JP2019071288A - Lamp heating device - Google Patents

Lamp heating device Download PDF

Info

Publication number
JP2019071288A
JP2019071288A JP2019007562A JP2019007562A JP2019071288A JP 2019071288 A JP2019071288 A JP 2019071288A JP 2019007562 A JP2019007562 A JP 2019007562A JP 2019007562 A JP2019007562 A JP 2019007562A JP 2019071288 A JP2019071288 A JP 2019071288A
Authority
JP
Japan
Prior art keywords
temperature
light
light amount
sensor
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019007562A
Other languages
Japanese (ja)
Other versions
JP6670959B2 (en
Inventor
服部 昌
Akira Hattori
昌 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2019007562A priority Critical patent/JP6670959B2/en
Publication of JP2019071288A publication Critical patent/JP2019071288A/en
Application granted granted Critical
Publication of JP6670959B2 publication Critical patent/JP6670959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a lamp heating device capable of making a temperature of a product to be processed quickly follow a target value without requiring a work, such as fine adjustment of a control parameter.SOLUTION: A lamp heating device comprises a light source, a temperature sensor, a light quantity sensor, a temperature controller, and a light quantity controller. The light source irradiates a product to be processed with light to heat it. The temperature sensor detects a temperature of the product to be processed. The light quantity sensor detects a quantity of light of the light source. The temperature controller outputs the quantity of light to be emitted from the light source for the purpose of making a detection temperature of the temperature sensor accord with a temperature target value, as a light quantity target value. The light quantity controller drives the light source so as to make the quantity of light detected by the light quantity sensor accord with the light quantity target value outputted from the temperature controller.SELECTED DRAWING: Figure 4

Description

本発明は、太陽電池の電極の焼成処理等の加熱処理に用いられる加熱装置に関し、特に、ハロゲンランプ等の可視光〜近赤外域光源を備えたランプ加熱装置に関する。   The present invention relates to a heating device used for heat treatment such as baking treatment of an electrode of a solar cell, and more particularly to a lamp heating device provided with a visible light to near-infrared region light source such as a halogen lamp.

太陽電池の電極の焼成処理等の加熱処理には、ハロゲンランプ等の可視光〜近赤外域光源を熱源としたランプ加熱装置が用いられている。ランプ加熱装置は、放射温度計によって被処理物の温度を測定し、被処理物の温度が適正な処理温度となるように、シングルループのフィードバック制御によって光源を駆動する(例えば、特許文献1参照。)。   A lamp heating device using a visible light to near-infrared region light source such as a halogen lamp as a heat source is used for heat treatment such as baking treatment of an electrode of a solar cell. The lamp heating device measures the temperature of the object by means of a radiation thermometer, and drives the light source by single-loop feedback control so that the temperature of the object becomes an appropriate processing temperature (see, for example, Patent Document 1) ).

特開2006−147943号公報JP, 2006-147943, A

しかし、フィードバック制御による光源の光量の応答性は十分に速いが、光量に対する被処理物の温度の応答性は遅いため、シングルループによるフィードバック制御では被処理物の温度を目標値に素早く追従させることが難しい。このため、従来のランプ加熱装置を用いて、例えば、太陽電池の電極の焼成処理におけるスパイクアニールのように100℃/秒を越える速度で被処理物の温度を急速に変化させる場合、制御パラメータの微調整等の煩雑な作業が必要になる。   However, although the response of the light amount of the light source by feedback control is sufficiently fast, the response of the temperature of the object to the light amount is slow, the feedback control by single loop causes the temperature of the object to quickly follow the target value. Is difficult. For this reason, when using a conventional lamp heating apparatus to rapidly change the temperature of an object at a speed exceeding 100 ° C./sec, such as spike annealing in the firing treatment of an electrode of a solar cell, for example, It requires complicated operations such as fine adjustment.

このような問題は、太陽電池の電極の焼成処理に限らず、ランプ加熱装置における加熱処理に一般的に生じる。   Such a problem generally occurs not only in the firing process of the electrodes of the solar cell but also in the heat process in the lamp heating apparatus.

そこで本発明の目的は、制御パラメータの微調整等の作業を必要とすることなく被処理物の温度を目標値に素早く追従させることができるランプ加熱装置を提供することである。   Therefore, an object of the present invention is to provide a lamp heating apparatus capable of quickly making the temperature of an object to be processed follow a target value without requiring an operation such as fine adjustment of control parameters.

本発明に係るランプ加熱装置は、光源、温度センサ、光量センサ、温度制御部、光量制御部を備えている。光源は、被処理物に光を照射して加熱する。温度センサは、被処理物の温度を検出する。光量センサは、光源の光量を検出する。温度制御部は、温度センサの検出温度を温度目標値に一致させるために光源が照射すべき光量を光量目標値として出力する。光量制御部は、温度制御部から出力された光量目標値に光量センサの検出光量が一致するように光源を駆動する。   A lamp heating device according to the present invention includes a light source, a temperature sensor, a light amount sensor, a temperature control unit, and a light amount control unit. The light source irradiates and heats an object to be processed. The temperature sensor detects the temperature of the object to be treated. The light amount sensor detects the light amount of the light source. The temperature control unit outputs the amount of light to be emitted by the light source as the light amount target value in order to make the detected temperature of the temperature sensor coincide with the temperature target value. The light amount control unit drives the light source such that the light amount detected by the light amount sensor matches the light amount target value output from the temperature control unit.

上記ランプ加熱装置において、温度制御部は、温度センサの検出温度に基づいて被処理物を目標温度に一致させる第1ループ(温度制御ループ)のフィードバック制御を実行し、光量制御部は、光量センサの検出光量に基づいて光源の光量を制御する第2ループ(光量制御ループ)のフィードバック制御を実行する。これにより、ランプ加熱装置は、第1ループ及び第2ループを備えた二重制御ループのフィードバック制御を実行する。そして、被処理物を加熱する光源の光量が第2ループのフィードバック制御によって直接制御されることにより、被処理物の温度が素早く目標温度に一致する。   In the lamp heating apparatus, the temperature control unit executes feedback control of a first loop (temperature control loop) to make the object to be processed match the target temperature based on the temperature detected by the temperature sensor, and the light amount control unit The feedback control of the second loop (light amount control loop) for controlling the light amount of the light source based on the detected light amount of is executed. Thereby, the lamp heating device carries out feedback control of the dual control loop comprising the first loop and the second loop. Then, the light amount of the light source for heating the object to be processed is directly controlled by the feedback control of the second loop, whereby the temperature of the object to be processed quickly matches the target temperature.

上記ランプ加熱装置において、光量センサは、検出感度波長域が光源の照射光の波長域に重複し、かつ光の波長の吸収域が被処理物の吸収域と略一致することが好ましい。光量センサの検出感度の高い波長域が被処理物を加熱する光の波長域に一致し、被処理物を加熱する波長域の光量を正確に検出することができる。   In the lamp heating apparatus, it is preferable that in the light amount sensor, the detection sensitivity wavelength range overlaps with the wavelength range of the irradiation light of the light source, and the absorption range of the light wavelength substantially coincides with the absorption range of the object to be treated. The wavelength range in which the detection sensitivity of the light amount sensor is high coincides with the wavelength range of the light that heats the object to be processed, and the light amount in the wavelength range to heat the object to be processed can be accurately detected.

また、光量センサは、光源を挟んで被処理物の反対側に配置することが好ましい。光源の光を確実に受光できるとともに、被処理物における反射光を受光し難くなり、光源の光量を正確に検出することができる。   Further, it is preferable that the light amount sensor be disposed on the opposite side of the processing object with the light source interposed therebetween. While being able to reliably receive the light of the light source, it becomes difficult to receive the reflected light from the object to be processed, and the light quantity of the light source can be accurately detected.

本発明によれば、制御パラメータの微調整等の作業を必要とすることなく被処理物の温度を目標値に素早く追従させることができる。   According to the present invention, the temperature of the object to be processed can be made to quickly follow the target value without requiring an operation such as fine adjustment of control parameters.

本発明の実施形態に係るランプ加熱装置の概略の断面図である。1 is a schematic cross-sectional view of a lamp heating device according to an embodiment of the present invention. ランプ加熱装置の要部の断面図である。It is sectional drawing of the principal part of a lamp heating apparatus. ランプ加熱装置の光量センサの放射率特性の一例を示す図である。It is a figure which shows an example of the emissivity characteristic of the light quantity sensor of a lamp heating apparatus. ランプ加熱装置の制御部のブロック図である。It is a block diagram of a control part of a lamp heating device. ランプ制御装置における被処理物の温度変化を示す図である。It is a figure which shows the temperature change of the to-be-processed object in a lamp | ramp control apparatus.

以下、本発明の実施形態に係るランプ加熱装置について、図面を参照しつつ説明する。   Hereinafter, a lamp heating device according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、実施形態に係るランプ加熱装置10は、炉体1、ハロゲンランプ2、温度センサ3、光量センサ4、制御部5及びランプ駆動部6を備え、被処理物Wを所定の温度に加熱する。被処理物Wは、一例としてシリコンを素材として板状を呈する太陽電池の電極材料である。   As shown in FIG. 1, the lamp heating device 10 according to the embodiment includes a furnace body 1, a halogen lamp 2, a temperature sensor 3, a light amount sensor 4, a control unit 5 and a lamp driving unit 6. Heat to the temperature of The object to be treated W is, for example, an electrode material of a solar cell which is made of silicon and exhibits a plate shape.

炉体1は、断熱性を有する筐体であり、内部に被処理物Wが搬入出される。ハロゲンランプ2は、本発明の光源であり、炉体1の内部に、一例として上下に5個ずつ配置される。被処理物Wは、上下のハロゲンランプ2の間に搬入される。本発明の光源は、ハロゲンランプに限るものではなく、個数、配置位置、形状も図1に示す状態に限るものではない。   The furnace body 1 is a casing having heat insulation, and the workpiece W is carried in and out. The halogen lamps 2 are light sources according to the present invention, and five halogen lamps 2 are arranged at the top and bottom, as an example, inside the furnace body 1. The workpiece W is carried between the upper and lower halogen lamps 2. The light source of the present invention is not limited to the halogen lamp, and the number, the arrangement position, and the shape are not limited to the state shown in FIG.

温度センサ3は、一例として放射温度計であり、被処理物Wの温度を測定する。温度センサ3は、炉体1の外部に配置され、炉体1に形成された貫通孔11を経由して、被処理物Wの底面に対向している。温度センサ3は、放射温度計に限るものではなく、例えば、被処理物Wの温度を直接測定するものであってもよい。   The temperature sensor 3 is a radiation thermometer as an example, and measures the temperature of the object W to be processed. The temperature sensor 3 is disposed outside the furnace body 1 and is opposed to the bottom surface of the object to be treated W via the through hole 11 formed in the furnace body 1. The temperature sensor 3 is not limited to the radiation thermometer, and may directly measure the temperature of the object W, for example.

光量センサ4は、一例として、シリコンフォトダイオードであり、炉体1の外部に配置され、炉体1に形成された貫通孔12を経由して、ハロゲンランプ2の光量を測定する。制御部5は、温度センサ3の検出温度及び光量センサ4の検出光量に基づいて作成したハロゲンランプ2の駆動データをランプ駆動部6に出力する。ランプ駆動部6は、駆動データに基づいてハロゲンランプ2を駆動する。制御部5及びランプ駆動部6が、本発明の駆動制御部に相当する。   The light amount sensor 4 is, for example, a silicon photodiode, which is disposed outside the furnace 1 and measures the light amount of the halogen lamp 2 via the through hole 12 formed in the furnace 1. The control unit 5 outputs drive data of the halogen lamp 2 created based on the detection temperature of the temperature sensor 3 and the detection light amount of the light amount sensor 4 to the lamp driving unit 6. The lamp driver 6 drives the halogen lamp 2 based on the drive data. The control unit 5 and the lamp drive unit 6 correspond to a drive control unit of the present invention.

温度センサ3及び光量センサ4について、図2及び図3により、さらに詳細に説明する。図2に示すように、温度センサ3は、水平方向について炉体1内に配置されている2つのハロゲンランプ2の間に位置しており、貫通孔11を経由して被処理物Wの底面に直接対向している。これによって、温度センサ3は、被処理物Wの温度を正確に測定できる。   The temperature sensor 3 and the light quantity sensor 4 will be described in more detail with reference to FIGS. 2 and 3. As shown in FIG. 2, the temperature sensor 3 is located between two halogen lamps 2 disposed in the furnace body 1 in the horizontal direction, and the bottom surface of the processing object W via the through hole 11 It is directly opposed to. Thus, the temperature sensor 3 can measure the temperature of the object W accurately.

光量センサ4は、炉体1内に配置されている複数のハロゲンランプ2のうち、被処理物Wの全体の温度に与える影響が大きい例えば中央部のハロゲンランプ2に対向する位置で、被処理物Wや炉体1の内壁からの反射光の影響を受け難い位置に配置されている。   Among the plurality of halogen lamps 2 disposed in the furnace body 1, the light quantity sensor 4 has a large influence on the overall temperature of the object to be treated W. It is arrange | positioned in the position which does not receive to the influence of the reflected light from the thing W and the inner wall of the furnace 1 easily.

光量センサ4は、貫通孔12に備えられている減光フィルタ41を介してハロゲンランプ2の光を受光する。また、光量センサ4は、放熱部材42に取り付けられている。光量センサ4は、減光フィルタ41及び放熱部材42によってハロゲンランプ2の光による温度上昇を最小限に抑えられ、ハロゲンランプ2の光量を正確に測定できる。   The light amount sensor 4 receives the light of the halogen lamp 2 through the light reduction filter 41 provided in the through hole 12. In addition, the light amount sensor 4 is attached to the heat dissipation member 42. The light amount sensor 4 can minimize the temperature rise due to the light of the halogen lamp 2 by the light reduction filter 41 and the heat radiating member 42, and can accurately measure the light amount of the halogen lamp 2.

なお、温度センサ3及び光量センサ4の配置位置は、炉体1の下方に限るものではなく、一方又は両方を炉体1の上方又は側方に配置することもできる。但し、平板状の被処理物Wの温度を放射温度計である温度センサ3によって測定するためには、温度センサ3を被処理物Wの主面に対向して配置することが望ましい。また、光量センサ4は、被処理物Wや炉体1の内壁からの反射光の影響を受け難い位置でハロゲンランプ2に直接対向させる必要がある。さらに、温度センサ3及び光量センサ4は、ともに制御部5に接続されるため、互いに近接して配置することが好ましく、例えば放熱部材42を介して両者を一体的に固定することもできる。   In addition, the arrangement | positioning position of the temperature sensor 3 and the light quantity sensor 4 is not restricted to the downward direction of the furnace body 1, One or both can also be arrange | positioned above the furnace body 1 or side. However, in order to measure the temperature of the flat object W to be processed by the temperature sensor 3 which is a radiation thermometer, it is preferable to dispose the temperature sensor 3 opposite to the main surface of the object W. In addition, the light amount sensor 4 needs to directly face the halogen lamp 2 at a position that is not easily affected by the reflected light from the workpiece W or the inner wall of the furnace body 1. Furthermore, since both the temperature sensor 3 and the light amount sensor 4 are connected to the control unit 5, they are preferably arranged close to each other. For example, both can be integrally fixed via the heat dissipation member 42.

図3は、光量センサ4の放射率特性の一例として、シリコンフォトダイオードによって構成された光量センサ4の放射率特性を示している。同図に示すように、光量センサ4の放射率特性は、被処理物Wの素材であるシリコンの放射率特性と略一致する。また、シリコンフォトダイオードの検出感度波長域は、ハロゲンランプ2の発光波長とオーバラップする。放射率特性は光の吸収特性と等価と考えられる。このため、光量センサ4は、被処理物Wのハロゲンランプ2の光による加熱状態を、ハロゲンランプ2の光の光量によって正確に検出することができる。   FIG. 3 shows the emissivity characteristic of the light amount sensor 4 constituted by a silicon photodiode as an example of the emissivity characteristic of the light amount sensor 4. As shown in the figure, the emissivity characteristic of the light amount sensor 4 substantially matches the emissivity characteristic of silicon which is the material of the object W to be treated. Further, the detection sensitivity wavelength range of the silicon photodiode overlaps with the emission wavelength of the halogen lamp 2. Emissivity characteristics are considered to be equivalent to light absorption characteristics. Therefore, the light amount sensor 4 can accurately detect the heating state of the object to be processed W by the light of the halogen lamp 2 based on the light amount of the light of the halogen lamp 2.

なお、本発明の光源は、ハロゲンランプ2に限るものではない。ハロゲンランプ2以外であっても、使用する光源の発光波長にオーバラップする検出感度波長域を有し、放射率特性が略一致する材料で構成された光量センサ4を使用することで、被処理物Wの光源の光による加熱状態を、光源の光の光量によって正確に検出することができる。   The light source of the present invention is not limited to the halogen lamp 2. Even if it is other than the halogen lamp 2, it has a detection sensitivity wavelength range which overlaps with the light emission wavelength of the light source to be used, and is processed by using the light quantity sensor 4 made of a material whose emissivity characteristics substantially match. The heating state by the light of the light source of the object W can be accurately detected by the light amount of the light of the light source.

温度センサ3及び光量センサ4の検出値に基づくハロゲンランプ2の駆動制御について、図4により、さらに詳細に説明する。図4に示すように、制御部5は、温度制御器51、光量制御器52及び電力変換器53を備えている。制御部5は、図示しない記憶部に予め記憶されているシーケンスに従って被処理物Wの温度目標値Tを経時的に設定する。温度制御器51は、温度センサ3が検出した被処理物Wの現在の温度Tと温度目標値Tとの差分に基づいて、ハロゲンランプ2が照射すべき光量目標値Lを出力する。光量制御器52は、光量センサ4が検出したハロゲンランプ2の現在の光量Lと光量目標値Lとの差分に基づいてハロゲンランプ2に供給すべき電力制御値を決定し、電力変換器53に入力する。 The drive control of the halogen lamp 2 based on the detection values of the temperature sensor 3 and the light amount sensor 4 will be described in more detail with reference to FIG. As shown in FIG. 4, the control unit 5 includes a temperature controller 51, a light amount controller 52, and a power converter 53. Control unit 5 over time to set the target temperature T O of the workpiece W in accordance with the sequence stored in advance in a storage unit not shown. Temperature controller 51, based on the difference between the current temperature T R and the temperature target value T O of the workpiece W which is a temperature sensor 3 detects a halogen lamp 2 outputs a light amount target value L O to be irradiated . Light amount control unit 52 determines the power control value to be supplied to the halogen lamp 2 on the basis of the difference between the current light amount L R and the light amount target value L O of the halogen lamp 2 to the light amount sensor 4 has detected, the power converter Enter in 53

即ち、制御部5は、温度センサ3の検出温度に基づいて被処理物Wを目標温度に一致させる第1ループのフィードバック制御に加えて、光量センサ4の検出光量に基づいてハロゲンランプ2の光量を制御する第2ループのフィードバック制御を行う。制御部5は、被処理物Wを加熱するハロゲンランプ2の光量を直接制御することができ、被処理物Wの温度を素早く目標温度に一致させることができ、被処理物Wの温度軌跡を1/10秒単位の高速で制御することができる。   That is, in addition to the feedback control of the first loop that causes the object W to match the target temperature based on the temperature detected by the temperature sensor 3, the controller 5 determines the light intensity of the halogen lamp 2 based on the light intensity detected by the light intensity sensor 4. Perform feedback control of the second loop that controls The control unit 5 can directly control the light amount of the halogen lamp 2 for heating the object W, can quickly make the temperature of the object W coincide with the target temperature, and can control the temperature locus of the object W It can be controlled at a high speed of 1/10 seconds.

制御理論に示されるように、制御目標値が時系列的に変化しない一定値である定値制御を行う場合、制御系が積分極を1つ備えれば制御遅れを生じない(制御偏差が0)。これに対して、時系列的に変化する制御目標値に追随させるランピング制御を行う場合は、制御系が積分極を2つ備えることが望ましい。   As shown in the control theory, when performing constant value control in which the control target value is a constant value that does not change in time series, if the control system has one integration pole, no control delay occurs (control deviation is 0) . On the other hand, when performing ramping control to follow a control target value that changes in time series, it is desirable for the control system to have two integrating poles.

一般的なPID制御における制御系の伝達関数C(s)は、比例ゲインをK、積分ゲインをK、微分ゲインをKとして、
C(s)=K+K・1/s+K・s
で表される。制御対象が積分極を有する場合は、1つのみの積分極1/sを有する単一制御ループの制御系であっても、ランピング制御における制御偏差を抑制できるが、一般に制御対象が積分極を有することは少ない。そこで、制御系に2つの制御ループを構成し、それぞれが積分極を有する2つの制御器を備えることで、ランピング制御における制御偏差を0にすることができる。
The transfer function C (s) of the control system in general PID control is K P , the integral gain is K I , and the derivative gain is K D
C (s) = K P + K I · 1 / s + K D · s
Is represented by When the control target has an integration pole, even a control system of a single control loop having only one integration pole 1 / s can suppress the control deviation in ramping control, but in general, the control target is an integration pole. There is little to have. Therefore, by providing two control loops in the control system and providing two controllers each having an integrating pole, it is possible to make the control deviation in the ramping control zero.

例えば、被処理物Wの温度を所望のピーク温度で保持するスパイクアニール処理を1つの制御ループのみを有する制御系を用いて行おうとすると、図5に示すように、所望のピーク温度に達した後に一定時間pにわたって目標値を保持する必要があり、目標値の調整作業が必要となる。また、制御遅れを生じて、制御対象を目標値に追随させることができない。   For example, when a spike annealing process for holding the temperature of the object W at a desired peak temperature is performed using a control system having only one control loop, the desired peak temperature is reached as shown in FIG. It is necessary to hold the target value for a fixed time p later, and an adjustment operation of the target value is required. In addition, a control delay occurs and the control target can not follow the target value.

これに対して、2つの制御ループを構成して積分極を2つ備えた制御系では、目標値が所望のピーク値に達した時点で制御量を0とすることができ、スパイクアニール処理等の時系列的に変化する目標値に制御対象を追随させることができする。   On the other hand, in a control system having two control loops and two integrating poles, the control amount can be set to 0 when the target value reaches a desired peak value, and spike annealing processing, etc. The control object can be made to follow the target value which changes in time series of

したがって、光量に対する被処理物Wの温度の応答性がハロゲンランプ2の光量のフィードバック制御によって向上し、制御パラメータの微調整等の作業を必要とすることなく被処理物Wの温度を目標温度軌跡に素早く追従させることができる。   Therefore, the response of the temperature of the object to be processed W to the light amount is improved by the feedback control of the light amount of the halogen lamp 2, and the temperature of the object to be processed W is set to the target temperature locus without requiring work such as fine adjustment of control parameters. Can be made to follow quickly.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。更に、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The above description of the embodiments should be considered in all respects as illustrative and not restrictive. The scope of the present invention is indicated not by the embodiments described above but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the claims.

1 炉体
2 ハロゲンランプ、光源
3 温度センサ
4 光量センサ
5 制御部
6 ランプ駆動部
W 被処理物
10 ランプ加熱装置
11、12 貫通孔
41 減光フィルタ
42 放熱部材
51 温度制御器
52 光量制御器
53 電力変換器
DESCRIPTION OF SYMBOLS 1 furnace body 2 halogen lamp, light source 3 temperature sensor 4 light quantity sensor 5 control part 6 lamp drive part W processed object 10 lamp heating device 11, 12 through hole 41 light reduction filter 42 heat dissipation member 51 temperature controller 52 light quantity controller 53 Power converter

Claims (5)

被処理物に光を照射して加熱する光源と、
前記被処理物の温度を検出する温度センサと、
前記光源の光量を検出する光量センサと、
前記温度センサの検出温度を温度目標値に一致させるために前記光源が照射すべき光量を光量目標値として出力する温度制御部と、
前記温度制御部から出力された前記光量目標値に前記光量センサの検出光量が一致するように前記光源を駆動する光量制御部と、
を備える、ランプ加熱装置。
A light source for irradiating the object to be treated with light and heating;
A temperature sensor for detecting the temperature of the object to be treated;
A light amount sensor for detecting the light amount of the light source;
A temperature control unit which outputs, as a light amount target value, a light amount to be irradiated by the light source in order to make the detected temperature of the temperature sensor coincide with a temperature target value;
A light amount control unit for driving the light source such that the light amount detected by the light amount sensor matches the light amount target value output from the temperature control unit;
, A lamp heating device.
前記温度制御部は、前記温度センサの検出温度に基づいて当該検出温度を前記温度目標値に一致させる温度制御ループのフィードバック制御を実行し、
前記光量制御部は、前記光量センサの検出光量に基づいて前記光源の光量を制御する光量制御ループのフィードバック制御を実行し、
これにより、前記温度制御ループ及び前記光量制御ループを備えた二重制御ループのフィードバック制御を実行する、請求項1に記載のランプ加熱装置。
The temperature control unit executes feedback control of a temperature control loop that causes the detected temperature to match the temperature target value based on the temperature detected by the temperature sensor.
The light amount control unit executes feedback control of a light amount control loop that controls the light amount of the light source based on the light amount detected by the light amount sensor.
The lamp heating apparatus according to claim 1, wherein feedback control of a dual control loop comprising the temperature control loop and the light amount control loop is performed.
前記光量センサは、光の波長の吸収域が前記被処理物の吸収域と略一致する、請求項1又は2に記載のランプ加熱装置。   The lamp heating device according to claim 1, wherein the light amount sensor has an absorption area of light wavelength substantially coincident with an absorption area of the object to be processed. 前記光量センサは、検出感度波長域が前記光源の照射光の波長域に重複する、請求項3に記載のランプ加熱装置。   The lamp heating device according to claim 3, wherein the light amount sensor has a detection sensitivity wavelength range overlapping a wavelength range of irradiation light of the light source. 前記光量センサは、前記光源を挟んで前記被処理物の反対側に配置される、請求項1〜4の何れかに記載のランプ加熱装置。   The lamp light device according to any one of claims 1 to 4, wherein the light amount sensor is disposed on the opposite side of the object with the light source interposed therebetween.
JP2019007562A 2019-01-21 2019-01-21 Lamp heating device Active JP6670959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007562A JP6670959B2 (en) 2019-01-21 2019-01-21 Lamp heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007562A JP6670959B2 (en) 2019-01-21 2019-01-21 Lamp heating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015049687A Division JP6482334B2 (en) 2015-03-12 2015-03-12 Lamp heating device

Publications (2)

Publication Number Publication Date
JP2019071288A true JP2019071288A (en) 2019-05-09
JP6670959B2 JP6670959B2 (en) 2020-03-25

Family

ID=66441628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007562A Active JP6670959B2 (en) 2019-01-21 2019-01-21 Lamp heating device

Country Status (1)

Country Link
JP (1) JP6670959B2 (en)

Also Published As

Publication number Publication date
JP6670959B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5855353B2 (en) Heat treatment apparatus and heat treatment method
US9875919B2 (en) Heat treatment method for heating substrate by irradiating substrate with flash of light
JP5819633B2 (en) Heat treatment apparatus and heat treatment method
US10903126B2 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP2015501369A (en) Curing system
US20120238110A1 (en) Heat treatment method and heat treatment apparatus for heating substrate by irradiating substrate with flash of light
US20180254224A1 (en) Heat treatment method and heat treatment apparatus of light irradiation type
JPWO2019176753A1 (en) Laser power control device, laser processing device and laser power control method
US11456193B2 (en) Light irradiation type heat treatment method and heat treatment apparatus
US9214368B2 (en) Laser diode array with fiber optic termination for surface treatment of materials
US8802550B2 (en) Heat treatment method for heating substrate by irradiating substrate with flash of light
JP2019071288A (en) Lamp heating device
JP6482334B2 (en) Lamp heating device
JP5209237B2 (en) Heat treatment equipment
JP5558985B2 (en) Heat treatment equipment
US20230307274A1 (en) Abnormality detection device
JP6574344B2 (en) Heat treatment apparatus and heat treatment method
US20220390175A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
US20190267261A1 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP5898257B2 (en) Heat treatment equipment
KR101513644B1 (en) DNA amplification using the non-contact radiant heating device
JP2014160861A (en) Heat treatment apparatus
KR20210127726A (en) Heat treatment method and heat treatment apparatus
JP2758793B2 (en) Lamp annealer
JPS6252926A (en) Heat treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6670959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250