JP2019068681A - Power transmission device and wireless power transmission system - Google Patents

Power transmission device and wireless power transmission system Download PDF

Info

Publication number
JP2019068681A
JP2019068681A JP2017194353A JP2017194353A JP2019068681A JP 2019068681 A JP2019068681 A JP 2019068681A JP 2017194353 A JP2017194353 A JP 2017194353A JP 2017194353 A JP2017194353 A JP 2017194353A JP 2019068681 A JP2019068681 A JP 2019068681A
Authority
JP
Japan
Prior art keywords
power transmission
feed line
power
transmission electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017194353A
Other languages
Japanese (ja)
Inventor
菅野 浩
Hiroshi Sugano
浩 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017194353A priority Critical patent/JP2019068681A/en
Publication of JP2019068681A publication Critical patent/JP2019068681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a transmission device and a wireless power transmission system, in which an electric field intensity of the circumference of a feeding line is reduced.SOLUTION: A power transmission device comprises: a power transmission electrode unit including a first power transmission electrode and a second power transmission electrode; a power transmission circuit part that supplies an electric power to the power transmission electrode unit; and a feeding line part having a first feeding line connecting the first power transmission electrode with the power transmission circuit part, and a second feeding line connecting the second power transmission electrode and the power transmission circuit part. The power transmission circuit part comprises a matching circuit that increases a voltage amplitude of an AC power. A voltage output from the matching circuit is applied to the power transmission electrode unit through the feeding line part, the first and second feeding lines are adjacently arranged. A voltage component of an inverse phase is applied to each of the first and second feeding lines. A distance between the first feeding line and the second feeding line is shorter than the maximum distance between the adjacent first power transmission electrode and the second power transmission electrode.SELECTED DRAWING: Figure 2

Description

本開示は、無線で電力を伝送する送電装置および無線電力伝送システムに関する。   The present disclosure relates to a power transmission device that wirelessly transmits power and a wireless power transmission system.

近年、搬送ロボットや電気自動車などの移動性を伴うモビリティに、無線(非接触)で電力を伝送する無線(非接触)電力伝送技術の開発が進められている。無線電力伝送技術には、磁界結合式や電界結合式など複数の方式がある。   In recent years, development of wireless (non-contact) power transmission technology for transmitting power wirelessly (non-contact) has been advanced for mobility involving mobility such as transport robots and electric vehicles. The wireless power transmission technology includes a plurality of methods such as a magnetic field coupling method and an electric field coupling method.

例えば、特許文献1には、磁界結合方式の無線電力伝送システムが記載されている。磁界結合式の無線電力伝送システムの場合、送電装置のコイルから受電装置のコイルへ電力を給電するので、充電領域の所定位置にモビリティを停止しなければならない。磁界結合方式の無線電力伝送システムは、充電時のモビリティの位置合わせが厳密であり、モビリティの位置ずれに対して給電しにくい問題がある。   For example, Patent Document 1 describes a wireless power transmission system of a magnetic field coupling system. In the case of the magnetic field coupling type wireless power transmission system, since power is supplied from the coil of the power transmission device to the coil of the power reception device, mobility must be stopped at a predetermined position in the charging region. The magnetic field coupling type wireless power transmission system has a problem that the alignment of mobility at the time of charging is strict, and it is difficult to supply power to the displacement of the mobility.

これに対して、電界結合式の無線電力伝送システムであれば、送電装置の電極上に受電装置の電極を平行して位置すれば給電できる。したがって、送電装置の電極を受電装置の電極よりも長くすることで、充電時モビリティが位置ずれを補償することができる。特許文献2には、電界結合式の無線電力伝送システムが記載されている。   On the other hand, in the case of an electric field coupling type wireless power transmission system, power can be supplied if the electrodes of the power receiving device are positioned in parallel on the electrodes of the power transmitting device. Therefore, by making the electrode of the power transmission device longer than the electrode of the power reception device, mobility at the time of charge can compensate for the positional deviation. Patent Document 2 describes an electric field coupling type wireless power transmission system.

特開2016−119784号公報Unexamined-Japanese-Patent No. 2016-119784 特開2017−70055号公報JP, 2017-70055, A

電界結合式の無線電力伝送において、直流電力をインバータ回路により交流電力へ変換する際、周波数を低くすると電源効率を上げることができる。しかしながら、周波数を低くすると、送電装置および受電装置間の伝送効率が低下する。そこで、送電電極ユニットに印加する電圧を高くすることで伝送効率の低下を補償することができる。   In the electric field coupling type wireless power transmission, when DC power is converted to AC power by an inverter circuit, the power supply efficiency can be increased by lowering the frequency. However, lowering the frequency lowers the transmission efficiency between the power transmission device and the power reception device. Therefore, lowering the transmission efficiency can be compensated by increasing the voltage applied to the power transmission electrode unit.

しかしながら、電源ボックスに配置された整合回路において電圧の昇圧を行うと、電源ボックスから送電電極ユニットまでの給電線路にも高電圧が印加される。これにより、給電線路から発生する電界の強度が高くなる。この高電界は給電線路周辺の電子機器に影響を与えて、電子機器に誤作動を生じさせるおそれがある。また、給電線路の周囲に分布する電界強度は安全のため低い値に低減することが好ましい。   However, when the voltage is boosted in the matching circuit disposed in the power supply box, a high voltage is also applied to the feed line from the power supply box to the power transmission electrode unit. Thereby, the strength of the electric field generated from the feed line is increased. The high electric field may affect electronic devices in the vicinity of the feed line to cause the electronic devices to malfunction. Moreover, it is preferable to reduce the electric field strength distributed around the feed line to a low value for safety.

従って、本開示の目的は、前記課題を解決することにあって、給電線路周囲の電界強度を低減した送電装置および無線電力伝送システムを提供することにある。   Therefore, an object of the present disclosure is to solve the above-mentioned problems, and to provide a power transmission device and a wireless power transmission system in which the electric field strength around the feed line is reduced.

前記目的を達成するために、本開示の一態様に係る送電装置は、
無線電力伝送用の電界結合方式の送電装置であって、
第1送電電極と第2送電電極を有する送電電極ユニットと、
前記送電電極ユニットへ電力を供給する送電回路部と、
前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、
を備え、
前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、
前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、
前記第1給電線路と前記第2給電線路は隣接して配置され、
前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い。
In order to achieve the above object, a power transmission device according to an aspect of the present disclosure,
An electric field coupling type power transmission device for wireless power transmission, comprising:
A power transmission electrode unit having a first power transmission electrode and a second power transmission electrode;
A power transmission circuit unit that supplies power to the power transmission electrode unit;
A feed line portion having a first feed line connecting the first power transmission electrode and the power transmission circuit portion, and a second feed line connecting the second power transmission electrode and the power transmission circuit portion;
Equipped with
The power transmission circuit unit includes an inverter circuit that outputs the input power as AC power of a predetermined frequency, and a matching circuit that increases the voltage amplitude of the AC power.
The voltage output from the matching circuit is applied to the power transmission electrode unit through the feed line portion,
The first feed line and the second feed line are disposed adjacent to each other,
A voltage component of opposite phase is applied to the first feed line and the second feed line, and the distance between the first feed line and the second feed line is the adjacent first power transmission electrode and the second feed line. Less than the maximum distance between the transmission electrodes.

また、本開示の一態様に係る無線電力伝送システムは、
電界結合方式の無線電力伝送システムであって、
第1送電電極と第2送電電極を有する送電電極ユニットと、前記送電電極ユニットへ電力を供給する送電回路部と、前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、を備えた送電装置と、
前記送電装置から送られる電力を受電する受電装置を有するモビリティと、
を備え、
前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、
前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、
前記第1給電線路と前記第2給電線路は隣接して配置され、
前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、
前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い。
Further, a wireless power transmission system according to an aspect of the present disclosure is:
An electric field coupling type wireless power transmission system,
A power transmission electrode unit having a first power transmission electrode and a second power transmission electrode, a power transmission circuit unit for supplying power to the power transmission electrode unit, and a first feed line for connecting the first power transmission electrode and the power transmission circuit unit; A power transmission line portion including a second power feed line connecting the second power transmission electrode and the power transmission circuit portion;
Mobility having a power receiving device for receiving power transmitted from the power transmitting device;
Equipped with
The power transmission circuit unit includes an inverter circuit that outputs the input power as AC power of a predetermined frequency, and a matching circuit that increases the voltage amplitude of the AC power.
The voltage output from the matching circuit is applied to the power transmission electrode unit through the feed line portion,
The first feed line and the second feed line are disposed adjacent to each other,
Applying voltage components of opposite phases to the first feed line and the second feed line,
The distance between the first feed line and the second feed line is shorter than the maximum distance between the adjacent first power transmission electrode and the second power transmission electrode.

給電線路周囲の電界強度を低減した送電装置および無線電力伝送システムを提供することができる。   It is possible to provide a power transmission device and a wireless power transmission system in which the electric field strength around the feed line is reduced.

実施形態1に係る無線電力システムの一例を模式的に示す図A diagram schematically showing an example of a wireless power system according to a first embodiment 実施形態1に係る無線電力伝送システムの概略構成を示すブロック図Block diagram showing a schematic configuration of the wireless power transmission system according to the first embodiment 実施形態1に係る無線電力伝送システムの概略構成を示す回路図A circuit diagram showing a schematic configuration of a wireless power transmission system according to Embodiment 1. インバータ回路の構成例を模式的に示す図Diagram schematically showing a configuration example of an inverter circuit コンバータ回路の構成例を模式的に示す図Diagram schematically showing a configuration example of a converter circuit 実施形態1に係る送電電極ユニットに接続される給電線路部の配置を模式的に示す平面図A plan view schematically showing the arrangement of feed line portions connected to the power transmission electrode unit according to the first embodiment 実施形態1に係る給電線路部を模式的に示す断面図Sectional drawing which shows the feed-line part which concerns on Embodiment 1 typically 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の電界強度を示す断面図Cross section showing electric field strength of feed line portion 電極間距離と電界強度との関係を示すグラフ図Graph showing the relationship between inter-electrode distance and electric field strength 給電線路の幅と電界強度との関係を示す表Table showing relationship between feed line width and electric field strength シールドと電界強度との関係を示す表Table showing the relationship between shield and electric field strength 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 給電線路部の変形例を示す断面図Sectional view showing a modification of the feed line portion 送電電極ユニットに接続される給電線路部の配置の変形例を示す平面図A plan view showing a modification of the arrangement of feed line portions connected to the power transmission electrode unit

本開示の一態様によれば、無線電力伝送用の電界結合方式の送電装置であって、第1送電電極と第2送電電極を有する送電電極ユニットと、前記送電電極ユニットへ電力を供給する送電回路部と、前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、を備え、前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、前記第1給電線路と前記第2給電線路は隣接して配置され、前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い。   According to an aspect of the present disclosure, there is provided an electric field coupling type power transmission device for wireless power transmission, which is a power transmission electrode unit having a first power transmission electrode and a second power transmission electrode, and power transmission to supply power to the power transmission electrode unit. A feed line portion having a circuit portion, a first feed line connecting the first power transmission electrode and the power transmission circuit portion, and a second feed line connecting the second power transmission electrode and the power transmission circuit portion , And the power transmission circuit unit includes: an inverter circuit that outputs the input power as AC power of a predetermined frequency; and a matching circuit that increases the voltage amplitude of the AC power; The output voltage is applied to the power transmission electrode unit through the feed line portion, and the first feed line and the second feed line are disposed adjacent to each other, and the first feed line and the second feed line are connected to each other. Each in reverse The voltage component is applied, the distance between the first feed line and the second feeder line is shorter than the maximum distance between the between adjacent said first transmission electrode second power electrode.

また、本開示の一態様によれば、電界結合方式の無線電力伝送システムであって、第1送電電極と第2送電電極を有する送電電極ユニットと、前記送電電極ユニットへ電力を供給する送電回路部と、前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、を備えた送電装置と、前記送電装置から送られる電力を受電する受電装置を有するモビリティと、を備え、前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、前記第1給電線路と前記第2給電線路は隣接して配置され、前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い。   Moreover, according to one aspect of the present disclosure, there is provided a wireless power transmission system of an electric field coupling type, comprising: a power transmission electrode unit having a first power transmission electrode and a second power transmission electrode; and a power transmission circuit for supplying power to the power transmission electrode unit. A feeder line portion having a part, a first feed line connecting the first power transmission electrode and the power transmission circuit portion, and a second feed line connecting the second power transmission electrode and the power transmission circuit portion; And a mobility having a power receiving device for receiving power transmitted from the power transmitting device, wherein the power transmitting circuit unit outputs the input power as AC power of a predetermined frequency. A circuit and a matching circuit for increasing the voltage amplitude of the AC power, and a voltage output from the matching circuit is applied to the power transmission electrode unit through the feed line portion, and the first feed line And the second feed line are disposed adjacent to each other, and voltage components of opposite phases are applied to the first feed line and the second feed line, respectively, and a distance between the first feed line and the second feed line Is shorter than the maximum distance between the adjacent first transmission electrode and the second transmission electrode.

また、前記送電回路部から前記送電電極ユニットまでの前記給電線路部の全範囲において、前記第1給電線路と前記第2給電線路間の距離が前記第1送電電極と前記第2送電電極間の最大距離よりも短くてもよい。   In the entire range of the feed line portion from the power transmission circuit unit to the power transmission electrode unit, the distance between the first feed line and the second feed line is the distance between the first power transmission electrode and the second power transmission electrode. It may be shorter than the maximum distance.

また、前記給電線路部は、前記第1送電電極および前記第2送電電極の長手方向延長領域外に延びてもよい。   Further, the feed line portion may extend outside the longitudinal extension area of the first power transmission electrode and the second power transmission electrode.

また、前記第1給電線路および前記第2給電線路の線路幅は、前記第1送電電極および前記第2送電電極の幅よりも短くてもよい。   The line widths of the first feed line and the second feed line may be shorter than the widths of the first power transmission electrode and the second power transmission electrode.

また、前記第1給電線路と前記第2給電線路間には絶縁性樹脂が配置されてもよい。   In addition, an insulating resin may be disposed between the first feed line and the second feed line.

また、前記絶縁性樹脂の厚みは前記給電線路の厚みよりも大きくてもよい。   The thickness of the insulating resin may be larger than the thickness of the feed line.

また、前記第1給電線路および前記第2給電線路は幅方向に平行に配置されてもよい。   The first feed line and the second feed line may be arranged in parallel in the width direction.

また、前記給電線路部は、前記第1給電線路に隣り合う別の第2給電線路をさらに備えてもよい。   The feed line portion may further include another second feed line adjacent to the first feed line.

また、前記給電線路部は、逆位相の電圧がそれぞれ印加される前記第1給電線路および前記第2給電線路を1対として、幅方向に平行に配置された複数対の前記第1給電線路および前記第2給電線路を有してもよい。   Further, the feed line portion includes a plurality of pairs of first feed lines disposed in parallel in the width direction, with the first feed line and the second feed line to which voltages of opposite phases are respectively applied as a pair. You may have the said 2nd feed line.

また、前記給電線路部は、前記第1給電線路および第2給電線路の周囲の少なくとも一部を遮蔽する導体シールドを備えてもよい。   Further, the feed line portion may include a conductor shield that shields at least a part of the periphery of the first feed line and the second feed line.

また、前記導体シールドは、前記第1給電線路および前記第2給電線路の並び方向外側に配置されたグラウンド線を含んでもよい。   In addition, the conductor shield may include a ground line disposed outside the arrangement direction of the first feed line and the second feed line.

また、前記導体シールドは、前記第1給電線路と第2給電線路間に配置されたグラウンド線を含んでもよい。   Also, the conductor shield may include a ground line disposed between the first feed line and the second feed line.

また、前記導体シールドは、前記第1給電線路および第2給電線路の並び方向と延びる方向とに、前記第1給電線路および第2給電線路と対向して配置されたグラウンド層を含んでもよい。   Further, the conductor shield may include a ground layer arranged to face the first feed line and the second feed line in a direction in which the first feed line and the second feed line are arranged and in a direction in which the conductor shield extends.

また、前記導体シールドは、前記グラウンド層の反対側に前記第1給電線路および前記第2給電線路と対向して配置された別のグラウンド層を含んでもよい。   In addition, the conductor shield may include another ground layer disposed opposite to the ground layer and facing the first feed line and the second feed line.

また、前記導体シールドは、前記第1給電線路および前記第2給電線路の周囲を囲んでもよい。   The conductor shield may surround the first feed line and the second feed line.

前記第1給電線路と、前記第1給電線路に印加される電圧と逆位相成分の電圧が印加される前記第2送電電極との間の距離が、第1送電電極と第2送電電極間の距離よりも短くてもよい。   The distance between the first power feed line and the second power transmission electrode to which a voltage having a phase opposite to the voltage applied to the first power feed line is applied is the distance between the first power transmission electrode and the second power transmission electrode. It may be shorter than the distance.

また、前記給電線路部は、前記第1給電線路および第2給電線路の並び方向と延びる方向とに、前記第1給電線路および第2給電線路と対向して配置された磁気シールドを備えてもよい。   In addition, even if the feed line portion includes a magnetic shield arranged to face the first feed line and the second feed line in the direction in which the first feed line and the second feed line are arranged and in the extending direction. Good.

また、前記給電線路部は、前記第1給電線路および第2給電線路を挟んで前記磁気シールドと対向して配置された別の磁気シールドを備えてもよい。   The feed line portion may further include another magnetic shield disposed to face the magnetic shield with the first feed line and the second feed line interposed therebetween.

また、前記モビリティは人検出センサを備え、前記人検出センサの検出領域外の少なくとも一部に前記給電線路部が配置されてもよい。   Further, the mobility may include a human detection sensor, and the feed line portion may be disposed at least in part outside the detection area of the human detection sensor.

(実施形態1)
以下に、本開示の実施形態にかかる送電装置および無線電力伝送システムについて説明する。また、以下の図面において、A方向は送電電極131、133の延びる方向(すなわち、長手方向)を、B方向は送電電極131、133の並び方向(すなわち、短手方向)を、C方向はA方向とB方向を含む平面に垂直な方向(すなわち、送電電極131、133の高さ方向)を意味する。また、X方向は給電線路141、143の並び方向(すなわち、幅方向)を、Y方向は給電線路141、143の延びる方向(すなわち、長手方向)を、Z方向はX方向とY方向を含む平面に垂直な方向(すなわち、給電線路141、143の高さ方向)を意味する。
(Embodiment 1)
Hereinafter, a power transmission device and a wireless power transmission system according to an embodiment of the present disclosure will be described. In the following drawings, the A direction is the direction in which the power transmission electrodes 131 and 133 extend (that is, the longitudinal direction), the B direction is the direction in which the power transmission electrodes 131 and 133 line up (that is, the lateral direction), and the C direction is the A It means a direction perpendicular to a plane including the direction and the B direction (that is, the height direction of the power transmission electrodes 131 and 133). Also, the X direction includes the direction in which the feed lines 141 and 143 line up (that is, the width direction), the Y direction includes the direction in which the feed lines 141 and 143 extend (that is, the longitudinal direction), and the Z direction includes the X direction and the Y direction It means the direction perpendicular to the plane (ie, the height direction of the feed lines 141, 143).

図1は、実施形態1に係る無線電力伝送システムの一例を模式的に示す図である。この例では、床面30に設けられた送電電極ユニット130を備える送電装置から、受電電極ユニットを備える搬送ロボット10にワイヤレスで電力が伝送される。本システムでは、電界結合方式の無線電力伝送が行われる。送電電極ユニット130は、一対の送電電極131、133を有する。送電電極131、133は、床面30に沿って互いに平行に延びており、互いに逆位相の電圧が印加されている。搬送ロボット10は、送電電極131、133の上を、電力を受け取りながら物を搬送することができる。   FIG. 1 is a diagram schematically illustrating an example of a wireless power transmission system according to a first embodiment. In this example, power is wirelessly transmitted from the power transmission device including the power transmission electrode unit 130 provided on the floor surface 30 to the transport robot 10 including the power reception electrode unit. In the present system, wireless power transmission of the electric field coupling system is performed. The power transmission electrode unit 130 has a pair of power transmission electrodes 131 and 133. The power transmission electrodes 131 and 133 extend in parallel with each other along the floor surface 30, and voltages in opposite phase to each other are applied. The transfer robot 10 can transfer an object on the power transmission electrodes 131 and 133 while receiving power.

搬送ロボット10は、外側部に近接センサ11を備え、搬送ロボット10に近接する人を検出することが可能である。近接センサ11は、例えば、赤外線センサやカメラ等が挙げられる。また、搬送ロボット10は通信装置13を備えており、通信装置13を介して制御部と通信することができる。近接センサ11が人を検出すると、その検出を通信装置13を介して制御部へ送信する。人の検出を受信した制御部は、送電装置へ、電力を供給する直流電源を遮断または低減する、もしくは電源回路内のインバータ回路を制御するPWM信号を停止する、などの指示のいずれかを送信する。これにより、送電電極ユニット130から高電界が放出するのを低減する。   The transfer robot 10 is provided with a proximity sensor 11 at the outer side, and can detect a person near the transfer robot 10. Examples of the proximity sensor 11 include an infrared sensor and a camera. The transport robot 10 also includes a communication device 13, and can communicate with the control unit via the communication device 13. When the proximity sensor 11 detects a person, the detection is transmitted to the control unit via the communication device 13. The control unit that has received human detection sends an instruction to the power transmission device to shut off or reduce the DC power supply that supplies power, or to stop the PWM signal that controls the inverter circuit in the power supply circuit, etc. Do. This reduces the emission of a high electric field from the power transmission electrode unit 130.

図2は、実施形態1に係る無線電力伝送システムの概略構成を示すブロック図である。無線電力伝送システム1は、送電装置100と、搬送ロボット10とを備える。送電装置100は、一例として、外部の直流電源310から供給される直流電力を交流電力に変換する送電回路部103と、送電回路部103と給電線路部140を介して接続される送電電極ユニット130とを備える。送電電極ユニット130から交流電力が搬送ロボット10へ送電される。送電回路部103は、直流電力を予め定められた周波数の交流電力へ変換するインバータ回路110と、交流電力の電圧を昇圧する送電側整合回路120とを備える。また、別の一例として、図2における直流電源310が50Hzや60Hzの交流電源に置換され、送電回路部103内のインバータ回路110が、入力交流エネルギーから、異なる周波数の交流エネルギーを直接変換するコンバータ回路110に置換されてもよい。   FIG. 2 is a block diagram showing a schematic configuration of the wireless power transmission system according to the first embodiment. The wireless power transmission system 1 includes a power transmission device 100 and a transport robot 10. As an example, the power transmission device 100 transmits a DC power supplied from an external DC power source 310 to AC power, and a power transmission electrode unit 130 connected to the power transmission circuit portion 103 via the feed line portion 140. And AC power is transmitted from the power transmission electrode unit 130 to the transfer robot 10. The power transmission circuit unit 103 includes an inverter circuit 110 that converts DC power to AC power of a predetermined frequency, and a power transmission matching circuit 120 that boosts the voltage of AC power. As another example, a converter in which the DC power supply 310 in FIG. 2 is replaced with 50 Hz or 60 Hz AC power supply, and the inverter circuit 110 in the power transmission circuit unit 103 directly converts AC energy of different frequency from input AC energy. The circuit 110 may be substituted.

搬送ロボット10は、受電装置200と、負荷320とを備える。受電装置200は、送電電極ユニット130と容量結合し、送電された交流電力を非接触で受電する受電電極ユニット210と、受電電極ユニット210と接続される受電側整合回路220と、受電した交流電力を直流電力に変換して出力するコンバータ回路230とを備える。負荷320は、例えば、二次電池およびモータを含み、コンバータ回路230から出力された直流電力によって充電または駆動される。   The transfer robot 10 includes a power receiving device 200 and a load 320. The power receiving device 200 capacitively couples with the power transmission electrode unit 130, receives the transmitted AC power in a contactless manner, the power receiving side alignment circuit 220 connected to the power receiving electrode unit 210, and the received AC power. And a converter circuit 230 for converting DC power into DC power and outputting the DC power. Load 320 includes, for example, a secondary battery and a motor, and is charged or driven by the DC power output from converter circuit 230.

図3は、実施形態1に係る無線電力伝送システムの概略構成を示す回路図である。送電側整合回路120は、例えば、インバータ回路110と接続される送電側直列共振回路121と、送電側直列共振回路121と誘導結合する送電側並列共振回路123とを備える。送電側直列共振回路121において、第1のコイルL1と第1のキャパシタC1とが直列に接続されている。送電側並列共振回路123において、第2のコイルL2と第2のキャパシタC2とが並列に接続されている。第1のコイルL1と第2のコイルL2とは、結合係数k1で結合する変圧器を構成する。第1のコイルL1と第2のコイルL2との巻数比(1:N1)は、所望の昇圧比を実現する値に設定されている。例えば、3kVから5kV程度にまで振幅が増大するように、昇圧比が設定される。   FIG. 3 is a circuit diagram showing a schematic configuration of the wireless power transmission system according to the first embodiment. The power transmission side matching circuit 120 includes, for example, a power transmission side series resonant circuit 121 connected to the inverter circuit 110, and a power transmission side parallel resonant circuit 123 inductively coupled to the power transmission side series resonant circuit 121. In the power transmission side series resonant circuit 121, the first coil L1 and the first capacitor C1 are connected in series. In the power transmission side parallel resonant circuit 123, the second coil L2 and the second capacitor C2 are connected in parallel. The first coil L1 and the second coil L2 constitute a transformer coupled with a coupling coefficient k1. The turns ratio (1: N1) of the first coil L1 to the second coil L2 is set to a value that achieves a desired boost ratio. For example, the step-up ratio is set such that the amplitude increases from about 3 kV to about 5 kV.

受電側整合回路220は、例えば、受電電極ユニット210と接続される受電側並列共振回路221と、受電側並列共振回路221と誘導結合する受電側直列共振回路223とを備える。受電側並列共振回路221において、第3のコイルL3と第3のキャパシタC3とが並列に接続されている。受電側直列共振回路223において、第4のコイルL4と第4のキャパシタC4とが直列に接続されている。第3のコイルL3と第4のコイルL4とは、結合係数k2で接続する変圧器を構成する。第3のコイルL3と第4のコイルL4との巻数比(N2:1)は、所望の降圧比を実現する値に設定されている。   The power receiving side matching circuit 220 includes, for example, a power receiving side parallel resonant circuit 221 connected to the power receiving electrode unit 210, and a power receiving side series resonant circuit 223 inductively coupled to the power receiving side parallel resonant circuit 221. In the power receiving side parallel resonant circuit 221, the third coil L3 and the third capacitor C3 are connected in parallel. In the power receiving side series resonant circuit 223, the fourth coil L4 and the fourth capacitor C4 are connected in series. The third coil L3 and the fourth coil L4 constitute a transformer connected with a coupling coefficient k2. The turns ratio (N2: 1) of the third coil L3 to the fourth coil L4 is set to a value that achieves a desired step-down ratio.

図4は、インバータ回路110の構成例を模式的に示す図である。インバータ回路110は、直流電源310からの直流エネルギーを交流エネルギーに変換する。この例では、インバータ回路110は、4つのスイッチング素子を含むフルブリッジ型のインバータ回路であり、各スイッチング素子のオンオフ制御をする制御回路112も有する。スイッチング素子は、例えば、IGBTまたはMOSFET等のトランジスタである。制御回路112は、各スイッチング素子のオン(導通)およびオフ(非導通)の状態を制御する制御信号を出力するゲートドライバと、ゲートドライバに制御信号を出力させるマイクロコントローラ(マイコン)等のプロセッサとを有する。フルブリッジ型のインバータ回路の代わりに、ハーフブリッジ型のインバータ回路、または、E級などの他の発振回路を用いてもよい。インバータ回路110は、通信用の変復調回路や電圧・電流などを測定する各種センサを有していてもよい。   FIG. 4 is a view schematically showing a configuration example of the inverter circuit 110. As shown in FIG. The inverter circuit 110 converts direct current energy from the direct current power source 310 into alternating current energy. In this example, the inverter circuit 110 is a full bridge type inverter circuit including four switching elements, and also includes a control circuit 112 that performs on / off control of each switching element. The switching element is, for example, a transistor such as an IGBT or a MOSFET. The control circuit 112 includes a gate driver that outputs a control signal that controls the on (conductive) and off (nonconductive) states of each switching element, and a processor such as a microcontroller (microcomputer) that outputs the control signal to the gate driver. Have. Instead of the full bridge inverter circuit, a half bridge inverter circuit or another oscillation circuit such as class E may be used. The inverter circuit 110 may have a modulation / demodulation circuit for communication and various sensors for measuring voltage, current, and the like.

図5は、コンバータ回路230の構成例を模式的に示す図である。コンバータ回路230は、受け取った交流エネルギーを負荷320が利用可能な直流エネルギーに変換する。この例では、コンバータ回路230は、ダイオードブリッジと平滑コンデンサとを含む全波整流回路であるが、他の整流器の構成を有していてもよい。コンバータ回路230は、整流回路の他にも、定電圧・定電流制御回路、通信用の変復調回路などの各種回路を含んでいてもよい。受電側直列共振回路223から出力される電圧・電流などを測定する各種センサをコンバータ回路230中に含めてもよい。なお、コンバータ回路230は交流付加に対し異なる周波数や異なる電圧の交流エネルギーの出力を行ってもよい。   FIG. 5 schematically shows a configuration example of converter circuit 230. Referring to FIG. Converter circuit 230 converts the received AC energy into DC energy available to load 320. In this example, converter circuit 230 is a full wave rectifier circuit including a diode bridge and a smoothing capacitor, but may have other rectifier configurations. The converter circuit 230 may include various circuits such as a constant voltage / constant current control circuit and a modulation / demodulation circuit for communication in addition to the rectification circuit. Various sensors for measuring the voltage and current output from the power receiving side series resonant circuit 223 may be included in the converter circuit 230. The converter circuit 230 may output AC energy of different frequency or different voltage with respect to AC addition.

直流電源310は、例えば、商用電源、一次電池、二次電池、太陽電池、燃料電池、USB(Universal Serial Bus)電源、高容量のキャパシタ(例えば、電気二重層キャパシタ)、商用電源に接続された電圧変換器などの任意の電源であってもよい。   The DC power supply 310 is connected to, for example, a commercial power supply, a primary battery, a secondary battery, a solar battery, a fuel cell, a USB (Universal Serial Bus) power supply, a high-capacity capacitor (for example, an electric double layer capacitor), and a commercial power supply. It may be any power source such as a voltage converter.

送電側直列共振回路121、送電側並列共振回路123、受電側並列共振回路221、受電側直列共振回路223の共振周波数f0は、電力伝送時の伝送周波数fに一致するように設定されるが、厳密に一致していなくてもよい。各共振周波数f0は、例えば、伝送周波数の50%から150%程度の範囲内の値に設定されていてもよい。伝送周波数fは、20kHz以上13.56MHz帯以下であり、好ましくは、20kHz以上6.78MHz帯以下である。なお、6.78MHz帯とは6.765〜6.795MHzの範囲を指し、13.56MHz帯とは13.553〜13.567MHzの範囲を指す。実施形態1では、伝送周波数fは、500kHzに設定されている。このように、伝送周波数fが6.78MHz帯以下の低周波帯であると、電力伝送効率が低下するが、インバータ回路110において交流電力に変換する電源効率が上昇するので、全体的な伝送効率は上昇する。   The resonance frequency f0 of the power transmission side series resonance circuit 121, the power transmission side parallel resonance circuit 123, the power reception side parallel resonance circuit 221, and the power reception side series resonance circuit 223 is set to coincide with the transmission frequency f at the time of power transmission. It does not have to match exactly. Each resonance frequency f0 may be set to, for example, a value within the range of about 50% to 150% of the transmission frequency. The transmission frequency f is at least 20 kHz and at most 13.56 MHz, preferably at least 20 kHz and at most 6.78 MHz. The 6.78 MHz band refers to the range of 6.765 to 6.795 MHz, and the 13.56 MHz band refers to the range of 13.553 to 13.567 MHz. In the first embodiment, the transmission frequency f is set to 500 kHz. As described above, when the transmission frequency f is a low frequency band equal to or lower than the 6.78 MHz band, the power transmission efficiency is lowered, but the power source efficiency for converting into AC power in the inverter circuit 110 is increased. Will rise.

実施形態1では、送電電極ユニット130と受電電極ユニット210との間は空気層であり、これらの間の距離は、例えば10mm程度の長さである。これにより、電極間のキャパシタンスCm1、Cm2は非常に小さく、送電電極ユニット130と受電電極ユニット210との間のインピーダンスは、例えば、数kΩ程度と非常に高い。これに対して、インバータ回路110およびコンバータ回路230のインピーダンスは、例えば数Ω程度と低い。このため、実施形態1では、インバータ回路110から順に、送電側直列共振回路121、送電側並列共振回路123と配置されている。また、コンバータ回路230から順に、受電側直列共振回路223、受電側並列共振回路221と配置することで、インピーダンスの整合を容易に行うことができ、高効率で電力を伝送することができる。   In the first embodiment, the space between the power transmission electrode unit 130 and the power reception electrode unit 210 is an air layer, and the distance between them is, for example, about 10 mm in length. Thereby, the capacitances Cm1 and Cm2 between the electrodes are very small, and the impedance between the power transmission electrode unit 130 and the power reception electrode unit 210 is very high, for example, several kΩ. On the other hand, the impedance of the inverter circuit 110 and the converter circuit 230 is as low as, for example, several ohms. For this reason, in the first embodiment, the power transmission side series resonant circuit 121 and the power transmission side parallel resonant circuit 123 are arranged in order from the inverter circuit 110. Further, by arranging the power receiving side series resonant circuit 223 and the power receiving side parallel resonant circuit 221 sequentially from the converter circuit 230, impedance matching can be easily performed, and power can be transmitted with high efficiency.

図6は、実施形態1に係る送電電極ユニット130に接続される給電線路部の配置を模式的に示す平面図である。送電側整合回路120と送電電極ユニット130とは、給電線路部140を介して接続されている。給電線路部140は、送電側並列共振回路123と送電電極131とを接続する給電線路141と、送電側並列共振回路123と送電電極133とを接続する給電線路143とを有する。送電電極ユニット130が床面30に2次元的に配置されているのに対して、給電線路部140は直流電源310および送電回路部103が配置されている電源ボックスから送電電極ユニット130まで3次元的に配置される。したがって、送電電極ユニット130に比べて、給電線路部140は、見通しがきかない経路で配置されうる。また、給電線路部140の長さが数十メートルになる場合もある。このような長さであっても、印加される電圧が高いので流れる電流を小さくすることができ、給電線路部140での電力ロスを低減することができる。   FIG. 6 is a plan view schematically showing the arrangement of feed line portions connected to the power transmission electrode unit 130 according to the first embodiment. The power transmission side matching circuit 120 and the power transmission electrode unit 130 are connected via the feed line portion 140. The feed line portion 140 has a feed line 141 connecting the power transmission side parallel resonant circuit 123 and the power transmission electrode 131 and a feed line 143 connecting the power transmission side parallel resonant circuit 123 and the power transmission electrode 133. While the power transmission electrode unit 130 is two-dimensionally disposed on the floor surface 30, the feed line portion 140 is three-dimensional from the power supply box where the DC power supply 310 and the power transmission circuit portion 103 are disposed to the power transmission electrode unit 130. Are arranged. Therefore, compared to the transmission electrode unit 130, the feed line portion 140 can be disposed along a path that is not clear. In addition, the length of the feed line portion 140 may be several tens of meters. Even with such a length, since the applied voltage is high, the flowing current can be reduced, and the power loss in the feed line portion 140 can be reduced.

送電電極131および送電電極133は、例えば、150mmの幅と1000mmの長さを有する。送電電極131および送電電極133は、長方形の形状であるが、例えば、曲率のある帯状の形状でもよいし、円形状でもよい。隣接する送電電極131と、送電電極133との間隔である送電電極間距離GTは、例えば、25mmである。送電電極131、133の領域と送電電極131、133間の領域とを併せた領域を充電領域CHとする。すなわち、充電領域CHの直上を搬送ロボット10が移動する。充電領域CHは、送電電極131および133の外周から形成される領域でもあり、送電電極131、133が矩形の場合、充電領域CHは、送電電極131、133の頂点を結んで形成される領域でもある。給電線路141と、給電線路143との間隔である給電線路間距離GSは、送電電極131、133の最大距離よりも短く、例えば、1mmである。送電電極131、133の最大距離とは、送電電極131、133の幅方向(すなわち、並び方向)において送電電極131、133間の最も離れた距離のことである。送電電極131、133が平行に配置されている場合、最大距離は送電電極間距離GTになる。   The power transmission electrode 131 and the power transmission electrode 133 have, for example, a width of 150 mm and a length of 1000 mm. The power transmission electrode 131 and the power transmission electrode 133 have a rectangular shape, but may have, for example, a curved strip shape or a circular shape. The distance GT between power transmission electrodes which is the distance between the adjacent power transmission electrode 131 and the power transmission electrode 133 is, for example, 25 mm. An area obtained by combining the area of the power transmission electrodes 131 and 133 and the area between the power transmission electrodes 131 and 133 is referred to as a charging area CH. That is, the transport robot 10 moves immediately above the charging area CH. The charge area CH is also an area formed from the outer periphery of the power transmission electrodes 131 and 133. When the power transmission electrodes 131 and 133 are rectangular, the charge area CH is also an area formed by connecting the apexes of the power transmission electrodes 131 and 133. is there. The distance GS between feed lines, which is the distance between the feed line 141 and the feed line 143, is shorter than the maximum distance between the power transmission electrodes 131 and 133, and is, for example, 1 mm. The maximum distance between the power transmission electrodes 131 and 133 is the most distance between the power transmission electrodes 131 and 133 in the width direction (that is, the alignment direction) of the power transmission electrodes 131 and 133. When the power transmission electrodes 131 and 133 are disposed in parallel, the maximum distance is the distance GT between the power transmission electrodes.

給電線路143は、送電電極133の幅方向において隣接する送電電極131とは逆方向の外側端部に送電電極133の長手方向と交差する方向に接続されている。給電線路141は、送電電極141の長手方向端部から送電電極131の長手方向に延びた後、この長手方向と交差する方向に延びている。したがって、給電線路部140は、送電電極131、133の長手方向延長領域外に延びている。送電電極131、133の長手方向延長領域とは、送電電極131、133の長手方向端部から長手方向に延長した領域である。   The feed line 143 is connected to the outer end in the opposite direction to the adjacent power transmission electrode 131 in the width direction of the power transmission electrode 133 in a direction intersecting the longitudinal direction of the power transmission electrode 133. The feed line 141 extends from the longitudinal end of the power transmission electrode 141 in the longitudinal direction of the power transmission electrode 131 and then extends in a direction intersecting the longitudinal direction. Therefore, the feed line portion 140 extends outside the longitudinal extension area of the power transmission electrodes 131 and 133. The longitudinal extension regions of the power transmission electrodes 131 and 133 are regions extending in the longitudinal direction from the longitudinal end portions of the power transmission electrodes 131 and 133.

また、給電線路141と、給電線路141と逆位相成分の電圧が印加される送電電極133との間隔である電極配線間距離GLは、給電線路間距離GSと同じである。すなわち、電極配線間距離GLは、送電電極間距離GTよりも短い。   The inter-electrode wiring distance GL, which is the distance between the feed line 141 and the power transmission electrode 133 to which the voltage of the reverse phase component is applied, is the same as the feed line distance GS. That is, the inter-electrode wiring distance GL is shorter than the transmission electrode distance GT.

給電線路部140は、昇圧回路である送電側整合回路120と送電電極ユニット130とを接続する配線であるので、各給電線路141、143には、送電電極131、133に印加される電圧値と同じ電圧値が印加される。したがって、3kVから5kV程度の高電圧が給電線路141、143に印加される。また、給電線路141に印加される電圧と、給電線路143に印加される電圧は逆位相の関係にある。   Since the feed line portion 140 is a wire connecting the power transmission side matching circuit 120, which is a booster circuit, to the power transmission electrode unit 130, each feed line 141, 143 has a voltage value applied to the power transmission electrodes 131, 133 and The same voltage value is applied. Therefore, a high voltage of about 3 kV to 5 kV is applied to the feed lines 141, 143. Further, the voltage applied to the feed line 141 and the voltage applied to the feed line 143 are in reverse phase relationship.

図7は、実施形態1に係る給電線路部を模式的に示す断面図である。給電線路部140は、給電線路141、143と、給電線路141、143の周囲を覆った樹脂体145とを備える。給電線路141および給電線路143のそれぞれの線路幅Wは、電極131および電極133のそれぞれの幅よりも短い。線路幅Wは、例えば、1mm〜2mmである。   FIG. 7 is a cross-sectional view schematically showing the feed line portion according to the first embodiment. The feed line portion 140 includes feed lines 141 and 143 and a resin body 145 covering the circumference of the feed lines 141 and 143. The line width W of each of the feed line 141 and the feed line 143 is shorter than the width of each of the electrode 131 and the electrode 133. The line width W is, for example, 1 mm to 2 mm.

給電線路141、143は互いに幅方向(すなわち、短手方向)に平行に配置される。図7において、給電線路141、143の断面は正方形であるが、長方形の場合、例えば、互いの短辺が対向するように配置される。平行配置において、給電線路141、143の対向面が最小面積となる配置は、寄生容量が低下する。   The feed lines 141 and 143 are disposed parallel to each other in the width direction (i.e., the short direction). In FIG. 7, the cross sections of the feed lines 141 and 143 are square, but in the case of a rectangle, for example, the short sides of the feed lines are arranged to face each other. In the parallel arrangement, the arrangement in which the opposing surfaces of the feed lines 141 and 143 have the smallest area reduces the parasitic capacitance.

給電線路141と給電線路143との間には、絶縁性樹脂が充填されている。これにより、給電線路141、143間の給電線路間距離GSが短いにもかかわらず、放電が生じるのを防止することができる。また、給電線路141と給電線路143とが接触してショートするのを防止することができる。樹脂体145は絶縁性樹脂で形成されており、例えば、フッ素樹脂が挙げられる。ここで、絶縁性とは、0.4[MΩ・m]以上の抵抗率を持つことである。また、樹脂体145の厚みGBは給電線路141、143の厚みGHよりも大きい。これにより、給電線路部140が人に踏まれたとしても、樹脂体145により圧力を分散することができるので、給電線路141、143が断線するのを防止することができる。給電線路141、143の厚みGHは、例えば、1mmであり、樹脂体145の厚みGBは、例えば、3mmである。   An insulating resin is filled between the feed line 141 and the feed line 143. As a result, even though the distance GS between the feed lines 141 and 143 is short, generation of discharge can be prevented. In addition, the feed line 141 and the feed line 143 can be prevented from coming into contact and shorting. The resin body 145 is formed of an insulating resin, and examples thereof include a fluorine resin. Here, insulation means having a resistivity of 0.4 [MΩ · m] or more. Further, the thickness GB of the resin body 145 is larger than the thickness GH of the feed lines 141 and 143. Thereby, even if the feed line portion 140 is stepped by a person, the pressure can be dispersed by the resin body 145, so that the feed lines 141 and 143 can be prevented from being broken. The thickness GH of the feed lines 141 and 143 is, for example, 1 mm, and the thickness GB of the resin body 145 is, for example, 3 mm.

図8は、給電線路部の変形例を示す断面図である。給電線路部147は、給電線路部140に、接地された導体シールド149をさらに備えた構成である。以下に記載する構成以外の構成については、給電線路部147は給電線路部140と同じである。導体シールドは、給電線路の周囲の少なくとも一部を遮蔽することで、給電線路から発生する電界を低減する。導体シールド149は、樹脂体145の上部に配置されている。すなわち、導体シールド149は、給電線路141および給電線路143の並び方向(X方向)と延びる方向(Y方向)とに、前記第1給電線路および第2給電線路と対向して配置されたグラウンド層である。導体シールド149は、例えば、金属製の薄板である。導体シールド149が給電線路部147の一面に備えられているので、給電線路141、143から導体シールド149側への電界が漏洩するのをさらに低減することができる。給電線路部147の上部に導体シールド149を備える場合、給電線路部147を床面30に敷設すると、上側への電界漏洩が低減されるので、給電線路部147の上方に配置された電子機器や床面30を歩く人への影響を低減することができる。   FIG. 8 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 147 has a configuration in which the feed line portion 140 further includes a conductor shield 149 grounded. The feed line portion 147 is the same as the feed line portion 140 with respect to the configuration other than the configuration described below. The conductor shield reduces the electric field generated from the feed line by shielding at least a part of the periphery of the feed line. The conductor shield 149 is disposed on the top of the resin body 145. That is, the conductor shield 149 is a ground layer arranged to face the first feed line and the second feed line in the direction in which the feed line 141 and the feed line 143 are arranged (X direction) and the extending direction (Y direction). It is. The conductor shield 149 is, for example, a thin plate made of metal. Since the conductor shield 149 is provided on one surface of the feed line portion 147, leakage of the electric field from the feed lines 141 and 143 to the conductor shield 149 can be further reduced. When the conductor shield 149 is provided on the upper portion of the feed line portion 147, if the feed line portion 147 is laid on the floor surface 30, the electric field leakage to the upper side is reduced, the electronic device or the electronic device disposed above the feed line portion 147 The influence on the person walking on the floor 30 can be reduced.

図9は、給電線路部の変形例を示す断面図である。給電線路部151は、給電線路部140に接地された導体シールド153をさらに備えた構成である。以下に記載する構成以外の構成については、給電線路部151は給電線路部140と同じである。導体シールド153は、樹脂体145の全周囲を囲んでいる。したがって、給電線路141、143から発生する電界強度を大幅に低減することができる。導体シールド153は、例えば、金属製の薄板である。また、金属製の導体シールド153が給電線路141、143を囲むことで、給電線路部151の強度を増すことができる。これにより、給電線路141、143が重量等の圧力により断線するのをさらに防止することができる。   FIG. 9 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 151 further includes a conductor shield 153 grounded to the feed line portion 140. The feed line portion 151 is the same as the feed line portion 140 with respect to the configuration other than the configuration described below. The conductor shield 153 surrounds the entire circumference of the resin body 145. Therefore, the electric field strength generated from the feed lines 141 and 143 can be significantly reduced. The conductor shield 153 is, for example, a thin plate made of metal. Further, the strength of the feed line portion 151 can be increased by the metal conductor shield 153 surrounding the feed lines 141 and 143. Thus, the feed lines 141 and 143 can be further prevented from being disconnected due to pressure such as weight.

次に、給電線路部から発生する電界強度について説明する。図10は、給電線路部から発生する電界強度を示す断面図である。給電線路141’および143’は、それぞれ線路幅Wを有し、給電線路141’と給電線路143’とは、線路間隔Gを有する。また、給電線路141’、143’の周囲には電界領域Es1、Es2、Es3が発生しており、給電線路141’、143’から離れるにつれて電界強度が弱くなる。すなわち、電界領域Es1、Es2、Es3において、電界領域Es1での電界強度が一番強く、電界領域Es3の電界強度が一番弱い。ここで、電界領域Es3の外周における電界強度が、所定の電界強度基準を超える領域とする。所定の電界強度基準の一つとして、例えば、ICNIRP(International Commission on Non-lonizing Radiation Protection)の曝露限度値が挙げられる。   Next, the electric field strength generated from the feed line portion will be described. FIG. 10 is a cross-sectional view showing the electric field strength generated from the feed line portion. The feed lines 141 ′ and 143 ′ each have a line width W, and the feed line 141 ′ and the feed line 143 ′ have a line interval G. In addition, electric field regions Es1, Es2 and Es3 are generated around the feed lines 141 'and 143', and the electric field strength becomes weaker as they are separated from the feed lines 141 'and 143'. That is, in the electric field areas Es1, Es2 and Es3, the electric field strength in the electric field area Es1 is the strongest, and the electric field strength in the electric field area Es3 is the weakest. Here, it is assumed that the electric field strength at the outer periphery of the electric field area Es3 exceeds the predetermined electric field strength reference. One of the predetermined field strength criteria is, for example, the exposure limit value of International Commission on Non-lonizing Radiation Protection (ICNIRP).

電界領域Es3の高さHrと電界領域Es3の幅Wrは、給電線路141’、143’の線路間隔Gにより変動する。図11は、線路間隔と電界領域の電界強度の低減率を示すグラフである。給電線路141’、143’の線路幅Wを75mmで一定とし、受電電極ユニット210へ500Wの電力を伝送した場合において、線路間隔Gを変動した場合の電界領域Es3の半値幅Wvの低減率と半値高さHvの低減率を示している。半値幅Wvおよび半値高さHvともに、線路間隔Gの長さが短くなればなるほど、低減率が上昇する。このように、線路間隔Gを短くすると、電界領域Es3の幅Wrおよび高さHrを低減することができる。したがって、給電線路周囲の所定の電界強度以上の電界領域の範囲が小さくなったことは、給電線路周囲の電界強度を低減したことに相当している。一般的に電界領域Es3の外部でも電子機器の誤作動は起こりうるが、本願の構成によりその確率が低減できる。   The height Hr of the electric field area Es3 and the width Wr of the electric field area Es3 fluctuate with the line interval G of the feed lines 141 'and 143'. FIG. 11 is a graph showing the line spacing and the reduction rate of the electric field strength in the electric field region. When the line width W of the feed lines 141 ′ and 143 ′ is constant at 75 mm and power of 500 W is transmitted to the power receiving electrode unit 210, the reduction ratio of the half width Wv of the electric field region Es3 when the line interval G is changed The reduction rate of the half value height Hv is shown. As both the half width Wv and the half height Hv decrease, the reduction rate increases as the length of the line interval G decreases. As described above, when the line spacing G is shortened, the width Wr and the height Hr of the electric field area Es3 can be reduced. Therefore, the reduction of the range of the electric field region above the predetermined electric field strength around the feed line corresponds to the reduction of the electric field strength around the feed line. Generally, malfunction of the electronic device may occur outside the electric field region Es3, but the probability can be reduced by the configuration of the present application.

図12は、線路幅と電界領域の半値幅および半値高さとの関係を示す表である。線路間距離Gを2.5mmと一定にし、線路幅Wが異なる条件での電界領域Es3の半値幅Wvと半値高さHvを示す表である。線路幅Wは、条件1において75mmであり、条件2において2mmである。線路幅Wが75mmの場合、電界領域Es3の半値幅Wvは30.67cmであり、電界領域Es3の半値高さHvは22.25cmである。これに対して、線路幅Wが2mmの場合、電界領域Es3の半値幅Wvは15.33cmであり、電界領域Es3の半値高さHvは11.5cmである。このように、線路幅Wを短くしても、電界領域Esの範囲を低減することができる。   FIG. 12 is a table showing the relationship between the line width and the half width and half height of the electric field region. It is a table | surface which shows half-value width Wv and half-value height Hv of electric field area | region Es3 on the conditions which make inter-line distance G constant with 2.5 mm, and line width W differs. The line width W is 75 mm in condition 1 and 2 mm in condition 2. When the line width W is 75 mm, the half value width Wv of the electric field area Es3 is 30.67 cm, and the half value height Hv of the electric field area Es3 is 22.25 cm. On the other hand, when the line width W is 2 mm, the half width Wv of the electric field area Es3 is 15.33 cm, and the half height Hv of the electric field area Es3 is 11.5 cm. As described above, even if the line width W is shortened, the range of the electric field region Es can be reduced.

図13は、導体シールドと電界領域の大きさとの関係を示す表である。図13において、線路幅Wは2mmで一定であり、線路間距離Gも2.5mmで一定である。条件3では、給電線路部140のように導体シールドを有さない給電線路部であり、条件4では、給電線路部147のように片面にのみ導体シールド149を有する給電線路部であり、条件5では、給電線路部151のように外表面全面に導体シールド153を有する給電線路部である。   FIG. 13 is a table showing the relationship between the conductor shield and the size of the electric field area. In FIG. 13, the line width W is constant at 2 mm, and the distance G between lines is also constant at 2.5 mm. Condition 3 is a feed line portion which does not have a conductor shield like feed line portion 140, and condition 4 is a feed line portion which has conductor shield 149 only on one side like feed line portion 147, condition 5 In the case of the feed line portion 151, the feed line portion has the conductor shield 153 on the entire outer surface.

導体シールドを有さない条件3の給電線路部に比べて、導体シールドを有する条件4、5の給電線路部の方が、電界領域Es3の半値幅、半値高さ共に低減している。条件4において、電界領域Es3の半値高さは、シールド側、非シールド側と共に低減しているが、シールド側の方がより大きく低減している。また、条件5の電界領域Es3の半値幅は条件4の電界領域Es3の半値幅よりも大きく低減している。   The half value width and half value height of the electric field region Es3 are reduced in the feed line portion of the conditions 4 and 5 having the conductor shield as compared with the feed line portion of the condition 3 which does not have the conductor shield. In the condition 4, the half value height of the electric field region Es3 is reduced along with the shield side and the non-shield side, but is reduced more largely on the shield side. Further, the half value width of the electric field region Es3 of the condition 5 is largely reduced as compared with the half value width of the electric field region Es3 of the condition 4.

このように、給電線路部147のように、導体シールドを給電線路141’、143’の上下いずれか片側に設けることで、シールド側の電界領域Es3の半値高さを大幅に低減することができる。また、導体シールドを給電線路部151のように給電線路141’、143’の周囲全面に設けることで、電界領域Es3の半値高さだけではなく、半値幅も大幅に低減することができる。   As described above, by providing the conductor shields on one of the upper and lower sides of the feed lines 141 ′ and 143 ′ as in the feed line portion 147, the half value height of the electric field region Es3 on the shield side can be significantly reduced. . Further, by providing the conductor shield on the entire surface around the feed lines 141 'and 143' like the feed line portion 151, not only the half value height of the electric field region Es3 but also the half value width can be significantly reduced.

以上のように、無線電力伝送用の電界結合方式の送電装置100は、送電電極131と送電電極133を有する送電電極ユニット130と、送電電極ユニット130へ電力を供給する送電回路部103と、送電電極131と送電回路部103とを接続する給電線路141と、第2送電電極133と送電回路部103とを接続する給電線路143と、を有する給電線路部140と、を備える。また、送電回路部103は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路110と、交流電力の電圧振幅を増大させる送電側整合回路120と、を備える。送電側整合回路120から出力される電圧が給電線路部140を介して送電電極ユニット310に印加され、給電線路141と給電線路143は隣接して配置され、給電線路141と給電線路143にはそれぞれ逆位相の電圧成分を印加する。給電線路141と給電線路143間の距離は、隣接する送電電極131と送電電極133間の最大距離よりも短い。このような構成により、給電線路141、143間の給電線路間距離GSが短い条件では給電線路間の寄生容量が増加するものの、電界の強度を大幅に低減することができる。   As described above, the electric field coupling type power transmission apparatus 100 for wireless power transmission includes the power transmission electrode unit 130 having the power transmission electrode 131 and the power transmission electrode 133, the power transmission circuit unit 103 for supplying power to the power transmission electrode unit 130, and power transmission. A feed line portion 140 having a feed line 141 connecting the electrode 131 and the power transmission circuit portion 103 and a feed line 143 connecting the second power transmission electrode 133 and the power transmission circuit portion 103 is provided. The power transmission circuit unit 103 also includes an inverter circuit 110 that outputs the input power as AC power of a predetermined frequency, and a power transmission matching circuit 120 that increases the voltage amplitude of the AC power. The voltage output from the power transmission side matching circuit 120 is applied to the power transmission electrode unit 310 through the feed line portion 140, and the feed line 141 and the feed line 143 are disposed adjacent to each other. A voltage component of opposite phase is applied. The distance between the feed line 141 and the feed line 143 is shorter than the maximum distance between the adjacent transmission electrodes 131 and 133. With such a configuration, the parasitic capacitance between the feed lines increases under the condition that the distance GS between the feed lines 141 and 143 is short, but the strength of the electric field can be significantly reduced.

また、給電線路部147が導体シールド149をその上部に備えることで、導体シールド149側への電界の漏れを低減することができる。また、給電線路部151が導体シールド153をその周囲全面に備えることで、高さ方向だけでなく、幅方向への電界の漏れを低減することができる。また、送電電極ユニット130と受電電極ユニット210との間が空気層であるので、無線電力伝送システム1の敷設が容易である。   In addition, when the feed line portion 147 includes the conductor shield 149 on the top, leakage of the electric field to the conductor shield 149 side can be reduced. Moreover, the feed line part 151 can reduce the leakage of the electric field not only in the height direction but also in the width direction by providing the conductor shield 153 on the entire surface of the periphery. In addition, since the space between the power transmission electrode unit 130 and the power reception electrode unit 210 is an air layer, laying of the wireless power transmission system 1 is easy.

また、搬送ロボットは、送電電極131、133上を移動するので、送電電極131、133の長手方向においては、搬送ロボット10の近接センサ11が送電電極131、133に接近する人を検出することができる。給電線路143は送電電極133の非長手方向に配置させることもありうるので、給電線路部140は、近接センサ11の検出領域外である非検出領域の少なくとも一部に配置されうる。このように、給電領域への人の侵入を搬送ロボット10の近接センサ11が検出できない領域に給電線路部147が配置されていても、給電線路部147から漏洩される電界が低減されるので、電界曝露リスクへの対策レベルを改善することができる。   In addition, since the transport robot moves on the power transmission electrodes 131 and 133, in the longitudinal direction of the power transmission electrodes 131 and 133, the proximity sensor 11 of the transport robot 10 may detect a person approaching the power transmission electrodes 131 and 133. it can. Since the feed line 143 may be disposed in the non-longitudinal direction of the power transmission electrode 133, the feed line portion 140 may be disposed in at least a part of the non-detection area outside the detection area of the proximity sensor 11. Thus, even if the feed line portion 147 is disposed in a region where the proximity sensor 11 of the transport robot 10 can not detect the intrusion of a person into the feed region, the electric field leaked from the feed line portion 147 is reduced. It is possible to improve the countermeasure level against the electric field exposure risk.

(実施形態2)
実施形態2は、実施形態1において磁気シールドを加えた構成である。以下に記載する事項以外の構成は実施形態1と同様である。
Second Embodiment
The second embodiment has a configuration in which a magnetic shield is added in the first embodiment. The configuration other than the items described below is the same as that of the first embodiment.

図14は、実施形態2に係る給電線路部の断面図である。給電線路部155は、給電線路部140の樹脂体145の上部に磁気シールド161を配置し、樹脂体145の下部に磁気シールド163を配置している。すなわち、磁気シールド161は、給電線路141および給電線路143の並び方向と延びる方向とに、給電線路141および給電線路143と対向して配置されている。また、別の磁気シールド163が、給電線路141および給電線路143を挟んで磁気シールド161と対向して配置されている。すなわち、磁気シールド161と磁気シールド163との間に、第1給電線路141および給電線路143が配置されている。磁気シールド161、163は、例えば、パーマロイの薄板が挙げられる。磁気シールド161は給電線路141、143の上方に、磁気シールド163が給電線路143の下方に位置しているので、給電線路部155のインピーダンスを上げることができ、給電線路部155に印加された電圧の反射を低減することができる。なお、給電線路部155は、上部および下部に2つの磁気シールド161、163を備えていたが、いずれか1つだけの磁気シールドを備えていてもよい。この構成においても、給電線路部155のインピーダンスを上げることができる。   FIG. 14 is a cross-sectional view of a feed line portion according to a second embodiment. In the feed line portion 155, the magnetic shield 161 is disposed above the resin body 145 of the feed line portion 140, and the magnetic shield 163 is disposed below the resin body 145. That is, the magnetic shield 161 is disposed to face the feed line 141 and the feed line 143 in the alignment direction and the extending direction of the feed line 141 and the feed line 143. In addition, another magnetic shield 163 is disposed to face the magnetic shield 161 with the feed line 141 and the feed line 143 interposed therebetween. That is, the first feed line 141 and the feed line 143 are disposed between the magnetic shield 161 and the magnetic shield 163. Examples of the magnetic shields 161 and 163 include thin plates of permalloy. Since the magnetic shield 161 is located above the feed lines 141 and 143 and below the feed line 143, the impedance of the feed line portion 155 can be increased, and the voltage applied to the feed line portion 155 can be increased. Reflection can be reduced. In addition, although the feed line part 155 was provided with the two magnetic shields 161 and 163 in the upper part and the lower part, you may be provided with any one magnetic shield. Also in this configuration, the impedance of the feed line portion 155 can be increased.

図15は、給電線路部の変形例を示す断面図である。給電線路部165は、給電線路部140の樹脂体145の上部に磁気シールド161を配置し、磁気シールド161の上部に接地された導体シールド149をさらに配置している。給電線路部165は、磁気シールド161と、導体シールド149とを備えることで、給電線路部165のインピーダンスを上げることができ、さらに、給電線路部165から導体シールド149側への電界の漏洩を低減することができる。   FIG. 15 is a cross-sectional view showing a modification of the feed line portion. In the feed line portion 165, the magnetic shield 161 is disposed on the resin body 145 of the feed line portion 140, and the conductor shield 149 grounded on the magnetic shield 161 is further disposed. The feed line portion 165 can increase the impedance of the feed line portion 165 by including the magnetic shield 161 and the conductor shield 149, and further reduces the leakage of the electric field from the feed line portion 165 to the conductor shield 149 side. can do.

図16は、給電線路部の変形例を示す断面図である。給電線路部166は、給電線路部165の樹脂体145の下部に磁気シールド163を配置し、磁気シールド163の下部に接地された導体シールド167をさらに配置している。給電線路部166は、その上部と下部にそれぞれ磁気シールド161、163と導体シールド149、167を備えるので、給電線路部165のインピーダンスをさらに上げることができ、また、給電線路部165からの高さ方向および幅方向の電界の漏洩をさらに低減することができる。   FIG. 16 is a cross-sectional view showing a modification of the feed line portion. In the feed line portion 166, the magnetic shield 163 is disposed below the resin body 145 of the feed line portion 165, and the conductor shield 167 grounded to the lower portion of the magnetic shield 163 is further disposed. The feed line portion 166 is provided with the magnetic shields 161 and 163 and the conductor shields 149 and 167 at the upper and lower portions, respectively, so that the impedance of the feed line portion 165 can be further increased, and the height from the feed line portion 165 Leakage of the electric field in the direction and width can be further reduced.

本開示は、上記実施形態のものに限らず、次のように変形実施することができる。   The present disclosure is not limited to the above embodiment, and can be modified as follows.

(1)実施形態1、2において、送電電極ユニット130は、2つの送電電極131、133を備えていたが、これに限られない。送電電極ユニットは、3つまたはそれ以上の送電電極を備えていてもよい。3つ以上の送電電極を並列に配置する場合、それぞれ隣り合う送電電極には逆位相の電圧が印加されるように、各送電電極を床面30に配置すればよい。また、この場合、送電電極の数に対応する給電線路が配置される。給電線路を3つ以上の数に少なくとも一部を分割し並列に配置することで、送電電極周囲の、給電線路に垂直な方向(すなわち、図10における±Z方向に相当)における電界漏洩強度を効果的に低減することができる。なお、少なくとも2つ以上の電極が同電位の電圧の給電を受ける場合、分岐本数分だけ給電線路内の導体本数を増やして構成してもよいし、給電線路から送電電極への接続部で導体を分岐して構成しても構わない。一例として、4つの送電電極を用いる場合、給電線路部は4本の給電線路を備える場合がある。   (1) In the first and second embodiments, the power transmission electrode unit 130 includes the two power transmission electrodes 131 and 133, but the present invention is not limited to this. The transmission electrode unit may comprise three or more transmission electrodes. When three or more power transmission electrodes are arranged in parallel, the respective power transmission electrodes may be arranged on the floor surface 30 so that voltages of opposite phases are applied to the adjacent power transmission electrodes. Also, in this case, feed lines corresponding to the number of transmission electrodes are arranged. By dividing the feed line into at least a part of three or more and arranging them in parallel, the electric field leakage intensity in the direction perpendicular to the feed line (that is, corresponding to ± Z direction in FIG. 10) around the transmission electrode is obtained. It can be effectively reduced. When at least two or more electrodes are fed with voltages of the same potential, the number of conductors in the feed line may be increased by the number of branches, or a conductor at the connection from the feed line to the transmission electrode May be branched. As an example, in the case of using four transmission electrodes, the feed line portion may be provided with four feed lines.

図17は、給電線路部の変形例を示す断面図である。給電線路部169は、4本の給電線路141、143、171、173を備える。給電線路部169は、給電線路143に、給電線路141とは別の隣り合う給電線路171をさらに備える。4本の給電線路141、143、171、173はX方向に平行に配置され、それぞれ対応する送電電極に接続される。給電線路143と給電線路171とには、それぞれ逆位相の電圧が印加され、給電線路171と給電線路173とには、それぞれ逆位相の電圧が印加される。したがって、給電線路141、171にはそれぞれ同位相の電圧が印加される。また、給電線路143、173にもそれぞれ同位相の電圧が印加される。言い換えると、給電線路部169は、逆位相の電圧がそれぞれ印加される給電線路141および給電線路143を1対として、幅方向に平行に配置された複数対の給電線路141および給電線路143を有する。なお、図17では、給電線路部が4本の給電線路を備える場合を例示したが、これに限らず、3本の給電線路を備えてもよいし、5本以上の給電線路を備えても良い。また、給電線路部は、逆位相の電圧がそれぞれ印加される給電線路対を3対以上備えてもよい。   FIG. 17 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 169 includes four feed lines 141, 143, 171, and 173. The feed line portion 169 further includes, on the feed line 143, an adjacent feed line 171 different from the feed line 141. The four feed lines 141, 143, 171, 173 are disposed in parallel in the X direction, and are connected to the corresponding power transmission electrodes. The voltages in opposite phase are applied to the feed line 143 and the feed line 171, and the voltages in reverse phase are applied to the feed line 171 and the feed line 173, respectively. Therefore, voltages of the same phase are applied to the feed lines 141 and 171, respectively. Also, voltages of the same phase are applied to the feed lines 143 and 173, respectively. In other words, the feed line portion 169 has a plurality of feed line lines 141 and feed line lines 143 arranged in parallel in the width direction, with the feed line line 141 and the feed line line 143 to which voltages of opposite phases are respectively applied as one pair. . Although FIG. 17 exemplifies a case where the feed line portion includes four feed lines, the present invention is not limited to this, and three feed lines may be provided, or five or more feed lines may be provided. good. In addition, the feed line portion may include three or more feed line pairs to which voltages of opposite phases are respectively applied.

(2)実施形態1、2において、給電線路部が備える導体シールドは薄板状のグラウンド層であったがこれに限られない。金属線を導体シールドとして用いてもよい。図18は、給電線路部の変形例を示す断面図である。給電線路部175は、給電線路部140に導体シールド177、179をさらに備えている。導体シールド177、179は接地された金属線、すなわちグラウンド線である。導体シールド177、179は、給電線路141、143の並び方向(すなわち、幅方向)外側に平行に配置されている。これにより、給電線路部175から幅方向に漏れる電界強度を低減することができる。   (2) In the first and second embodiments, the conductor shield provided in the feed line portion is a thin plate-like ground layer, but is not limited to this. A metal wire may be used as a conductor shield. FIG. 18 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 175 further includes conductor shields 177 and 179 in the feed line portion 140. Conductor shields 177 and 179 are grounded metal wires, ie, ground wires. The conductor shields 177 and 179 are disposed parallel to the outside in the direction in which the feed lines 141 and 143 are aligned (that is, in the width direction). Thereby, the electric field intensity leaking from the feed line portion 175 in the width direction can be reduced.

図19は、給電線路部の変形例を示す断面図である。給電線路部180は、給電線路部175に、薄板状の導体シールド149を樹脂体145の上部に備えている。これにより、グラウンド線である導体シールド177、179が幅方向に漏れる電界強度を低減し、グラウンド層である導体シールド149が上方に漏れる電界強度を低減することができる。   FIG. 19 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 180 is provided with a thin plate-like conductor shield 149 in the upper portion of the resin body 145 in the feed line portion 175. Thereby, the electric field strength in which the conductor shields 177 and 179 which are ground lines leak in the width direction can be reduced, and the electric field strength in which the conductor shield 149 which is the ground layer leaks upward can be reduced.

図20は、給電線路部の変形例を示す断面図である。給電線路部181は、給電線路部175に、金属線の導体シールド183を給電線路141と給電線路143との間に平行に備えている。グラウンド線である導体シールド183により、給電線路141、143間の電界強度が低減されるので、給電線路部181から上方および下方に漏れる電界強度を低減することができる。   FIG. 20 is a cross-sectional view showing a modification of the feed line portion. The feed line portion 181 is provided with a conductor shield 183 of a metal wire in parallel to the feed line portion 141 and the feed line 143 in the feed line portion 175. Since the electric field strength between the feed lines 141 and 143 is reduced by the conductor shield 183 which is a ground line, the electric field strength leaking upward and downward from the feed line portion 181 can be reduced.

(3)実施形態1において、給電線路部147はその上部に導体シールド149を備えていたが、これに限られない。図21は、給電線路部の変形例を示す断面図である。図21に示すように、給電線路部185は給電線路部147に、さらに、樹脂体145の下部に薄板状の導体シールド167を備えている。すなわち、グラウンド層である導体シールド149の反対側に給電線路141および給電線路143と対向して配置された別のグラウンド層である導体シールド167が配置されている。給電線路部185の下部に導体シールド167を備えることで、給電線路部185を床面30に設置した場合、例えば、床下に配置された建物の鉄筋や鉄骨との電気的干渉を防止することができる。なお、給電線路部185は、上部および下部に2つの導体シールド149、167を備えているが、導体シールド167だけを備えていてもよい。   (3) In the first embodiment, the feed line portion 147 is provided with the conductor shield 149 on the top, but the present invention is not limited to this. FIG. 21 is a cross-sectional view showing a modification of the feed line portion. As shown in FIG. 21, the feed line portion 185 further includes a thin plate-like conductor shield 167 in the lower portion of the resin body 145 in the feed line portion 147. That is, on the opposite side of the conductor shield 149 which is a ground layer, a conductor shield 167 which is another ground layer arranged to be opposed to the feed line 141 and the feed line 143 is disposed. By providing the conductor shield 167 below the feed line portion 185, for example, when the feed line portion 185 is installed on the floor 30, preventing electrical interference with reinforcing bars or steel frames of a building disposed under the floor it can. In addition, although the feed line part 185 is provided with the two conductor shields 149 and 167 in the upper part and the lower part, you may provide only the conductor shield 167. FIG.

(4)実施形態1、2において、送電電極ユニット130の送電電極131、133の端部は、同一直線上に配置されていたがこれに限られない。いずれかの送電電極が給電線路幅と給電線路間隔の距離分ずれていてもよい。図22は、送電電極ユニットの配置の変形例を示す平面図である。送電電極131の長手方向端部が送電電極133の長手方向端部よりも、給電線路141側にずれている。このずれ量は、給電線路141の幅と給電線路間距離GS分である。   (4) In the first and second embodiments, the end portions of the power transmission electrodes 131 and 133 of the power transmission electrode unit 130 are arranged on the same straight line, but the present invention is not limited to this. One of the transmission electrodes may be shifted by the distance between the feed line width and the feed line interval. FIG. 22 is a plan view showing a modification of the arrangement of the power transmission electrode unit. The longitudinal end of the power transmission electrode 131 is shifted to the feed line 141 side more than the longitudinal end of the power transmission electrode 133. The amount of deviation corresponds to the width of the feed line 141 and the distance GS between the feed lines.

(5)実施形態1、2において、隣接する給電線路141、143間の距離が隣接する送電電極131、133間の最大距離よりも短い給電線路141、143の範囲は、給電線路141、143の一部の範囲でもよいし、給電線路141、143の全範囲でもよい。   (5) In the first and second embodiments, the range of the feed lines 141 and 143 between the adjacent feed lines 141 and 143 is shorter than the maximum distance between the adjacent power transmission electrodes 131 and 133. It may be a partial range or the entire range of the feed lines 141 and 143.

(6)実施形態1、2において、送電電極ユニット130は2つの送電電極131、133を有し、受電電極ユニット210は2つの受電電極211、213を有しているがこれに限られない。送電電極131、133の並び方向外側に別の電極を備えていてもよい。送電電極131、133の並び方向外側に別の電極を備えると、この別の電極と送電電極131、133との間で容量結合が生じ、別の電極は、隣接する送電電極とは逆相の電圧を帯びる。この結果、送電電極131、133によって形成される電界の一部が打ち消されて、漏洩電界の強度が低減する。また、受電電極211、213の並び方向外側に別の電極を備えていてもよい。   (6) In the first and second embodiments, the power transmission electrode unit 130 has two power transmission electrodes 131 and 133, and the power reception electrode unit 210 has two power reception electrodes 211 and 213, but the present invention is not limited to this. Another electrode may be provided on the outer side in the arrangement direction of the power transmission electrodes 131 and 133. When another electrode is provided on the outer side in the arrangement direction of the power transmission electrodes 131 and 133, capacitive coupling occurs between the other electrode and the power transmission electrodes 131 and 133, and the other electrode has a reverse phase to the adjacent power transmission electrode. It takes a voltage. As a result, part of the electric field formed by the power transmission electrodes 131 and 133 is cancelled, and the strength of the leakage electric field is reduced. In addition, another electrode may be provided outside the direction in which the power receiving electrodes 211 and 213 are aligned.

(7)本開示において、無線電力伝送システムが用いられるのは搬送ロボット10に限定されない。無人搬送車(AGV)でもよいし、エレベータ、電気車椅子などのモビリティでもよい。   (7) In the present disclosure, use of the wireless power transmission system is not limited to the transfer robot 10. It may be an automated guided vehicle (AGV) or mobility such as an elevator or an electric wheelchair.

本開示にかかる送電装置および無線電力伝送システムは、搬送車、エレベータ、電気車椅子などのモビリティ給電用の送電装置および無線電力伝送システムとして有用である。   The power transmission device and the wireless power transmission system according to the present disclosure are useful as a power transmission device and a wireless power transmission system for mobility power supply such as a carriage, an elevator, and an electric wheelchair.

1 無線電力伝送システム
10 搬送ロボット
11 近接センサ
13 通信装置
30 床面
100 送電装置
103 送電回路部
110 インバータ回路
112 制御回路
120 送電側整合回路
121 送電側直列共振回路
123 送電側並列共振回路
130 送電電極ユニット
131、133 送電電極
140 給電線路部
141、143 給電線路
145 樹脂体
147 給電線路部
149 導体シールド
151 給電線路部
153 導体シールド
155 給電線路部
161、163 磁気シールド
165、166 給電線路部
167 導体シールド
169 給電線路部
171、173 給電線路
175 給電線路部
177、179 導体シールド
180、181 給電線路部
183 導体シールド
185 給電線路部
200 受電装置
210 受電電極ユニット
211、213 受電電極
220 受電側整合回路
221 受電側並列共振回路
223 受電側直列共振回路
230 コンバータ回路
310 直流電源
320 負荷
330 充電領域
GT 送電電極間距離
GL 電極配線間距離
GS 給電線路間距離
GH 配線厚み
GB 樹脂体厚み
DESCRIPTION OF SYMBOLS 1 wireless power transmission system 10 conveyance robot 11 proximity sensor 13 communication apparatus 30 floor 100 power transmission apparatus 103 power transmission circuit unit 110 inverter circuit 112 control circuit 120 power transmission side matching circuit 121 power transmission side series resonance circuit 123 power transmission side parallel resonance circuit 130 power transmission electrode Unit 131, 133 Power transmission electrode 140 Feed line portion 141, 143 Feed line 145 Resin body 147 Feed line portion 149 Conductor shield 151 Feed line portion 153 Conductor shield 155 Feed line portion 161, 163 Magnetic shield 165, 166 Feed line portion 167 Conductor shield 169 feed line portion 171, 173 feed line 175 feed line portion 177, 179 conductor shield 180, 181 feed line portion 183 conductor shield 185 feed line portion 200 power receiving device 210 power receiving electrode unit 211, 213 power reception Pole 220 Receiving side matching circuit 221 Receiving side parallel resonance circuit 223 Receiving side series resonance circuit 230 Converter circuit 310 DC power supply 320 Load 330 Charge area GT Transmission electrode distance GL Electrode wiring distance GS Feeding line distance GH Wiring thickness GB Resin body Thickness

Claims (20)

無線電力伝送用の電界結合方式の送電装置であって、
第1送電電極と第2送電電極を有する送電電極ユニットと、
前記送電電極ユニットへ電力を供給する送電回路部と、
前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、
を備え、
前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、
前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、
前記第1給電線路と前記第2給電線路は隣接して配置され、
前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、
前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い、
送電装置。
An electric field coupling type power transmission device for wireless power transmission, comprising:
A power transmission electrode unit having a first power transmission electrode and a second power transmission electrode;
A power transmission circuit unit that supplies power to the power transmission electrode unit;
A feed line portion having a first feed line connecting the first power transmission electrode and the power transmission circuit portion, and a second feed line connecting the second power transmission electrode and the power transmission circuit portion;
Equipped with
The power transmission circuit unit includes an inverter circuit that outputs the input power as AC power of a predetermined frequency, and a matching circuit that increases the voltage amplitude of the AC power.
The voltage output from the matching circuit is applied to the power transmission electrode unit through the feed line portion,
The first feed line and the second feed line are disposed adjacent to each other,
Applying voltage components of opposite phases to the first feed line and the second feed line,
The distance between the first feed line and the second feed line is shorter than the maximum distance between the adjacent first power transmission electrode and the second power transmission electrode.
Power transmission device.
前記送電回路部から前記送電電極ユニットまでの前記給電線路部の全範囲において、前記第1給電線路と前記第2給電線路間の距離が前記第1送電電極と前記第2送電電極間の最大距離よりも短い、
請求項1に記載の送電装置。
In the entire range of the feed line portion from the power transmission circuit unit to the power transmission electrode unit, the distance between the first feed line and the second feed line is the maximum distance between the first power transmission electrode and the second power transmission electrode Shorter than
The power transmission device according to claim 1.
前記給電線路部は、前記第1送電電極および前記第2送電電極の長手方向延長領域外に延びる、
請求項1または2に記載の送電装置。
The feed line portion extends outside the longitudinal extension area of the first power transmission electrode and the second power transmission electrode.
The power transmission device according to claim 1.
前記第1給電線路および前記第2給電線路の線路幅は、前記第1送電電極および前記第2送電電極の幅よりも短い、
請求項1から3のいずれか1つに記載の送電装置。
The line widths of the first feed line and the second feed line are shorter than the widths of the first transmission electrode and the second transmission electrode.
The power transmission device according to any one of claims 1 to 3.
前記第1給電線路と前記第2給電線路間には絶縁性樹脂が配置される、
請求項1から4のいずれか1つに記載の送電装置。
An insulating resin is disposed between the first feed line and the second feed line,
The power transmission device according to any one of claims 1 to 4.
前記絶縁性樹脂の厚みは前記給電線路の厚みよりも大きい、
請求項5に記載の送電装置。
The thickness of the insulating resin is larger than the thickness of the feed line,
The power transmission device according to claim 5.
前記第1給電線路および前記第2給電線路は幅方向に平行に配置される、
請求項1から6のいずれか1つに記載の送電装置。
The first feed line and the second feed line are disposed in parallel in the width direction.
The power transmission device according to any one of claims 1 to 6.
前記給電線路部は、前記第1給電線路に隣り合う別の第2給電線路をさらに備える
請求項1から6のいずれか1つに記載の送電装置。
The power transmission device according to any one of claims 1 to 6, wherein the feeding line portion further includes another second feeding line adjacent to the first feeding line.
前記給電線路部は、逆位相の電圧がそれぞれ印加される前記第1給電線路および前記第2給電線路を1対として、幅方向に平行に配置された複数対の前記第1給電線路および前記第2給電線路を有する、
請求項1から6のいずれか1つに記載の送電装置。
The feed line portion includes a plurality of pairs of the first feed line and the first feed line disposed in parallel in the width direction, wherein the first feed line and the second feed line to which voltages of opposite phases are respectively applied are paired. 2 with feed line,
The power transmission device according to any one of claims 1 to 6.
前記給電線路部は、前記第1給電線路および第2給電線路の周囲の少なくとも一部を遮蔽する導体シールドを備えた、
請求項1から9のいずれか1つに記載の送電装置。
The feed line portion includes a conductor shield that shields at least a part of the periphery of the first feed line and the second feed line.
The power transmission device according to any one of claims 1 to 9.
前記導体シールドは、前記第1給電線路および前記第2給電線路の並び方向外側に配置されたグラウンド線を含む、
請求項10に記載の送電装置。
The conductor shield includes a ground line disposed outside the alignment direction of the first feed line and the second feed line.
The power transmission device according to claim 10.
前記導体シールドは、前記第1給電線路と第2給電線路間に配置されたグラウンド線を含む、
請求項10または11に記載の送電装置。
The conductor shield includes a ground line disposed between the first feed line and the second feed line.
The power transmission device according to claim 10.
前記導体シールドは、前記第1給電線路および第2給電線路の並び方向と延びる方向とに、前記第1給電線路および第2給電線路と対向して配置されたグラウンド層を含む、
請求項10から12のいずれか1つに記載の送電装置。
The conductor shield includes a ground layer disposed to face the first feed line and the second feed line in a direction in which the first feed line and the second feed line are arranged and in a direction in which the conductive line extends.
The power transmission device according to any one of claims 10 to 12.
前記導体シールドは、前記グラウンド層の反対側に前記第1給電線路および前記第2給電線路と対向して配置された別のグラウンド層を含む、
請求項13に記載の送電装置。
The conductor shield includes another ground layer disposed opposite to the first feed line and the second feed line on the opposite side of the ground layer.
The power transmission device according to claim 13.
前記導体シールドは、前記第1給電線路および前記第2給電線路の周囲を囲む、
請求項10に記載の送電装置。
The conductor shield surrounds a periphery of the first feed line and the second feed line,
The power transmission device according to claim 10.
前記第1給電線路と、前記第1給電線路に印加される電圧と逆位相成分の電圧が印加される前記第2送電電極との間の距離が、第1送電電極と第2送電電極間の距離よりも短い
請求項1から15のいずれか記載の送電装置。
The distance between the first power feed line and the second power transmission electrode to which a voltage having a phase opposite to the voltage applied to the first power feed line is applied is the distance between the first power transmission electrode and the second power transmission electrode. The power transmission device according to any one of claims 1 to 15, wherein the power transmission device is shorter than the distance.
前記給電線路部は、前記第1給電線路および第2給電線路の並び方向と延びる方向とに、前記第1給電線路および第2給電線路と対向して配置された磁気シールドを備える
請求項1から16のいずれか1つに記載の送電装置。
The feed line portion includes a magnetic shield disposed to face the first feed line and the second feed line in a direction in which the first feed line and the second feed line are arranged and in a direction in which the feed line portion extends. The power transmission device according to any one of 16.
前記給電線路部は、前記第1給電線路および第2給電線路を挟んで前記磁気シールドと対向して配置された別の磁気シールドを備える
請求項17に記載の送電装置。
The power transmission device according to claim 17, wherein the feed line portion includes another magnetic shield disposed to face the magnetic shield with the first feed line and the second feed line interposed therebetween.
電界結合方式の無線電力伝送システムであって、
第1送電電極と第2送電電極を有する送電電極ユニットと、前記送電電極ユニットへ電力を供給する送電回路部と、前記第1送電電極と前記送電回路部とを接続する第1給電線路と、前記第2送電電極と前記送電回路部とを接続する第2給電線路と、を有する給電線路部と、を備えた送電装置と、
前記送電装置から送られる電力を受電する受電装置を有するモビリティと、
を備え、
前記送電回路部は、入力された電力を予め定められた周波数の交流電力として出力するインバータ回路と、前記交流電力の電圧振幅を増大させる整合回路と、を備え、
前記整合回路から出力される電圧が前記給電線路部を介して前記送電電極ユニットに印加され、
前記第1給電線路と前記第2給電線路は隣接して配置され、
前記第1給電線路と前記第2給電線路にはそれぞれ逆位相の電圧成分を印加し、
前記第1給電線路と前記第2給電線路間の距離は、隣接する前記第1送電電極と前記第2送電電極間の最大距離よりも短い、
無線電力伝送システム。
An electric field coupling type wireless power transmission system,
A power transmission electrode unit having a first power transmission electrode and a second power transmission electrode, a power transmission circuit unit for supplying power to the power transmission electrode unit, and a first feed line for connecting the first power transmission electrode and the power transmission circuit unit; A power transmission line portion including a second power feed line connecting the second power transmission electrode and the power transmission circuit portion;
Mobility having a power receiving device for receiving power transmitted from the power transmitting device;
Equipped with
The power transmission circuit unit includes an inverter circuit that outputs the input power as AC power of a predetermined frequency, and a matching circuit that increases the voltage amplitude of the AC power.
The voltage output from the matching circuit is applied to the power transmission electrode unit through the feed line portion,
The first feed line and the second feed line are disposed adjacent to each other,
Applying voltage components of opposite phases to the first feed line and the second feed line,
The distance between the first feed line and the second feed line is shorter than the maximum distance between the adjacent first power transmission electrode and the second power transmission electrode.
Wireless power transfer system.
前記モビリティは人検出センサを備え、
前記人検出センサの検出領域外の少なくとも一部に前記給電線路部が配置されている
請求項19に記載の無線電力伝送システム。
The mobility comprises a person detection sensor,
The wireless power transmission system according to claim 19, wherein the feed line portion is disposed at least in a part outside the detection area of the human detection sensor.
JP2017194353A 2017-10-04 2017-10-04 Power transmission device and wireless power transmission system Pending JP2019068681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194353A JP2019068681A (en) 2017-10-04 2017-10-04 Power transmission device and wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194353A JP2019068681A (en) 2017-10-04 2017-10-04 Power transmission device and wireless power transmission system

Publications (1)

Publication Number Publication Date
JP2019068681A true JP2019068681A (en) 2019-04-25

Family

ID=66338060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194353A Pending JP2019068681A (en) 2017-10-04 2017-10-04 Power transmission device and wireless power transmission system

Country Status (1)

Country Link
JP (1) JP2019068681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112026595A (en) * 2020-08-26 2020-12-04 中车株洲电力机车有限公司 Automatic passing neutral section method, system, vehicle-mounted network controller and vehicle
CN113728405A (en) * 2019-04-26 2021-11-30 松下知识产权经营株式会社 Wireless power data transmission device and transmission module
WO2023100431A1 (en) * 2021-11-30 2023-06-08 村田機械株式会社 Non-contact power feeding device and non-contact power feeding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728405A (en) * 2019-04-26 2021-11-30 松下知识产权经营株式会社 Wireless power data transmission device and transmission module
CN112026595A (en) * 2020-08-26 2020-12-04 中车株洲电力机车有限公司 Automatic passing neutral section method, system, vehicle-mounted network controller and vehicle
WO2022041530A1 (en) * 2020-08-26 2022-03-03 中车株洲电力机车有限公司 Automatic neutral-section passing method and system, on-board network controller, and vehicle
WO2023100431A1 (en) * 2021-11-30 2023-06-08 村田機械株式会社 Non-contact power feeding device and non-contact power feeding method

Similar Documents

Publication Publication Date Title
KR102215784B1 (en) System and method for charging electric vehicles on the road through wireless power transmission
US10153664B2 (en) Wireless power transmission system and power transmitter
EP3654490B1 (en) Contactless power transmission system
EP2884504B1 (en) Wireless power transmission device with power feeding coil unit
CN102460900B (en) Power transfer system and noncontact charging device
CN102754306B (en) Power transmission system
JP2019068681A (en) Power transmission device and wireless power transmission system
US9172276B2 (en) Power transmission device and power transfer system
CN103718417A (en) A capacitive contactless powering system
US10530193B2 (en) Passive magnetic field attenuation
JP6665392B2 (en) Non-contact power transmission system and power receiving device
CN102742122A (en) Power reception device and power transmission device
Makhdoom et al. Multi-MHz in-motion capacitive wireless power transfer system for mobile robots
EP3605791B1 (en) Power transmission device and wireless power transmission system
JP2019176697A (en) Electrode unit, power transmitting device, power receiving device, and wireless power transmission system
WO2020230535A1 (en) Wireless power transmission device, vehicle seat, power transmission module, and power receiving module
JP7203332B2 (en) Power transmitting device, power receiving device, and wireless power transmission system
JP6040510B2 (en) Power transmission system
US10291080B2 (en) Electric power transmission device and wireless electric power transfer system
Teeneti et al. 1-kW wireless charger for power wheelchairs
Dogan et al. A review of wireless power transmission in the applications
US20160261146A1 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
CN103401321A (en) Power transmission system and non-contact charging device