸を回転させる。
The control unit outputs a control signal for controlling driving of the power unit to the power unit, and the power unit is driven according to the control signal. The transmission unit includes, for example, a screw shaft extending along the first direction D1 and a nut engaged with the screw shaft and fixed to the second
揺動部42では、モータがねじ軸を第1回転方向に回転させることによって、第2磁気回路41が第1方向D1に沿って移動し、モータがねじ軸を第2回転方向に回転させることによって、第2磁気回路41が、第1方向D1に沿って、ねじ軸が第1回転方向に回転するときとは逆向きに移動する。
In the swinging
成膜チャンバ12は、電源51とガス供給部52とをさらに備えている。電源51はバッキングプレート32に接続され、電源51がバッキングプレート32を介してターゲット31に電圧を印加することによって、ターゲット31がスパッタされる。ガス供給部52は、例えば、希ガスなどのスパッタガスを成膜チャンバ12の内部に供給する。
The
成膜装置10において、カソード30、電源51、および、ガス供給部52がプラズマ生成部の一例を構成し、制御部10Cは、電源51およびガス供給部52の各々に電気的に接続している。制御部10Cは、電源51にバッキングプレート32への電圧の印加を開始させるための開始信号と、バッキングプレート32への電圧の印加を停止させるための停止信号とを生成する。制御部10Cは、電源51にバッキングプレート32への電圧の印加を開始させるタイミング、および、電圧の印加を停止させるタイミングに、電源51に対して各信号を出力する。
In the
制御部10Cは、ガス供給部52に所定の流量でのスパッタガスの供給を開始させるための開始信号と、スパッタガスの供給を停止させるための停止信号とを生成する。制御部10Cは、ガス供給部52にスパッタガスの供給を開始させるタイミング、および、スパッタガスの供給を停止させるタイミングに、ガス供給部52に対して各信号を出力する。
The control unit 10C generates a start signal for causing the
成膜チャンバ12内にプラズマが生成されるときには、排気部16によって所定の圧力に減圧された成膜チャンバ12内に、制御部10Cが、ガス供給部52にスパッタガスの供給を開始させる。次いで、制御部10Cが、バッキングプレート32への電圧の印加を電源51に開始させることによって、ターゲット31の周りにスパッタガスからプラズマが生成される。これにより、ターゲット31がスパッタされる。
When plasma is generated in the
図4は、第1磁気回路20のヨーク22が広がる平面と対向する平面視における複数の磁石21の平面構造を示している。図4では、図示の便宜上、第1磁気回路20のうち、複数の磁石21のみが示され、また、第1磁気回路20と基板Sとの大きさを比較する便宜上、基板Sが二点鎖線で示されている。
FIG. 4 shows the planar structure of the plurality of
図4が示すように、第1方向D1において、複数の磁石21が位置する領域の長さは、基板Sの長さ以上であることが好ましい。複数の磁石21において、第1方向D1における一方の端に位置する磁石21が第1磁石21aであり、他方の端に位置する磁石21が第2磁石21bである。複数の磁石21が位置する領域である磁石領域は、第1磁石21aと第2磁石21bとによって区画されている。
As shown in FIG. 4, the length of the region where the plurality of
磁石領域の第1方向D1における端は、第1磁石21aのうち、第2方向D2に沿って延びる縁であって、他の磁石21とは隣り合わない縁と、第2磁石21bのうち、第2方向D2に沿って延びる縁であって、他の磁石21とは隣り合わない縁とによって構成されている。第1方向D1において、磁石領域の長さである幅Wは、基板Sの長さ以上であることが好ましく、本実施形態では、磁石領域の幅Wは、基板Sの長さよりも長い。
このように、第1方向D1において、磁石領域の幅Wが基板Sの長さ以上であれば、第1方向において、基板Sの全体に重なる水平磁場HMが形成されやすくなり、結果として、磁性膜の面内における一軸磁気異方性のばらつきがより抑えられる。
The end of the magnet area in the first direction D1 is an edge of the
As described above, when the width W of the magnet region is equal to or greater than the length of the substrate S in the first direction D1, a horizontal magnetic field HM overlapping the entire substrate S is easily formed in the first direction. Variations in uniaxial magnetic anisotropy in the plane of the film are further suppressed.
また、上述したように、第2方向D2において、各磁石21の長さLが、基板Sの長さ以上であり、本実施形態では、各磁石21の長さLは、基板Sの長さに等しい。複数の磁石21は、第1方向D1に沿って所定のピッチPで並んでいる。言い換えれば、複数の磁石21は、第1方向D1に沿って等間隔で並んでいる。
As described above, in the second direction D2, the length L of each
磁石領域の幅Wは、例えば300mm以上1000mm以下である。各磁石21の長さLは、例えば300mm以上1000mm以下であり、第1方向D1に沿う各磁石21の幅Wmは、例えば5mm以上10mm以下である。また、複数の磁石21が並ぶピッチPは、50mm以上500mm以下である。
The width W of the magnet area is, for example, 300 mm or more and 1000 mm or less. The length L of each
図5は、各磁石21から延びる磁力線MFを模式的に示す図であり、図5では、図示の便宜上、1つの磁石21から延びる複数の磁力線MFの一部が示されている。
FIG. 5 is a view schematically showing magnetic force lines MF extending from the
基板Sに磁性膜を形成するときに、磁石21の直上に位置する部位では、この部位に印加される磁場の強度が0.4mT以上であっても、磁化困難軸の磁化曲線が、磁化容易軸の磁化曲線とほぼ同じである磁性膜、言い換えれば一軸磁気異方性を有しない磁性膜しか形成されない。一軸磁気異方性を有しない磁性膜が形成される一因として、以下の理由が挙げられる。
When a magnetic film is formed on the substrate S, the magnetization curve of the hard axis of magnetization is easy to magnetize at the portion positioned immediately above the
図5が示すように、基板Sの位置に対する第1磁気回路20の位置を固定すると、基板Sのなかで各磁石21の直上に位置する部位には、磁石21から基板Sに向けてほぼ垂直に延びる磁力線MFのみが到達する。そのため、基板Sのなかで各磁石21の直上に位置する部位では、ターゲット31が位置する側の面にほぼ垂直な磁場が印加され、水平磁場は印加されない。結果として、一軸磁気異方性の低い磁性膜が形成される。
As shown in FIG. 5, when the position of the first
図6は、第1位置変更部18が配置する第1磁気回路20の第1位置と第2位置との関係を説明するための図である。図6では、図示の便宜上、第1位置に位置する第1磁気回路20と第2位置に位置する第1磁気回路20とが、1つの方向において並ぶように図示されている。
FIG. 6 is a diagram for explaining the relationship between the first position and the second position of the first
図6が示すように、第1位置変更部18は、まず、第1磁気回路20を第1位置に位置させる。このとき、第1磁気回路20における第1方向D1の中央と、基板Sにおける第1方向D1の中央とが、第1磁気回路20と基板Sとが対向する方向において重なるように、第1位置変更部18は、基板Sに対する第1磁気回路20の位置を決める。
As shown in FIG. 6, the first
次いで、第1位置変更部18は、第1磁気回路20を第1方向D1に沿って揺らし始め、これにより、第1位置変更部18は、第1磁気回路20の位置を上述した第1位置から、第1方向D1において距離Dだけ離れた第2位置に変える。距離Dは、複数の磁石21が配置されるピッチP以下であり、磁石21の幅Wm以下であることが好ましい。これにより、第1磁気回路20が形成する水平磁場HMの位置も、第1方向D1に沿って第1位置から第2位置に変わる。
Then, the first
第1位置変更部18は、第1磁気回路20の位置を第1位置から第2位置に変えると、第1方向D1に沿って、第1磁気回路20を第1位置から第2位置に変えたときとは逆向きに動かす。これにより、第1磁気回路20は再び第1位置に配置され、かつ、第1位置を経て先に説明した第2位置とは異なる第2位置に配置される。第1方向D1における第1位置と第2位置との間の距離Dは、上述した距離Dと同様、複数の磁石21が配置されるピッチP以下であり、磁石21の幅Wm以下であることが好ましい。
When the position of the first
なお、上述したように、第1磁気回路20は、第1磁気回路20が第1位置に位置するときと、第1磁気回路20が第2位置に位置するときとの間において、第1方向D1において基板Sの全体に重なる水平磁場HMが形成されるように構成されている。そのため、第1位置変更部18が、第1磁気回路20の位置を第1位置と第2位置との間で変える間にわたって、第1方向D1における基板Sの全体に重なる磁場が、基板Sには印加される。
As described above, the first
このように、第1方向D1と第2方向D2との両方において、基板Sの全体に重なる水平磁場HMを第1磁気回路20によって形成しつつ、基板Sと第1磁気回路20とが対向する方向において、基板Sのなかで磁石21と重なる部位が固定されることが抑えられる。言い換えれば、第1磁気回路20が形成する磁場の状態が、基板Sの第1方向D1において固定されることが抑えられる。それゆえに、基板Sのなかで、垂直磁場が印加される部位が固定されることが抑えられ、結果として、基板Sに形成される磁性膜の面内において、一軸磁気異方性にばらつきが生じることが抑えられる。
Thus, in both the first direction D1 and the second direction D2, the substrate S and the first
また、第1位置と第2位置との間の距離Dが磁石21の幅Wm以下であれば、第1方向に沿って第1磁気回路20を動かす距離Dが磁石の幅以下で済む。そのため、基板Sに対して第1磁気回路20を動かすために必要な機構の小型化を実現することができる。また、第1方向D1における長さが基板Sの長さよりも短い磁気回路を基板Sの一端から他端まで走査する構成と比べて、第1磁気回路20を動かすために必要な機構が簡素で済む。
Further, if the distance D between the first position and the second position is equal to or less than the width Wm of the
さらには、基板Sに対する第1磁気回路20の変位量が、磁石21の幅Wm以下という小さい範囲であっても、第1位置であれ、第2位置であれ、基板Sの全体に重なる水平磁場HMが形成されるため、結果として、磁性膜における一軸磁気異方性のばらつきが第1方向D1における基板Sの全体において抑えられる。
Furthermore, even if the displacement amount of the first
第1位置変更部18は、毎分300mm以上の速度で基板Sに対する第1磁気回路20の位置を第1方向D1に沿って変えることが好ましい。第1磁気回路20を揺らす速度が毎分300mm以上であることによって、基板Sの各部位に印加される磁場の状態が固定されることがより確実に抑えられる。これにより、基板Sの面内において磁性膜における一軸磁気異方性のばらつきがより抑えられる。
The first
こうした成膜装置10を用いた成膜方法は、一軸磁気異方性を発現することが可能な磁性材料を含むターゲット31をスパッタすることを含む。また、成膜方法は、ターゲット31と対向する領域に所定のピッチPで並ぶ複数の磁石21が基板Sとターゲット31との間に形成する水平磁場HMの位置を、ターゲットがスパッタされている間に、第1方向D1に沿って、第1位置と第1位置からピッチP以下だけ離れた第2位置との間で変えることと、を含む。また、水平磁場HMの位置を変えることでは、複数の磁石21が第1方向D1に沿って所定のピッチPで並んでいる。
A film forming method using such a
[試験例]
図7から図13を参照して、試験例を説明する。
[水平磁場の磁束密度と一軸磁気異方性との関係]
図7から図10を参照して、基板に印加される水平磁場の磁束密度と、磁性膜の一軸磁気異方性との関係を説明する。第1方向と第2方向とに沿って広がる矩形状を有するシリコン基板を試験用基板として準備した。また、試験用基板に対するターゲットが位置する側の面、すなわち磁場形成面に水平磁場を印加することが可能な磁気回路を準備し、軟磁性材料ターゲットを準備した。
[Test example]
Test examples will be described with reference to FIGS. 7 to 13.
[Relationship between magnetic flux density of horizontal magnetic field and uniaxial magnetic anisotropy]
The relationship between the magnetic flux density of the horizontal magnetic field applied to the substrate and the uniaxial magnetic anisotropy of the magnetic film will be described with reference to FIGS. 7 to 10. A silicon substrate having a rectangular shape extending along the first direction and the second direction was prepared as a test substrate. A soft magnetic material target was prepared by preparing a magnetic circuit capable of applying a horizontal magnetic field to the surface of the test substrate on which the target is located, that is, the magnetic field forming surface.
まず、磁気回路を搭載しない成膜チャンバにて試験用基板に軟磁性膜を形成した。言い換えれば、磁場形成面に印加される水平磁場の磁束密度が0mTである状態で、軟磁性膜を形成した。これにより、試験例1の軟磁性膜を得た。 First, a soft magnetic film was formed on a test substrate in a deposition chamber in which no magnetic circuit is mounted. In other words, the soft magnetic film was formed in a state where the magnetic flux density of the horizontal magnetic field applied to the magnetic field forming surface was 0 mT. Thus, the soft magnetic film of Test Example 1 was obtained.
磁場形成面における水平磁場の磁束密度を測定したところ、磁場形成面には、水平磁場の磁束密度が0.3mTである第1部分、0.4mTである第2部分、および、10mTである第3部分が含まれることが認められた。また、磁気回路を搭載した成膜チャンバにて試験用基板に軟磁性膜を形成し、これにより、試験例2から試験例4の軟磁性膜を得た。なお、試験用基板に形成された軟磁性膜のうち、軟磁性膜のなかで、磁場形成面の第1部分に形成された部分を試験例2の軟磁性膜とし、第2部分に形成された部分を試験例3の軟磁性膜とし、第3部分に形成された部分を試験例4の軟磁性膜とした。 When the magnetic flux density of the horizontal magnetic field on the magnetic field forming surface was measured, the first portion having a magnetic flux density of 0.3 mT, the second portion having 0.4 mT, and the 10 mT on the magnetic field forming surface It was found that three parts were included. In addition, a soft magnetic film was formed on a test substrate in a film forming chamber equipped with a magnetic circuit, whereby the soft magnetic films of Test Example 2 to Test Example 4 were obtained. Of the soft magnetic film formed on the test substrate, the portion formed on the first portion of the magnetic field forming surface is the soft magnetic film of Test Example 2 and is formed on the second portion. The portion thus formed was the soft magnetic film of Test Example 3, and the portion formed on the third portion was the soft magnetic film of Test Example 4.
試験例1から試験例4の軟磁性膜の各々について、磁化容易軸の磁化曲線、および、磁化困難軸の磁化曲線を測定したところ、図7から図10に示す磁化曲線が得られた。 The magnetization curves shown in FIG. 7 to FIG. 10 were obtained when the magnetization curve of the magnetization easy axis and the magnetization curve of the hard magnetization axis were measured for each of the soft magnetic films of Test Example 1 to Test Example 4.
図7が示すように、試験例1では、軟磁性膜に印加される磁場の大きさが負の値から正の値に切り替わるときに、磁化困難軸での磁化曲線が、磁化容易軸での磁化曲線の一部に沿って延びることが認められた。すなわち、試験例1の軟磁性膜では、磁化容易軸と磁化困難軸との間において磁化のされやすさにおける差が小さく、一軸磁気異方性が低いことが認められた。 As shown in FIG. 7, in Test Example 1, when the magnitude of the magnetic field applied to the soft magnetic film switches from a negative value to a positive value, the magnetization curve at the hard axis of magnetization is at the easy magnetization axis. It was observed to extend along a portion of the magnetization curve. That is, in the soft magnetic film of Test Example 1, it was found that the difference in the ease of magnetization between the easy axis of magnetization and the hard axis of magnetization was small, and the uniaxial magnetic anisotropy was low.
図8が示すように、試験例2では、試験例1と同様、軟磁性膜に印加される磁場の大きさが負の値から正の値に切り替わるときに、磁化困難軸での磁化曲線が、磁化容易軸での磁化曲線の一部に沿って延びることが認められた。ただし、試験例2の軟磁性膜によれば、試験例1の軟磁性膜に比べて、軟磁性膜の形成時に水平磁場が印加されている分だけ、磁化容易軸での磁化のされやすさと、磁化困難軸での磁化のされやすさとに差が生じていることは認められた。 As shown in FIG. 8, in Test Example 2, as in Test Example 1, when the magnitude of the magnetic field applied to the soft magnetic film switches from a negative value to a positive value, the magnetization curve along the hard axis becomes hard It has been observed that it extends along a portion of the magnetization curve at the easy axis of magnetization. However, according to the soft magnetic film of Test Example 2, as compared with the soft magnetic film of Test Example 1, the susceptibility to magnetization along the easy magnetization axis is equivalent to the application of the horizontal magnetic field at the time of formation of the soft magnetic film. It was recognized that there was a difference in the ease of magnetization in the hard axis.
図9が示すように、試験例3では、試験例1および試験例2とは異なり、磁化困難軸での磁化曲線は、磁場が0Oeであり、かつ、磁化が0emuである点の近傍にて磁化容易軸の磁化曲線と交差するのみであることが認められた。また、軟磁性膜に印加される磁場の大きさが−20Oe以上20Oe以下の範囲であるときには、磁化困難軸での磁化曲線の傾きは、磁化容易軸での磁化曲線の傾きよりも小さいことが認められた。すなわち、試験例3の軟磁性膜は、一軸磁気異方性が高いことが認められた。 As shown in FIG. 9, in Test Example 3, unlike Test Example 1 and Test Example 2, the magnetization curve at the hard axis of magnetization is near the point where the magnetic field is 0 Oe and the magnetization is 0 emu. It was found to only intersect the magnetization curve of the easy axis. Also, when the magnitude of the magnetic field applied to the soft magnetic film is in the range of -20 Oe to 20 Oe, the inclination of the magnetization curve in the hard axis is smaller than the inclination of the magnetization curve in the easy axis. Admitted. That is, it was found that the soft magnetic film of Test Example 3 had high uniaxial magnetic anisotropy.
図10が示すように、試験例4では、試験例3と同様、磁化困難軸での磁化曲線は、磁場が0Oeであり、かつ、磁化が0emuである点の近傍にて磁化容易軸の磁化曲線と交差するのみであることが認められた。また、軟磁性膜に印加される磁場の大きさが−20Oe以上20Oe以下の範囲であるときには、磁化困難軸での磁化曲線の傾きは、磁化容易軸での磁化曲線の傾きよりも小さいことが認められた。すなわち、試験例4の軟磁性膜は、一軸磁気異方性が高いことが認められた。 As shown in FIG. 10, in Test Example 4, as in Test Example 3, the magnetization curve along the hard axis is magnetization of the easy axis in the vicinity of the point where the magnetic field is 0 Oe and the magnetization is 0 emu. It was found to only cross the curve. Also, when the magnitude of the magnetic field applied to the soft magnetic film is in the range of -20 Oe to 20 Oe, the inclination of the magnetization curve in the hard axis is smaller than the inclination of the magnetization curve in the easy axis. Admitted. That is, it was found that the soft magnetic film of Test Example 4 had high uniaxial magnetic anisotropy.
このように、軟磁性膜が形成されるときに基板に印加される水平磁場の磁束密度が、0.4mT以上であることによって、一軸磁気異方性の高い軟磁性膜が得られることが認められた。なお、軟磁性膜が形成されるときに基板に印加される水平磁場の磁束密度が50mTであるとき、および、100mTであるときにも、試験例4と同等の一軸磁気異方性を有した軟磁性膜が得られることが認められた。 As described above, when the magnetic flux density of the horizontal magnetic field applied to the substrate when the soft magnetic film is formed is 0.4 mT or more, it is recognized that the soft magnetic film having high uniaxial magnetic anisotropy can be obtained. It was done. Incidentally, even when the magnetic flux density of the horizontal magnetic field applied to the substrate when forming the soft magnetic film was 50 mT and 100 mT, it had uniaxial magnetic anisotropy equivalent to that of Test Example 4 It was found that a soft magnetic film was obtained.
[第1磁気回路]
図11から図13を参照して、第1磁気回路の試験例を説明する。図11では、第1磁気回路が備える磁石とヨークとの区別を容易にする便宜上、磁石にドットが付されている。本試験例では、以下に説明する構成を有した第1磁気回路を準備した。
[First magnetic circuit]
A test example of the first magnetic circuit will be described with reference to FIGS. 11 to 13. In FIG. 11, dots are attached to the magnets for the sake of easy distinction of the magnets and the yokes provided in the first magnetic circuit. In this test example, a first magnetic circuit having the configuration described below was prepared.
すなわち、図11が示すように、第1磁気回路60は、4つの磁石61と、各磁石61が固定されるヨーク62とを備えている。第1磁気回路60において、磁石領域の幅W、すなわちヨーク62の幅Wは530mmであり、磁石領域の長さL、すなわちヨーク62の長さLは700mmである。
That is, as FIG. 11 shows, the 1st
第1磁気回路60において、第1方向D1に沿って複数の磁石61が並ぶピッチPは175mmであり、第1方向D1における各磁石61の幅Wmは5mmである。各磁石61は、ネオジム磁石であり、第1方向D1の端に位置する磁石61から順に、先端の磁極がN極である磁石と、先端の磁極がS極である磁石とが交互に並ぶように磁石61が並んでいる。ヨーク62の形成材料は鉄である。
In the first
こうした第1磁気回路の直上に511mm□のシリコン基板を配置し、シリコン基板に対する第1磁気回路が位置する側とは反対側の面である磁場形成面における水平磁場の磁束密度を測定した。磁束密度の測定結果は、図12および図13に示す通りであった。なお、以下に説明する図12および図13では、第1磁気回路60において、第1方向D1における中央Cを基準となる位置である0mmとした。
A 511 mm □ silicon substrate was disposed immediately above such a first magnetic circuit, and the magnetic flux density of the horizontal magnetic field on the magnetic field forming surface, which is the surface opposite to the side where the first magnetic circuit is located with respect to the silicon substrate, was measured. The measurement results of the magnetic flux density were as shown in FIG. 12 and FIG. In FIGS. 12 and 13 described below, in the first
図12が示すように、磁場形成面のなかで、第1磁気回路60とシリコン基板とが対向する方向において、各磁石61と重なる部位における水平磁場の磁束密度が最も大きく、180mTであることが認められた。また、磁場形成面において、各磁石からの距離が大きい部位ほど水平磁場の磁束密度が低いことが認められた。より詳しくは、磁場形成面のなかで、第1方向D1において、2つの磁石61の間における中央と重なる部位における水平磁場の磁束密度が最も小さいことが認められた。
As shown in FIG. 12, in the magnetic field forming surface, in the direction in which the first
ただし、図13が示すように、磁場形成面において、磁束密度の最小値が0.4mTであることが認められた。すなわち、磁場形成面の全体において、磁束密度は0.4mTであることが認められた。 However, as shown in FIG. 13, it was found that the minimum value of the magnetic flux density was 0.4 mT on the magnetic field forming surface. That is, it was found that the magnetic flux density was 0.4 mT in the entire magnetic field forming surface.
こうした第1磁気回路60と、軟磁性材料ターゲットとが搭載された成膜チャンバを用いて、511mm□のシリコン基板に軟磁性膜を形成した。このとき、軟磁性材料ターゲットをスパッタするためのプラズマを生成する前に、第1位置変更部による第1磁気回路60の位置の変更を開始し、かつ、軟磁性膜の形成を終了するまで、毎分300mmの速さで、第1方向D1に沿って第1磁気回路60の位置を変更し続けた。
A soft magnetic film was formed on a 511 mm □ silicon substrate using a film forming chamber in which such a first
こうした得られた軟磁性膜において、複数の部位における磁気曲線を測定したところ、いずれの部位においても、上述した試験例3の磁気曲線、または、試験例4の磁気曲線と同等の磁気曲線が得られることが認められた。 In the soft magnetic film thus obtained, when the magnetic curves at a plurality of portions were measured, a magnetic curve equivalent to the magnetic curve of Test Example 3 or the magnetic curve of Test Example 4 was obtained at any portion. It was recognized that
以上説明したように、成膜装置および成膜方法の一実施形態によれば、以下に列挙する効果を得ることができる。
(1)基板Sと第1磁気回路20とが対向する方向において、基板Sのなかで磁石21と重なる部位が固定されることが抑えられる。言い換えれば、第1磁気回路20が形成する水平磁場HMの状態が、第1磁気回路20の第1方向D1において固定されることが抑えられる。それゆえに、基板Sのなかで、垂直磁場が印加される部位が固定されることが抑えられ、結果として、基板Sの面内における磁性膜の一軸磁気異方性にばらつきが生じることが抑えられる。
As described above, according to one embodiment of the film forming apparatus and the film forming method, the effects listed below can be obtained.
(1) In the direction in which the substrate S and the first
(2)第1方向D1に沿って第1磁気回路20を動かす距離Dが磁石の幅Wm以下であれば、第1方向D1に沿って第1磁気回路20を動かす距離Dが磁石21の幅Wm以下で済むため、基板Sに対して第1磁気回路20を動かすために必要な機構の小型化を実現できる。
(2) If the distance D for moving the first
(3)基板Sに対する第1磁気回路20の変位量が、磁石21の幅Wm以下という小さい範囲であっても、第1位置であれ、第2位置であれ、基板Sの全体に重なる水平磁場HMが形成されるため、結果として、磁性膜における一軸磁気異方性のばらつきが第1方向D1における基板Sの全体において抑えられる。
(3) A horizontal magnetic field overlapping the entire surface of the substrate S regardless of whether the displacement of the first
(4)第1方向D1において、磁石領域の幅Wが基板Sの長さ以上であれば、第1方向において、基板Sの全体に重なる水平磁場HMが形成されやすくなり、結果として、磁性膜の面内における一軸磁気異方性のばらつきがより抑えられる。 (4) If the width W of the magnet area is greater than or equal to the length of the substrate S in the first direction D1, a horizontal magnetic field HM overlapping the entire substrate S is likely to be formed in the first direction. The variation of uniaxial magnetic anisotropy in the plane of is further suppressed.
(5)第1磁気回路20を揺らす速度が毎分300mm以上であることによって、基板Sの各部位に印加される水平磁場HMの状態が固定されることがより確実に抑えられる。これにより、磁性膜の面内において一軸磁気異方性にばらつきが生じることがより抑えられる。
(5) Since the speed at which the first
(6)磁性材料が軟磁性材料であり、かつ、基板Sの磁場形成面に形成される磁場における磁束密度が0.4mT以上であるため、軟磁性膜の全体において一軸磁気異方性がより高められ、結果として、軟磁性膜の面内において、一軸磁気異方性のばらつきが抑えられる。 (6) Since the magnetic material is a soft magnetic material and the magnetic flux density in the magnetic field formed on the magnetic field forming surface of the substrate S is 0.4 mT or more, the entire soft magnetic film has more uniaxial magnetic anisotropy As a result, variations in uniaxial magnetic anisotropy are suppressed in the plane of the soft magnetic film.
(7)第1位置変更部18による第1磁気回路20の位置の変更が開始された後にターゲット31がスパッタされるため、磁性膜の形成が開始されたときから、基板Sにおける磁場の状態が固定されることが抑えられる。それゆえに、ターゲット31のスパッタが開始された後に第1磁気回路20の位置の変更が開始されるよりも、磁性膜の面内における一軸磁気異方性のばらつきがより抑えられる。
(7) Since the
なお、上述した実施形態は、以下のように適宜変更して実施することができる。
・制御部10Cは、プラズマ生成部がプラズマを生成して以降に、第1位置変更部18に第1磁気回路20の位置の変更を開始させてもよい。こうした構成であっても、第1位置変更部18が第1磁気回路20の位置の変更を開始した後において基板Sに形成された磁性膜では、磁性膜の面内における一軸磁気異方性のばらつきが抑えられる。そのため、上述した(1)と同等の効果を得ることはできる。
The embodiment described above can be implemented with appropriate modifications as follows.
The control unit 10C may cause the first
・ターゲット31に含まれる磁性材料が軟磁性材料であるときに、配置領域Rに対してターゲット31が位置する側における水平磁場HMの磁束密度は、0mTよりも大きければ、0.4mTよりも小さくてもよい。こうした構成であっても、基板Sに水平磁場HMが印加されることで少なからず磁性膜の一軸磁気異方性を高めることができ、かつ、基板Sにおける磁場の状態が固定されないため、磁性膜の面内において一軸磁気異方性のばらつきが抑えられる。
-When the magnetic material contained in the
・一軸磁気異方性を有する磁性材料は、例えば鉄、Fe−Ni合金、Ni−Mo−Fe合金、Ni−Cu−Mo−Fe合金、および、パーマロイなどでもよい。こうした軟磁性材料であれば、上述した成膜チャンバ12によれば、磁性膜が形成されるときに基板Sに印加される磁場の状態が固定されないため、(1)と同等の効果を得ることはできる。
The magnetic material having uniaxial magnetic anisotropy may be, for example, iron, Fe-Ni alloy, Ni-Mo-Fe alloy, Ni-Cu-Mo-Fe alloy, and permalloy. With such a soft magnetic material, according to the
・第1位置変更部18が第1磁気回路20の位置を変える速度は、毎分300mm未満であってもよい。こうした構成であっても、第1位置変更部18が第1磁気回路20の位置を変更する以上は、基板Sにおける磁場の状態が固定されることが抑えられ、それゆえに、磁性膜の面内における一軸磁気異方性のばらつきを抑えることは可能である。
The speed at which the first
・第1磁気回路20が第1位置に位置するときと第2位置に位置するときとの間において、第1方向D1において基板Sの全体に重なる水平磁場を形成することが可能であれば、第1方向D1において、磁石領域の幅Wは、基板Sの長さよりも短くてもよい。
-It is possible to form a horizontal magnetic field overlapping the entire substrate S in the first direction D1 between the time when the first
・第1位置変更部は、第1方向D1での第1磁気回路20の位置を変える構成ではなく、第1方向D1での基板Sの位置を変える構成でもよい。こうした構成であっても、第1方向D1において基板Sに対する第1磁気回路20の位置を変えることは可能であり、ひいては、基板Sにおける磁場の状態が固定されることを抑えることも可能である。それゆえに、上述した(1)と同等の効果を得ることはできる。
The first position changing unit may not be configured to change the position of the first
・第2方向D2における各磁石21の長さは、第2方向D2における基板Sの長さよりも短くてもよい。こうした構成であっても、ターゲット31がスパッタされている間に、第1磁気回路20の位置が第1位置と第2位置との間で変わる構成であれば、基板Sのなかで、第2方向D2において各磁石21と重なる部分では、磁性膜における一軸磁気異方性のばらつきが抑えられる。結果として、基板Sの面内において磁性膜における一軸磁気異方性のばらつきが抑えられる。
The length of each
10…成膜装置、10C…制御部、11…ロードロックチャンバ、12…成膜チャンバ、13…ゲートバルブ、14…搬送部、15,16…排気部、17…冷却部、18…第1位置変更部、19…第2位置変更部、20,60…第1磁気回路、21,61…磁石、21a,41a…第1磁石、21b,41b…第2磁石、22,41c,62…ヨーク、30…カソード、31…ターゲット、32…バッキングプレート、41…第2磁気回路、42…揺動部、51…電源、52…ガス供給部、HM…水平磁場、M…磁場、MF…磁力線、R…配置領域、S…基板、T…トレイ。
DESCRIPTION OF
Claims (8)
前記ターゲットと対向する領域に所定のピッチで並ぶ複数の磁石を含み、前記ターゲットと前記複数の磁石との間に位置する基板に平行な水平磁場を前記基板と前記ターゲットとの間に形成する磁気回路と、
前記基板に対する前記磁気回路の位置を、変位方向に沿って、第1位置と前記第1位置から前記ピッチ以下だけ離れた第2位置との間で変える位置変更部と、を備え、
前記各磁石は、前記変位方向に沿って前記ピッチで並ぶ、
成膜装置。 A target comprising a magnetic material capable of developing uniaxial magnetic anisotropy;
A magnet comprising a plurality of magnets arranged at a predetermined pitch in a region facing the target, and forming a horizontal magnetic field parallel to the substrate located between the target and the plurality of magnets between the substrate and the target Circuit,
And a position change unit that changes a position of the magnetic circuit with respect to the substrate between a first position and a second position separated from the first position by the pitch or less along the displacement direction,
The magnets are arranged at the pitch along the displacement direction.
Film forming apparatus.
請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein a distance between the first position and the second position in the displacement direction is equal to or less than a width of the magnet.
請求項2に記載の成膜装置。 In the magnetic circuit, the horizontal magnetic field overlapping the entire substrate in the displacement direction is between the time when the magnetic circuit is located at the first position and the time when the magnetic circuit is located at the second position. The film forming apparatus according to claim 2, wherein the film forming apparatus is configured to be formed.
請求項3に記載の成膜装置。 The film forming apparatus according to claim 3, wherein a length of a region where the plurality of magnets are positioned in the displacement direction is equal to or longer than a length of a region where the substrate is positioned.
請求項1から4のいずれか一項に記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 4, wherein the position changing unit changes the position of the magnetic circuit with respect to the substrate at a speed of 300 mm or more per minute along the displacement direction.
前記磁気回路は、前記水平磁場の磁束密度が0.4mT以上であるように構成されている
請求項1から5のいずれか一項に記載の成膜装置。 The magnetic material is a soft magnetic material containing at least one of iron, cobalt, nickel, tantalum, molybdenum, copper, and zirconium,
The film forming apparatus according to any one of claims 1 to 5, wherein the magnetic circuit is configured such that the magnetic flux density of the horizontal magnetic field is 0.4 mT or more.
前記真空槽内に前記ターゲットをスパッタするためのプラズマを生成するプラズマ生成部と、
前記位置変更部および前記プラズマ生成部の駆動を制御する制御部と、をさらに備え、
前記制御部は、前記位置変更部に前記基板に対する前記磁気回路の位置の変更を開始させた後に、前記プラズマ生成部に前記プラズマを生成させる
請求項1から6のいずれか一項に記載の成膜装置。 A vacuum chamber that accommodates the substrate while exposing a surface to be sputtered on the target;
A plasma generation unit that generates a plasma for sputtering the target in the vacuum chamber;
And a control unit that controls driving of the position change unit and the plasma generation unit.
The controller according to any one of claims 1 to 6, wherein the control unit causes the plasma generation unit to generate the plasma after the position change unit starts changing the position of the magnetic circuit with respect to the substrate. Membrane device.
前記ターゲットと対向する領域に所定のピッチで並ぶ複数の磁石が基板と前記ターゲットとの間に形成する前記基板と平行な水平磁場の位置を、前記ターゲットがスパッタされている間に、変位方向に沿って、第1位置と前記第1位置から前記ピッチ以下だけ離れた第2位置との間で変えることと、を含み、
前記水平磁場の位置を変えることでは、前記複数の磁石が前記変位方向に沿って前記ピッチで並んでいる
成膜方法。
Sputtering a target comprising a magnetic material capable of developing uniaxial magnetic anisotropy;
The position of the horizontal magnetic field parallel to the substrate, which is formed between the substrate and the target, is formed between the substrate and the plurality of magnets arranged at a predetermined pitch in the region facing the target in the displacement direction while the target is sputtered. Along with changing between a first position and a second position spaced apart from the first position by less than or equal to the pitch,
By changing the position of the horizontal magnetic field, the plurality of magnets are arranged at the pitch along the displacement direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017199455A JP6983030B2 (en) | 2017-10-13 | 2017-10-13 | Film forming equipment and film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017199455A JP6983030B2 (en) | 2017-10-13 | 2017-10-13 | Film forming equipment and film forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019073756A true JP2019073756A (en) | 2019-05-16 |
JP6983030B2 JP6983030B2 (en) | 2021-12-17 |
Family
ID=66544677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017199455A Active JP6983030B2 (en) | 2017-10-13 | 2017-10-13 | Film forming equipment and film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6983030B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017169448A1 (en) * | 2016-03-29 | 2017-10-05 | 株式会社 アルバック | Film-forming apparatus and film-forming method |
-
2017
- 2017-10-13 JP JP2017199455A patent/JP6983030B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017169448A1 (en) * | 2016-03-29 | 2017-10-05 | 株式会社 アルバック | Film-forming apparatus and film-forming method |
Also Published As
Publication number | Publication date |
---|---|
JP6983030B2 (en) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5192549B2 (en) | Sputtering apparatus and sputtering method | |
TWI493069B (en) | Sputtering device and magnet unit | |
JPWO2007142265A1 (en) | Magnet apparatus for magnetron sputtering, magnetron sputtering apparatus and magnetron sputtering method | |
JP6542466B2 (en) | Deposition apparatus and deposition method | |
JP2002516495A (en) | Magnetic alignment apparatus and magnetic alignment method | |
WO2019111631A1 (en) | Method for manufacturing magnetic sensor, and magnetic sensor assembly | |
JP2017154863A (en) | Sheet separation device, sheet separation method, and method for manufacturing sheet-like secondary battery | |
JPWO2009040892A1 (en) | Magnet assembly capable of generating magnetic field having uniform direction and changing direction, and sputtering apparatus using the same | |
US6249200B1 (en) | Combination of magnets for generating a uniform external magnetic field | |
JP2008075128A (en) | Film deposition system, and film deposition method using the film deposition system | |
JP2019073756A (en) | Film deposition apparatus and film deposition method | |
JPH06207270A (en) | Magnetic film forming device | |
JP2019104970A (en) | Film deposition device and magnetic circuit | |
JP2006291262A (en) | Thin film deposition apparatus | |
JP5124317B2 (en) | Sheet plasma deposition apparatus and sheet plasma adjustment method | |
TWI532866B (en) | Magnetron sputtering apparatus | |
JPH0680187B2 (en) | Magnetic field adjustment method for magnetron sputtering device | |
JPH046792B2 (en) | ||
JP2016128597A (en) | Magnet sheet, film deposition method using the same, and touch panel | |
JPH10245675A (en) | Magnetic thin film forming device | |
JPS62161955A (en) | Sputtering device | |
JP2011102427A (en) | Magnetic field generating apparatus and sputtering system | |
JPH10326718A (en) | Paralleled magnetic field application structure | |
JPH03257162A (en) | Magnetron sputtering device | |
JPH0482536A (en) | Magnet apparatus for mri |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6983030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |