JP2019073656A - Insolubilizing agent and insolubilization method of material to be insolubilized - Google Patents
Insolubilizing agent and insolubilization method of material to be insolubilized Download PDFInfo
- Publication number
- JP2019073656A JP2019073656A JP2017202082A JP2017202082A JP2019073656A JP 2019073656 A JP2019073656 A JP 2019073656A JP 2017202082 A JP2017202082 A JP 2017202082A JP 2017202082 A JP2017202082 A JP 2017202082A JP 2019073656 A JP2019073656 A JP 2019073656A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium sulfate
- magnesium oxide
- magnesium
- boron
- fluorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims description 17
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims abstract description 128
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims abstract description 64
- 235000019341 magnesium sulphate Nutrition 0.000 claims abstract description 64
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 63
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000002893 slag Substances 0.000 claims description 44
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract description 49
- 239000011737 fluorine Substances 0.000 abstract description 49
- 229910052731 fluorine Inorganic materials 0.000 abstract description 49
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 47
- 229910052796 boron Inorganic materials 0.000 abstract description 47
- 239000002689 soil Substances 0.000 abstract description 30
- 239000000126 substance Substances 0.000 abstract description 25
- 230000007613 environmental effect Effects 0.000 abstract description 21
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 238000010828 elution Methods 0.000 description 34
- 239000011777 magnesium Substances 0.000 description 25
- 239000002956 ash Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 150000002681 magnesium compounds Chemical class 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- 239000010881 fly ash Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000010882 bottom ash Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000010849 combustible waste Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、不溶化材及び被不溶化物の不溶化方法に関する。 The present invention relates to an insolubilizing material and a method for insolubilizing an insolubilized material.
金属の製錬によってスラグが排出される。金属の中で鉄の生産量は全世界で年間14.7億トン(推計)である。これは2番目に多いアルミニウムの約20倍であり、突出して多い。したがって、スラグの中では鉄の製錬によって排出される鉄鋼スラグが圧倒的に多く、日本国内の年間排出量は4000万トンである。したがって、単にスラグといった場合、鉄鋼スラグを指すことも多い。鉄鋼スラグは、高炉にて銑鉄を製造する過程で排出される高炉スラグと、転炉又は電気炉にて銑鉄又は屑鉄等を用いて鋼を製造する過程で排出される製鋼スラグとに大別される。製鋼スラグは転炉にて排出される転炉スラグと電気炉にて排出される電気炉スラグを含む。 Slag is discharged by metal smelting. Of metals, iron production is estimated at 1.47 billion tons annually worldwide. This is about 20 times that of the second most abundant aluminum and is often more prominent. Therefore, among slags, steel slag discharged by smelting iron is overwhelmingly large, and the annual discharge in Japan is 40 million tons. Therefore, simply referring to slag often refers to steel slag. Iron and steel slag is roughly classified into blast furnace slag discharged in the process of producing pig iron in blast furnace and steel slag discharged in the process of producing steel using pig iron or scrap iron in a converter or electric furnace. Ru. Steelmaking slag includes converter slag discharged in the converter and electric furnace slag discharged in the electric furnace.
また、可燃物の燃焼によって焼却灰が排出される。焼却灰は、例えば、石炭火力発電等から排出される石炭灰や、可燃ごみの焼却によって排出される焼却残渣等を含む。さらに、焼却灰は、その形態によってフライアッシュ(飛灰)やボトムアッシュ(主灰)という分け方をされることもある。 In addition, incineration ash is discharged by the combustion of combustibles. Incineration ash includes, for example, coal ash emitted from coal-fired power generation and the like, incineration residue emitted by incineration of combustible waste, and the like. Furthermore, incineration ash may be divided into fly ash (fly ash) and bottom ash (main ash) depending on its form.
スラグや焼却灰は産業活動等によって大量に排出されているため、できる限りリサイクルされることが望ましい。最終処分場の確保が年々難しくなっており、リサイクルされないスラグや焼却灰の廃棄処理量を軽減する必要があるからである。推計によると、日本では、産業廃棄物の全排出量のうち、52%がリサイクルされており、42%が中間処理等において減量化されており、5.7%が最終処分されているとされる。スラグや焼却灰も道路の路盤材やコンクリート骨材として広くリサイクルされていれる。鉄鋼スラグでは、高炉スラグは水硬性を有するため100年ほど前から高炉セメントとして利用されている等、現在は全量がリサイクルされている。水硬性を有さない製鋼スラグは利用が遅れたが、今では95%以上がリサイクルされており、さらに全量のリサイクルが望まれる。 Slag and incinerated ash are discharged in large quantities by industrial activities etc., so it is desirable that they be recycled as much as possible. Securing the final disposal site is becoming more difficult every year, and it is necessary to reduce the amount of waste disposal of non-recycled slag and incinerated ash. According to estimates, in Japan, 52% of total industrial waste emissions are recycled, 42% are reduced by intermediate treatment etc., and 5.7% are considered to be finalized. Ru. Slag and incinerated ash are also widely recycled as road base materials and concrete aggregates for roads. In the case of iron and steel slag, blast furnace slag is used as blast furnace cement for about 100 years because it has hydraulic properties, and currently all of it is recycled. The use of steelmaking slag which does not have hydraulic properties has been delayed, but now 95% or more is recycled, and further, it is desirable to recycle the entire amount.
スラグや焼却灰のリサイクルは、人の健康を保護し、生活環境を保全するものでなければならない。そこで、土壌汚染対策法において、人の健康に被害を生ずる恐れが大きいものとして特定有害物質が指定され、土壌環境基準において、これらの特定有害物質の許容溶出量等が定められている。特定有害物質は、揮発性有機化合物に該当する物質が第一種、重金属等に該当する物質が第二種、農薬等に該当する物質が第三種に分類される。第二種特定有害物質は、カドミウム(Cd)及びその化合物、六価クロム(Cr6+)化合物、シアン(CN)化合物、水銀(Hg)及びその化合物、セレン(Se)及びその化合物、鉛(Pb)及びその化合物、砒素(As)及びその化合物、ふっ素(F)及びその化合物、ほう素(B)及びその化合物の9種類で構成され、特に、砒素、ふっ素、ほう素等の陰イオン型は不溶化が難しいとされている。 Recycling of slag and incineration ash should protect human health and preserve the living environment. Therefore, in the Soil Contamination Countermeasures Law, specific harmful substances are designated as those which are likely to cause damage to human health, and in the soil environmental standards, allowable dissolution amounts of these specific harmful substances are defined. Specific harmful substances are classified into Class 1 as substances corresponding to volatile organic compounds, Type 2 as substances corresponding to heavy metals etc., and Type 3 as substances corresponding to pesticides etc. The second class of specified harmful substances includes cadmium (Cd) and its compounds, hexavalent chromium (Cr 6+ ) compounds, cyan (CN) compounds, mercury (Hg) and its compounds, selenium (Se) and its compounds, lead (Pb And its compound, arsenic (As) and its compound, fluorine (F) and its compound, boron (B) and its compound, and in particular, anionic types such as arsenic, fluorine, boron and the like It is believed that insolubilization is difficult.
特許文献1には、土壌、焼却灰等に含まれる有害物質を不溶化するための不溶化剤が記載されている。この不溶化剤は酸化マグネシウム100質量部に対して2〜100質量部の珪酸アルカリ金属塩を含有する。この不溶化剤を用いると、ふっ素とほう素の溶出量は土壌環境基準の0.8mg/L以下と1mg/L以下をそれぞれ満足するものの、十分とはいえない。 Patent Document 1 describes an insolubilizer for insolubilizing harmful substances contained in soil, incinerated ash and the like. This insolubilizer contains 2 to 100 parts by mass of an alkali metal silicate salt with respect to 100 parts by mass of magnesium oxide. When this insolubilizer is used, the elution amounts of fluorine and boron satisfy the soil environment standard of 0.8 mg / L or less and 1 mg / L or less, respectively, but are not sufficient.
特許文献2には、土壌、焼却灰、スラグ等に含まれるふっ素、ほう素の溶出抑制を行うための不溶化剤が記載されている。この不溶化剤はアルミニウム含有鉱物粉末・鉱石粉末を含有し、さらに、マグネシウム化合物を含み、マグネシウム化合物が軽焼マグネシア、軽焼ドロマイト、硫酸マグネシウム、塩化マグネシウムのいずれかであり、軽焼マグネシアと硫酸マグネシウムの両者を含むことはない。この不溶化剤を用いると、ふっ素とほう素の溶出量は土壌環境基準を満足するものの、十分とはいえない。 Patent Document 2 describes an insolubilizer for suppressing the elution of fluorine and boron contained in soil, incinerated ash, slag and the like. This insolubilizer contains aluminum-containing mineral powder and ore powder, and further contains a magnesium compound, and the magnesium compound is any of light-burned magnesia, light-burned dolomite, magnesium sulfate, or magnesium chloride, light-burned magnesia and magnesium sulfate Never include both. When this insolubilizer is used, although the elution amounts of fluorine and boron satisfy the soil environmental standard, it can not be said that they are sufficient.
特許文献3には、厨芥焼却により得られる生成物を安定化及び固化する方法が記載されている。この方法は、例えば、厨芥焼却により得られた1トンのフライアッシュを安定化及び固化するために、460kgの高炉スラグ、60kgの酸化マグネシウム、50kgの硫酸マグネシウム、水600L及び活性炭15kgを含む組成物を混合する。しかし、この方法は固定化のための組成物が大量に必要であるとともに、ふっ素とほう素の溶出量は不明である。 Patent Document 3 describes a method for stabilizing and solidifying a product obtained by firewood burning. This method comprises, for example, a composition comprising 460 kg of blast furnace slag, 60 kg of magnesium oxide, 50 kg of magnesium sulfate, 600 l of water and 15 kg of activated carbon in order to stabilize and solidify one ton of fly ash obtained by firewood burning. Mix. However, this method requires a large amount of a composition for immobilization, and the elution amounts of fluorine and boron are unknown.
本発明の幾つかの態様は、添加量が少量であっても、スラグ(主として電気炉スラグ)と焼却灰から選ばれる1又は2の被不溶化物からの第二種特定有害物質、特に、ふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる不溶化材及びその不溶化材を用いた被不溶化物の不溶化方法を提供することを目的とする。 Some embodiments of the present invention, even when added in small amounts, are second class specified harmful substances from one or two insolubilised substances selected from slag (mainly electric furnace slag) and incineration ash, particularly fluorine An object of the present invention is to provide an insolubilizing material capable of reducing the elution amount of boron and the like to much less than the soil environmental standard, and an insolubilizing method of an insolubilized material using the insolubilizing material.
(1)本発明の第1の態様は、硫酸マグネシウムと、酸化マグネシウムとを含有し、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であることを特徴とする不溶化材に関する。 (1) A first aspect of the present invention is characterized in that it contains magnesium sulfate and magnesium oxide, and the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more. It relates to an insolubilizing material.
このような不溶化材を、スラグと焼却灰から選ばれる1又は2の被不溶化物に添加、混合すると、不溶化材の添加量が少量であっても、被不溶化物からのふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。その正確なメカニズムは不明であるが、以下のようなメカニズムが考えられる。即ち、硫酸マグネシウムは、20℃の水への溶解度が0.1〜35g/100gH2Oであり、かつ、潮解性を有さないことから、被不溶化物中の水と反応してMg2+を長期にわたって安定的に供給することができ、主に、Mg供給源として作用すると考えられる。また、酸化マグネシウムは、20℃の水への溶解度が0.1g/100gH2O未満であることから、被不溶化物を弱塩基性(pHが10〜12程度)に長期にわたって安定的に保持することができ、主に、pH調整剤として作用すると考えられる。Mg2+は、弱塩基性では被不溶化物中の水と反応して難溶性のマグネシウム化合物(例えば、Mg(OH)2)を形成し、その中にふっ素やほう素等を取り込み、固定化する。硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であると、Mg供給源が相対的に多く、Mg2+の供給量が多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とが促進されると考えられる。その結果、不溶化材の添加量が少量であっても、スラグと焼却灰から選ばれる1又は2の被不溶化物からのふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 When such an insolubilizing material is added to and mixed with the to-be-insolubilized substance 1 or 2 selected from slag and incineration ash, fluorine or boron or the like from the to-be-insoluble substance is added even if the amount of the insolubilizing material is small. The leaching amount can be significantly less than the soil environmental standard. Although the exact mechanism is unknown, the following mechanism can be considered. That is, magnesium sulfate has a solubility in water at 20 ° C. of 0.1 to 35 g / 100 g H 2 O and does not have deliquescent, so it reacts with water in the insoluble matter to react Mg 2+ with water. It can be stably supplied over a long period of time, and is considered to act mainly as an Mg source. In addition, since magnesium oxide has a solubility of less than 0.1 g / 100 g H 2 O in water at 20 ° C., it stably holds the insolubilized material weakly basic (pH is about 10 to 12) over a long period of time It is thought that it can mainly act as a pH adjuster. In weakly basic form, Mg 2+ reacts with water in the insoluble matter to form a sparingly soluble magnesium compound (eg, Mg (OH) 2 ), and incorporates fluorine, boron, etc. into it and immobilizes it . If the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more, the amount of Mg source is relatively large, and the supply amount of Mg 2+ is large, so formation of a poorly soluble magnesium compound And, it is thought that fixation of fluorine, boron, etc. in it is promoted. As a result, even if the addition amount of the insolubilizing material is small, the elution amount of fluorine, boron and the like from the insolubilized substance 1 or 2 selected from slag and incineration ash is significantly reduced compared to the soil environmental standard. Can.
(2)本発明の第1の態様では、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1以上が好ましく、1.5以上がより好ましい。また、本発明の第1の態様では、硫酸マグネシウムがMgSO4・7H2Oであることが好ましい。Mg2+の供給量が相対的にさらに多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とがさらに促進されると考えられる。したがって、不溶化材の添加量をさらに少量にしてもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 (2) In the first aspect of the present invention, the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is preferably 1 or more, more preferably 1.5 or more. Further, in the first aspect of the present invention, it is preferable that the magnesium sulfate be MgSO 4 · 7H 2 O. Since the supply amount of Mg 2+ is relatively further increased, it is considered that the formation of the hardly soluble magnesium compound and the immobilization of fluorine, boron and the like into the compound are further promoted. Therefore, even if the addition amount of the insolubilizer is further reduced, the elution amount of fluorine, boron and the like can be significantly reduced compared to the soil environmental standard.
(3)本発明の第2の態様は、硫酸マグネシウムと、酸化マグネシウムとを被不溶化物に添加、混合する被不溶化物の不溶化方法であって、被不溶化物は、スラグと焼却灰から選ばれる1又は2であり、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であり、硫酸マグネシウムと酸化マグネシウムの添加量の和が、被不溶化物と硫酸マグネシウムと酸化マグネシウムとの合計量に対して16質量%以下であることを特徴とする被不溶化物の不溶化方法に関する。また、本発明の第2の態様では、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1以上が好ましく、1.5以上がより好ましい。さらに、本発明の第2の態様では、硫酸マグネシウムがMgSO4・7H2Oであることが好ましい。 (3) The second aspect of the present invention is a method of insolubilizing an insolubilized substance by adding and mixing magnesium sulfate and magnesium oxide to the insolubilized substance, wherein the insolubilized substance is selected from slag and incineration ash 1 or 2, the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more, and the sum of the addition amounts of magnesium sulfate and magnesium oxide is the insoluble matter, magnesium sulfate and magnesium oxide It is 16 mass% or less with respect to the total amount of these, and the insolubilization method of the insolubilized thing characterized by the above-mentioned. In the second aspect of the present invention, the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is preferably 1 or more, more preferably 1.5 or more. Furthermore, in the second aspect of the present invention, the magnesium sulfate is preferably MgSO 4 · 7H 2 O.
第1の態様の不溶化材は硫酸マグネシウムと酸化マグネシウムとを含み、これをスラグと焼却灰から選ばれる1又は2の被不溶化物に添加、混合することにより、不溶化材の添加量が被不溶化物と不溶化材との合計量に対して16質量%以下であってもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 The insolubilizing material according to the first aspect includes magnesium sulfate and magnesium oxide, and this is added to and mixed with one or two insolubilizing substances selected from slag and incineration ash, whereby the amount of the insolubilizing material added is to be insolubilizing Even if it is 16 mass% or less with respect to the total amount of and an insolubilizing material, the elution amount of fluorine, boron, etc. can be made much smaller than soil environmental standard.
(4)本発明の第2の態様では、被不溶化物は、スラグであることが好ましく、塩基性であることがさらに好ましい。被不溶化物がスラグ又は塩基性であると、Mg2+が被不溶化物中の水と反応して難溶性のマグネシウム化合物(例えば、Mg(OH)2)を形成しやすく、ふっ素やほう素等の固定化が促進されると考えられる。したがって、pH調整剤である酸化マグネシウムの添加量を減らしてもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 (4) In the second aspect of the present invention, the insolubilized material is preferably a slag, and more preferably basic. If the insoluble matter is slag or basic, Mg 2+ easily reacts with water in the insoluble matter to form a poorly soluble magnesium compound (eg, Mg (OH) 2 ), such as fluorine or boron. It is believed that immobilization is promoted. Therefore, even if the addition amount of magnesium oxide which is a pH adjuster is reduced, the elution amount of fluorine, boron and the like can be significantly reduced compared to the soil environment standard.
(5)本発明の第2の態様では、不溶化材の添加量は、被不溶化物と不溶化材との合計量に対して10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましい。不溶化材の添加量を大幅に削減してもふっ素やほう素等の溶出量を土壌環境基準よりも少なくすることができる。 (5) In the second aspect of the present invention, the addition amount of the insolubilizing material is preferably 10% by mass or less, more preferably 8% by mass or less, based on the total amount of the insolubilized material and the insolubilizing agent, and 5% by mass The following are more preferable, and 3 mass% or less is particularly preferable. Even if the addition amount of the insolubilizing material is significantly reduced, the elution amount of fluorine or boron can be made smaller than the soil environmental standard.
以下、本発明の好適な実施形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Note that the present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all of the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.
(1)不溶化材
本実施形態の不溶化材は、硫酸マグネシウムと、酸化マグネシウムとを含有し、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上である。
(1) Insolubilizing Material The insolubilizing material of the present embodiment contains magnesium sulfate and magnesium oxide, and the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more.
このような不溶化材を被不溶化物に添加、混合すると、不溶化材の添加量が少量であっても、スラグと焼却灰から選ばれる1又は2の被不溶化物からのふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。その正確なメカニズムは不明であるが、以下のようなメカニズムが考えられる。即ち、硫酸マグネシウムは、20℃の水への溶解度が0.1〜35g/100gH2O(化学便覧改訂第5版 基礎編II表9.32によると25.2g/100gH2O)であり、比較的大きく、かつ、潮解性を有さないことから、被不溶化物中の水と反応してMg2+を長期にわたって安定的に供給することができ、主に、Mg供給源として作用すると考えられる。また、酸化マグネシウムは、20℃の水への溶解度が0.1g/100gH2O未満(化学大辞典(共立出版)によると0.62mg/100gH2O)であり、非常に小さいことから、被不溶化物を弱塩基性(pHが10〜12程度)に長期にわたって安定的に保持することができ、主に、pH調整剤として作用すると考えられる。Mg2+は、弱塩基性では被不溶化物中の水と反応して難溶性のマグネシウム化合物(例えば、Mg(OH)2)を形成し、その中にふっ素やほう素等を取り込み、固定化する。硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であると、Mg供給源が相対的に多く、Mg2+の供給量が多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とが促進されると考えられる。その結果、不溶化材の添加量が少量であっても、スラグと焼却灰から選ばれる1又は2の被不溶化物からのふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 When such an insolubilizing material is added to and mixed with the insolubilized material, elution of fluorine, boron and the like from the insolubilized material of 1 or 2 selected from slag and incineration ash is possible even if the added amount of the insolubilizing material is small. The amount can be significantly less than the soil environmental standard. Although the exact mechanism is unknown, the following mechanism can be considered. That is, the magnesium sulfate is the solubility in 20 ° C. water 0.1~35g / 100gH 2 O (According to Chemical Handbook Revised Fifth Edition Fundamentals II Table 9.32 25.2g / 100gH 2 O), Because it is relatively large and deliquescent, it can react stably with water in the insolubilized material to stably supply Mg 2+ over a long period of time, and it is thought that it mainly acts as a source of Mg . Furthermore, magnesium oxide is the solubility in 20 ° C. water 0.1g / 100gH less than 2 O (Chemical Dictionary (according to Kyoritsu Shuppan) 0.62mg / 100gH 2 O), from very small, the It is believed that the insolubilized material can be stably kept weakly basic (pH is about 10 to 12) over a long period of time and mainly acts as a pH adjuster. In weakly basic form, Mg 2+ reacts with water in the insoluble matter to form a sparingly soluble magnesium compound (eg, Mg (OH) 2 ), and incorporates fluorine, boron, etc. into it and immobilizes it . If the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more, the amount of Mg source is relatively large, and the supply amount of Mg 2+ is large, so formation of a poorly soluble magnesium compound And, it is thought that fixation of fluorine, boron, etc. in it is promoted. As a result, even if the addition amount of the insolubilizing material is small, the elution amount of fluorine, boron and the like from the insolubilized substance 1 or 2 selected from slag and incineration ash is significantly reduced compared to the soil environmental standard. Can.
硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1以上が好ましく、1.5以上がより好ましい。また、硫酸マグネシウムがMgSO4・7H2Oであることが好ましい。Mg2+の供給量が相対的にさらに多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とがさらに促進されると考えられる。したがって、不溶化材の添加量をさらに少量にしてもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 The mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is preferably 1 or more, more preferably 1.5 or more. Further, it is preferable that the magnesium sulfate is MgSO 4 · 7H 2 O. Since the supply amount of Mg 2+ is relatively further increased, it is considered that the formation of the hardly soluble magnesium compound and the immobilization of fluorine, boron and the like into the compound are further promoted. Therefore, even if the addition amount of the insolubilizer is further reduced, the elution amount of fluorine, boron and the like can be significantly reduced compared to the soil environmental standard.
(2)被不溶化物の不溶化方法
本実施形態の被不溶化物の不溶化方法は、硫酸マグネシウムと、酸化マグネシウムとを被不溶化物に添加、混合する被不溶化物の不溶化方法であって、被不溶化物は、スラグと焼却灰から選ばれる1又は2であり、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であり、硫酸マグネシウムと酸化マグネシウムの添加量の和が、被不溶化物と硫酸マグネシウムと酸化マグネシウムとの合計量に対して16質量%以下である。硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1以上が好ましく、1.5以上がより好ましい。さらに、本発明の第2の態様では、硫酸マグネシウムがMgSO4・7H2Oであることが好ましい。
(2) Insolubilizing Method of Insolubilized Material The insolubilizing method of the insoluble material according to this embodiment is an insolubilizing method of an insoluble material by adding and mixing magnesium sulfate and magnesium oxide to the insolubilized material. Is 1 or 2 selected from slag and incineration ash, the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more, and the sum of the amounts of magnesium sulfate and magnesium oxide is It is 16 mass% or less with respect to the total amount of an insoluble matter, magnesium sulfate, and magnesium oxide. The mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is preferably 1 or more, more preferably 1.5 or more. Furthermore, in the second aspect of the present invention, the magnesium sulfate is preferably MgSO 4 · 7H 2 O.
本実施形態の不溶化材は硫酸マグネシウムと酸化マグネシウムとを含み、これをスラグと焼却灰から選ばれる1又は2の被不溶化物に添加、混合することにより、不溶化材の添加量が被不溶化物と不溶化材との合計量に対して16質量%以下であってもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 The insolubilizing material of the present embodiment contains magnesium sulfate and magnesium oxide, and the insolubilizing material is added to the insolubilizing material by adding and mixing it with one or two insolubilizing materials selected from slag and incineration ash. Even if it is 16 mass% or less with respect to the total amount with an insolubilizing material, the elution amount of fluorine, boron, etc. can be made much smaller than a soil environmental standard.
被不溶化物は、スラグであることが好ましく、塩基性であることがさらに好ましい。被不溶化物がスラグ又は塩基性であると、Mg2+が被不溶化物中の水と反応して難溶性のマグネシウム化合物(例えば、Mg(OH)2)を形成しやすく、ふっ素やほう素等の固定化が促進されると考えられる。したがって、pH調整剤である酸化マグネシウムの添加量を減らしてもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 The insoluble matter is preferably a slag, and more preferably basic. If the insoluble matter is slag or basic, Mg 2+ easily reacts with water in the insoluble matter to form a poorly soluble magnesium compound (eg, Mg (OH) 2 ), such as fluorine or boron. It is believed that immobilization is promoted. Therefore, even if the addition amount of magnesium oxide which is a pH adjuster is reduced, the elution amount of fluorine, boron and the like can be significantly reduced compared to the soil environment standard.
不溶化材の添加量は、被不溶化物と不溶化材との合計量に対して10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましい。不溶化材の添加量を大幅に削減してもふっ素やほう素等の溶出量を土壌環境基準よりも少なくすることができる。 The addition amount of the insolubilizing material is preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 5% by mass or less, particularly preferably 3% by mass or less based on the total amount of the insolubilized material and the insolubilizing agent. . Even if the addition amount of the insolubilizing material is significantly reduced, the elution amount of fluorine or boron can be made smaller than the soil environmental standard.
(1)実施例1〜4
酸化マグネシウムと硫酸マグネシウムとを含む不溶化材を作成する。酸化マグネシウムは宇部マテリアルズ株式会社製スーパーMAGを用いる。硫酸マグネシウムはMgSO4・7H2Oを用いる。実施例1〜4の不溶化材の、硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1.67(硫酸マグネシウム:酸化マグネシウム=5:3)とする。この不溶化材をスラグ(電気炉スラグ)に添加、混合して試料を作成する。実施例1〜4のスラグと不溶化材との合計量(試料)に対する不溶化材の添加割合はそれぞれ16質量%、8質量%、5質量%、3質量%とする。
(1) Examples 1 to 4
An insolubilizer including magnesium oxide and magnesium sulfate is prepared. For magnesium oxide, Super MAG manufactured by Ube Materials Inc. is used. Magnesium sulfate uses MgSO 4 · 7H 2 O. The mass ratio (magnesium sulfate / magnesium oxide) of magnesium sulfate to magnesium oxide in the insolubilizers of Examples 1 to 4 is 1.67 (magnesium sulfate: magnesium oxide = 5: 3). This insolubilizer is added to slag (electric furnace slag) and mixed to prepare a sample. The addition ratio of the insolubilizing material to the total amount (sample) of the slag and the insolubilizing material of Examples 1 to 4 is 16% by mass, 8% by mass, 5% by mass, and 3% by mass, respectively.
試料からのふっ素及びほう素の溶出量を以下の手順で測定する。即ち、試料を2mmの目のふるいを通過させ、塩酸でpH調整した溶媒に質量体積比10%の割合で混合し、6時間振とう、10〜30分間静置、20分間遠心分離し、上澄み液をろ過したろ液を検液とする。検液ごとに平成15年環境省告示第18号別表記載の測定方法に準じてふっ素及びほう素の溶出量を測定する。ふっ素の溶出量の測定にはランタン−アリザリンコンプレキソン吸光光度法を用い、ほう素の溶出量の測定にはICP発光分光分析法、ICP質量分析法を用いる。実施例1〜4の実験条件及び測定結果を表1に示す。比較のため、ふっ素及びほう素の溶出量の土壌環境基準を表1に示す。なお、ふっ素の溶出量の検出限界の0.08mg/Lであり、「不検出」は0.08mg/L未満であることを意味する。 The elution amount of fluorine and boron from the sample is measured according to the following procedure. That is, the sample is passed through a 2 mm sieve, mixed with a pH-adjusted solvent with hydrochloric acid at a mass volume ratio of 10%, shaken for 6 hours, allowed to stand for 10 to 30 minutes, centrifuged for 20 minutes, and supernatant The filtrate obtained by filtering the solution is used as a test solution. For each test solution, measure the elution amount of fluorine and boron according to the measurement method described in Annex No. 18 of Ministry of the Environment Notification No. 18 of 2003. For the measurement of the elution amount of fluorine, the lanthanum-alizarin complexone spectrophotometer is used, and for the measurement of the elution amount of boron, the ICP emission spectrometry and the ICP mass spectrometry are used. The experimental conditions and the measurement results of Examples 1 to 4 are shown in Table 1. The soil environmental standard of the elution amount of fluorine and boron is shown in Table 1 for comparison. In addition, it is 0.08 mg / L of the detection limit of the elution amount of fluorine, and "not detected" means being less than 0.08 mg / L.
(2)比較例1〜4
比較例1では不溶化材をスラグに添加せず、比較例2〜4では下記不溶化材を添加、混合して試料を作成する。即ち、比較例2、3に用いる不溶化材は酸化マグネシウム(スーパーMAG)のみとし、比較例4に用いる不溶化材は硫酸マグネシウムのみとする。また、比較例2〜4のスラグと不溶化材との合計量(試料)に対する不溶化材の添加割合はそれぞれ10質量%、5質量%、10質量%とする。試料からのふっ素及びほう素の溶出量を、実施例1〜4と同様の手順で測定する。比較例1〜4の実験条件及び測定結果を表1に示す。
(2) Comparative Examples 1 to 4
In Comparative Example 1, the insolubilizing material is not added to the slag, and in Comparative Examples 2 to 4, the following insolubilizing material is added and mixed to prepare a sample. That is, the insolubilizing material used in Comparative Examples 2 and 3 is only magnesium oxide (Super MAG), and the insolubilizing material used in Comparative Example 4 is only magnesium sulfate. Moreover, the addition ratio of the insolubilizing material with respect to the total amount (sample) of the slag of Comparative Examples 2-4 is 10 mass%, 5 mass%, and 10 mass%, respectively. The elution amounts of fluorine and boron from the sample are measured in the same manner as in Examples 1-4. The experimental conditions and the measurement results of Comparative Examples 1 to 4 are shown in Table 1.
(3)実施例5及び6
実施例5及び6では、添加割合が最小(3質量%)の実施例4の条件でスラグに不溶化材を添加、混合して試料を作成し、不溶化効果の長期安定性の指標として、それぞれ以下に示す酸又はアルカリの暴露試験を行う。
(3) Examples 5 and 6
In Examples 5 and 6, the insolubilizing agent is added to the slag under the conditions of Example 4 in which the addition ratio is the minimum (3% by mass) and mixed to form a sample, and each of the followings is used as an indicator of long-term stability Perform the acid or alkali exposure test shown in
(3−1)実施例5:酸暴露試験
試料を2mmの目のふるいを通過させ、JIS K8951に規定する硫酸と水で0.769mmol/Lに調製した硫酸水溶液に質量体積比10%の割合で混合し、かつ、その混合液が500mL以上となるようにする。
(3-1) Example 5: Acid exposure test A sample is passed through a 2 mm mesh sieve, and a sulfuric acid aqueous solution prepared at 0.769 mmol / L with sulfuric acid and water specified in JIS K 8951 has a mass ratio of 10% Mix so that the mixture is at least 500 mL.
(3−2)実施例6:アルカリ暴露試験
試料を2mmの目のふるいを通過させ、JIS K8575に規定する水酸化カルシウムと水で3.85mmol/Lに調製した水酸化カルシウム水溶液に質量体積比10%の割合で混合し、かつ、その混合液が500mL以上となるようにする。
(3-2) Example 6: Alkali Exposure Test A calcium hydroxide aqueous solution prepared by passing a sample through a 2 mm mesh sieve and adjusting to 3.85 mmol / L with calcium hydroxide and water specified in JIS K8575 Mix at a rate of 10%, and make the mixture 500 mL or more.
酸又はアルカリの暴露試験後のふっ素及びほう素の溶出量の測定は、実施例1〜4と同様の手順で行う。即ち、混合液を6時間振とう、10〜30分間静置、20分間遠心分離し、上澄み液をろ過したろ液を検液とする。検液ごとにふっ素及びほう素の溶出量を測定する。実施例5及び6の実験条件及び測定結果を表1に示す。 Measurement of the elution amount of fluorine and boron after the acid or alkali exposure test is carried out in the same manner as in Examples 1-4. That is, the mixed solution is shaken for 6 hours, allowed to stand for 10 to 30 minutes, centrifuged for 20 minutes, and the filtrate obtained by filtering the supernatant is used as a test solution. Measure the elution amount of fluorine and boron for each test solution. The experimental conditions and the measurement results of Examples 5 and 6 are shown in Table 1.
(4)測定結果
(4−1)実施例1〜4及び比較例1〜4
硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)1.67の実施例1〜4では、ふっ素とほう素の溶出量はそれぞれ不検出、0.2〜0.3mg/Lであり、いずれも土壌環境基準を大きく下回っている。また、不溶化材の添加量が3質量%(実施例4)と非常に少量であっても、添加量が5〜16質量%(実施例1〜3)の場合と同様に、スラグからのふっ素とほう素の溶出量を土壌環境基準よりも大幅に少なくすることができる。
(4) Measurement result (4-1) Examples 1-4 and comparative examples 1-4
In Examples 1 to 4 of the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) 1.67, the elution amounts of fluorine and boron are respectively not detected and 0.2 to 0.3 mg / L, Both are well below the soil environmental standards. Further, even if the amount of the insolubilizer added is as small as 3% by mass (Example 4), the fluorine from the slag is used as in the case where the amount of addition is 5 to 16% by mass (Examples 1 to 3) The amount of dissolved boron can be much less than the soil environmental standard.
一方、不溶化材無添加の比較例1ではふっ素とほう素の溶出量はそれぞれ1.3mg/Lと3.2mg/Lであり、いずれも土壌環境基準を大きく上回る。酸化マグネシウムのみを不溶化材として添加する比較例2、3では、ふっ素とほう素の溶出量はそれぞれ不検出と0.4〜0.5mg/Lであり、いずれも土壌環境基準を下回り、かなり改善しているものの、実施例1〜4には及ばない。硫酸マグネシウムのみを不溶化材として添加する比較例4では、ふっ素とほう素の溶出量はそれぞれ0.74mg/Lと2.2mg/Lであり、ふっ素の溶出量は土壌環境基準を下回るものの、ほう素の溶出量は土壌環境基準を満たさない。 On the other hand, in Comparative Example 1 in which no insolubilizing agent is added, the elution amounts of fluorine and boron are 1.3 mg / L and 3.2 mg / L, respectively, both exceeding the soil environment standard greatly. In Comparative Examples 2 and 3 in which only magnesium oxide is added as an insolubilizer, the elution amounts of fluorine and boron are respectively not detected and 0.4 to 0.5 mg / L, both of which are below the soil environment standard and significantly improved Although it does, it does not reach Examples 1-4. In Comparative Example 4 in which only magnesium sulfate is added as the insolubilizing agent, the elution amounts of fluorine and boron are 0.74 mg / L and 2.2 mg / L, respectively, and the elution amount of fluorine is lower than the soil environment standard, but The elution amount of element does not meet the soil environmental standard.
(4−2)実施例5及び6
酸及びアルカリ暴露試験後のふっ素とほう素の溶出量は、酸暴露が不検出及び0.5mg/Lであり、アルカリ暴露が0.11mg/L及び0.6mg/Lである。酸又はアルカリ暴露試験後にもかかわらず、いずれも、ふっ素とほう素の溶出量は土壌環境基準を依然として大きく下回る。
(4-2) Examples 5 and 6
The elution amount of fluorine and boron after the acid and alkali exposure test is that the acid exposure is not detected and 0.5 mg / L, and the alkali exposure is 0.11 mg / L and 0.6 mg / L. In spite of the acid or alkali exposure test, the amounts of fluorine and boron released are still far below the soil environmental standards.
(5)考察
正確なメカニズムは不明であるが、以下のようなメカニズムが考えられる。即ち、硫酸マグネシウムは、20℃の水への溶解度が0.1〜35g/100gH2O(化学便覧改訂第5版 基礎編II表9.32によると25.2g/100gH2O)であり、比較的大きく、かつ、潮解性を有さないことから、被不溶化物中の水と反応してMg2+を長期にわたって安定的に供給することができ、主に、Mg供給源として作用すると考えられる。また、酸化マグネシウムは、20℃の水への溶解度が0.1g/100gH2O未満(化学大辞典(共立出版)によると0.62mg/100gH2O)であり、非常に小さいことから、被不溶化物を弱塩基性(pHが10〜12程度)に長期にわたって安定的に保持することができ、主に、pH調整剤として作用すると考えられる。Mg2+は、弱塩基性では被不溶化物中の水と反応して難溶性のマグネシウム化合物(例えば、Mg(OH)2)を形成し、その中にふっ素やほう素等を取り込み、固定化する。硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であると、Mg供給源が相対的に多く、Mg2+の供給量が多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とが促進されると考えられる。その結果、不溶化材の添加量が少量であっても、スラグと焼却灰から選ばれる1又は2の被不溶化物からのふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。
(5) Discussion Although the exact mechanism is unknown, the following mechanism can be considered. That is, the magnesium sulfate is the solubility in 20 ° C. water 0.1~35g / 100gH 2 O (According to Chemical Handbook Revised Fifth Edition Fundamentals II Table 9.32 25.2g / 100gH 2 O), Because it is relatively large and deliquescent, it can react stably with water in the insolubilized material to stably supply Mg 2+ over a long period of time, and it is thought that it mainly acts as a source of Mg . Furthermore, magnesium oxide is the solubility in 20 ° C. water 0.1g / 100gH less than 2 O (Chemical Dictionary (according to Kyoritsu Shuppan) 0.62mg / 100gH 2 O), from very small, the It is believed that the insolubilized material can be stably kept weakly basic (pH is about 10 to 12) over a long period of time and mainly acts as a pH adjuster. In weakly basic form, Mg 2+ reacts with water in the insoluble matter to form a sparingly soluble magnesium compound (eg, Mg (OH) 2 ), and incorporates fluorine, boron, etc. into it and immobilizes it . If the mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more, the amount of Mg source is relatively large, and the supply amount of Mg 2+ is large, so formation of a poorly soluble magnesium compound And, it is thought that fixation of fluorine, boron, etc. in it is promoted. As a result, even if the addition amount of the insolubilizing material is small, the elution amount of fluorine, boron and the like from the insolubilized substance 1 or 2 selected from slag and incineration ash is significantly reduced compared to the soil environmental standard. Can.
硫酸マグネシウムの酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)は1以上が好ましく、1.5以上がより好ましい。Mg2+の供給量が相対的にさらに多くなるため、難溶性のマグネシウム化合物の形成と、その中へのふっ素やほう素等の固定化とがさらに促進されると考えられる。したがって、不溶化材の添加量をさらに少量にしてもふっ素やほう素等の溶出量を土壌環境基準よりも大幅に少なくすることができる。 The mass ratio of magnesium sulfate to magnesium oxide (magnesium sulfate / magnesium oxide) is preferably 1 or more, more preferably 1.5 or more. Since the supply amount of Mg 2+ is relatively further increased, it is considered that the formation of the hardly soluble magnesium compound and the immobilization of fluorine, boron and the like into the compound are further promoted. Therefore, even if the addition amount of the insolubilizer is further reduced, the elution amount of fluorine, boron and the like can be significantly reduced compared to the soil environmental standard.
なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書において、少なくとも一度、より広義又は同義の異なる用語とともに記載された用語は、明細書のいかなる箇所においても、その異なる用語に置き換えることができる。 Although the embodiment has been described in detail as described above, it will be readily understood by those skilled in the art that many modifications can be made without departing substantially from the novel matters and effects of the present invention. Therefore, all such modifications are included in the scope of the present invention. For example, in the specification, a term described at least once along with a broader or synonymous different term can be replaced with the different term at any place in the specification.
Claims (3)
前記硫酸マグネシウムの前記酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であることを特徴とする不溶化材。 Contains magnesium sulfate and magnesium oxide,
A mass ratio of the magnesium sulfate to the magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more.
前記被不溶化物は、スラグと焼却灰から選ばれる1又は2であり、
前記硫酸マグネシウムの前記酸化マグネシウムに対する質量比(硫酸マグネシウム/酸化マグネシウム)が0.85以上であり、
前記硫酸マグネシウムと前記酸化マグネシウムの添加量の和が、前記被不溶化物と前記硫酸マグネシウムと前記酸化マグネシウムとの合計量に対して16質量%以下であることを特徴とする被不溶化物の不溶化方法。 A method of insolubilizing an insolubilized material, wherein magnesium sulfate and magnesium oxide are added to and mixed with the insolubilized material,
The insoluble matter is one or two selected from slag and incineration ash,
The mass ratio of the magnesium sulfate to the magnesium oxide (magnesium sulfate / magnesium oxide) is 0.85 or more,
The insolubilized method of the insoluble matter characterized in that the sum of the addition amounts of the magnesium sulfate and the magnesium oxide is 16% by mass or less based on the total amount of the insoluble matter, the magnesium sulfate and the magnesium oxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017202082A JP6898201B2 (en) | 2017-10-18 | 2017-10-18 | Insolubilizing method for insolubilizing material and insolubilized material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017202082A JP6898201B2 (en) | 2017-10-18 | 2017-10-18 | Insolubilizing method for insolubilizing material and insolubilized material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019073656A true JP2019073656A (en) | 2019-05-16 |
JP6898201B2 JP6898201B2 (en) | 2021-07-07 |
Family
ID=66543044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017202082A Active JP6898201B2 (en) | 2017-10-18 | 2017-10-18 | Insolubilizing method for insolubilizing material and insolubilized material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6898201B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316967A (en) * | 1997-05-15 | 1998-12-02 | Katsuichi Kunimatsu | Soil solidification agent |
JP2001259570A (en) * | 2000-01-13 | 2001-09-25 | Hideaki Suito | Treatment technique for stabilizing industrial waste containing fluorine |
JP2005213277A (en) * | 2004-01-27 | 2005-08-11 | National Institute For Rural Engineering | Soil caking agent |
JP2005350636A (en) * | 2004-06-14 | 2005-12-22 | Ube Material Industries Ltd | Solidification material of soil |
WO2009001719A1 (en) * | 2007-06-25 | 2008-12-31 | Azmec Co., Ltd. | Insolubilizing agent for toxic substance, and method for insolubilization of toxic substance |
US20090118564A1 (en) * | 2007-11-01 | 2009-05-07 | Mccullough Thomas P | Method for Stabilization and/or Fixation of Leachable Metals |
JP2010215821A (en) * | 2009-03-17 | 2010-09-30 | Yoshizawa Lime Industry | Soil solidifier and soil solidification method |
CN102303041A (en) * | 2011-05-16 | 2012-01-04 | 刘阳生 | Composite heavy metal polluted soil in-situ fixing method |
JP2013163605A (en) * | 2012-02-09 | 2013-08-22 | Ube Industries Ltd | Method for suppressing elution of fluorine from steel slag, material for civil engineering and construction and production method thereof |
JP2014024728A (en) * | 2012-07-28 | 2014-02-06 | Shoji Iwahara | Method for producing solid body including magnesia-based binding material and paper sludge ash as main material, and the solid body |
WO2015064522A1 (en) * | 2013-10-28 | 2015-05-07 | 吉野石膏株式会社 | Insolubilizing material for specific hazardous substance and method for insolubilizing specific hazardous substance with same |
-
2017
- 2017-10-18 JP JP2017202082A patent/JP6898201B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316967A (en) * | 1997-05-15 | 1998-12-02 | Katsuichi Kunimatsu | Soil solidification agent |
JP2001259570A (en) * | 2000-01-13 | 2001-09-25 | Hideaki Suito | Treatment technique for stabilizing industrial waste containing fluorine |
JP2005213277A (en) * | 2004-01-27 | 2005-08-11 | National Institute For Rural Engineering | Soil caking agent |
JP2005350636A (en) * | 2004-06-14 | 2005-12-22 | Ube Material Industries Ltd | Solidification material of soil |
WO2009001719A1 (en) * | 2007-06-25 | 2008-12-31 | Azmec Co., Ltd. | Insolubilizing agent for toxic substance, and method for insolubilization of toxic substance |
US20090118564A1 (en) * | 2007-11-01 | 2009-05-07 | Mccullough Thomas P | Method for Stabilization and/or Fixation of Leachable Metals |
JP2010215821A (en) * | 2009-03-17 | 2010-09-30 | Yoshizawa Lime Industry | Soil solidifier and soil solidification method |
CN102303041A (en) * | 2011-05-16 | 2012-01-04 | 刘阳生 | Composite heavy metal polluted soil in-situ fixing method |
JP2013163605A (en) * | 2012-02-09 | 2013-08-22 | Ube Industries Ltd | Method for suppressing elution of fluorine from steel slag, material for civil engineering and construction and production method thereof |
JP2014024728A (en) * | 2012-07-28 | 2014-02-06 | Shoji Iwahara | Method for producing solid body including magnesia-based binding material and paper sludge ash as main material, and the solid body |
WO2015064522A1 (en) * | 2013-10-28 | 2015-05-07 | 吉野石膏株式会社 | Insolubilizing material for specific hazardous substance and method for insolubilizing specific hazardous substance with same |
Also Published As
Publication number | Publication date |
---|---|
JP6898201B2 (en) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5697334B2 (en) | Heavy metal insolubilizer and method for insolubilizing heavy metal | |
JP4109017B2 (en) | Solidification and insolubilization methods for contaminated soil | |
JP5092203B2 (en) | Method for suppressing elution of fluorine and heavy metals from waste | |
JP2014047121A (en) | Coal ash granulated body and granulated body mixture | |
JP6271081B2 (en) | Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances | |
JPWO2019244856A1 (en) | Improvement method for heavy metal insolubilized solidifying material and contaminated soil | |
JP2017145294A (en) | Agent and method for inhibiting the elution of harmful material | |
JP2005313147A (en) | Method for processing incineration ash | |
JP2019073656A (en) | Insolubilizing agent and insolubilization method of material to be insolubilized | |
JP7305503B2 (en) | Appropriateness evaluation method for waste treatment and waste insolubilization treatment method | |
JP2008238150A (en) | Detoxification agent for contaminated soil and industrial waste containing hexavalent chromium | |
JP5913675B1 (en) | Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances | |
CN112495984B (en) | Hazardous waste solidification/stabilization comprehensive treatment method | |
Singh et al. | Utilization of industrial waste in concrete mixes—A review | |
JP2016125031A (en) | Method for effectively utilizing coal ash | |
JP7411429B2 (en) | Method for evaluating suitability of waste treatment and method for insolubilizing waste | |
JP2009006250A (en) | Manufacturing method of earthwork material and earthwork material | |
JP2018024767A (en) | Waste composition for soil modification and ground improving material using the same | |
JP2010053327A (en) | Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid | |
JP7436200B2 (en) | Insolubilization treatment method for heavy metals contained in waste | |
JPH09239340A (en) | Waste treating material and waste treating method | |
JP4826573B2 (en) | Hazardous substance elution inhibitor | |
JP6997042B2 (en) | Ground improvement material and ground improvement method | |
JP2017179215A (en) | Treatment material and treatment method for harmful substance | |
JP5429056B2 (en) | Detoxification method for basic solid waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180110 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191018 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200817 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6898201 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |