JP2019071706A - Magnetic fluid heat engine and device mounting the same - Google Patents

Magnetic fluid heat engine and device mounting the same Download PDF

Info

Publication number
JP2019071706A
JP2019071706A JP2017195546A JP2017195546A JP2019071706A JP 2019071706 A JP2019071706 A JP 2019071706A JP 2017195546 A JP2017195546 A JP 2017195546A JP 2017195546 A JP2017195546 A JP 2017195546A JP 2019071706 A JP2019071706 A JP 2019071706A
Authority
JP
Japan
Prior art keywords
heat
magnetic fluid
magnetic field
heat receiving
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017195546A
Other languages
Japanese (ja)
Inventor
恭輔 佐藤
Kyosuke Sato
恭輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017195546A priority Critical patent/JP2019071706A/en
Publication of JP2019071706A publication Critical patent/JP2019071706A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a structure for improving power conversion efficiency of a magnetic fluid heat engine.SOLUTION: A magnetic fluid heat engine comprises: magnetic fluid; a circulation passage of the magnetic fluid; a magnetic field application section arranged in the middle of the circulation passage; a heat receiving section and a non-heat receiving section, which are arranged in the magnetic field application section; a heat source connected to the heat receiving section; and magnetic field application means for applying a magnetic field to the magnetic field application section. The heat receiving section, the non-heat receiving section and the magnetic field application means are arranged so that driving force is generated in a direction where a value of an internal product of a vector becomes at least negative with respect to resultant force vector of gravity applied to the magnetic fluid in the heat receiving section and inertial force.SELECTED DRAWING: Figure 2

Description

本発明は、磁性流体熱機関及び磁性流体熱機関を搭載する機器に関し、特に磁性流体熱機関の動力変換部の構成に関するものである。   The present invention relates to a magnetic fluid heat engine and an apparatus equipped with the magnetic fluid heat engine, and more particularly to a configuration of a power converter of the magnetic fluid heat engine.

熱エネルギーにより循環流路中の磁性流体を循環させる磁性流体熱機関が提案されている。例えば特許文献1では、循環流路の一部分において磁場印加手段により磁場を発生させたうえで、加熱手段により磁場中の磁性流体に温度勾配を発生させることで、この部分を動力変換部として磁性流体を循環させる構成が開示されている。   A magnetic fluid heat engine has been proposed that circulates the magnetic fluid in the circulation channel by thermal energy. For example, in Patent Document 1, after a magnetic field is generated by a magnetic field application unit in a part of a circulation flow path, a temperature gradient is generated in a magnetic fluid in the magnetic field by a heating unit to make this part a power conversion unit. An arrangement for circulating the

特開平01−012852号公報Japanese Patent Application Publication No. 01-012852

従来、上記の磁性流体熱機関の動力変換効率に及ぼす重力の影響は言及されていなかった。ゆえに、機器内で磁性流体熱機関を配置する際の指針が明らかではないという課題があった。   Heretofore, the influence of gravity on the power conversion efficiency of the above-mentioned magnetic fluid heat engine has not been mentioned. Therefore, there was a problem that a guideline for arranging the magnetic fluid heat engine in the device was not clear.

そこで本発明では、磁性流体熱機関の動力変換効率に及ぼす重力の影響を明らかにし、動力変換効率を高めることを目的とする。   Therefore, the present invention aims to clarify the influence of gravity on the power conversion efficiency of a magnetic fluid heat engine and to enhance the power conversion efficiency.

上記目的を達成するために、本発明は、磁性流体と、前記磁性流体の循環流路と、前記循環流路の途中に配置される磁場印加部と、前記磁場印加部内に配置される受熱部及び非受熱部と、前記受熱部に接続される熱源と、前記磁場印加部に磁場を印加する磁場印加手段を備え、前記受熱部内の磁性流体に作用する重力及び慣性力の合力ベクトルに対して、ベクトルの内積の値が負となるような方向に駆動力を発生させるように前記受熱部と非受熱部及び磁場印加手段を配置することを特徴とする磁性流体熱機関を構成する。   In order to achieve the above object, according to the present invention, a magnetic fluid, a circulation channel of the magnetic fluid, a magnetic field application unit disposed in the middle of the circulation channel, and a heat receiving unit disposed in the magnetic field application unit And a non-heat receiving portion, a heat source connected to the heat receiving portion, and a magnetic field applying means for applying a magnetic field to the magnetic field applying portion, and the combined force vector of gravity and inertial force acting on the magnetic fluid in the heat receiving portion. The magnetic fluid heat engine is characterized in that the heat receiving portion, the non-heat receiving portion, and the magnetic field applying means are arranged so as to generate driving force in such a direction that the value of the inner product of the vector becomes negative.

本発明によれば、磁性流体熱機関の動力変換効率を高めることができる。   According to the present invention, the power conversion efficiency of the magnetic fluid heat engine can be enhanced.

磁性流体熱機関の概念的な構成を示す模式図。The schematic diagram which shows the notional structure of a magnetic fluid heat engine. 磁性流体熱機関の動力変換部の模式図。The schematic diagram of the motive power conversion part of a magnetic fluid heat engine. 磁性流体熱機関の動力変換部の応用例を示す模式図。The schematic diagram which shows the application example of the motive power conversion part of a magnetic fluid heat engine. 第一の実施例におけるレンズ交換式デジタルカメラの模式図。FIG. 1 is a schematic view of a lens-interchangeable digital camera according to a first embodiment. 第一の実施例におけるレンズ交換式デジタルカメラ内の座標定義を示す模式図。FIG. 5 is a schematic view showing coordinate definition in the interchangeable-lens type digital camera in the first embodiment. 第一の実施例における駆動力ベクトルがとるべき範囲を示す模式図。The schematic diagram which shows the range which the driving force vector in a 1st Example should take. 第一の実施例における代表重力ベクトルの決定方法を示す模式図。The schematic diagram which shows the determination method of the representation gravity vector in a 1st Example. 第二の実施例における液晶プロジェクタの模式図。The schematic diagram of the liquid crystal projector in 2nd Example. 第二の実施例における液晶プロジェクタの代表的な使用姿勢を示す模式図。FIG. 7 is a schematic view showing a typical use posture of the liquid crystal projector in the second embodiment. 第二の実施例における液晶プロジェクタ内の磁性流体熱機関の動力変換部の構成の第一例を示す模式図。FIG. 13 is a schematic view showing a first example of the configuration of the power conversion unit of the magnetic fluid heat engine in the liquid crystal projector in the second embodiment. 第二の実施例における液晶プロジェクタ内の磁性流体熱機関の動力変換部の構成の第二例を示す模式図。FIG. 13 is a schematic view showing a second example of the configuration of the power conversion unit of the magnetic fluid heat engine in the liquid crystal projector in the second embodiment. 第二の実施例における熱伝導方向の切替手段の構成例を示す模式図。The schematic diagram which shows the structural example of the switching means of the heat conduction direction in 2nd Example.

以下、本発明の好ましい実施の形態を添付の図面に基づいて詳細に説明する。図1は、磁性流体熱機関の概念的な構成を示す模式図である。図1において、100は磁性流体熱機関を、101は磁性流体を、102は磁性流体101の循環流路を、103は磁場印加手段を、104は熱源を、105は仕事手段を、106は放熱手段をそれぞれ示す。更に、102aは循環流路102中の磁場印加部を、102bは磁場印加部102a中の受熱部を、102cは磁場印加部102a中の非受熱部をそれぞれ示す。また、点線で囲った107は磁場印加手段103、熱源104、循環流路102の磁場印加部102aを含んだ部分の総称として、磁性流体熱機関100の動力変換部を示す。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. FIG. 1 is a schematic view showing a conceptual configuration of a magnetic fluid heat engine. In FIG. 1, 100 is a magnetic fluid heat engine, 101 is a magnetic fluid, 102 is a circulation flow path of magnetic fluid 101, 103 is a magnetic field application means, 104 is a heat source, 105 is a work means, 106 is a heat dissipation The means are shown respectively. Further, 102a indicates a magnetic field application unit in the circulation flow path 102, 102b indicates a heat receiving unit in the magnetic field application unit 102a, and 102c indicates a non-heat receiving unit in the magnetic field application unit 102a. In addition, a power conversion unit of the magnetic fluid heat engine 100 is shown as a generic term of a portion including the magnetic field application unit 103, the heat source 104, and the magnetic field application unit 102a of the circulation channel 102 surrounded by a dotted line.

また、108b、108cの矢印は循環流路102の受熱部102b及び非受熱部102c内の磁性流体101に作用する磁気体積力の代表的な向きと大きさを示し、108の矢印はそれらの力の合力としての駆動力を示す。その他の矢印は磁性流体101が循環流路102内を流れる方向を示す。以降も同様の矢印は磁性流体の流れる方向を示すものとする。   The arrows 108b and 108c indicate typical directions and magnitudes of the magnetic body force acting on the magnetic fluid 101 in the heat receiving portion 102b and the non-heat receiving portion 102c of the circulation flow path 102, and the arrows 108 indicate their forces. Indicates the driving force as a resultant force of The other arrows indicate the direction in which the magnetic fluid 101 flows in the circulation channel 102. The same arrows hereinafter indicate the flow direction of the magnetic fluid.

磁性流体熱機関は、動力変換部において熱源の熱エネルギーを磁性流体の運動エネルギーに変換する機関である。磁性流体熱機関には様々な用途がある。例えば、熱源に加熱手段を用いると、仕事手段で仕事を行う液送装置(ポンプ)として利用することができる。このポンプは可動部が存在しないため、騒音や振動を発生せず、またメカニカルシールも存在しないため、耐久性や漏れ、異物の混入等の問題が無いといった優れた特徴を有している。   The magnetic fluid heat engine is an engine that converts the heat energy of the heat source into kinetic energy of the magnetic fluid in the power conversion unit. Magnetic fluid heat engines have a variety of applications. For example, when a heating means is used as a heat source, it can be used as a liquid delivery apparatus (pump) which performs work by work means. Since this pump does not have a movable part, it does not generate noise or vibration, and there is no mechanical seal, so it has an excellent feature that there is no problem of durability, leakage, mixing of foreign matter, and the like.

また、熱源に放熱対象の電子部品を用いると、その熱により磁性流体を循環させ、放熱手段へ熱を輸送し放熱する自己循環式の液冷システムとして利用することができる。この液冷システムは別途電源を必要としないため省電力であり、余分な熱を発生しないという優れた特徴を有している。   In addition, when an electronic component to be dissipated is used as a heat source, it can be used as a self-circulating liquid cooling system that circulates a magnetic fluid by the heat, transports the heat to the heat dissipation means, and dissipates the heat. This liquid cooling system is power saving because it does not require a separate power supply, and has an excellent feature that it does not generate extra heat.

磁性流体熱機関における動力変換の原理は、先行文献にて開示されているため、詳しい図示を省略し簡潔に説明する。まず、磁性流体101を満たした循環流路102の一部分に磁場印加部102aを設けて、その内部に対して磁場印加手段103により磁場を発生させる。この際、磁場印加部のおよそ半分の領域を受熱部102b、もう一方の領域を非受熱部102cとして、これらの領域で専ら流路方向に沿い、互いに対向する向きの磁場が発生するようにする。   The principle of power conversion in the magnetic fluid heat engine is disclosed in the prior art, and therefore will not be described in detail and will be briefly described. First, the magnetic field application unit 102 a is provided in a part of the circulation flow path 102 filled with the magnetic fluid 101, and a magnetic field is generated by the magnetic field application unit 103 inside thereof. At this time, approximately half the area of the magnetic field application section is the heat receiving section 102b, and the other area is the non-heat receiving section 102c, and in these areas, magnetic fields are generated along the flow path direction and facing each other. .

すなわち、それぞれの領域における磁場の向きが、内部の磁性流体101がもう一方の領域の方に引き付けられる力(流路方向の磁気体積力108b及び108c)を受ける向きになるようにする。   That is, the direction of the magnetic field in each region is made to be the direction in which the magnetic fluid 101 inside is attracted to the other region (magnetic volume forces 108 b and 108 c in the flow direction).

次に、受熱部102bに対して熱源104により熱を印加し、内部の磁性流体101の温度を上昇させる。すると、磁性流体101は感温性により磁性が弱まるため、磁場から受ける磁気体積力108bも弱まる。これにより、磁場印加部102a中で受熱部102b内の磁性流体と、非受熱部102c内の磁性流体の間の磁気体積力の平衡が崩れるため、非受熱部から受熱部に向かって磁性流体が移動する力(駆動力108)が発生する。以上の原理により動力変換がなされ、これが磁性流体101中で連続的に伝搬することにより、磁性流体101が循環流路102内を循環する。   Next, heat is applied to the heat receiving portion 102b by the heat source 104 to raise the temperature of the magnetic fluid 101 inside. Then, since the magnetic fluid 101 becomes less magnetic by temperature sensitivity, the magnetic volume force 108 b received from the magnetic field also becomes weaker. As a result, the balance of the magnetic body force between the magnetic fluid in the heat receiving portion 102b and the magnetic fluid in the non-heat receiving portion 102c in the magnetic field applying portion 102a is broken, so that the magnetic fluid flows from the non heat receiving portion toward the heat receiving portion. A moving force (driving force 108) is generated. Power conversion is performed according to the above principle, and the magnetic fluid 101 circulates in the circulation flow channel 102 by continuously propagating in the magnetic fluid 101.

上記の原理に基づけば、磁性流体熱機関100の動力変換効率に及ぼす重力の影響は次のように考えることができる。   Based on the above principle, the influence of gravity on the power conversion efficiency of the magnetic fluid heat engine 100 can be considered as follows.

図2は、磁性流体熱機関100の動力変換部107の詳細な構成を示す模式図である。図2において、103a、103bはそれぞれ組み合わさることで磁場印加手段103を構成する磁石とヨークを示す。また、109の矢印は受熱部102b中の磁性流体101に作用する浮力を示す。   FIG. 2 is a schematic view showing a detailed configuration of the power conversion unit 107 of the magnetic fluid heat engine 100. As shown in FIG. In FIG. 2, reference numerals 103a and 103b respectively indicate a magnet and a yoke which constitute the magnetic field applying means 103. The arrow 109 indicates the buoyancy acting on the magnetic fluid 101 in the heat receiving portion 102b.

磁性流体熱機関100において、受熱部102b内の磁性流体101の温度を上昇させると、前述の原理により駆動力108が発生する傍らで、受熱部102b中では局所的に磁性流体の密度が減少するため、重力と逆方向の浮力109が発生する。仮にこの浮力109が、循環流路102方向において駆動力108と逆方向であった場合、駆動力は減衰するため、磁性流体熱機関100の動力変換効率は低くなる。   In the magnetic fluid heat engine 100, when the temperature of the magnetic fluid 101 in the heat receiving portion 102b is increased, the density of the magnetic fluid locally decreases in the heat receiving portion 102b while the driving force 108 is generated according to the principle described above. Because of this, the gravity and the buoyancy 109 in the opposite direction are generated. If this buoyancy 109 is in the direction opposite to the driving force 108 in the direction of the circulation flow path 102, the driving force is attenuated, so the power conversion efficiency of the magnetic fluid heat engine 100 becomes low.

一方で、駆動力と同方向であった場合は、両者が加わることで見かけ上の駆動力が増すため、磁性流体熱機関100の動力変換効率を高めることができる。よって、発生する浮力109の向きが駆動力108の向きとなるべく揃うように動力変換部107を構成すると良い。   On the other hand, when it is in the same direction as the driving force, the apparent driving force is increased by the addition of the both, so that the power conversion efficiency of the magnetic fluid heat engine 100 can be enhanced. Therefore, it is preferable to configure the power conversion unit 107 so that the direction of the generated buoyancy 109 matches the direction of the driving force 108 as much as possible.

図2に示す動力変換部107は上記のことを鑑みて構成されたものである。すなわち、磁性流体熱機関100の使用時の姿勢において、受熱部102bが非受熱部102cよりも重力上方に位置するように配置している。このような配置をとることで、浮力109の循環流路方向の成分109aの向きが駆動力108の向きと揃うようになる。よって、動力変換効率を高めることができる。   The power conversion unit 107 shown in FIG. 2 is configured in view of the above. That is, in the posture at the time of use of the magnetic fluid heat engine 100, the heat receiving portion 102b is disposed above the gravity of the non-heat receiving portion 102c. By adopting such an arrangement, the direction of the component 109 a in the circulation flow direction of the buoyancy 109 is aligned with the direction of the driving force 108. Thus, the power conversion efficiency can be enhanced.

本発明の実施形態の定義をより厳密に述べるとすれば、磁性流体熱機関の受熱部における駆動力ベクトル(駆動力の向き)と、磁性流体に作用する重力と慣性力の合力ベクトルとの内積が少なくとも負で、かつ絶対値が大きくなるように動力変換部を配置すると良い。   If the definition of the embodiment of the present invention is described more precisely, the inner product of the driving force vector (direction of driving force) in the heat receiving portion of the magnetic fluid heat engine and the resultant force vector of gravity and inertia acting on the magnetic fluid. It is good to arrange a power conversion part so that at least negative and absolute value may become large.

図3にいくつか応用例を示す。図3(a)は小型化及び磁場印加手段103の簡略化のために、動力変換部107において循環流路102を折り返した構成を有する磁性流体熱機関の模式図である。この熱機関においても、磁性流体は非受熱部102cから受熱部102bに向かって流れるような駆動力が発生する。よって、受熱部102b内における駆動力ベクトルFは矢印108に示すようになる。よって、重力ベクトルF(矢印109)がそれと反対方向を向くようにするために、折り返しの頂部110を重力下方に向けて配置している。 Some application examples are shown in FIG. FIG. 3A is a schematic view of a magnetic fluid heat engine having a configuration in which the circulation flow path 102 is folded back in the power conversion unit 107 in order to miniaturize and simplify the magnetic field application means 103. Also in this heat engine, a driving force is generated such that the magnetic fluid flows from the non-heat receiving portion 102c toward the heat receiving portion 102b. Therefore, the driving force vectors F D in the receiving portion 102b is as shown by the arrow 108. Therefore, in order to make gravity vector F G (arrow 109) face in the opposite direction, the top 110 of the fold is placed downward in gravity.

また、図3(b)は特定の円軌道121で公転する機械120内の磁性流体熱機関の例を示している。重力ベクトルF(矢印109)と遠心力ベクトルF(矢印111)の合成ベクトルFG+I(矢印112)に対して、反対の方向に駆動力ベクトルF(矢印108)が発生するように動力変換部を配置している。 Further, FIG. 3B shows an example of the magnetic fluid heat engine in the machine 120 which revolves around a specific circular track 121. Power is generated such that a driving force vector F D (arrow 108) is generated in the opposite direction with respect to a composite vector F G + I (arrow 112) of the gravity vector F G (arrow 109) and the centrifugal force vector F I (arrow 111). A converter is arranged.

続いて、磁性流体熱機関100の各部の詳細な構成について説明する。磁性流体101は、水や油等の母液中にマグネタイトやマンガン亜鉛フェライトといった強磁性微粒子を分散させた、一般的な物を利用することができる。   Subsequently, the detailed configuration of each part of the magnetic fluid heat engine 100 will be described. As the magnetic fluid 101, a general substance in which ferromagnetic fine particles such as magnetite or manganese zinc ferrite are dispersed in a mother liquor such as water or oil can be used.

循環流路に相当するチューブ又はパイプ部材102は、内部に磁場が作用するように、樹脂やゴム、銅やアルミ等の非磁性の材料を用いることが望ましい。また、動力変換の効率を高めるにあたっては、受熱部102bにおいては内部の磁性流体によく熱を伝えることが重要であり、一方非受熱部102cにおいては磁性流体になるべく熱を伝えないことが重要である。よって、循環流路102は部分的に材質を変えて複数の部品で形成してもよい(例えば受熱部は熱伝導率が高い銅製、非受熱部は熱伝導率が低いナイロン製にする等)。   It is desirable that the tube or pipe member 102 corresponding to the circulation flow path be made of a nonmagnetic material such as resin, rubber, copper or aluminum so that a magnetic field acts on the inside. In order to enhance the efficiency of power conversion, it is important to transfer heat well to the magnetic fluid inside the heat receiving portion 102b, while it is important not to transfer heat to the magnetic fluid as much as possible in the non heat receiving portion 102c. is there. Therefore, the circulation channel 102 may be partially formed of a plurality of components by changing the material (for example, the heat receiving portion is made of copper having high thermal conductivity, the non-heat receiving portion is made of nylon having low thermal conductivity, etc.) .

磁場印加手段103は、例えば高い磁束密度を有するネオジム磁石を用いた上で、循環流路方向の磁場が強くなるように鉄等のヨークを組み合わせるとよい。又は、磁場の強さやオン、オフを制御しやすい電磁石を用いてもよい。   The magnetic field application unit 103 may use, for example, a neodymium magnet having a high magnetic flux density, and then combine a yoke of iron or the like so that the magnetic field in the circulation channel direction becomes strong. Or you may use the electromagnet which is easy to control the strength of a magnetic field, and on and off.

熱源104は、例えば電熱線等の線状発熱体や、ラバーヒーター等の柔軟性を有する面状発熱体を、チューブ又はパイプ部材102の受熱部102bに巻き付けて使用するとよい。または、液冷用途で放熱対象の電子部品を用いる場合は、例えば金属製のスリーブやグラファイトシートのような熱伝導部材の一端をチューブ又はパイプを囲むように接続したうえで、他端を放熱対象の電子部品と接続して、間接的に熱を伝えるような構成としてもよい。仕事手段105は、目的に応じて適宜組み込むものである。液冷用途の場合は省略しても構わない。   The heat source 104 may be used by winding a linear heating element such as a heating wire or a sheet heating element having flexibility such as a rubber heater around the heat receiving portion 102 b of the tube or pipe member 102. Alternatively, when using electronic components to be dissipated in liquid cooling applications, for example, one end of a heat conducting member such as a metal sleeve or a graphite sheet is connected to surround a tube or pipe, and the other end is to be dissipated It may be connected to the electronic components of the above to transmit heat indirectly. The job means 105 is appropriately incorporated according to the purpose. In the case of liquid cooling applications, it may be omitted.

放熱手段106は、熱源104により加熱されて高温となり受熱部102bから流れてくる磁性流体101の温度を下げて、非受熱部102cへ戻すために必要である。仮にこれを省略した場合、次第に受熱部102bと非受熱部102c内の磁性流体の温度差が減少するため、動力変換効率が下がり、やがて循環は止まってしまう。放熱手段としては、例えば循環流路102の途中にラジエータを組み込んで放熱させたり、循環流路102の一部に対して放熱フィンを取り付けて放熱させたりするとよい。又は、循環流路102自体をファンの風や他の冷媒中に晒して放熱させてもよい。   The heat radiating means 106 is required to lower the temperature of the magnetic fluid 101 flowing from the heat receiving portion 102b by being heated by the heat source 104 to a high temperature and return it to the non-heat receiving portion 102c. If this is omitted, the temperature difference between the magnetic fluid in the heat receiving portion 102b and the non-heat receiving portion 102c gradually decreases, so that the power conversion efficiency decreases and the circulation eventually stops. As a heat radiation means, for example, a radiator may be incorporated in the middle of the circulation flow path 102 to radiate heat, or a radiation fin may be attached to a part of the circulation flow path 102 to radiate heat. Alternatively, the circulation flow path 102 itself may be exposed to the wind of a fan or another refrigerant to dissipate heat.

以上説明した構成により本発明は完成するが、本発明はこの実施形態に限定されず、その要旨の範囲内で種々の変形を施しても構わない。   Although the present invention is completed by the configuration described above, the present invention is not limited to this embodiment, and various modifications may be made within the scope of the present invention.

続いて磁性流体熱機関を利用した機器の実施例を説明する。
[実施例1]
以下、図4から図7を参照して、本発明の第1の実施例による、磁性流体熱機関を備えたレンズ交換式デジタルカメラ(以降、単にカメラと呼称する)について説明する。なお、説明の簡潔化のため、ここでは慣性力の影響は考えないものとする。
Subsequently, an embodiment of an apparatus using a magnetic fluid heat engine will be described.
Example 1
A lens-interchangeable digital camera (hereinafter simply referred to as a camera) according to a first embodiment of the present invention will be described below with reference to FIGS. 4 to 7. Here, in order to simplify the explanation, the influence of the inertial force is not considered here.

図4は本実施例におけるカメラの模式図である。図4において、100は磁性流体熱機関を、200はカメラ本体を、201はカメラ200の筐体を、202は別途不図示のレンズを接続するマウント部を、203は撮像素子を、204は撮像素子の撮像面の中心に直交する撮像光軸を、205は画像処理IC205aを始めとする各種ICを有するメイン基板をそれぞれ示す。   FIG. 4 is a schematic view of a camera in the present embodiment. In FIG. 4, 100 denotes a magnetic fluid thermal engine, 200 denotes a camera body, 201 denotes a housing of the camera 200, 202 denotes a mount for separately connecting a lens (not shown), 203 denotes an imaging device, and 204 denotes an image An imaging optical axis orthogonal to the center of the imaging surface of the element is shown, and 205 denotes a main substrate having various ICs including the image processing IC 205a.

また、206は各種操作用のボタン及びダイヤル群を、207はファインダを、208はストロボキャパシタを、209は放熱フィンを、210は熱伝導部材をそれぞれ示す。加えて、以降の説明の便宜を図るために、図中に記すようにカメラ200の方向を定義する。カメラ200はその他にも様々な部材を有するが、本実施例の要部ではないため図示及び説明を省略する。   Reference numeral 206 denotes a button and dial group for various operations, 207 denotes a finder, 208 denotes a strobe capacitor, 209 denotes a radiation fin, and 210 denotes a heat conduction member. In addition, in order to facilitate the following description, the direction of the camera 200 is defined as shown in the figure. The camera 200 has various other members, but is not an essential part of the present embodiment, so the illustration and the description thereof will be omitted.

カメラ200を用いた撮影動作について簡潔に説明する。まず、ユーザーはカメラ200に適当なレンズを取り付けた状態でカメラを把持し、撮影したい対象に向ける。その後、ファインダ207を覗き込みつつ構図を決定し、ボタン群206中のレリーズボタンを押下してカメラ200に対して撮影を指示する。カメラ200は撮影指示を受けると、撮像素子203上にレンズの像を結像させ、所定時間露光させる。露光中、撮像素子203においては光電変換がなされ、撮影対象の像に応じた電気信号が蓄積される。露光が終了すると、画像処理IC205aを主とするメイン基板205上の各ICが撮像素子203の信号を読み出し、画像情報を作成する。   The shooting operation using the camera 200 will be briefly described. First, the user holds the camera with a suitable lens attached to the camera 200, and directs the camera 200 at a target to be photographed. Thereafter, the user determines the composition while looking into the finder 207, depresses the release button in the button group 206, and instructs the camera 200 to shoot. When receiving a photographing instruction, the camera 200 forms an image of a lens on the imaging element 203 and exposes it for a predetermined time. During exposure, photoelectric conversion is performed in the imaging element 203, and an electrical signal corresponding to the image to be photographed is accumulated. When the exposure is completed, each IC on the main substrate 205 mainly composed of the image processing IC 205a reads a signal of the imaging element 203 and creates image information.

得られた画像情報は適宜加工がなされた後、不図示の記録メディアに保存される。以上で画像ファイルが得られ、撮影動作が完了する。以上は主に静止画を撮影する際の動作であるが、動画を撮影する場合もこれらと同様の動作を高速かつ連続的に行うことで動画ファイルを得ることができる。   The obtained image information is appropriately processed and stored in a recording medium (not shown). Thus, an image file is obtained, and the photographing operation is completed. The above is mainly an operation at the time of shooting a still image, but also at the time of shooting a moving image, it is possible to obtain a moving image file by performing the same operation at high speed and continuously.

一般に、デジタルカメラで長時間の動画撮影を行うと、上述の動作により、撮像素子203や画像処理IC205aを始めとする各種電子部品が大きな電力を消費するため、熱が発生し、筐体の温度が上昇する。この際特に、上記の電子部品に近い部分の筐体201の表面等はいわゆるヒートスポットと呼ばれる、局所的に温度が高い部分となりやすい。よって、筐体内で発生した熱をよく拡散することで、ヒートスポットの発生を防ぎ、放熱を促進するための放熱対策をとることが好ましく、そのための放熱手段として本実施例のカメラ200は磁性流体熱機関100を備えている。   In general, when moving images are taken for a long time with a digital camera, various electronic components such as the imaging device 203 and the image processing IC 205a consume a large amount of power by the above-described operation, and heat is generated. Will rise. At this time, in particular, the surface of the casing 201 in a portion close to the above-described electronic component is likely to be a locally high temperature portion called a so-called heat spot. Therefore, it is preferable to take measures against heat radiation to prevent the occurrence of heat spots and to promote heat radiation by well diffusing the heat generated in the housing, and the camera 200 of this embodiment is a magnetic fluid as heat radiation means therefor. A heat engine 100 is provided.

すなわち、撮像素子203や画像処理IC205a等の電子部品が熱源104に相当し、熱伝導部材210aを経由して磁性流体熱機関100の受熱部102bと間接的に接続されている。これにより磁性流体が循環し、熱が運ばれて拡散される。拡散された熱は、例えば熱伝導部材210bによりマウント部202を経由してレンズに伝えられる。更に、熱伝導部材210cを経由してストロボキャパシタ208に伝えられる。また、カメラ底部に埋め込まれた放熱フィン209中を通る際に外部へと放出される。以上より、カメラシステムの各部に熱が拡散され、また、カメラ外へと放出されることで放熱がなされる。   That is, electronic components such as the imaging device 203 and the image processing IC 205a correspond to the heat source 104, and are indirectly connected to the heat receiving portion 102b of the magnetic fluid heat engine 100 via the heat conducting member 210a. The magnetic fluid is thereby circulated and heat is carried and diffused. The diffused heat is transmitted to the lens via the mount portion 202, for example, by the heat conducting member 210b. Further, it is transmitted to the strobe capacitor 208 via the heat conducting member 210c. In addition, when passing through the radiation fin 209 embedded in the bottom of the camera, it is released to the outside. As described above, heat is diffused to each part of the camera system, and the heat is released by being released to the outside of the camera.

ここで、一般にカメラは被写体との位置関係や構図の工夫のために、横位置(上面側を鉛直上方とする姿勢)や縦位置(グリップ側を鉛直上方とする姿勢)、仰角(正面側を鉛直上方とする姿勢)、俯角(背面側を鉛直上方とする姿勢)、また、チルト(鉛直方向の回転)やロール(光軸周りの回転)等、様々な姿勢で撮影がなされる。ゆえに、磁性流体熱機関の効率を高めるための動力変換部の配置は一意には定まらないことが多い。   Here, in general, the camera has a horizontal position (a posture in which the upper surface side is vertically upward), a vertical position (a posture in which the grip side is vertically upward), and an elevation angle (front side) in order to devise a positional relationship with the object and composition. Photographing is performed in various postures such as a posture to be vertically upward), a depression angle (a posture to make the back surface side vertically upward), a tilt (rotation in the vertical direction) and a roll (rotation around the optical axis). Therefore, the arrangement of the power conversion unit for increasing the efficiency of the magnetic fluid heat engine is often not uniquely determined.

よって、このような場合は、例えば想定されるどの撮影姿勢においても、少なくとも駆動力が減衰しないように(駆動力ベクトルと各重力ベクトルとの組合せの内積が、いずれも少なくとも負になるように)動力変換部を配置するとよい。又は、各撮影姿勢について、想定される使用頻度や、(要求される画質等の)重要性等のパラメータに応じた重み付けを行い、これらを加味して代表姿勢を決定するとよい。その際の重力ベクトル(以降、代表重力ベクトルと呼称する)に対して反対方向に駆動力が発生するように動力変換部を配置する。続いてこれらの手法の詳細を説明する。   Therefore, in such a case, for example, at least the driving force is not attenuated in any assumed photographing postures (so that the inner product of the combination of the driving force vector and each gravity vector is at least negative). It is good to arrange a power conversion part. Alternatively, with regard to each shooting posture, weighting may be performed according to parameters such as assumed use frequency and importance (such as required image quality), and the representative posture may be determined in consideration of these. The power conversion unit is disposed such that a driving force is generated in the opposite direction to a gravity vector (hereinafter referred to as a representative gravity vector) at that time. Next, the details of these methods will be described.

以降の説明の便宜を図るために、カメラ200に対して直交及び球の三次元座標系を導入する。図5は本実施例におけるカメラ200内の座標定義を示す模式図である。図5において、不図示の撮像素子203の撮像面上の中心に座標系の原点Oを設定し、カメラ200の正面側の光軸方向にx軸を、カメラ200の上面側の光軸直交方向にz軸を、カメラ200のグリップ側と反対側の光軸直交方向にy軸をそれぞれ設定する。また、z軸正方向からなす角度にθを、xy平面内におけるx軸正方向からy軸正方向に向かってなす角度にΦをそれぞれ設定する。   In order to facilitate the following description, a three-dimensional coordinate system of orthogonal and sphere is introduced to the camera 200. FIG. 5 is a schematic view showing coordinate definition in the camera 200 in the present embodiment. In FIG. 5, the origin O of the coordinate system is set at the center on the imaging surface of the imaging device 203 (not shown), the x axis in the optical axis direction on the front side of the camera 200 The y-axis is set in the direction orthogonal to the optical axis on the side opposite to the grip side of the camera 200. Further, θ is set to the angle formed from the z-axis positive direction, and Φ is set to the angle formed from the x-axis positive direction to the y-axis positive direction in the xy plane.

以上の設定によれば、図5におけるカメラ200に作用する重力ベクトルF(矢印220。単位ベクトルとする。以降も同様に単位ベクトルを扱うものとする)は直交座標系にて(0,0,−1)、又は球座標系にて(1,π,0)とそれぞれ表現することができる。 According to the above setting, the gravity vector F G (arrow 220. A unit vector is assumed to be a unit vector hereinafter) acting on the camera 200 in FIG. , -1), or (1, π, 0) in a spherical coordinate system.

まず、前者の手法について説明する。ある撮影姿勢nにおける重力ベクトルをFGn(1,θGn,ΦGn)とすると、それとの内積が少なくとも負になるような駆動力ベクトルFDn(1,θDn,ΦDn)が取るべき範囲が決まる。更に、想定される撮影姿勢の数の分だけ同様の範囲が決まるため、それらを重ね合わせ、共通する部分を求めることで、最終的に駆動力ベクトルFが取るべき範囲を決定することができる。よって、その方向に駆動力が発生するように磁性流体熱機関の動力変換部を配置すればよい。 First, the former method will be described. F Gn gravity vector at a photographing position n (1, θ Gn, Φ Gn) When the inner product is at least negative become such a driving force vector F Dn with it (1, θ Dn, Φ Dn ) in the range to be taken Is decided. Furthermore, since determines the amount corresponding similar range of numbers of photographing posture is assumed, superimposed them, by obtaining the common parts, it is possible to determine the final range should driving force vector F D takes . Therefore, the power conversion part of the magnetic fluid heat engine may be disposed so that the driving force is generated in that direction.

図6は以上の手法の原理を示す模式図である。図6(a)から(c)は各々の撮影姿勢(参考として模式図を付記している)における重力ベクトル221から223、及びそれらに応じた駆動力ベクトル225aから225cが取るべき値の範囲を示している。224aから224cに示す網かけ領域が駆動力ベクトルが取るべき範囲である。更に、これらを重ね合わせ、共通する部分を示したものが図6(d)である。これより、224に示す網かけ領域の範囲内に駆動力ベクトル225を発生するように、カメラ200内における磁性流体熱機関100の動力変換部107を配置するとよい。   FIG. 6 is a schematic view showing the principle of the above method. 6 (a) to 6 (c) show the range of values to be taken by the gravity vectors 221 to 223 and the corresponding driving force vectors 225a to 225c in each photographing posture (a schematic diagram is added as a reference). It shows. The shaded area shown by 224a to 224c is the range for the driving force vector to be taken. Furthermore, these are superimposed, and what is shown in common is FIG. 6 (d). From this, it is preferable to arrange the power conversion unit 107 of the magnetic fluid heat engine 100 in the camera 200 so as to generate the driving force vector 225 within the range of the shaded area indicated by 224.

以上の手法を取ることで、どのような撮影姿勢においても磁性流体熱機関の駆動力が減衰することがないため、動力変換効率を高めることができる。一方、撮影姿勢の種類によっては、上記の手法では解が存在せず、駆動力ベクトルが取り得る範囲が無い場合がある。そのような場合には後者の手法を取るとよい。   By adopting the above-described method, the driving force of the magnetic fluid heat engine does not attenuate in any imaging posture, and thus the power conversion efficiency can be enhanced. On the other hand, depending on the type of imaging posture, there may be no solution in the above method, and there may not be a range in which the driving force vector can be taken. In such a case, the latter method should be taken.

重み付けにより代表重力ベクトルを決める手法の模式図を図7に示す。図7(a)はカメラ200が仮に想定する6種類の撮影姿勢を示す模式図であり、各々の撮影姿勢には想定される使用頻度や重要性に応じた重み係数がそれぞれ割り振られている。例えば、231に示す正立姿勢は使用頻度も重要性も最も高いと考えられるため、重み係数が最も大きく設定されている。   A schematic view of a method of determining a representative gravity vector by weighting is shown in FIG. FIG. 7A is a schematic view showing six types of shooting postures temporarily assumed by the camera 200, and weighting coefficients according to the assumed use frequency and importance are respectively assigned to the respective shooting postures. For example, since the erect posture shown in 231 is considered to have the highest frequency of use and importance, the weight coefficient is set to be the largest.

また、233に示すグリップ側を上とする撮影姿勢は、234に示すその反対側を上とする姿勢よりも使用頻度が高いと考えられるため、重み付け係数がより大きく設定されている。なお、これらの係数は本実施例の説明の便宜を図るために仮定した物であり、実際のデジタルカメラの使用実績に基づくものではない。   In addition, since it is considered that the photographing posture with the grip side shown at 233 is higher in use frequency than the posture shown with the opposite side shown at 234 at the upper side, the weighting coefficient is set larger. Note that these coefficients are assumed to facilitate the explanation of the present embodiment, and are not based on the actual use results of the digital camera.

重み係数を割り振ったら、図7(b)に示すようにそれを考慮しつつ重力ベクトルの合成を行い、代表姿勢時の代表重力ベクトルFGC(矢印237)を求める。これより、その反対方向を駆動力ベクトルF(矢印238)の方向として決定することができる。よって、その方向に駆動力を発生するように磁性流体熱機関の動力変換部を配置することで、多くの撮影シーンや重要度に応じて動力変換効率を高めることができる、バランスの良い構成を提供することができる。 After assigning the weighting factor, as shown in FIG. 7B, the gravity vector is synthesized while taking it into consideration, and the representative gravity vector F GC (arrow 237) in the representative posture is determined. From this, the opposite direction can be determined as the direction of the driving force vector F D (arrow 238). Therefore, by arranging the power converter of the magnetic fluid thermal engine so as to generate the driving force in that direction, the power conversion efficiency can be enhanced according to many shooting scenes and importance, and a well-balanced configuration is provided. Can be provided.

以上説明したように、磁性流体熱機関を搭載する機器が複数の使用姿勢を有する場合には、いずれの姿勢時も効率を高められるようにするか、又は使用頻度や重要性に応じた重み付けにより代表姿勢を決めた上で、その姿勢で効率が最大になるようにするとよい。   As described above, when the device on which the magnetic fluid heat engine is mounted has a plurality of use postures, it is possible to increase the efficiency in any posture, or by weighting according to the use frequency and importance After deciding on the representative attitude, it is recommended that the efficiency be maximized at that attitude.

[実施例2]
以下、図8から図11を参照して、本発明の第2の実施例による磁性流体熱機関を備えた液晶プロジェクタ(以降、単にプロジェクタと呼称する)について説明する。
Example 2
Hereinafter, a liquid crystal projector (hereinafter, simply referred to as a projector) provided with a magnetic fluid heat engine according to a second embodiment of the present invention will be described with reference to FIGS. 8 to 11.

図8は本実施例におけるプロジェクタの模式図である。図8において、300は磁性流体熱機関100を備えるプロジェクタ本体を、301はプロジェクタ300の筐体を、301a及び301bはフィルタを備える通風用の開口部をそれぞれ示す。また、302は光源302aを含む照明光学系を、303は反射ミラーを、304は不図示の反射型液晶パネル(いわゆるLCOS)やダイクロイックミラー及びプリズム等を含む色分離合成光学系を、305は投影光学系をそれぞれ示す。   FIG. 8 is a schematic view of a projector in the present embodiment. In FIG. 8, reference numeral 300 denotes a projector main body provided with the magnetic fluid heat engine 100, 301 denotes a casing of the projector 300, and 301a and 301b denote ventilation openings provided with filters. Reference numeral 302 denotes an illumination optical system including a light source 302a, 303 denotes a reflection mirror, 304 denotes a color separation / combination optical system including a reflection type liquid crystal panel (so-called LCOS) (not shown), dichroic mirrors and prisms, etc. Each shows an optical system.

また、306は電源系を、307は制御系を、308は脚部材をそれぞれ示す。更に、磁性流体熱機関は放熱手段としてラジエータ106a及びファン106bを備えている。その他にもプロジェクタ300は様々な部材を有するが、本実施例の要部ではないため図示及び説明を省略する。   Reference numeral 306 denotes a power supply system, 307 denotes a control system, and 308 denotes a leg member. Furthermore, the magnetic fluid heat engine is provided with a radiator 106a and a fan 106b as heat dissipating means. In addition, the projector 300 has various members, but is not an essential part of the present embodiment, so illustration and description thereof will be omitted.

プロジェクタ300による投影動作を簡潔に説明する。不図示の入力インターフェースより、投影するべき映像信号が入力されると、制御系307を通じて色分離合成光学系304内のLCOS上に対応する表示状態が形成される。また、光源302aは電源系306より供給される電気を光に変換し、ミラー303を経由して色分離合成光学系304に供給する。色分離合成光学系304は、供給された光を3原色であるR、G、Bそれぞれに分離し、各々をLCOSに反射させて像を得た後に合成して、投影すべき像を形成し投影光学系305へと導く。最後に投影光学系305でズームやフォーカス、チルト、シフト等、所望の投影状態を得るための調整がなされた後、スクリーン等に映像が投影される。   The projection operation by the projector 300 will be briefly described. When an image signal to be projected is input from an input interface (not shown), a corresponding display state is formed on the LCOS in the color separation / combination optical system 304 through the control system 307. The light source 302 a converts the electricity supplied from the power supply system 306 into light, and supplies the light to the color separation / combination optical system 304 via the mirror 303. The color separation / combination optical system 304 separates the supplied light into each of the three primary colors R, G, B, reflects each on LCOS to obtain an image, combines them, and forms an image to be projected. It leads to the projection optical system 305. Finally, after adjustment for obtaining a desired projection state such as zoom, focus, tilt, or shift is performed by the projection optical system 305, an image is projected on a screen or the like.

上記の動作時、プロジェクタ300は特に光源302aで多くの電力を消費し、熱を発生する。よって、この熱による光源302aや周囲の部材の故障や寿命の低下を抑制するために、プロジェクタ300は放熱手段として磁性流体熱機関100を備えている。すなわち、光源302aが熱源104に相当し、不図示の熱伝導部材により、磁性流体熱機関100の受熱部に対して直接又は間接的に接続されている。これにより磁性流体が流路を循環し、光源302aの熱を運び去る。運ばれた熱はラジエータ106aよりプロジェクタ300の外に放出されるため、放熱がなされる。   During the above-described operation, the projector 300 consumes a large amount of power, particularly at the light source 302a, and generates heat. Therefore, the projector 300 is provided with the magnetic fluid heat engine 100 as a heat dissipation means in order to suppress the failure of the light source 302a and the surrounding members due to the heat and the reduction of the life. That is, the light source 302a corresponds to the heat source 104, and is connected directly or indirectly to the heat receiving portion of the magnetic fluid heat engine 100 by a heat conduction member (not shown). As a result, the magnetic fluid circulates in the flow path and carries away the heat of the light source 302a. The carried heat is released from the radiator 106 a to the outside of the projector 300, so heat is dissipated.

プロジェクタ300は実施例1におけるカメラ200と同様に、動作時の姿勢が1種類とは限らず、複数の姿勢で使用される。プロジェクタ300の代表的な設置方法を図9に示す。図9(a)はいわゆる据置による設置方法であり、脚部材308を有する底面を重力下側に向けて基準面321a上に置かれる。また、図9(b)はいわゆる天吊りによる設置方法であり、底面を重力上側に向けて天井321bに対して固定される。前者はオフィスのミーティングスペースや小規模の会議室等、後者は大規模の会議室やホール等でそれぞれ利用頻度が高い。   Similar to the camera 200 in the first embodiment, the projector 300 is not limited to one type of attitude during operation, and is used in a plurality of attitudes. A typical installation method of the projector 300 is shown in FIG. FIG. 9A shows a so-called stationary installation method, in which the bottom surface having the leg members 308 is placed on the reference surface 321 a with gravity directed downward. Moreover, FIG.9 (b) is the installation method by what is called ceiling suspension, and the bottom face is fixed to the ceiling 321b, facing gravity upwards. The former is frequently used in office meeting spaces and small meeting rooms, and the latter in large meeting rooms and halls.

ここで、図9(a)に示す据置時のプロジェクタ300の姿勢を正立状態とすると、図9(b)に示す天吊り時の姿勢は倒立状態となり、両者は互いに反対方向に重力を受けることになる。これより、先に説明した実施形態では、両方の姿勢時で磁性流体熱機関の動力変換効率を高めることはできない。また、重み付けを行っても結局どちらかの姿勢を無視する結果としかならず、十分であるとはいえない。よって、このような互いに反対方向の使用姿勢を有する機器のための動力変換部の構成が求められる。   Here, assuming that the posture of the projector 300 at the time of stationary shown in FIG. 9A is in the upright state, the posture at the time of ceiling suspension shown in FIG. 9B is inverted and both receive gravity in opposite directions. It will be. Thus, in the embodiment described above, it is not possible to improve the power conversion efficiency of the magnetic fluid heat engine at both postures. Also, even if weighting is performed, the result is only to ignore one of the postures, which is not sufficient. Therefore, a configuration of a power conversion unit for a device having such use postures in opposite directions is required.

このような場合は、機器の姿勢変化に応じて磁性流体熱機関の動力変換部の構成を可変とし、発生する駆動力の方向を変えられるようにするとよい。それにより、どの姿勢においても磁性流体熱機関の動力変換効率を高めることができるようになる。続いてそれを実現するための構成を説明する。   In such a case, it is preferable that the configuration of the power conversion unit of the magnetic fluid heat engine be variable according to the change in attitude of the device so that the direction of the generated driving force can be changed. As a result, the power conversion efficiency of the magnetic fluid heat engine can be enhanced in any posture. Subsequently, a configuration for realizing it will be described.

図10はプロジェクタ300における磁性流体熱機関100の動力変換部107の構成の第一例を示す模式図である。図10(a)はプロジェクタ300の正立状態を、図10(b)はプロジェクタ300の倒立状態をそれぞれ示している。図10において、102aは磁場印加部を、102bは受熱部を、102cは非受熱部を、103は磁場印加手段に相当する磁石ユニットを、104は熱源に相当する、他端をプロジェクタ300の光源302aと接続した熱伝導部材をそれぞれ示す。   FIG. 10 is a schematic view showing a first example of the configuration of the power conversion unit 107 of the magnetic fluid heat engine 100 in the projector 300. As shown in FIG. 10A shows the upright state of the projector 300, and FIG. 10B shows the inverted state of the projector 300. As shown in FIG. In FIG. 10, 102a indicates a magnetic field application unit, 102b indicates a heat receiving unit, 102c indicates a magnet unit corresponding to a non-heat receiving unit, 103 indicates a magnetic unit, and 104 indicates a heat source, and the other end is a light source of the projector 300. The heat conduction member connected with 302a is each shown.

更に、331はスライドレールを、332はバラストを、333はクッション部材をそれぞれ示す。また、334a及び334b(FG1及びFG2)は受熱部102b内の磁性流体に作用する重力ベクトルを、335a及び335b(FD1及びFD2)は受熱部102b内の磁性流体に作用する駆動力ベクトルをそれぞれ示す。 Furthermore, 331 indicates a slide rail, 332 indicates a ballast, and 333 indicates a cushion member. Also, 334a and 334b (F G1 and F G2 ) drive forces acting on the magnetic fluid in the heat receiving portion 102 b, and 335 a and 335 b (F D1 and F D2 ) drive forces acting on the magnetic fluid in the heat receiving portion 102 b. Show each vector.

受熱部102b及び2箇所の非受熱部102cは皆同一の形状を有している。更に、磁石ユニット103は、バラスト332を介してスライドレール331に対して相対移動可能に接続されている。これより、プロジェクタ300の正立、倒立どちらの姿勢時にも、磁石ユニット103は重力の影響により重力下方に移動し、磁石ユニットから見た受熱部102bが有効な方(磁場印加部102a内に位置する方)の非受熱部102cよりも上方に位置するようになる。   The heat receiving portion 102b and the two non-heat receiving portions 102c all have the same shape. Furthermore, the magnet unit 103 is connected to the slide rail 331 via the ballast 332 so as to be movable relative to it. From this, even when the projector 300 is in the upright or inverted posture, the magnet unit 103 moves downward by gravity under the influence of gravity, and the heat receiving portion 102b seen from the magnet unit is effective (a position in the magnetic field applying portion 102a) Side) is positioned above the non-heat receiving portion 102c.

よって、駆動力は重力上方に発生し、重力と反対方向を向くようになるため、正立、倒立どちらの姿勢時にも磁性流体熱機関の動力変換効率を高めることができるようになる。なお、この際磁性流体熱機関100における磁性流体の循環方向はそれぞれ逆向きになるが、本実施例における放熱用途としては問題無く使用することができる。   Therefore, the driving force is generated above the gravity and directed in the direction opposite to the gravity, so that the power conversion efficiency of the magnetic fluid heat engine can be enhanced in both the erect and inverted postures. At this time, the circulation directions of the magnetic fluid in the magnetic fluid heat engine 100 are opposite to each other, but can be used without any problem as a heat radiation application in the present embodiment.

本実施例においてバラスト332は、磁性流体熱機関100の動作時の反力により、磁石ユニット103が浮き出さないようするために追加している。該反力に対して磁石ユニット103が十分に重い場合は省略しても構わない。また、クッション部材333は磁石ユニット103の移動時の突き当たりの衝撃を和らげるために追加している。代わりにダンパー機構等を用いてもよい。   In the present embodiment, the ballast 332 is added in order to prevent the magnet unit 103 from being raised by the reaction force at the time of operation of the magnetic fluid heat engine 100. If the magnet unit 103 is sufficiently heavy with respect to the reaction force, it may be omitted. Further, a cushion member 333 is added to cushion an impact at the time of movement of the magnet unit 103. Alternatively, a damper mechanism or the like may be used.

また、これまで説明したような、重力によって磁石ユニット103を動かす構成ではなく、モータ等の外部制御手段や、ユーザーが手動で磁石ユニットを動かすような構成としてもよい。この場合は、例えばプロジェクタ300が姿勢検出手段を備え、その出力に応じてモータを駆動したり、ユーザーに磁石ユニット103の移動を促したりするような構成とすると良い。又は、プロジェクタの姿勢を変更する際に必要となる、画面の反転操作等に連動して磁石ユニット103を動かすように設定しても良い。   Further, instead of moving the magnet unit 103 by gravity as described above, the control unit such as a motor or a user may move the magnet unit manually. In this case, for example, the projector 300 may be configured to include a posture detection unit, drive the motor according to the output, or prompt the user to move the magnet unit 103. Alternatively, the magnet unit 103 may be set to move in conjunction with a screen reverse operation or the like, which is required when changing the attitude of the projector.

続いて、図11はプロジェクタ300における磁性流体熱機関100の動力変換部107の構成の第二例を示す模式図である。図11はプロジェクタ300の正立状態を示している。102d及び102eは共に受熱部又は非受熱部のどちらかとなりうる受熱可能部を、341は板バネによる熱伝導部材を、342は熱伝導方向の切替手段に相当する、熱伝導部材341における切替機構部を、342a及び342bは熱伝導方向の切替機構342の熱接点を、343は磁石ユニット103を固定する内壁を、344は直動モータを、345はプロジェクタ300の姿勢検出手段をそれぞれ示す。   Next, FIG. 11 is a schematic view showing a second example of the configuration of the power conversion unit 107 of the magnetic fluid heat engine 100 in the projector 300. As shown in FIG. FIG. 11 shows the upright state of the projector 300. A switching mechanism in the heat conducting member 341, in which the heat receiving portion 102d and 102e can be either a heat receiving portion or a non-heat receiving portion, 341 corresponds to a heat conduction member by a plate spring, and 342 corresponds to a heat conduction direction switching means. The reference numerals 342a and 342b indicate thermal contact points of the heat conduction direction switching mechanism 342, 343 indicates an inner wall for fixing the magnet unit 103, 344 indicates a linear motion motor, and 345 indicates a posture detection means of the projector 300.

本構成においては、受熱可能部102dと102eの両方に対して熱伝導部材104が接続されており、共に熱伝導方向の切替機構342を介して光源302aと接続されている。これより、切替機構342を用いて、一方の領域には光源302aの熱を伝え、もう一方の領域には熱を伝えないように制御することで、磁性流体が流れる方向を自由に切り替えることが可能となる。   In this configuration, the heat conducting member 104 is connected to both of the heat receiving parts 102d and 102e, and both are connected to the light source 302a via the switching mechanism 342 of the heat conduction direction. From this, by using the switching mechanism 342 to transmit the heat of the light source 302a to one area and not to transmit the heat to the other area, the direction in which the magnetic fluid flows can be freely switched. It becomes possible.

すなわち、図11においては熱接点342aがオン、342bがオフとなっているため、受熱可能部102dが受熱部、受熱可能部102eが非受熱部となるため、重力上方に駆動力が発生する。よって動力変換効率を高めることができる。一方、プロジェクタ300を倒立させる場合は、逆に熱接点342aをオフ、342bをオンとすることで同様に効率を高めることができる。   That is, in FIG. 11, since the heat contact 342a is on and 342b is off, the heat receiving portion 102d is a heat receiving portion and the heat receiving portion 102e is a non heat receiving portion, so that driving force is generated above gravity. Thus, the power conversion efficiency can be enhanced. On the other hand, when the projector 300 is inverted, the efficiency can be similarly enhanced by turning off the heat contact 342 a and turning on the heat contact 342 b.

なお、熱伝導方向の切替機構342において、熱接点のオン、オフは板バネ同士の弾性接触及び非接触により実現している。すなわち、熱接点をオンとする際は、直動モータ344により板バネ同士が密着する方向に変形するように力を加えている。これにより、この部分における熱抵抗の増加は最小限に留められる。   In the heat conduction direction switching mechanism 342, turning on and off of the heat contact is realized by elastic contact and non-contact between the plate springs. That is, when the thermal contact is turned on, a force is applied by the linear motion motor 344 so as to deform the plate springs in a direction in which they are in close contact with each other. This minimizes the increase in thermal resistance in this area.

なお、熱伝導方向の切替手段は別の構成をとってもよい。切替手段の構成例を図12に示す。例えば、図12(a)に示すように、熱接点342aと342bは隙間を有しており、そのどちらか一方に対して熱伝導部材342cを挿入することで熱伝導をオンとしてもよい。   The heat conduction direction switching means may have another configuration. A configuration example of the switching means is shown in FIG. For example, as shown in FIG. 12A, the thermal contacts 342a and 342b have a gap, and the thermal conduction may be turned on by inserting the thermal conductive member 342c into either one of them.

この構成の場合は、より広く、剛性が高い接触部を得やすいため、熱抵抗の増加を低く留めやすいという利点がある。接触また、図12(b)に示すように、断熱容器342e内に伝熱液342dを封入した構成において、どちらか一方の熱接点間に伝熱液が満たされ、熱伝導がオンとなるようにしてもよい。この構成の場合は、伝熱液は重力に従って自動的に移動するため、姿勢制御手段が不要となるという利点がある。   In the case of this configuration, there is an advantage that it is easy to keep the increase in the thermal resistance low, since it is easy to obtain a wider and more rigid contact portion. In addition, as shown in FIG. 12 (b), in the configuration in which the heat transfer liquid 342d is enclosed in the heat insulating container 342e, the heat transfer liquid is filled between any one of the heat contact points so that the heat conduction is turned on. You may In the case of this configuration, since the heat transfer liquid automatically moves in accordance with gravity, there is an advantage that the attitude control means is not required.

以上説明した二種類の動力変換部107の構成は、どちらも駆動力の発生方向を逆転可能にする点で共通であるが、それぞれ異なる特徴があり、適宜選定して用いるとよい。例えば、磁石ユニット103を動かす前者の手法は、光源302aと受熱部102b間に熱接点が存在しないため、熱抵抗を小さくすることができ、より効率を高めやすいという利点がある。一方、熱伝導方向の切替機構342を用いる後者の手法は、熱接点が介在することにより熱抵抗が大きくなりやすいという場合があるものの、磁石ユニット103を動かす必要がないため、プロジェクタ300の高さ方向に小型化しやすいという利点がある。   The configurations of the two types of power conversion units 107 described above are common in that both can make the direction of generation of the driving force reverse. However, they have different characteristics and may be selected appropriately. For example, in the former method of moving the magnet unit 103, there is no hot contact between the light source 302a and the heat receiving portion 102b, so that the thermal resistance can be reduced and the efficiency can be easily improved. On the other hand, in the latter method using the heat conduction direction switching mechanism 342, although the thermal resistance is likely to increase due to the presence of the thermal contact, it is not necessary to move the magnet unit 103. It has the advantage of being easy to miniaturize in the direction.

以上説明したように、本実施例によれば、互いに反対方向に重力を受ける複数の使用姿勢を有する機器においても、磁性流体熱機関の動力変換部の構成を可変とすることで、いずれの姿勢においても動力変換効率を高めるための構成を提供することができる。   As described above, according to the present embodiment, even in an apparatus having a plurality of use postures receiving gravity in opposite directions, any posture can be achieved by making the configuration of the power conversion unit of the magnetic fluid heat engine variable. Can also provide a configuration for enhancing the power conversion efficiency.

100.磁性流体熱機関
101.磁性流体
102.循環流路
102a.磁場印加部
102b.受熱部
102c.非受熱部
103.磁場印加手段
104.熱源
107.動力変換部
108.駆動力ベクトル
109.浮力ベクトル
100. Magnetic fluid heat engine 101. Magnetic fluid 102. Circulation channel 102a. Magnetic field application unit 102b. Heat receiving unit 102c. Non-heat receiving part 103. Magnetic field application means 104. Heat source 107. Power converter 108. Driving force vector 109. Buoyancy vector

Claims (9)

磁性流体と、
前記磁性流体の循環流路と、
前記循環流路の一部に配置される磁場印加部と、
前記磁場印加部内に配置される受熱部及び非受熱部と、
前記受熱部に接続される熱源と、
前記磁場印加部に磁場を印加する磁場印加手段
を備え、
前記受熱部内の磁性流体に作用する重力及び慣性力の合力ベクトルに対して、
ベクトルの内積の値が負となるような方向に駆動力を発生させるように前記受熱部と非受熱部及び磁場印加手段を配置する
ことを特徴とする磁性流体熱機関。
Magnetic fluid,
A circulation channel of the magnetic fluid;
A magnetic field application unit disposed in part of the circulation channel;
A heat receiving unit and a non-heat receiving unit disposed in the magnetic field application unit;
A heat source connected to the heat receiving unit;
A magnetic field application unit that applies a magnetic field to the magnetic field application unit;
With respect to the resultant force vector of gravity and inertial force acting on the magnetic fluid in the heat receiving portion,
A magnetic fluid heat engine, wherein the heat receiving portion, the non-heat receiving portion, and the magnetic field application means are arranged so as to generate a driving force in such a direction that the value of the inner product of the vector becomes negative.
前記受熱部を非受熱部よりも重力上方に配置する
ことを特徴とする請求項1に記載の磁性流体熱機関。
The magnetic fluid heat engine according to claim 1, wherein the heat receiving portion is disposed above the gravity of the non-heat receiving portion.
所定の公転軌道上に配置され、
前記受熱部を非受熱部よりも公転中心に近い側に配置する
ことを特徴とする請求項1または2に記載の磁性流体熱機関。
It is placed on a predetermined orbit
The magnetic fluid heat engine according to claim 1 or 2, wherein the heat receiving portion is disposed closer to the center of revolution than the non-heat receiving portion.
前期磁場印加部において循環流路が折り返し形状を有しており、
前記折り返し形状により生じる往復の流路のうち、一方に受熱部を、もう一方に非受熱部を配置し、
前記折り返し形状の頂部を重力下方に向けるように配置する
ことを特徴とする請求項1に記載の磁性流体熱機関。
In the previous magnetic field application unit, the circulation channel has a folded shape,
The heat receiving part is disposed on one side and the non-heat receiving part is disposed on the other side of the reciprocating flow path generated by the folded shape,
The magnetic fluid heat engine according to claim 1, characterized in that the top of the folded shape is arranged to be directed downward by gravity.
複数の使用姿勢を有し、
前記複数の使用姿勢の全ての場合における重力及び慣性力の合力ベクトルに対して、
ベクトルの内積の値が負となるような方向に駆動力を発生させるように前記受熱部及び非受熱部を配置する
ことを特徴とする請求項1乃至4のいずれか1項に記載の磁性流体熱機関。
Have multiple usage postures,
With respect to the resultant force vector of gravity and inertia in all cases of the plurality of use postures,
The magnetic fluid according to any one of claims 1 to 4, wherein the heat receiving portion and the non-heat receiving portion are arranged so as to generate a driving force in a direction such that the value of the inner product of the vector becomes negative. Heat engine.
複数の使用姿勢と、
前記複数の使用姿勢の各々に対応する重み係数
を有し、
前記重み係数を勘案して合成される、前記複数の使用姿勢の重力及び慣性力の代表合力ベクトルに対して、
ベクトルの内積の値が負となるような方向に駆動力を発生させるように前記受熱部及び非受熱部を配置する
ことを特徴とする請求項1乃至4のいずれか1項に記載の磁性流体熱機関。
Multiple usage postures,
Having a weighting factor corresponding to each of the plurality of use postures;
With respect to the representative resultant force vector of the gravity and the inertial force of the plurality of use postures, which are synthesized in consideration of the weighting factor,
The magnetic fluid according to any one of claims 1 to 4, wherein the heat receiving portion and the non-heat receiving portion are arranged so as to generate a driving force in a direction such that the value of the inner product of the vector becomes negative. Heat engine.
複数の使用姿勢を有し、
前記循環流路の磁場印加部の流路方向に対して磁場印加手段が移動可能に保持されており、
前記各々の使用姿勢時に受熱部が非受熱部よりも重力上方に位置するように磁場印加手段を移動する
ことを特徴とする請求項1乃至4のいずれか1項に記載の磁性流体熱機関。
Have multiple usage postures,
A magnetic field application unit is movably held in the flow channel direction of the magnetic field application unit of the circulation flow channel,
The magnetic fluid heat engine according to any one of claims 1 to 4, wherein the magnetic field application means is moved such that the heat receiving part is located above the gravity of the non-heat receiving part in each of the use postures.
磁性流体と、
前記磁性流体の循環流路と、
前記循環流路の一部に配置される磁場印加部と、
前記磁場印加部内に配置される複数の受熱可能部と、
熱源と、
前記熱源を前記複数の受熱可能部に対して切替可能に接続する熱伝導方向の切替手段と、
前記磁場印加部に磁場を印加する磁場印加手段
を備え、
前記各々の使用姿勢時に重力上方に位置する側の受熱可能部に熱源の熱を伝導するように熱伝導方向を切り替える
ことを特徴とする磁性流体熱機関。
Magnetic fluid,
A circulation channel of the magnetic fluid;
A magnetic field application unit disposed in part of the circulation channel;
A plurality of heat receiving portions disposed in the magnetic field applying portion;
A heat source,
Heat conduction direction switching means for switchably connecting the heat source to the plurality of heat receivable portions;
A magnetic field application unit that applies a magnetic field to the magnetic field application unit;
A magnetic fluid heat engine characterized in that the direction of heat conduction is switched so as to conduct the heat of the heat source to the heat-receiving part on the side located above the gravity when in each of the use postures.
請求項1乃至8のいずれか1項に記載の磁性流体熱機関を搭載する機器。 An apparatus equipped with the magnetic fluid heat engine according to any one of claims 1 to 8.
JP2017195546A 2017-10-06 2017-10-06 Magnetic fluid heat engine and device mounting the same Pending JP2019071706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017195546A JP2019071706A (en) 2017-10-06 2017-10-06 Magnetic fluid heat engine and device mounting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017195546A JP2019071706A (en) 2017-10-06 2017-10-06 Magnetic fluid heat engine and device mounting the same

Publications (1)

Publication Number Publication Date
JP2019071706A true JP2019071706A (en) 2019-05-09

Family

ID=66441421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195546A Pending JP2019071706A (en) 2017-10-06 2017-10-06 Magnetic fluid heat engine and device mounting the same

Country Status (1)

Country Link
JP (1) JP2019071706A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085624A (en) * 2019-11-28 2021-06-03 キヤノン株式会社 Device, heat transport device and electronic apparatus
WO2021235058A1 (en) * 2020-05-19 2021-11-25 パナソニックIpマネジメント株式会社 Magnetic fluid drive device and heat transport system
CN117040230A (en) * 2023-10-09 2023-11-10 惠州市艾美珈磁电技术股份有限公司 Electromagnetic pump with sealing structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085624A (en) * 2019-11-28 2021-06-03 キヤノン株式会社 Device, heat transport device and electronic apparatus
JP7362454B2 (en) 2019-11-28 2023-10-17 キヤノン株式会社 equipment, heat transport equipment, and electronic equipment
WO2021235058A1 (en) * 2020-05-19 2021-11-25 パナソニックIpマネジメント株式会社 Magnetic fluid drive device and heat transport system
CN117040230A (en) * 2023-10-09 2023-11-10 惠州市艾美珈磁电技术股份有限公司 Electromagnetic pump with sealing structure
CN117040230B (en) * 2023-10-09 2023-12-05 惠州市艾美珈磁电技术股份有限公司 Electromagnetic pump with sealing structure

Similar Documents

Publication Publication Date Title
JP4317537B2 (en) Suspension for image stabilization
US7710460B2 (en) Method of compensating for an effect of temperature on a control system
JP2019071706A (en) Magnetic fluid heat engine and device mounting the same
US9897820B2 (en) Image projection apparatus
JP2006031027A (en) Magnet structure for image stabilization
US11839052B2 (en) Apparatus having magnetic fluid heat transport system
JP2016502371A (en) Video shooting device
WO2020220550A1 (en) Optical machine component of projection device, and projection device
JP4134113B2 (en) Ferrofluid suspension for image stabilization
JP6662127B2 (en) Image generation unit and image projection device
JP5315439B2 (en) Imaging unit and imaging apparatus
JP2009100374A (en) Image sensor cooling unit, photographing lens unit, and electronic apparatus
JP2012032810A (en) Light irradiation device, camera device, and mobile terminal device with camera
US20180158387A1 (en) Image generation device and image projection apparatus
JP2010268133A (en) Imaging unit and electronic camera including the same
JP2006033856A (en) Apparatus and method for heat-sinking sensor
US10197894B2 (en) Dustproof member for image generation device and image projection apparatus
JP5009250B2 (en) Imaging unit and imaging apparatus
US10216074B2 (en) Image generation device and image projection apparatus for generating an image
JP2009141609A (en) Electronic camera and lens unit
JP2019070457A (en) Magnetic fluid heat engine
JP7013975B2 (en) Movable cooling device, image generator, image projection device
JP3992014B2 (en) projector
JP4801878B2 (en) Lighting device
JP2019071315A (en) Cooling means

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20191125