WO2020230535A1 - Wireless power transmission device, vehicle seat, power transmission module, and power receiving module - Google Patents

Wireless power transmission device, vehicle seat, power transmission module, and power receiving module Download PDF

Info

Publication number
WO2020230535A1
WO2020230535A1 PCT/JP2020/017044 JP2020017044W WO2020230535A1 WO 2020230535 A1 WO2020230535 A1 WO 2020230535A1 JP 2020017044 W JP2020017044 W JP 2020017044W WO 2020230535 A1 WO2020230535 A1 WO 2020230535A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
power
antenna
side frame
power receiving
Prior art date
Application number
PCT/JP2020/017044
Other languages
French (fr)
Japanese (ja)
Inventor
坂田 勉
達也 沼
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020230535A1 publication Critical patent/WO2020230535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • This disclosure relates to a wireless power transmission device, a vehicle seat, a power transmission module, and a power reception module.
  • Patent Document 1 discloses a power feeding mechanism for a slide sheet movably mounted on a rail provided on the floor of a vehicle body.
  • This power feeding mechanism includes a power receiving unit having a power receiving coil and a power feeding unit having a power feeding coil that feeds the power receiving coil in a non-contact manner.
  • the power receiving unit is provided on the slide sheet.
  • the power feeding unit is provided on the floor of the vehicle body.
  • the power receiving coils are provided at a plurality of locations in the slide sheet. Power is supplied from the power feeding coil to a plurality of power receiving coils in a non-contact manner.
  • the present disclosure provides a technique that enables space saving of a wireless power transmission device applicable to a device having a fixed portion and a movable portion.
  • the wireless power transmission device is used by being attached to a movable device including a fixed portion extending in a first direction and a movable portion slidable in the first direction with respect to the fixed portion. Will be done.
  • the wireless power transmission device includes a power transmission module and a power reception module.
  • the power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction.
  • the power receiving module is a power receiving side frame attached to the movable portion and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna.
  • a power receiving antenna having a smaller dimension in the first direction than the above.
  • FIG. 4A It is a perspective view which shows the wireless power transmission apparatus by an exemplary embodiment of this disclosure. It is a perspective view which shows the state which the power receiving module was removed from the power transmission module. It is a figure which shows typically the example of the slide seat for a vehicle. It is a figure which shows the cross section of the slide sheet when cut in the plane parallel to both the horizontal direction and the vertical direction of a vehicle. It is a figure which shows the cross section of the slide sheet when it cuts in the plane parallel to both the front-rear direction and the up-down direction of a vehicle. It is a figure which shows typically the example of the state which the wireless power transmission apparatus is attached to the slide sheet shown in FIG. 4A. It is sectional drawing which shows a part of the structure of a slide sheet in more detail.
  • FIG. 1 It is a top view which shows a part of the structure of a slide sheet in more detail. It is a figure which shows another example of arrangement of a wireless power transmission apparatus. It is a figure which shows the structure of the wireless power transmission apparatus in the modification. It is a figure which shows the structure of the wireless power transmission apparatus in another modification. It is a figure which shows the structure of the wireless power transmission apparatus in still another modification. It is a figure which shows the structure of the wireless power transmission apparatus in another modification. It is a block diagram which shows an example of the circuit structure of the wireless power transmission apparatus. It is a figure which shows the example of the equivalent circuit of a power transmission antenna and a power reception antenna. It is a figure which shows the example of the equivalent circuit of a power transmission antenna and a power reception antenna.
  • the power transmission coil is attached to the floor under the slide seat, and the power receiving coil is attached to the lower part of the seat surface of the seat.
  • the power transmission coil occupies the floor surface under the slide sheet, which increases the size of the device. Further, the scope of application of the technique of Patent Document 1 is limited to vehicle slide seats, and application to other uses is not expected.
  • the present inventors have come up with a configuration of a wireless power transmission device that can be widely applied to a device having a fixed portion and a movable portion and can realize space saving.
  • the outline of the embodiment of the present disclosure will be described below.
  • the wireless power transmission device is attached to a movable device including a fixed portion extending in a first direction and a movable portion slidable in the first direction with respect to the fixed portion. Is used.
  • the wireless power transmission device includes a power transmission module and a power reception module.
  • the power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction.
  • the power receiving module includes a power receiving side frame attached to the movable portion, and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna.
  • the power receiving antenna has a smaller dimension in the first direction than the power transmitting antenna.
  • the power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction. ..
  • the power receiving module includes a power receiving side frame attached to the movable portion, and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna.
  • the movable device may be, for example, a slide seat for a vehicle or a slide rail which is a component thereof.
  • the movable device may be, for example, a seat having a movable portion used in a place other than the vehicle, a sliding door, or the like, in addition to the sliding seat for the vehicle.
  • the movable part of the movable device may be configured to slide by an electrical or mechanical mechanism, or may be configured to slide manually.
  • electromagnetically coupled means coupling by magnetic field coupling or electric field coupling.
  • Each of the transmitting antenna and the receiving antenna can be, for example, a coil that transmits or receives power by magnetic field coupling.
  • Each of the transmitting antenna and the receiving antenna may be an electrode or a group of electrodes that transmits or receives power by electric field coupling.
  • the term "antenna” is used as a concept that includes coils and electrodes that can be used for power transmission.
  • the power transmission module may further include a power transmission circuit that supplies AC power to the power transmission antenna.
  • the power receiving module may further include a power receiving circuit that converts the power received by the power receiving antenna into other forms of power and supplies it to the load.
  • the power transmission circuit may include, for example, an inverter circuit that converts DC power supplied from an external power source into AC power.
  • the power receiving circuit may include, for example, a rectifier circuit that converts AC power received by the power receiving antenna into DC power and outputs it.
  • the power transmission circuit and the power reception circuit are connected to the power transmission antenna and the power reception antenna, respectively.
  • the power transmission circuit may be arranged outside the power transmission side frame. According to such a configuration, the transmission side frame can be made smaller. Similarly, the power receiving circuit may be arranged outside the power receiving side frame. According to such a configuration, the power receiving side frame can be made smaller.
  • the power transmission circuit may be arranged inside the power transmission side frame. According to such a configuration, the wiring connecting the power transmission antenna and the power transmission circuit can be shortened, so that the loss of the transmitted power can be reduced.
  • the power receiving circuit may be arranged inside the power receiving side frame. According to such a configuration, the wiring connecting the power receiving antenna and the power receiving circuit can be accommodated inside the power receiving side frame, so that the loss of the transmitted power can be reduced.
  • the movable device may include one or more slide rails.
  • the fixed portion may be a fixed rail of the slide rail.
  • the movable portion may be a movable rail of the slide rail. According to the configuration in which the power transmission module is attached to the fixed rail and the power reception module is attached to the movable rail, it becomes easy to keep the distance between the power transmission antenna and the power reception antenna constant, and it is possible to suppress a decrease in power transmission efficiency. ..
  • the slide rail can be, for example, a slide rail for a vehicle seat.
  • the slide rail may be a rail for a sliding door of a vehicle, or may be a slide rail used for purposes other than the vehicle.
  • the seat of the vehicle may include a left leg and a right leg.
  • the slide rail may include a left slide rail that supports the left leg and a right slide rail that supports the right leg.
  • the power transmission side frame may be attached to a side portion of the fixed rail on one of the left side slide rail and the right side slide rail.
  • the power receiving side frame may be attached to a side portion of the movable rail on one of the left side slide rail and the right side slide rail.
  • the power transmission side frame may be attached to the inner side of the fixed rail on one of the left side slide rail and the right side slide rail.
  • the power receiving side frame may be attached to the inner side portion of the movable rail on the left side slide rail and the right side slide rail. According to such a configuration, the power transmitting side frame and the power receiving side frame are arranged under the seat, so that they do not occupy the space outside the left side slide rail and the right side slide rail.
  • the movable device can be provided in a vehicle, for example.
  • Each of the power transmitting antenna and the power receiving antenna may be arranged perpendicular to the floor surface of the vehicle. According to such a configuration, the width of each of the power transmission module and the power reception module can be reduced.
  • Each of the power transmitting antenna and the power receiving antenna may be arranged parallel to the floor surface of the vehicle. According to such a configuration, the height of each of the power transmission module and the power reception module can be reduced.
  • the power transmission side frame may include a housing having a slit extending in the first direction.
  • the power receiving side frame includes a first portion arranged inside the housing, a second portion fixed to the movable portion, the first portion and the second portion through the slit. It may include a third portion connecting the and. According to such a configuration, the power transmitting antenna and the power receiving antenna are housed inside the housing of the power transmitting side frame. Therefore, it is possible to prevent foreign matter from entering between the power transmission antenna and the power reception antenna.
  • the slit may be open to the side of the housing. According to such a configuration, the possibility that foreign matter passes through the slit and enters the inside of the housing can be further reduced.
  • the first direction in which the movable portion slides may be parallel to the floor surface of the vehicle or may be inclined with respect to the floor surface.
  • parallel is not limited to a state of being strictly parallel, but also includes a state of being tilted within a range that can be recognized as substantially parallel.
  • the vehicle slide seat of the present disclosure may include any of the above-mentioned wireless power transmission devices, the movable device, and a seat supported by the movable portion of the movable device.
  • the present disclosure also includes a power transmission module used in any of the above-mentioned wireless power transmission devices and a power receiving module used in any of the above-mentioned wireless power transmission devices.
  • load means any device operated by electric power.
  • the “load” may include electronic devices such as electric motors for reclining seats, seating sensors, heaters, air conditioners, speakers, or cameras.
  • the load operates by the power output from the power receiving circuit.
  • FIG. 1 is a perspective view showing a wireless power transmission device according to an exemplary embodiment of the present disclosure.
  • FIG. 1 shows XYZ coordinates indicating the X, Y, and Z directions orthogonal to each other. In the following description, the illustrated XYZ coordinates are used.
  • the wireless power transmission device is used by being attached to a device having a fixed portion and a movable portion (referred to as a "movable device" in the present specification).
  • the wireless power transmission device includes a power transmission module 100 arranged in the vicinity of the fixed portion and a power receiving module 200 attached to the movable portion.
  • the movable portion is configured to be slidable in the X direction with respect to the fixed portion. When the movable portion moves in the X direction, the power receiving module 200 also moves in the X direction.
  • FIG. 2 is a perspective view showing a state in which the power receiving module 200 is removed from the power transmission module 100.
  • the power transmission module 100 includes a power transmission antenna 110 and a power transmission side frame 130 that supports the power transmission antenna 110.
  • the power transmission side frame 130 is arranged adjacent to the fixed portion of the movable device.
  • the power transmission side frame 130 may be in contact with the fixed portion or may be adjacent to the fixed portion with a gap.
  • the power transmission side frame 130 may be fixed so as not to move with respect to the fixed portion.
  • the power transmission side frame 130 includes a housing having a slit 134 extending in the X direction.
  • the power transmission antenna 110 is arranged inside the housing.
  • the power transmission antenna 110 has a shape extending in the X direction.
  • the power transmission antenna 110 is a power transmission coil having a coil surface substantially parallel to a plane including the X direction and the Z direction.
  • the power transmission antenna 110 is connected to a power transmission circuit (not shown).
  • the power transmission circuit supplies AC power to the power transmission antenna 110.
  • two or more power transmission electrodes extending in parallel may be used. In that case, voltages having opposite polarities are applied to the two adjacent power transmission electrodes from the power transmission circuit.
  • the power receiving module 200 includes a power receiving side frame 230 and a power receiving antenna 210 attached to the power receiving side frame 230.
  • the power receiving side frame 230 is attached to a movable portion of the movable device.
  • the power receiving side frame 230 in the present embodiment passes through a first portion 231 arranged inside the housing of the power transmission side frame 130, a second portion 232 fixed to the movable portion of the movable device, and a slit 134. Includes a third portion 233 that connects the first portion 231 and the second portion 232.
  • the first portion 231 and the third portion 233 of the power receiving side frame 230 are substantially parallel to the XZ plane, and the second portion 232 is It is almost parallel to the XY plane.
  • the power receiving antenna 210 is arranged inside the first portion 231 of the power receiving side frame 230.
  • the power receiving antenna 210 receives power by electromagnetically coupling with the power transmitting antenna 110 in a state of facing the power transmitting antenna 110 through a gap.
  • the power receiving antenna 210 in the present embodiment is a power receiving coil that magnetically couples with the power transmission coil in the power transmission antenna 110 to receive power from the power transmission coil. Instead of the power receiving coil, two or more power receiving electrodes extending in parallel may be used.
  • the power receiving antenna 210 is connected to a power receiving circuit (not shown).
  • the power receiving circuit converts the AC power received by the power receiving antenna into other forms of DC power or AC power used by the load and outputs it.
  • the dimension of the power receiving antenna 210 in the X direction is smaller than the dimension of the power transmitting antenna 110 in the X direction.
  • the power receiving module 200 can slide in the X direction within the range of the slit 134 with respect to the power transmission module 100. Even when the power receiving module 200 slides, the state in which the power transmitting antenna 110 and the power receiving antenna 210 face each other is maintained. With such a structure, power transmission is maintained even when the movable portion slides with respect to the fixed portion.
  • the power transmission module 100 is fixed to the fixed portion, and the power receiving module 200 is fixed to the movable portion. Therefore, it is possible to prevent the distance between the power transmitting antenna 110 and the power receiving antenna 210 from deviating from the designed value.
  • the position of the power transmission coil is likely to shift.
  • the wireless power transmission device can be arranged in a relatively small space adjacent to the movable device, space saving can be realized.
  • the above wireless power transmission device can be used by being attached to, for example, a vehicle slide seat.
  • An example of such an embodiment will be described below.
  • FIG. 3 is a diagram schematically showing an example of a vehicle slide sheet.
  • the vehicle slide seat includes a seat 10, a slide rail 20, and a wireless power transmission device 50 attached to the slide rail 20.
  • the wireless power transmission device 50 includes a power transmission module 100 and a power reception module 200.
  • the power transmission module 100 includes a power transmission antenna 110.
  • the power receiving module 200 includes a power receiving antenna 210.
  • the slide rail 20 includes a fixed rail attached to the vehicle body and a movable rail that can slide with respect to the fixed rail.
  • the seat 10 is attached to a movable rail and can be slid back and forth.
  • the power transmission module 100 is attached to the fixed rail, and the power receiving module 200 is attached to the movable rail. With such a structure, electric power is wirelessly transmitted from the power transmitting antenna 110 to the power receiving antenna 210.
  • the transmitted power is supplied to a load such as a motor for reclining, a seating sensor, or a heater.
  • FIG. 4A and 4B are diagrams showing an example of the cross-sectional structure of the slide sheet.
  • FIG. 4A shows a cross section of the slide sheet when cut in a plane parallel to both the left-right direction and the up-down direction of the vehicle.
  • FIG. 4B shows a cross section of the slide sheet when cut in a plane parallel to both the front-rear direction and the up-down direction of the vehicle.
  • the seat 10 in this example includes a total of four legs 12 on the front, rear, left and right sides. The number of legs 12 is not limited to four, and may be, for example, two on the left and right.
  • the slide rail includes a left slide rail that supports the left leg 12 and a right slide rail that supports the right leg 12.
  • Each of the left slide rail and the right slide rail includes a fixed rail 22 and a movable rail 24.
  • the fixed rail 22 and the movable rail 24 have a structure that is parallel to the floor surface of the vehicle and extends in the X direction that coincides with the traveling direction.
  • the movable rail 24 can slide in the X direction with respect to the fixed rail 22.
  • FIG. 4A shows a state in which floor mats 30 are laid on the outside and inside of the left and right fixed rails 22 and no wireless power transmission device is provided.
  • the two legs 12 on the left side are connected to the movable rail 24 on the left side.
  • the two legs 12 on the right side are connected to the movable rail 24 on the right side.
  • a load 300 such as a seating sensor, a reclining motor, or a heater is arranged below the seat 10.
  • the position of the load 300 is arbitrary and is not limited to the position shown in the drawing.
  • FIG. 5A is a diagram schematically showing an example of a state in which the wireless power transmission device 50 is attached to the slide sheet shown in FIG. 4A.
  • FIG. 5B is a cross-sectional view showing a part of the structure of the slide sheet in more detail.
  • FIG. 5C is a top view showing a part of the structure of the slide sheet in more detail.
  • the wireless power transmission device 50 is arranged inside the left and right slide rails, that is, under the seat 10. With such an arrangement, it is possible to avoid occupying the space beside the seat 10.
  • the power transmission side frame 130 is attached to the inner side portion of the fixed rail 22 on the left slide rail.
  • the power receiving side frame 230 is attached to the inner side portion of the movable rail 24 on the left slide rail.
  • the power transmission side frame 130 may be attached to the outer side portion of the fixed rail 22 on the left slide rail.
  • the power receiving side frame 230 may be attached to the outer side of the movable rail 24 on the left slide rail.
  • the power transmitting side frame 130 and the power receiving side frame 230 may be attached to the side portion of the right side slide rail. For example, as shown in FIG. 5D, these frames may be provided on the outer side of the right slide rail.
  • the fixed rail 22, the movable rail 24, the power transmission side frame 130, and the power reception side frame 230 have a structure extending in the X direction, which is the traveling direction of the vehicle.
  • the power transmission side frame 130 is attached to the fixed rail 22 via the fixing member 136.
  • the fixing member 136 can be any fixing means, such as bolts, screws, or adhesives.
  • the power receiving side frame 230 is also fixed to the movable rail 24 by fixing means such as bolts, screws, or adhesives.
  • the movable rail 24 and the power receiving side frame 230 can slide along the X direction with respect to the fixed rail 22 and the power transmitting side frame 130. As a result, the seat 10 can be slid in the front-rear direction of the vehicle. This slide may be done manually or electrically.
  • the housing of the power transmission side frame 130 has a slit 134.
  • the slit 134 extends in the X direction.
  • a power transmission antenna 110 and a power transmission circuit 120 are mounted inside the housing of the power transmission side frame 130.
  • the power transmission antenna 110 and the power transmission circuit 120 are electrically connected via wiring (not shown).
  • the power receiving side frame 230 has a first portion 231 arranged inside the housing of the power transmitting side frame 130, a second portion 232 fixed to the movable rail 24, and a first portion passing through the slit 134. Includes a third portion 233 that connects the 231 and the second portion 232.
  • a power receiving antenna 210 and a power receiving circuit 220 are attached to the first portion 231 of the power receiving side frame 230.
  • the power transmitting antenna 110 and the power receiving antenna 210 are arranged so as to face each other. Even when the power receiving side frame 230 slides, the power transmitting antenna 110 and the power receiving antenna 210 are maintained in a state of facing each other at a constant interval.
  • the power receiving side frame 230 is fixed to the movable rail 24, and the power transmitting side frame 130 is fixed to the fixed rail 22.
  • the wireless power transmission device 50 is arranged not in the entire space between the left and right slide rails, but in a part of the space. Compared with the configuration of Patent Document 1, the ratio of occupying the space between the slide rails can be reduced.
  • the slit 134 is open to the side of the housing, and the power transmitting antenna 110 and the power receiving antenna 210 are surrounded by the housing. According to such a configuration, it is possible to prevent foreign matter such as dust from entering the housing. Further, each of the power transmitting antenna 110 and the power receiving antenna 210 is arranged vertically on the floor surface of the vehicle. With such an arrangement, even if a foreign matter enters the housing, the foreign matter falls to the bottom of the housing, so that the foreign matter can be prevented from staying between the power transmission antenna 110 and the power receiving antenna 210. Further, by arranging each antenna vertically on the floor surface, the size of the wireless power transmission device in the lateral direction of the vehicle can be reduced.
  • the power transmission circuit 120 is arranged inside the housing of the power transmission side frame 130, and the power reception circuit 220 is attached to the power reception side frame 230. Since the power transmission circuit 120 is close to the power transmission antenna 110 and the power reception circuit 220 is close to the power reception antenna 210, long wiring is not required and electric power can be efficiently transmitted.
  • FIG. 5E is a diagram showing a modified example of the configuration of FIG. 5B.
  • the power transmission circuit 120 and the power reception circuit 220 are arranged outside the housing of the power transmission side frame 130.
  • the power transmission circuit 120 and the power reception circuit 220 may be arranged at locations apart from the power transmission side frame 130 and the power reception side frame 230, respectively.
  • the housing can be made even thinner.
  • the power transmission circuit 120 is connected to the power transmission antenna 110 via wiring
  • the power reception circuit 220 is connected to the power reception antenna 210 via wiring.
  • the power transmission circuit 120 and the power reception circuit 220 may be arranged in any free space around the housing.
  • FIG. 6A is a diagram showing another modification of the present embodiment.
  • the power transmitting antenna 110 and the power receiving antenna 210 are arranged parallel to the floor surface of the vehicle. According to such a configuration, the dimension in the height direction of the housing can be reduced.
  • FIG. 6B is a diagram showing still another modification of the present embodiment.
  • the power transmission antenna 110 and the power reception antenna 210 are arranged parallel to the floor surface of the vehicle, and the power transmission circuit 120 and the power reception circuit 220 are arranged outside the housing. According to such a configuration, the height dimension of the housing can be further reduced.
  • FIG. 7 is a diagram showing still another modification of the present embodiment.
  • the vehicle body frame 60 has a recess, and the power transmission side frame 130 is arranged in the recess.
  • the power transmission side frame 130 can be arranged at a lower position, and the space inside the vehicle can be made wider.
  • the same configuration as in FIG. 5E is adopted, but the same configuration as in FIG. 5B, FIG. 6A, or FIG. 6B may be adopted.
  • FIG. 8 is a block diagram showing an example of the circuit configuration of the wireless power transmission device.
  • FIG. 8 also shows the power supply 400 and the load 300, which are external components of the wireless power transmission device.
  • the wireless power transmission device includes a power transmission module 100 and a power reception module 200.
  • the power transmission module 100 includes a power transmission circuit 120 and a power transmission antenna 110.
  • the power receiving module 200 includes a power receiving antenna 210 and a power receiving circuit 220.
  • the power transmission circuit 120 includes an inverter circuit 120a, a pulse output circuit 120b, and a power transmission control circuit 120c.
  • the pulse output circuit 120b is, for example, a gate driver circuit, and supplies a pulse signal to a plurality of switching elements of the inverter circuit 120a in response to an instruction from the power transmission control circuit 120c.
  • the power transmission control circuit 120c is an integrated circuit including a memory and a processor, such as a microcontroller unit (MCU).
  • the pulse output circuit 120b is controlled by the processor executing the computer program stored in the memory.
  • the inverter circuit 120a is connected to an external power supply 400 and receives DC power from the power supply 400.
  • the inverter circuit 120a converts the supplied DC power into AC power and outputs it.
  • the power receiving circuit 220 includes, for example, a rectifier circuit.
  • the rectifier circuit can be any rectifier circuit, such as a single-phase full-wave rectifier circuit or a single-phase half-wave rectifier circuit.
  • the rectifier circuit converts the AC power output from the power receiving antenna 210 into DC power and outputs it.
  • the power receiving circuit 220 may include other components (not shown) such as a DC-DC converter.
  • FIG. 9A is a diagram showing an example of an equivalent circuit of the power transmitting antenna 110 and the power receiving antenna 210.
  • Each of the power transmitting antenna 110 and the power receiving antenna 210 in this example has a resonant circuit configuration including a coil and a capacitor as shown in FIG. 9A.
  • Each antenna is not limited to a series resonance circuit, and may be a parallel resonance circuit.
  • the power transmitting antenna 110 may have a structure of a series resonance circuit
  • the power receiving antenna 210 may have a structure of a parallel resonance circuit.
  • Each coil may be, for example, a flat coil or a laminated coil formed on a circuit board, or a wound coil using a copper wire, a litz wire, a twisted wire, or the like.
  • any type of capacitor having, for example, a chip shape or a lead shape can be used. It is also possible to make the capacitance between the two wires via air function as each capacitor. The self-resonant characteristics of each coil may be used in place of these capacitors.
  • the resonance frequency f0 of the resonance circuit is typically set to match the transmission frequency f1 at the time of power transmission. Each resonance frequency f0 of the resonance circuit does not have to exactly match the transmission frequency f1.
  • the resonance frequency f0 may be set to a value within the range of, for example, about 50 to 150% of the transmission frequency f1.
  • the frequency f1 of the power transmission can be set to a value in the range of, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example.
  • the direct current power supply 400 includes, for example, a commercial power supply, a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power supply, a high-capacity capacitor (for example, an electric double layer capacitor), and a voltage connected to the commercial power supply. It may be any power source such as a converter.
  • FIG. 10A is a diagram showing a configuration example of the inverter circuit 120a.
  • the inverter circuit 120a includes a plurality of switching elements S1 to S4 that change the conduction / non-conduction state according to the pulse signal supplied from the pulse output circuit 120b. By changing the conduction / non-conduction state of each switching element, the input DC power can be converted into AC power.
  • a full bridge type inverter circuit including four switching elements S1 to S4 is used.
  • each switching element is an IGBT (Insulated-gate bipolar transistor), but other types of switching elements such as MOSFET (Metal Oxide Semiconductor Field-Effective Transistor) may be used.
  • IGBT Insulated-gate bipolar transistor
  • MOSFET Metal Oxide Semiconductor Field-Effective Transistor
  • the switching elements S1 and S4 (referred to as the first switching element pair) output a voltage having the same polarity as the supplied DC voltage when conducting.
  • the switching elements S2 and S3 (referred to as a second switching element pair) output a voltage having a polarity opposite to the supplied DC voltage when conducting.
  • the pulse output circuit 120b supplies a pulse signal to the gates of the four switching elements S1 to S4 according to the instruction from the control circuit 120c. At this time, by adjusting the phase difference between the two pulse signals supplied to the first switching element pair (S1 and S4) and the phase difference between the two pulse signals supplied to the second switching element pair (S2 and S3). , The amplitude of the output voltage can be controlled.
  • FIG. 10B is a diagram showing another configuration example of the inverter circuit 120a.
  • the inverter circuit 120a in this example is a half-bridge type inverter circuit.
  • the amplitude of the output voltage can be controlled by controlling the duty ratio of the pulse signal input to each switching element.
  • the inverter circuit 120a shown in FIG. 10B is a half-bridge type inverter circuit including two switching elements S1 and S2 and two capacitors.
  • the two switching elements S1 and S2 and the two capacitors C1 and C2 are connected in parallel.
  • One end of the power transmission antenna 110 is connected to a point between the two switching elements S1 and S2, and the other end is connected to a point between the two capacitors C1 and C2.
  • the control circuit 120c and the pulse output circuit 120b supply a pulse signal to each switching element so that the switching elements S1 and S2 are turned on alternately. As a result, DC power is converted into AC power.
  • the duty ratio of the pulse signal that is, the ratio of the period to be turned on in one cycle
  • the output time ratio of the output voltage V that is, the non-zero value in one cycle
  • the percentage of the period taken can be adjusted.
  • the amplitude of the voltage of the AC power input to the power transmission antenna 110 can be adjusted.
  • Such duty control can be similarly applied when a full bridge type inverter circuit as shown in FIG. 10A is used.
  • FIG. 11 is a diagram schematically showing a configuration example of the power receiving circuit 220.
  • the power receiving circuit 220 is a full-wave rectifier circuit that includes a diode bridge and a smoothing capacitor.
  • the power receiving circuit 220 may have the configuration of another rectifier.
  • the power receiving circuit 220 converts the received AC energy into DC energy that can be used by the load 300 and outputs it.
  • a matching circuit for impedance matching may be arranged between the power transmission circuit 120 and the power transmission antenna 110, and between the power reception antenna 210 and the power reception circuit 220. Further, each of the power transmission circuit 120 and the power reception circuit 220 may include various converter circuits for voltage conversion. Further, each of the power transmission module 100 and the power reception module 200 may be provided with a communication circuit for communicating with each other.
  • electric power can be wirelessly transmitted between the power transmitting antenna 110 and the power receiving antenna 210. Even if the power receiving antenna 210 slides in one direction with respect to the power transmitting antenna 110 during power transmission, the facing state is maintained, so that the power supply to the load 300 can be continued.
  • each of the power transmitting antenna 110 and the power receiving antenna 210 are realized by coils. Not limited to such a configuration, each of the power transmitting antenna 110 and the power receiving antenna 210 may be composed of two or more electrodes.
  • FIG. 12 is a diagram showing an example of such a configuration.
  • each of the transmitting antenna 110 and the receiving antenna 210 includes two electrodes extending in parallel. The two electrodes in the power receiving antenna 210 are arranged to face the two electrodes in the power transmitting antenna 110 with a gap. AC voltage is applied from the power transmission circuit 120 to the two electrodes of the power transmission antenna 110.
  • the wireless power transmission device in the above embodiment is used by being attached to a device in which the movable part slides linearly with respect to the fixed part.
  • the wireless power transmission device is not limited to such a configuration, and the wireless power transmission device may be attached to a device in which the movable portion slides in a curve with respect to the fixed portion.
  • the technology of the present disclosure can be used in a device including a fixed portion and a movable portion, such as a slide rail or a slide door for a vehicle seat, for example.

Abstract

This wireless power transmission device is used by being attached to a movable device equipped with a fixed portion extending in a first direction and a movable portion capable of sliding in the first direction with respect to the fixed portion. The wireless power transmission device is provided with a power transmission module and a power receiving module. The power transmission module is provided with: a power transmission side frame disposed adjacent to the fixed portion; and a power transmission antenna supported on the power transmission side frame and having a shape extending in the first direction. The power receiving module is provided with: a power receiving side frame attached to the movable portion; and a power receiving antenna attached to the power receiving side frame and electromagnetically coupling with the power transmission antenna to receive power from the power transmission antenna. The power receiving antenna has a smaller dimension in the first direction than that of the power transmission antenna.

Description

無線電力伝送装置、車両用シート、送電モジュール、および受電モジュールWireless power transmission equipment, vehicle seats, power transmission modules, and power reception modules
 本開示は、無線電力伝送装置、車両用シート、送電モジュール、および受電モジュールに関する。 This disclosure relates to a wireless power transmission device, a vehicle seat, a power transmission module, and a power reception module.
 特許文献1は、車体の床部に設けられたレール上に移動可能に取り付けられたスライドシートの給電機構を開示している。この給電機構は、受電コイルを有する受電部と、受電コイルに非接触で給電する給電コイルを有する給電部とを備える。受電部は、スライドシートに設けられる。給電部は、車体の床部に設けられる。受電コイルは、スライドシート内の複数の箇所にそれぞれ設けられる。給電コイルから複数の受電コイルに非接触で電力が供給される。 Patent Document 1 discloses a power feeding mechanism for a slide sheet movably mounted on a rail provided on the floor of a vehicle body. This power feeding mechanism includes a power receiving unit having a power receiving coil and a power feeding unit having a power feeding coil that feeds the power receiving coil in a non-contact manner. The power receiving unit is provided on the slide sheet. The power feeding unit is provided on the floor of the vehicle body. The power receiving coils are provided at a plurality of locations in the slide sheet. Power is supplied from the power feeding coil to a plurality of power receiving coils in a non-contact manner.
特開2015-134513号公報Japanese Unexamined Patent Publication No. 2015-134513
 本開示は、固定部と可動部とを備える装置に適用可能な無線電力伝送装置の省スペース化を可能にする技術を提供する。 The present disclosure provides a technique that enables space saving of a wireless power transmission device applicable to a device having a fixed portion and a movable portion.
 本開示の一態様に係る無線電力伝送装置は、第1の方向に延びる固定部と、前記固定部に対して前記第1の方向にスライド可能な可動部とを備える可動装置に取り付けられて使用される。前記無線電力伝送装置は、送電モジュールと、受電モジュールと、を備える。前記送電モジュールは、前記固定部に隣接して配置される送電側フレームと、前記送電側フレームに支持され、前記第1の方向に延びた形状を有する送電アンテナと、を備える。前記受電モジュールは、前記可動部に取り付けられる受電側フレームと、前記受電側フレームに取り付けられ、前記送電アンテナと電磁的に結合して前記送電アンテナから電力を受け取る受電アンテナであって、前記送電アンテナよりも前記第1の方向において小さい寸法を有する受電アンテナと、を備える。 The wireless power transmission device according to one aspect of the present disclosure is used by being attached to a movable device including a fixed portion extending in a first direction and a movable portion slidable in the first direction with respect to the fixed portion. Will be done. The wireless power transmission device includes a power transmission module and a power reception module. The power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction. The power receiving module is a power receiving side frame attached to the movable portion and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna. A power receiving antenna having a smaller dimension in the first direction than the above.
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、または、記録媒体によって実現され得る。あるいは、装置、システム、方法、集積回路、コンピュータプログラム、および記録媒体の任意の組み合わせによって実現されてもよい。 Comprehensive or specific embodiments of the present disclosure may be realized by devices, systems, methods, integrated circuits, computer programs, or recording media. Alternatively, it may be realized by any combination of devices, systems, methods, integrated circuits, computer programs, and recording media.
 本開示の実施形態によれば、固定部と可動部とを備える装置に適用可能な無線電力伝送装置の省スペース化を実現できる。 According to the embodiment of the present disclosure, it is possible to realize space saving of a wireless power transmission device applicable to a device including a fixed portion and a movable portion.
本開示の例示的な実施形態による無線電力伝送装置を示す斜視図である。It is a perspective view which shows the wireless power transmission apparatus by an exemplary embodiment of this disclosure. 受電モジュールが送電モジュールから取り外された状態を示す斜視図である。It is a perspective view which shows the state which the power receiving module was removed from the power transmission module. 車両用スライドシートの例を模式的に示す図である。It is a figure which shows typically the example of the slide seat for a vehicle. 車両の左右方向および上下方向の両方に平行な平面で切断した場合のスライドシートの断面を示す図である。It is a figure which shows the cross section of the slide sheet when cut in the plane parallel to both the horizontal direction and the vertical direction of a vehicle. 車両の前後方向および上下方向の両方に平行な平面で切断した場合のスライドシートの断面を示す図である。It is a figure which shows the cross section of the slide sheet when it cuts in the plane parallel to both the front-rear direction and the up-down direction of a vehicle. 図4Aに示すスライドシートに無線電力伝送装置が取り付けられた状態の例を模式的に示す図である。It is a figure which shows typically the example of the state which the wireless power transmission apparatus is attached to the slide sheet shown in FIG. 4A. スライドシートの構造の一部をより詳細に示す断面図である。It is sectional drawing which shows a part of the structure of a slide sheet in more detail. スライドシートの構造の一部をより詳細に示す上面図である。It is a top view which shows a part of the structure of a slide sheet in more detail. 無線電力伝送装置の配置の他の例を示す図である。It is a figure which shows another example of arrangement of a wireless power transmission apparatus. 変形例における無線電力伝送装置の構成を示す図である。It is a figure which shows the structure of the wireless power transmission apparatus in the modification. 他の変形例における無線電力伝送装置の構成を示す図である。It is a figure which shows the structure of the wireless power transmission apparatus in another modification. さらに他の変形例における無線電力伝送装置の構成を示す図である。It is a figure which shows the structure of the wireless power transmission apparatus in still another modification. 他の変形例における無線電力伝送装置の構成を示す図である。It is a figure which shows the structure of the wireless power transmission apparatus in another modification. 無線電力伝送装置の回路構成の一例を示すブロック図である。It is a block diagram which shows an example of the circuit structure of the wireless power transmission apparatus. 送電アンテナおよび受電アンテナの等価回路の例を示す図である。It is a figure which shows the example of the equivalent circuit of a power transmission antenna and a power reception antenna. 送電アンテナおよび受電アンテナの等価回路の例を示す図である。It is a figure which shows the example of the equivalent circuit of a power transmission antenna and a power reception antenna. 送電回路の構成例を示す図である。It is a figure which shows the structural example of a power transmission circuit. 送電回路の他の構成例を示す図である。It is a figure which shows the other structural example of a power transmission circuit. 受電回路の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the power receiving circuit. 電界結合方式の無線電力伝送システムの回路構成の例を示す図である。It is a figure which shows the example of the circuit structure of the electric field coupling type wireless power transmission system.
 (本開示の基礎となった知見)
 本発明者らは、「背景技術」の欄において説明した先行技術には、以下の課題があることを見出した。
(Findings underlying this disclosure)
The present inventors have found that the prior art described in the “Background Art” column has the following problems.
 特許文献1に開示された装置では、送電コイルがスライドシートの下の床部に取り付けられ、受電コイルがシートの座面下部に取り付けられている。この構成では、送電コイルがスライドシートの下の床面を占有するため、装置が大型化する。また、特許文献1の技術の適用範囲は車両用スライドシートに限定され、他の用途への応用は想定されていない。 In the device disclosed in Patent Document 1, the power transmission coil is attached to the floor under the slide seat, and the power receiving coil is attached to the lower part of the seat surface of the seat. In this configuration, the power transmission coil occupies the floor surface under the slide sheet, which increases the size of the device. Further, the scope of application of the technique of Patent Document 1 is limited to vehicle slide seats, and application to other uses is not expected.
 以上の考察に基づき、本発明者らは、固定部および可動部を備える装置に広く適用でき、省スペース化を実現することができる無線電力伝送装置の構成に想到した。以下に、本開示の実施形態の概要を説明する。 Based on the above considerations, the present inventors have come up with a configuration of a wireless power transmission device that can be widely applied to a device having a fixed portion and a movable portion and can realize space saving. The outline of the embodiment of the present disclosure will be described below.
 本開示の例示的な実施形態による無線電力伝送装置は、第1の方向に延びる固定部と、前記固定部に対して前記第1の方向にスライド可能な可動部とを備える可動装置に取り付けられて使用される。前記無線電力伝送装置は、送電モジュールと、受電モジュールとを備える。前記送電モジュールは、前記固定部に隣接して配置される送電側フレームと、前記送電側フレームに支持され、前記第1の方向に延びた形状を有する送電アンテナとを備える。前記受電モジュールは、前記可動部に取り付けられる受電側フレームと、前記受電側フレームに取り付けられ、前記送電アンテナと電磁的に結合して前記送電アンテナから電力を受け取る受電アンテナとを備える。受電アンテナは、前記送電アンテナよりも前記第1の方向において小さい寸法を有する。 The wireless power transmission device according to the exemplary embodiment of the present disclosure is attached to a movable device including a fixed portion extending in a first direction and a movable portion slidable in the first direction with respect to the fixed portion. Is used. The wireless power transmission device includes a power transmission module and a power reception module. The power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction. The power receiving module includes a power receiving side frame attached to the movable portion, and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna. The power receiving antenna has a smaller dimension in the first direction than the power transmitting antenna.
 上記構成によれば、前記送電モジュールは、前記固定部に隣接して配置される送電側フレームと、前記送電側フレームに支持され、前記第1の方向に延びた形状を有する送電アンテナとを備える。前記受電モジュールは、前記可動部に取り付けられる受電側フレームと、前記受電側フレームに取り付けられ、前記送電アンテナと電磁的に結合して前記送電アンテナから電力を受け取る受電アンテナとを備える。このような構成により、後に詳しく説明するように、無線電力伝送装置の省スペース化を実現することができる。 According to the above configuration, the power transmission module includes a power transmission side frame arranged adjacent to the fixed portion, and a power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction. .. The power receiving module includes a power receiving side frame attached to the movable portion, and a power receiving antenna attached to the power receiving side frame and electromagnetically coupled with the power transmission antenna to receive power from the power transmission antenna. With such a configuration, it is possible to save space in the wireless power transmission device, as will be described in detail later.
 可動装置は、例えば車両用のスライドシートまたはその構成部品であるスライドレールであり得る。可動装置は、車両用のスライドシート以外にも、例えば、車両以外の場所で使用される可動部を有するシート、またはスライドドアなどであってもよい。可動装置の可動部は、電気的または機械的機構によってスライドするように構成されていてもよいし、手動でスライドできるように構成されていてもよい。 The movable device may be, for example, a slide seat for a vehicle or a slide rail which is a component thereof. The movable device may be, for example, a seat having a movable portion used in a place other than the vehicle, a sliding door, or the like, in addition to the sliding seat for the vehicle. The movable part of the movable device may be configured to slide by an electrical or mechanical mechanism, or may be configured to slide manually.
 本開示において「電磁的に結合する」とは、磁界結合または電界結合によって結合することを意味する。送電アンテナおよび受電アンテナの各々は、例えば、磁界結合によって送電または受電を行うコイルであり得る。送電アンテナおよび受電アンテナの各々は、電界結合によって送電または受電を行う電極または電極群であってもよい。本明細書においては、電力伝送に使用され得るコイルおよび電極を包含する概念として、「アンテナ」の用語が使用されている。 In the present disclosure, "electromagnetically coupled" means coupling by magnetic field coupling or electric field coupling. Each of the transmitting antenna and the receiving antenna can be, for example, a coil that transmits or receives power by magnetic field coupling. Each of the transmitting antenna and the receiving antenna may be an electrode or a group of electrodes that transmits or receives power by electric field coupling. As used herein, the term "antenna" is used as a concept that includes coils and electrodes that can be used for power transmission.
 前記送電モジュールは、前記送電アンテナに交流電力を供給する送電回路をさらに備えていてもよい。前記受電モジュールは、前記受電アンテナが受け取った前記電力を他の形態の電力に変換して負荷に供給する受電回路をさらに備えていてもよい。前記送電回路は、例えば、外部の電源から供給された直流電力を交流電力に変換するインバータ回路を含み得る。前記受電回路は、例えば、前記受電アンテナが受け取った交流電力を直流電力に変換して出力する整流回路を含み得る。送電回路および受電回路は、それぞれ、送電アンテナおよび受電アンテナに接続される。 The power transmission module may further include a power transmission circuit that supplies AC power to the power transmission antenna. The power receiving module may further include a power receiving circuit that converts the power received by the power receiving antenna into other forms of power and supplies it to the load. The power transmission circuit may include, for example, an inverter circuit that converts DC power supplied from an external power source into AC power. The power receiving circuit may include, for example, a rectifier circuit that converts AC power received by the power receiving antenna into DC power and outputs it. The power transmission circuit and the power reception circuit are connected to the power transmission antenna and the power reception antenna, respectively.
 前記送電回路は、前記送電側フレームの外部に配置されていてもよい。そのような構成によれば、送電側フレームをより小さくすることができる。同様に、前記受電回路は、前記受電側フレームの外部に配置されていてもよい。そのような構成によれば、受電側フレームをより小さくすることができる。 The power transmission circuit may be arranged outside the power transmission side frame. According to such a configuration, the transmission side frame can be made smaller. Similarly, the power receiving circuit may be arranged outside the power receiving side frame. According to such a configuration, the power receiving side frame can be made smaller.
 前記送電回路は、前記送電側フレームの内部に配置されていてもよい。そのような構成によれば、送電アンテナと送電回路とを接続する配線を短くすることができるため、伝送される電力の損失を小さくすることができる。同様に、前記受電回路は、前記受電側フレームの内部に配置されていてもよい。そのような構成によれば、受電アンテナと受電回路とを接続する配線を受電側フレームの内部に収容することができるため、伝送される電力の損失を小さくすることができる。 The power transmission circuit may be arranged inside the power transmission side frame. According to such a configuration, the wiring connecting the power transmission antenna and the power transmission circuit can be shortened, so that the loss of the transmitted power can be reduced. Similarly, the power receiving circuit may be arranged inside the power receiving side frame. According to such a configuration, the wiring connecting the power receiving antenna and the power receiving circuit can be accommodated inside the power receiving side frame, so that the loss of the transmitted power can be reduced.
 前記可動装置は、1つ以上のスライドレールを含んでいてもよい。前記固定部は、前記スライドレールの固定レールであってもよい。前記可動部は、前記スライドレールの可動レールであってもよい。固定レールに送電モジュールを取り付け、可動レールに受電モジュールを取り付けた構成によれば、送電アンテナと受電アンテナとの間隔を一定に保つことが容易になり、電力伝送効率の低下を抑制することができる。 The movable device may include one or more slide rails. The fixed portion may be a fixed rail of the slide rail. The movable portion may be a movable rail of the slide rail. According to the configuration in which the power transmission module is attached to the fixed rail and the power reception module is attached to the movable rail, it becomes easy to keep the distance between the power transmission antenna and the power reception antenna constant, and it is possible to suppress a decrease in power transmission efficiency. ..
 前記スライドレールは、例えば車両の座席用のスライドレールであり得る。前記スライドレールは、車両のスライドドア用のレールであってもよいし、車両以外の用途で使用されるスライドレールであってもよい。 The slide rail can be, for example, a slide rail for a vehicle seat. The slide rail may be a rail for a sliding door of a vehicle, or may be a slide rail used for purposes other than the vehicle.
 前記車両の座席は、左側脚部と右側脚部とを備え得る。前記スライドレールは、前記左側脚部を支持する左側スライドレールと、前記右側脚部を支持する右側スライドレールとを含み得る。前記送電側フレームは、前記左側スライドレールおよび前記右側スライドレールの一方における前記固定レールの側部に取り付けられ得る。前記受電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記可動レールの側部に取り付けられ得る。例えば、前記送電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記固定レールの内側の側部に取り付けられ得る。前記受電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記可動レールの内側の側部に取り付けられ得る。そのような構成によれば、送電側フレームおよび受電側フレームは、座席の下に配置されるため、左側スライドレールおよび右側スライドレールの外側のスペースを占有することがない。 The seat of the vehicle may include a left leg and a right leg. The slide rail may include a left slide rail that supports the left leg and a right slide rail that supports the right leg. The power transmission side frame may be attached to a side portion of the fixed rail on one of the left side slide rail and the right side slide rail. The power receiving side frame may be attached to a side portion of the movable rail on one of the left side slide rail and the right side slide rail. For example, the power transmission side frame may be attached to the inner side of the fixed rail on one of the left side slide rail and the right side slide rail. The power receiving side frame may be attached to the inner side portion of the movable rail on the left side slide rail and the right side slide rail. According to such a configuration, the power transmitting side frame and the power receiving side frame are arranged under the seat, so that they do not occupy the space outside the left side slide rail and the right side slide rail.
 上記のように、前記可動装置は、例えば車両に設けられ得る。前記送電アンテナおよび前記受電アンテナの各々は、前記車両の床面に垂直に配置され得る。そのような構成によれば、送電モジュールおよび受電モジュールの各々の幅を小さくすることができる。 As described above, the movable device can be provided in a vehicle, for example. Each of the power transmitting antenna and the power receiving antenna may be arranged perpendicular to the floor surface of the vehicle. According to such a configuration, the width of each of the power transmission module and the power reception module can be reduced.
 前記送電アンテナおよび前記受電アンテナの各々は、車両の床面に平行に配置されていてもよい。そのような構成によれば、送電モジュールおよび受電モジュールの各々の高さを小さくすることができる。 Each of the power transmitting antenna and the power receiving antenna may be arranged parallel to the floor surface of the vehicle. According to such a configuration, the height of each of the power transmission module and the power reception module can be reduced.
 前記送電側フレームは、前記第1の方向に延びるスリットを有する筐体を備えていてもよい。前記受電側フレームは、前記筐体の内部に配置される第1の部分と、前記可動部に固定される第2の部分と、前記スリットを通って前記第1の部分と前記第2の部分とを接続する第3の部分とを含んでいてもよい。そのような構成によれば、送電アンテナと受電アンテナとが、送電側フレームの筐体の内部に収容される。このため、送電アンテナと受電アンテナとの間に異物が侵入することを抑制することができる。 The power transmission side frame may include a housing having a slit extending in the first direction. The power receiving side frame includes a first portion arranged inside the housing, a second portion fixed to the movable portion, the first portion and the second portion through the slit. It may include a third portion connecting the and. According to such a configuration, the power transmitting antenna and the power receiving antenna are housed inside the housing of the power transmitting side frame. Therefore, it is possible to prevent foreign matter from entering between the power transmission antenna and the power reception antenna.
 前記スリットは、前記筐体の側部に開口していてもよい。そのような構成によれば、異物がスリットを通過して筐体の内部に侵入する可能性をさらに低減することができる。 The slit may be open to the side of the housing. According to such a configuration, the possibility that foreign matter passes through the slit and enters the inside of the housing can be further reduced.
 前記可動装置が車両に設けられる場合、前記可動部がスライドする第1の方向は、前記車両の床面に平行であってもよいし、床面に対して傾斜していてもよい。本明細書において「平行」とは、厳密に平行である状態に限定されず、実質的に平行と認識できる範囲内で傾いている状態も「平行」に含まれる。 When the movable device is provided in the vehicle, the first direction in which the movable portion slides may be parallel to the floor surface of the vehicle or may be inclined with respect to the floor surface. As used herein, the term "parallel" is not limited to a state of being strictly parallel, but also includes a state of being tilted within a range that can be recognized as substantially parallel.
 本開示の車両用スライドシートは、前述のいずれかの無線電力伝送装置と、前記可動装置と、前記可動装置の前記可動部に支持される座席とを備え得る。 The vehicle slide seat of the present disclosure may include any of the above-mentioned wireless power transmission devices, the movable device, and a seat supported by the movable portion of the movable device.
 本開示は、前述のいずれかの無線電力伝送装置において用いられる送電モジュール、および前述のいずれかの無線電力伝送装置において用いられる受電モジュールも含む。 The present disclosure also includes a power transmission module used in any of the above-mentioned wireless power transmission devices and a power receiving module used in any of the above-mentioned wireless power transmission devices.
 本明細書において「負荷」とは、電力によって動作するあらゆる機器を意味する。「負荷」には、例えばリクライニングシート用の電気モータ、着座センサ、ヒータ、エアコンディショナ、スピーカ、またはカメラなどの電子機器が含まれ得る。負荷は、受電回路から出力される電力によって動作する。 In this specification, "load" means any device operated by electric power. The "load" may include electronic devices such as electric motors for reclining seats, seating sensors, heaters, air conditioners, speakers, or cameras. The load operates by the power output from the power receiving circuit.
 (実施形態)
 以下、本開示のより具体的な実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する構成要素については、同じ参照符号を付している。
(Embodiment)
Hereinafter, more specific embodiments of the present disclosure will be described. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, which are intended to limit the subject matter described in the claims. is not. In the following description, the same or similar components are designated by the same reference numerals.
 図1は、本開示の例示的な実施形態による無線電力伝送装置を示す斜視図である。図1には、互いに直交するX、Y、Z方向を示すXYZ座標が示されている。以下の説明では、図示されているXYZ座標を用いる。 FIG. 1 is a perspective view showing a wireless power transmission device according to an exemplary embodiment of the present disclosure. FIG. 1 shows XYZ coordinates indicating the X, Y, and Z directions orthogonal to each other. In the following description, the illustrated XYZ coordinates are used.
 無線電力伝送装置は、固定部と可動部とを備える装置(本明細書において「可動装置」と称する。)に取り付けられて使用される。無線電力伝送装置は、固定部の近傍に配置される送電モジュール100と、可動部に取り付けられる受電モジュール200とを備える。この例では、可動部は、固定部に対してX方向にスライドできるように構成されている。可動部がX方向に移動すると、受電モジュール200もX方向に移動する。 The wireless power transmission device is used by being attached to a device having a fixed portion and a movable portion (referred to as a "movable device" in the present specification). The wireless power transmission device includes a power transmission module 100 arranged in the vicinity of the fixed portion and a power receiving module 200 attached to the movable portion. In this example, the movable portion is configured to be slidable in the X direction with respect to the fixed portion. When the movable portion moves in the X direction, the power receiving module 200 also moves in the X direction.
 図2は、受電モジュール200を送電モジュール100から取り外した状態を示す斜視図である。図2に示すように、送電モジュール100は、送電アンテナ110と、送電アンテナ110を支持する送電側フレーム130とを備える。送電側フレーム130は、可動装置の固定部に隣接して配置される。送電側フレーム130は、固定部に接触していてもよいし、ギャップを隔てて固定部に隣接していてもよい。送電側フレーム130は、固定部に対して移動しないように固定され得る。送電側フレーム130は、X方向に延びるスリット134を有する筐体を含む。筐体の内部に送電アンテナ110が配置される。送電アンテナ110は、X方向に延びた形状を有する。本実施形態では、送電アンテナ110は、X方向およびZ方向を含む平面にほぼ平行なコイル面を有する送電コイルである。送電アンテナ110は、不図示の送電回路に接続される。送電回路は、送電アンテナ110に交流電力を供給する。送電コイルに代えて、平行に延びる2つ以上の送電電極を使用してもよい。その場合、隣接する2つの送電電極には、互いに逆極性の電圧が送電回路から印加される。 FIG. 2 is a perspective view showing a state in which the power receiving module 200 is removed from the power transmission module 100. As shown in FIG. 2, the power transmission module 100 includes a power transmission antenna 110 and a power transmission side frame 130 that supports the power transmission antenna 110. The power transmission side frame 130 is arranged adjacent to the fixed portion of the movable device. The power transmission side frame 130 may be in contact with the fixed portion or may be adjacent to the fixed portion with a gap. The power transmission side frame 130 may be fixed so as not to move with respect to the fixed portion. The power transmission side frame 130 includes a housing having a slit 134 extending in the X direction. The power transmission antenna 110 is arranged inside the housing. The power transmission antenna 110 has a shape extending in the X direction. In the present embodiment, the power transmission antenna 110 is a power transmission coil having a coil surface substantially parallel to a plane including the X direction and the Z direction. The power transmission antenna 110 is connected to a power transmission circuit (not shown). The power transmission circuit supplies AC power to the power transmission antenna 110. Instead of the power transmission coil, two or more power transmission electrodes extending in parallel may be used. In that case, voltages having opposite polarities are applied to the two adjacent power transmission electrodes from the power transmission circuit.
 受電モジュール200は、受電側フレーム230と、受電側フレーム230に取り付けられた受電アンテナ210とを備える。受電側フレーム230は、可動装置の可動部に取り付けられる。本実施形態における受電側フレーム230は、送電側フレーム130の筐体の内部に配置される第1の部分231と、可動装置の可動部に固定される第2の部分232と、スリット134を通って第1の部分231と第2の部分232とを接続する第3の部分233とを含む。この例では、受電モジュール200が送電モジュール100に取り付けられた状態において、受電側フレーム230の第1の部分231および第3の部分233は、XZ面にほぼ平行であり、第2の部分232はXY面にほぼ平行である。受電アンテナ210は、受電側フレーム230の第1の部分231の内部に配置されている。受電アンテナ210は、送電アンテナ110にギャップを介して対向した状態で、送電アンテナ110と電磁的に結合して電力を受け取る。本実施形態における受電アンテナ210は、送電アンテナ110における送電コイルと磁気的に結合して送電コイルから電力を受け取る受電コイルである。受電コイルに代えて、平行に延びる2つ以上の受電電極を使用してもよい。受電アンテナ210は、不図示の受電回路に接続される。受電回路は、受電アンテナが受け取った交流電力を、負荷が利用する他の形態の直流電力または交流電力に変換して出力する。 The power receiving module 200 includes a power receiving side frame 230 and a power receiving antenna 210 attached to the power receiving side frame 230. The power receiving side frame 230 is attached to a movable portion of the movable device. The power receiving side frame 230 in the present embodiment passes through a first portion 231 arranged inside the housing of the power transmission side frame 130, a second portion 232 fixed to the movable portion of the movable device, and a slit 134. Includes a third portion 233 that connects the first portion 231 and the second portion 232. In this example, when the power receiving module 200 is attached to the power transmission module 100, the first portion 231 and the third portion 233 of the power receiving side frame 230 are substantially parallel to the XZ plane, and the second portion 232 is It is almost parallel to the XY plane. The power receiving antenna 210 is arranged inside the first portion 231 of the power receiving side frame 230. The power receiving antenna 210 receives power by electromagnetically coupling with the power transmitting antenna 110 in a state of facing the power transmitting antenna 110 through a gap. The power receiving antenna 210 in the present embodiment is a power receiving coil that magnetically couples with the power transmission coil in the power transmission antenna 110 to receive power from the power transmission coil. Instead of the power receiving coil, two or more power receiving electrodes extending in parallel may be used. The power receiving antenna 210 is connected to a power receiving circuit (not shown). The power receiving circuit converts the AC power received by the power receiving antenna into other forms of DC power or AC power used by the load and outputs it.
 受電アンテナ210のX方向における寸法は、送電アンテナ110のX方向における寸法よりも小さい。受電モジュール200は、送電モジュール100に対して、スリット134の範囲内でX方向にスライドすることができる。受電モジュール200がスライドした場合でも、送電アンテナ110と受電アンテナ210とが対向した状態が維持される。このような構造により、可動部が固定部に対してスライドした場合であっても、電力伝送が維持される。 The dimension of the power receiving antenna 210 in the X direction is smaller than the dimension of the power transmitting antenna 110 in the X direction. The power receiving module 200 can slide in the X direction within the range of the slit 134 with respect to the power transmission module 100. Even when the power receiving module 200 slides, the state in which the power transmitting antenna 110 and the power receiving antenna 210 face each other is maintained. With such a structure, power transmission is maintained even when the movable portion slides with respect to the fixed portion.
 このように、本実施形態の無線電力伝送装置では、送電モジュール100は、固定部に固定され、受電モジュール200は、可動部に固定される。このため、送電アンテナ110と受電アンテナ210との間隔が設計された値からずれることを抑制することができる。特許文献1に開示された、車両の床に送電コイルが配置された構成では、送電コイルの位置がずれやすい。これに対し、本実施形態では、送電アンテナ110と受電アンテナ210との間隔がほぼ一定に保たれるため、より安定した電力伝送が可能である。また、可動装置に隣接した比較的小さいスペースに無線電力伝送装置を配置することができるため、省スペース化を実現することができる。 As described above, in the wireless power transmission device of the present embodiment, the power transmission module 100 is fixed to the fixed portion, and the power receiving module 200 is fixed to the movable portion. Therefore, it is possible to prevent the distance between the power transmitting antenna 110 and the power receiving antenna 210 from deviating from the designed value. In the configuration in which the power transmission coil is arranged on the floor of the vehicle disclosed in Patent Document 1, the position of the power transmission coil is likely to shift. On the other hand, in the present embodiment, since the distance between the power transmitting antenna 110 and the power receiving antenna 210 is kept substantially constant, more stable power transmission is possible. Further, since the wireless power transmission device can be arranged in a relatively small space adjacent to the movable device, space saving can be realized.
 上記の無線電力伝送装置は、例えば車両用スライドシートに取り付けて使用され得る。以下、そのような実施形態の例を説明する。 The above wireless power transmission device can be used by being attached to, for example, a vehicle slide seat. An example of such an embodiment will be described below.
 図3は、車両用スライドシートの例を模式的に示す図である。この車両用スライドシートは、座席10と、スライドレール20と、スライドレール20に取り付けられた無線電力伝送装置50とを備える。無線電力伝送装置50は、送電モジュール100と、受電モジュール200とを備える。送電モジュール100は、送電アンテナ110を備える。受電モジュール200は、受電アンテナ210を備える。スライドレール20は、車体に取り付けられた固定レールと、固定レールに対してスライドすることが可能な可動レールとを備える。座席10は、可動レールに取り付けられ、前後にスライドさせることができる。固定レールに送電モジュール100が取り付けられ、可動レールに受電モジュール200が取り付けられる。このような構造により、送電アンテナ110から受電アンテナ210に無線で電力が伝送される。伝送された電力は、例えばリクライニングのためのモータ、着座センサ、またはヒータなどの負荷に供給される。 FIG. 3 is a diagram schematically showing an example of a vehicle slide sheet. The vehicle slide seat includes a seat 10, a slide rail 20, and a wireless power transmission device 50 attached to the slide rail 20. The wireless power transmission device 50 includes a power transmission module 100 and a power reception module 200. The power transmission module 100 includes a power transmission antenna 110. The power receiving module 200 includes a power receiving antenna 210. The slide rail 20 includes a fixed rail attached to the vehicle body and a movable rail that can slide with respect to the fixed rail. The seat 10 is attached to a movable rail and can be slid back and forth. The power transmission module 100 is attached to the fixed rail, and the power receiving module 200 is attached to the movable rail. With such a structure, electric power is wirelessly transmitted from the power transmitting antenna 110 to the power receiving antenna 210. The transmitted power is supplied to a load such as a motor for reclining, a seating sensor, or a heater.
 図4Aおよび図4Bは、スライドシートの断面構造の例を示す図である。図4Aは、車両の左右方向および上下方向の両方に平行な平面で切断した場合のスライドシートの断面を示している。図4Bは、車両の前後方向および上下方向の両方に平行な平面で切断した場合のスライドシートの断面を示している。この例における座席10は、前後左右に計4本の脚部12を備える。脚部12の数は4本に限らず、例えば左右に2本であってもよい。スライドレールは、左側の脚部12を支持する左側スライドレールと、右側の脚部12を支持する右側スライドレールとを含む。左側スライドレールおよび右側スライドレールの各々は、固定レール22と、可動レール24とを備える。固定レール22および可動レール24は、車両の床面に平行で進行方向に一致するX方向に延びた構造を有する。可動レール24は、固定レール22に対してX方向にスライドすることができる。図4Aは、左右の固定レール22の外側および内側にフロアマット30が敷かれており、無線電力伝送装置が設けられていない状態を示している。左側の2つの脚部12は、左側の可動レール24に接続されている。右側の2つの脚部12は、右側の可動レール24に接続されている。図4Bの例では、座席10の下部に、着座センサ、リクライニング用のモータ、またはヒータなどの負荷300が配置されている。なお、負荷300の位置は任意であり、図示される位置に限定されない。 4A and 4B are diagrams showing an example of the cross-sectional structure of the slide sheet. FIG. 4A shows a cross section of the slide sheet when cut in a plane parallel to both the left-right direction and the up-down direction of the vehicle. FIG. 4B shows a cross section of the slide sheet when cut in a plane parallel to both the front-rear direction and the up-down direction of the vehicle. The seat 10 in this example includes a total of four legs 12 on the front, rear, left and right sides. The number of legs 12 is not limited to four, and may be, for example, two on the left and right. The slide rail includes a left slide rail that supports the left leg 12 and a right slide rail that supports the right leg 12. Each of the left slide rail and the right slide rail includes a fixed rail 22 and a movable rail 24. The fixed rail 22 and the movable rail 24 have a structure that is parallel to the floor surface of the vehicle and extends in the X direction that coincides with the traveling direction. The movable rail 24 can slide in the X direction with respect to the fixed rail 22. FIG. 4A shows a state in which floor mats 30 are laid on the outside and inside of the left and right fixed rails 22 and no wireless power transmission device is provided. The two legs 12 on the left side are connected to the movable rail 24 on the left side. The two legs 12 on the right side are connected to the movable rail 24 on the right side. In the example of FIG. 4B, a load 300 such as a seating sensor, a reclining motor, or a heater is arranged below the seat 10. The position of the load 300 is arbitrary and is not limited to the position shown in the drawing.
 図5Aは、図4Aに示すスライドシートに無線電力伝送装置50が取り付けられた状態の例を模式的に示す図である。図5Bは、このスライドシートの構造の一部をより詳細に示す断面図である。図5Cは、このスライドシートの構造の一部をより詳細に示す上面図である。この例では、無線電力伝送装置50は、左右のスライドレールの内側すなわち座席10の下に配置されている。このような配置によれば、座席10の横のスペースが占有されることを避けることができる。 FIG. 5A is a diagram schematically showing an example of a state in which the wireless power transmission device 50 is attached to the slide sheet shown in FIG. 4A. FIG. 5B is a cross-sectional view showing a part of the structure of the slide sheet in more detail. FIG. 5C is a top view showing a part of the structure of the slide sheet in more detail. In this example, the wireless power transmission device 50 is arranged inside the left and right slide rails, that is, under the seat 10. With such an arrangement, it is possible to avoid occupying the space beside the seat 10.
 図5Bに示すように、送電側フレーム130は、左側スライドレールにおける固定レール22の内側の側部に取り付けられている。受電側フレーム230は、左側スライドレールにおける可動レール24の内側の側部に取り付けられている。なお、送電側フレーム130は、左側スライドレールにおける固定レール22の外側の側部に取り付けられていてもよい。同様に、受電側フレーム230は、左側スライドレールにおける可動レール24の外側の側部に取り付けられていてもよい。送電側フレーム130および受電側フレーム230は、右側スライドレールの側部に取り付けられていてもよい。例えば、図5Dに示すように、これらのフレームが右側スライドレールの外側の側部に設けられていてもよい。 As shown in FIG. 5B, the power transmission side frame 130 is attached to the inner side portion of the fixed rail 22 on the left slide rail. The power receiving side frame 230 is attached to the inner side portion of the movable rail 24 on the left slide rail. The power transmission side frame 130 may be attached to the outer side portion of the fixed rail 22 on the left slide rail. Similarly, the power receiving side frame 230 may be attached to the outer side of the movable rail 24 on the left slide rail. The power transmitting side frame 130 and the power receiving side frame 230 may be attached to the side portion of the right side slide rail. For example, as shown in FIG. 5D, these frames may be provided on the outer side of the right slide rail.
 図5Cに示すように、固定レール22、可動レール24、送電側フレーム130、および受電側フレーム230は、車両の進行方向であるX方向に延びた構造を有する。送電側フレーム130は、固定部材136を介して固定レール22に取り付けられている。固定部材136は、例えばボルト、ネジ、または接着剤などの、任意の固定手段であり得る。受電側フレーム230も、例えばボルト、ネジ、または接着剤などの固定手段によって可動レール24に固定されている。可動レール24および受電側フレーム230は、固定レール22および送電側フレーム130に対してX方向に沿ってスライドすることができる。これにより、座席10を車両の前後方向にスライドさせることができる。このスライドは手動で行われてもよいし、電動で行われてもよい。 As shown in FIG. 5C, the fixed rail 22, the movable rail 24, the power transmission side frame 130, and the power reception side frame 230 have a structure extending in the X direction, which is the traveling direction of the vehicle. The power transmission side frame 130 is attached to the fixed rail 22 via the fixing member 136. The fixing member 136 can be any fixing means, such as bolts, screws, or adhesives. The power receiving side frame 230 is also fixed to the movable rail 24 by fixing means such as bolts, screws, or adhesives. The movable rail 24 and the power receiving side frame 230 can slide along the X direction with respect to the fixed rail 22 and the power transmitting side frame 130. As a result, the seat 10 can be slid in the front-rear direction of the vehicle. This slide may be done manually or electrically.
 図5Bに示すように、送電側フレーム130の筐体は、スリット134を有する。スリット134は、X方向に延びている。送電側フレーム130の筐体の内部に送電アンテナ110および送電回路120が取り付けられている。送電アンテナ110と送電回路120とは、不図示の配線を介して電気的に接続されている。受電側フレーム230は、送電側フレーム130の筐体の内部に配置される第1の部分231と、可動レール24に固定される第2の部分232と、スリット134を通過して第1の部分231と第2の部分232とを接続する第3の部分233とを含む。受電側フレーム230の第1の部分231に、受電アンテナ210および受電回路220が取り付けられている。送電アンテナ110と受電アンテナ210は、互いに対向するように配置されている。受電側フレーム230がスライドした場合でも、送電アンテナ110と受電アンテナ210とが一定の間隔を保って対向する状態が維持される。 As shown in FIG. 5B, the housing of the power transmission side frame 130 has a slit 134. The slit 134 extends in the X direction. A power transmission antenna 110 and a power transmission circuit 120 are mounted inside the housing of the power transmission side frame 130. The power transmission antenna 110 and the power transmission circuit 120 are electrically connected via wiring (not shown). The power receiving side frame 230 has a first portion 231 arranged inside the housing of the power transmitting side frame 130, a second portion 232 fixed to the movable rail 24, and a first portion passing through the slit 134. Includes a third portion 233 that connects the 231 and the second portion 232. A power receiving antenna 210 and a power receiving circuit 220 are attached to the first portion 231 of the power receiving side frame 230. The power transmitting antenna 110 and the power receiving antenna 210 are arranged so as to face each other. Even when the power receiving side frame 230 slides, the power transmitting antenna 110 and the power receiving antenna 210 are maintained in a state of facing each other at a constant interval.
 この例では、受電側フレーム230は可動レール24に固定され、送電側フレーム130は固定レール22に固定されている。このような構造により、送電アンテナ110と受電アンテナ210との距離が設計された値からずれることを抑制することができる。したがって、アンテナ間隔が設計値からずれることによる電力伝送効率の低下を抑制することができる。 In this example, the power receiving side frame 230 is fixed to the movable rail 24, and the power transmitting side frame 130 is fixed to the fixed rail 22. With such a structure, it is possible to prevent the distance between the power transmitting antenna 110 and the power receiving antenna 210 from deviating from the designed value. Therefore, it is possible to suppress a decrease in power transmission efficiency due to the deviation of the antenna spacing from the design value.
 無線電力伝送装置50は、左右のスライドレールの間のスペースの全てではなく、当該スペースの一部に配置されている。特許文献1の構成と比較して、スライドレール間のスペースが占有される割合を低くすることができる。 The wireless power transmission device 50 is arranged not in the entire space between the left and right slide rails, but in a part of the space. Compared with the configuration of Patent Document 1, the ratio of occupying the space between the slide rails can be reduced.
 本実施形態では、スリット134は、筐体の側部に開口しており、送電アンテナ110および受電アンテナ210は、筐体で囲まれている。このような構成によれば、ゴミなどの異物が筐体内に侵入することを抑制することができる。また、送電アンテナ110および受電アンテナ210の各々は、車両の床面に垂直に配置されている。このような配置により、仮に異物が筐体内に侵入したとしても、当該異物は筐体の底部に落下するため、当該異物が送電アンテナ110と受電アンテナ210との間に留まることを抑制できる。また、各アンテナが床面に垂直に配置されることにより、車両の横方向における無線電力伝送装置のサイズを小さくすることができる。 In the present embodiment, the slit 134 is open to the side of the housing, and the power transmitting antenna 110 and the power receiving antenna 210 are surrounded by the housing. According to such a configuration, it is possible to prevent foreign matter such as dust from entering the housing. Further, each of the power transmitting antenna 110 and the power receiving antenna 210 is arranged vertically on the floor surface of the vehicle. With such an arrangement, even if a foreign matter enters the housing, the foreign matter falls to the bottom of the housing, so that the foreign matter can be prevented from staying between the power transmission antenna 110 and the power receiving antenna 210. Further, by arranging each antenna vertically on the floor surface, the size of the wireless power transmission device in the lateral direction of the vehicle can be reduced.
 本実施形態では、送電側フレーム130の筐体の内部に送電回路120が配置され、受電側フレーム230に受電回路220が取り付けられている。送電回路120が送電アンテナ110に近接し、受電回路220が受電アンテナ210に近接するため、長い配線が不要であり、効率よく電力を伝送することができる。 In the present embodiment, the power transmission circuit 120 is arranged inside the housing of the power transmission side frame 130, and the power reception circuit 220 is attached to the power reception side frame 230. Since the power transmission circuit 120 is close to the power transmission antenna 110 and the power reception circuit 220 is close to the power reception antenna 210, long wiring is not required and electric power can be efficiently transmitted.
 図5Eは、図5Bの構成の変形例を示す図である。この例では、送電回路120および受電回路220が送電側フレーム130の筐体の外部に配置される。送電回路120および受電回路220は、送電側フレーム130および受電側フレーム230からそれぞれ離れた場所に配置されていてもよい。図5Eの構成では、筐体をさらに薄くすることができる。送電回路120は送電アンテナ110に配線を介して接続され、受電回路220は受電アンテナ210に配線を介して接続される。送電回路120および受電回路220は、筐体の周囲の空いている任意のスペースに配置され得る。 FIG. 5E is a diagram showing a modified example of the configuration of FIG. 5B. In this example, the power transmission circuit 120 and the power reception circuit 220 are arranged outside the housing of the power transmission side frame 130. The power transmission circuit 120 and the power reception circuit 220 may be arranged at locations apart from the power transmission side frame 130 and the power reception side frame 230, respectively. With the configuration of FIG. 5E, the housing can be made even thinner. The power transmission circuit 120 is connected to the power transmission antenna 110 via wiring, and the power reception circuit 220 is connected to the power reception antenna 210 via wiring. The power transmission circuit 120 and the power reception circuit 220 may be arranged in any free space around the housing.
 図6Aは、本実施形態の他の変形例を示す図である。この例では、送電アンテナ110および受電アンテナ210が車両の床面に平行に配置されている。このような構成によれば、筐体の高さ方向の寸法を小さくすることができる。 FIG. 6A is a diagram showing another modification of the present embodiment. In this example, the power transmitting antenna 110 and the power receiving antenna 210 are arranged parallel to the floor surface of the vehicle. According to such a configuration, the dimension in the height direction of the housing can be reduced.
 図6Bは、本実施形態のさらに他の変形例を示す図である。この例では、送電アンテナ110および受電アンテナ210が車両の床面に平行に配置され、且つ送電回路120および受電回路220が筐体の外部に配置されている。このような構成によれば、筐体の高さ方向の寸法をさらに小さくすることができる。 FIG. 6B is a diagram showing still another modification of the present embodiment. In this example, the power transmission antenna 110 and the power reception antenna 210 are arranged parallel to the floor surface of the vehicle, and the power transmission circuit 120 and the power reception circuit 220 are arranged outside the housing. According to such a configuration, the height dimension of the housing can be further reduced.
 図7は、本実施形態のさらに他の変形例を示す図である。この例では、車体フレーム60に窪みがあり、その窪みに送電側フレーム130が配置されている。それ以外の点は図5Eの構成と同様である。このような構成により、送電側フレーム130をより低い位置に配置することができ、車内空間をより広くすることができる。この例では図5Eと同様の構成が採用されているが、図5B、図6A、または図6Bと同様の構成を採用してもよい。 FIG. 7 is a diagram showing still another modification of the present embodiment. In this example, the vehicle body frame 60 has a recess, and the power transmission side frame 130 is arranged in the recess. Other than that, it is the same as the configuration of FIG. 5E. With such a configuration, the power transmission side frame 130 can be arranged at a lower position, and the space inside the vehicle can be made wider. In this example, the same configuration as in FIG. 5E is adopted, but the same configuration as in FIG. 5B, FIG. 6A, or FIG. 6B may be adopted.
 以上のように、車両用スライドシートへの電力供給を無線で行うことにより、フレキシビリティ性を損なわないシートアレンジが可能である。有線ケーブルで電力を供給する場合、ケーブルの保護のためにケーブルベア(登録商標)などが必要であり、そのためのスペースが必要である。また、シートを動かすときにケーブルが屈曲するため、ケーブルが断線しないように、丈夫なケーブルを使う必要がある。本実施形態のように無線電力伝送システムを車載シートに適用することで、スペースを削減し、ケーブルに関する上記の課題を解決することができる。 As described above, by wirelessly supplying electric power to the vehicle slide seat, it is possible to arrange the seat without impairing the flexibility. When power is supplied by a wired cable, a cable bear (registered trademark) or the like is required to protect the cable, and space for that is required. Also, since the cable bends when moving the seat, it is necessary to use a strong cable so that the cable does not break. By applying the wireless power transmission system to the in-vehicle seat as in the present embodiment, the space can be reduced and the above-mentioned problems related to the cable can be solved.
 次に、本実施形態の無線電力伝送装置の回路構成の例を説明する。 Next, an example of the circuit configuration of the wireless power transmission device of this embodiment will be described.
 図8は、無線電力伝送装置の回路構成の一例を示すブロック図である。図8には、無線電力伝送装置の外部の構成要素である電源400および負荷300も示されている。無線電力伝送装置は、送電モジュール100と、受電モジュール200とを備える。送電モジュール100は、送電回路120と、送電アンテナ110とを備える。受電モジュール200は、受電アンテナ210と、受電回路220とを備える。 FIG. 8 is a block diagram showing an example of the circuit configuration of the wireless power transmission device. FIG. 8 also shows the power supply 400 and the load 300, which are external components of the wireless power transmission device. The wireless power transmission device includes a power transmission module 100 and a power reception module 200. The power transmission module 100 includes a power transmission circuit 120 and a power transmission antenna 110. The power receiving module 200 includes a power receiving antenna 210 and a power receiving circuit 220.
 送電回路120は、インバータ回路120aと、パルス出力回路120bと、送電制御回路120cとを含む。パルス出力回路120bは、例えばゲートドライバ回路であり、送電制御回路120cからの指示に応答してインバータ回路120aの複数のスイッチング素子にパルス信号を供給する。送電制御回路120cは、例えばマイクロコントローラユニット(MCU)などの、メモリとプロセッサとを備える集積回路である。メモリに格納されたコンピュータプログラムをプロセッサが実行することにより、パルス出力回路120bの制御を行う。 The power transmission circuit 120 includes an inverter circuit 120a, a pulse output circuit 120b, and a power transmission control circuit 120c. The pulse output circuit 120b is, for example, a gate driver circuit, and supplies a pulse signal to a plurality of switching elements of the inverter circuit 120a in response to an instruction from the power transmission control circuit 120c. The power transmission control circuit 120c is an integrated circuit including a memory and a processor, such as a microcontroller unit (MCU). The pulse output circuit 120b is controlled by the processor executing the computer program stored in the memory.
 インバータ回路120aは、外部の電源400に接続され、電源400から直流電力を受ける。インバータ回路120aは、供給された直流電力を交流電力に変換して出力する。 The inverter circuit 120a is connected to an external power supply 400 and receives DC power from the power supply 400. The inverter circuit 120a converts the supplied DC power into AC power and outputs it.
 受電回路220は、例えば整流回路を含む。整流回路は、例えば単相全波整流回路または単相半波整流回路等の任意の整流回路であり得る。整流回路は、受電アンテナ210から出力された交流電力を直流電力に変換して出力する。受電回路220は、図示されていない他の構成要素、例えばDC-DCコンバータなどを含んでいてもよい。 The power receiving circuit 220 includes, for example, a rectifier circuit. The rectifier circuit can be any rectifier circuit, such as a single-phase full-wave rectifier circuit or a single-phase half-wave rectifier circuit. The rectifier circuit converts the AC power output from the power receiving antenna 210 into DC power and outputs it. The power receiving circuit 220 may include other components (not shown) such as a DC-DC converter.
 図9Aは、送電アンテナ110および受電アンテナ210の等価回路の例を示す図である。この例における送電アンテナ110および受電アンテナ210の各々は、図9Aに示すようなコイル及びキャパシタを含む共振回路の構成を有する。各アンテナは、直列共振回路に限らず、並列共振回路であってもよい。例えば図9Bに示すように、送電アンテナ110が直列共振回路の構成を有し、受電アンテナ210が並列共振回路の構成を有していてもよい。各コイルは、例えば、回路基板上に形成された平面コイルもしくは積層コイル、または、銅線、リッツ線、もしくはツイスト線などを用いた巻き線コイルであり得る。各キャパシタには、例えばチップ形状またはリード形状を有するあらゆるタイプのキャパシタを利用できる。空気を介した2配線間の容量を各キャパシタとして機能させることも可能である。各コイルが有する自己共振特性をこれらのキャパシタの代わりに用いてもよい。 FIG. 9A is a diagram showing an example of an equivalent circuit of the power transmitting antenna 110 and the power receiving antenna 210. Each of the power transmitting antenna 110 and the power receiving antenna 210 in this example has a resonant circuit configuration including a coil and a capacitor as shown in FIG. 9A. Each antenna is not limited to a series resonance circuit, and may be a parallel resonance circuit. For example, as shown in FIG. 9B, the power transmitting antenna 110 may have a structure of a series resonance circuit, and the power receiving antenna 210 may have a structure of a parallel resonance circuit. Each coil may be, for example, a flat coil or a laminated coil formed on a circuit board, or a wound coil using a copper wire, a litz wire, a twisted wire, or the like. For each capacitor, any type of capacitor having, for example, a chip shape or a lead shape can be used. It is also possible to make the capacitance between the two wires via air function as each capacitor. The self-resonant characteristics of each coil may be used in place of these capacitors.
 共振回路の共振周波数f0は、典型的には、電力伝送時の伝送周波数f1に一致するように設定される。共振回路の各々の共振周波数f0は、伝送周波数f1に厳密に一致していなくてもよい。共振周波数f0は、例えば、伝送周波数f1の50~150%程度の範囲内の値に設定されていてもよい。電力伝送の周波数f1は、例えば50Hz~300GHz、ある例では20kHz~10GHz、他の例では20kHz~20MHz、さらに他の例では80kHz~14MHzの範囲内の値に設定され得る。 The resonance frequency f0 of the resonance circuit is typically set to match the transmission frequency f1 at the time of power transmission. Each resonance frequency f0 of the resonance circuit does not have to exactly match the transmission frequency f1. The resonance frequency f0 may be set to a value within the range of, for example, about 50 to 150% of the transmission frequency f1. The frequency f1 of the power transmission can be set to a value in the range of, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example.
 直流電源400は、例えば、商用電源、一次電池、二次電池、太陽電池、燃料電池、USB(Universal Serial Bus)電源、高容量のキャパシタ(例えば電気二重層キャパシタ)、商用電源に接続された電圧変換器などの任意の電源であってよい。 The direct current power supply 400 includes, for example, a commercial power supply, a primary battery, a secondary battery, a solar cell, a fuel cell, a USB (Universal Serial Bus) power supply, a high-capacity capacitor (for example, an electric double layer capacitor), and a voltage connected to the commercial power supply. It may be any power source such as a converter.
 図10Aは、インバータ回路120aの構成例を示す図である。インバータ回路120aは、パルス出力回路120bから供給されたパルス信号に応じて導通/非導通の状態を変化させる複数のスイッチング素子S1~S4を有する。各スイッチング素子の導通/非導通の状態を変化させることにより、入力された直流電力を交流電力に変換することができる。図10Aに示す例では、4つのスイッチング素子S1~S4を含むフルブリッジ型のインバータ回路が用いられている。この例では、各スイッチング素子はIGBT(Insulated-gate bipolar transistor)であるが、MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)などの他の種類のスイッチング素子を用いてもよい。 FIG. 10A is a diagram showing a configuration example of the inverter circuit 120a. The inverter circuit 120a includes a plurality of switching elements S1 to S4 that change the conduction / non-conduction state according to the pulse signal supplied from the pulse output circuit 120b. By changing the conduction / non-conduction state of each switching element, the input DC power can be converted into AC power. In the example shown in FIG. 10A, a full bridge type inverter circuit including four switching elements S1 to S4 is used. In this example, each switching element is an IGBT (Insulated-gate bipolar transistor), but other types of switching elements such as MOSFET (Metal Oxide Semiconductor Field-Effective Transistor) may be used.
 図10Aに示す例では、4つのスイッチング素子S1~S4のうち、スイッチング素子S1およびS4(第1スイッチング素子対と称する。)は、供給された直流電圧と同じ極性の電圧を導通時に出力する。一方、スイッチング素子S2およびS3(第2スイッチング素子対と称する。)は、供給された直流電圧と逆の極性の電圧を導通時に出力する。パルス出力回路120bは、制御回路120cからの指示に従い、4つのスイッチング素子S1~S4のゲートにパルス信号を供給する。この際、第1スイッチング素子対(S1およびS4)に供給する2つのパルス信号の位相差、および第2スイッチング素子対(S2およびS3)に供給する2つのパルス信号の位相差を調整することにより、出力される電圧の振幅を制御することができる。 In the example shown in FIG. 10A, of the four switching elements S1 to S4, the switching elements S1 and S4 (referred to as the first switching element pair) output a voltage having the same polarity as the supplied DC voltage when conducting. On the other hand, the switching elements S2 and S3 (referred to as a second switching element pair) output a voltage having a polarity opposite to the supplied DC voltage when conducting. The pulse output circuit 120b supplies a pulse signal to the gates of the four switching elements S1 to S4 according to the instruction from the control circuit 120c. At this time, by adjusting the phase difference between the two pulse signals supplied to the first switching element pair (S1 and S4) and the phase difference between the two pulse signals supplied to the second switching element pair (S2 and S3). , The amplitude of the output voltage can be controlled.
 図10Bは、インバータ回路120aの他の構成例を示す図である。この例におけるインバータ回路120aは、ハーフブリッジ型のインバータ回路である。この場合には、各スイッチング素子に入力されるパルス信号のデューティ比を制御することによって出力電圧の振幅を制御できる。 FIG. 10B is a diagram showing another configuration example of the inverter circuit 120a. The inverter circuit 120a in this example is a half-bridge type inverter circuit. In this case, the amplitude of the output voltage can be controlled by controlling the duty ratio of the pulse signal input to each switching element.
 図10Bに示すインバータ回路120aは、2つのスイッチング素子S1、S2と2つのキャパシタとを含むハーフブリッジ型のインバータ回路である。2つのスイッチング素子S1、S2と、2つのキャパシタC1、C2とは、並列に接続されている。送電アンテナ110の一端は2つのスイッチング素子S1、S2の間の点に接続され、他端は2つのキャパシタC1、C2の間の点に接続されている。 The inverter circuit 120a shown in FIG. 10B is a half-bridge type inverter circuit including two switching elements S1 and S2 and two capacitors. The two switching elements S1 and S2 and the two capacitors C1 and C2 are connected in parallel. One end of the power transmission antenna 110 is connected to a point between the two switching elements S1 and S2, and the other end is connected to a point between the two capacitors C1 and C2.
 制御回路120cおよびパルス出力回路120bは、スイッチング素子S1、S2を交互にオンにするように、パルス信号を各スイッチング素子に供給する。これにより、直流電力が交流電力に変換される。 The control circuit 120c and the pulse output circuit 120b supply a pulse signal to each switching element so that the switching elements S1 and S2 are turned on alternately. As a result, DC power is converted into AC power.
 この例では、パルス信号のデューティ比(即ち、1周期のうち、オンにする期間の割合)を調整することにより、出力電圧Vの出力時間比(即ち、1周期のうち、ゼロではない値をとる期間の割合)を調整できる。これにより、送電アンテナ110に入力される交流電力の電圧の振幅を調整することができる。このようなデューティ制御は、図10Aに示すようなフルブリッジ型のインバータ回路を用いた場合も同様に適用できる。 In this example, by adjusting the duty ratio of the pulse signal (that is, the ratio of the period to be turned on in one cycle), the output time ratio of the output voltage V (that is, the non-zero value in one cycle) is set. The percentage of the period taken) can be adjusted. Thereby, the amplitude of the voltage of the AC power input to the power transmission antenna 110 can be adjusted. Such duty control can be similarly applied when a full bridge type inverter circuit as shown in FIG. 10A is used.
 図11は、受電回路220の構成例を模式的に示す図である。この例では、受電回路220は、ダイオードブリッジと平滑コンデンサとを含む全波整流回路である。受電回路220は、他の整流器の構成を有していてもよい。受電回路220は、受け取った交流エネルギを負荷300が利用可能な直流エネルギに変換して出力する。 FIG. 11 is a diagram schematically showing a configuration example of the power receiving circuit 220. In this example, the power receiving circuit 220 is a full-wave rectifier circuit that includes a diode bridge and a smoothing capacitor. The power receiving circuit 220 may have the configuration of another rectifier. The power receiving circuit 220 converts the received AC energy into DC energy that can be used by the load 300 and outputs it.
 図8では省略されているが、送電回路120と送電アンテナ110との間、および受電アンテナ210と受電回路220との間に、インピーダンス整合のための整合回路が配置されていてもよい。また、送電回路120および受電回路220の各々は、電圧変換のための各種のコンバータ回路を含んでいてもよい。さらに、送電モジュール100および受電モジュール200の各々は、互いに通信を行うための通信回路を備えていてもよい。 Although omitted in FIG. 8, a matching circuit for impedance matching may be arranged between the power transmission circuit 120 and the power transmission antenna 110, and between the power reception antenna 210 and the power reception circuit 220. Further, each of the power transmission circuit 120 and the power reception circuit 220 may include various converter circuits for voltage conversion. Further, each of the power transmission module 100 and the power reception module 200 may be provided with a communication circuit for communicating with each other.
 以上の構成によれば、送電アンテナ110と受電アンテナ210との間で、無線で電力を伝送することができる。電力伝送中に受電アンテナ210が送電アンテナ110に対して一方向にスライドしたとしても、対向状態が維持されるため、負荷300への給電を継続することができる。 According to the above configuration, electric power can be wirelessly transmitted between the power transmitting antenna 110 and the power receiving antenna 210. Even if the power receiving antenna 210 slides in one direction with respect to the power transmitting antenna 110 during power transmission, the facing state is maintained, so that the power supply to the load 300 can be continued.
 以上の実施形態では、送電アンテナ110および受電アンテナ210がコイルによって実現されている。そのような構成に限定されず、送電アンテナ110および受電アンテナ210の各々は、2つ以上の電極によって構成されていてもよい。図12は、そのような構成の例を示す図である。この例では、送電アンテナ110および受電アンテナ210の各々は、平行に延びる2つの電極を含む。受電アンテナ210における2つの電極は、送電アンテナ110における2つの電極にギャップを介して対向して配置される。送電アンテナ110における2つの電極に、送電回路120から交流電圧が印加される。これにより、受電アンテナ210における2つの電極と、送電アンテナ110における2つの電極との間の電界結合(「容量結合」とも称する。)によって電力が無線で伝送される。このような構成によっても、前述の実施形態と同様の効果を得ることができる。 In the above embodiment, the power transmitting antenna 110 and the power receiving antenna 210 are realized by coils. Not limited to such a configuration, each of the power transmitting antenna 110 and the power receiving antenna 210 may be composed of two or more electrodes. FIG. 12 is a diagram showing an example of such a configuration. In this example, each of the transmitting antenna 110 and the receiving antenna 210 includes two electrodes extending in parallel. The two electrodes in the power receiving antenna 210 are arranged to face the two electrodes in the power transmitting antenna 110 with a gap. AC voltage is applied from the power transmission circuit 120 to the two electrodes of the power transmission antenna 110. As a result, electric power is transmitted wirelessly by electric field coupling (also referred to as “capacitive coupling”) between the two electrodes of the power receiving antenna 210 and the two electrodes of the power transmitting antenna 110. Even with such a configuration, the same effect as that of the above-described embodiment can be obtained.
 以上の実施形態における無線電力伝送装置は、固定部に対して可動部が直線的にスライドする装置に取り付けて使用される。そのような構成に限定されず、無線電力伝送装置は、固定部に対して可動部が曲線的にスライドする装置に取り付けられてもよい。 The wireless power transmission device in the above embodiment is used by being attached to a device in which the movable part slides linearly with respect to the fixed part. The wireless power transmission device is not limited to such a configuration, and the wireless power transmission device may be attached to a device in which the movable portion slides in a curve with respect to the fixed portion.
 本開示の技術は、例えば、車両のシート用のスライドレールまたはスライドドアなどの、固定部と可動部とを備える装置に利用できる。 The technology of the present disclosure can be used in a device including a fixed portion and a movable portion, such as a slide rail or a slide door for a vehicle seat, for example.
 10   座席
 12   脚部
 20   スライドレール
 22   固定レール
 24   可動レール
 30   フロアマット
 50   無線電力伝送装置
 60   車体フレーム
 100  送電モジュール
 110  送電アンテナ
 120  送電回路
 130  送電側フレーム
 134  スリット
 136  固定部材
 200  受電モジュール
 210  受電アンテナ
 220  受電回路
 230  受電側フレーム
 231  受電側フレームの第1の部分
 232  受電側フレームの第2の部分
 233  受電側フレームの第3の部分
 300  負荷
 400  電源
10 Seat 12 Legs 20 Slide rail 22 Fixed rail 24 Movable rail 30 Floor mat 50 Wireless power transmission device 60 Body frame 100 Power transmission module 110 Power transmission antenna 120 Power transmission circuit 130 Power transmission side frame 134 Slit 136 Fixed member 200 Power reception module 210 Power reception antenna 220 Power receiving circuit 230 Power receiving side frame 231 First part of power receiving side frame 232 Second part of power receiving side frame 233 Third part of power receiving side frame 300 Load 400 Power supply

Claims (16)

  1.  第1の方向に延びる固定部と、前記固定部に対して前記第1の方向にスライド可能な可動部とを備える可動装置に取り付けられて使用される無線電力伝送装置であって、
     送電モジュールと、
     受電モジュールと、
    を備え、
     前記送電モジュールは、
      前記固定部に隣接して配置される送電側フレームと、
      前記送電側フレームに支持され、前記第1の方向に延びた形状を有する送電アンテナと、
    を備え、
     前記受電モジュールは、
      前記可動部に取り付けられる受電側フレームと、
      前記受電側フレームに取り付けられ、前記送電アンテナと電磁的に結合して前記送電アンテナから電力を受け取る受電アンテナであって、前記送電アンテナよりも前記第1の方向において小さい寸法を有する受電アンテナと、
    を備える、
    無線電力伝送装置。
    A wireless power transmission device used by being attached to a movable device having a fixed portion extending in a first direction and a movable portion slidable in the first direction with respect to the fixed portion.
    Power transmission module and
    Power receiving module and
    With
    The power transmission module
    A power transmission side frame arranged adjacent to the fixed portion and
    A power transmission antenna supported by the power transmission side frame and having a shape extending in the first direction,
    With
    The power receiving module
    The power receiving side frame attached to the movable part and
    A power receiving antenna that is attached to the power receiving side frame and electromagnetically couples with the power transmitting antenna to receive power from the power transmitting antenna, and has a smaller dimension in the first direction than the power transmitting antenna.
    To prepare
    Wireless power transmission device.
  2.  前記送電モジュールは、前記送電アンテナに交流電力を供給する送電回路をさらに備え、
     前記受電モジュールは、前記受電アンテナが受け取った前記電力を他の形態の電力に変換して負荷に供給する受電回路をさらに備える、
    請求項1に記載の無線電力伝送装置。
    The power transmission module further includes a power transmission circuit that supplies AC power to the power transmission antenna.
    The power receiving module further includes a power receiving circuit that converts the power received by the power receiving antenna into another form of power and supplies it to the load.
    The wireless power transmission device according to claim 1.
  3.  前記送電回路は、前記送電側フレームの外部に配置され、
     前記受電回路は、前記受電側フレームの外部に配置される、
    請求項2に記載の無線電力伝送装置。
    The power transmission circuit is arranged outside the power transmission side frame.
    The power receiving circuit is arranged outside the power receiving side frame.
    The wireless power transmission device according to claim 2.
  4.  前記可動装置は、1つ以上のスライドレールを含み、
     前記固定部は、前記スライドレールの固定レールであり、
     前記可動部は、前記スライドレールの可動レールである、
    請求項1から3のいずれかに記載の無線電力伝送装置。
    The movable device includes one or more slide rails.
    The fixed portion is a fixed rail of the slide rail.
    The movable portion is a movable rail of the slide rail.
    The wireless power transmission device according to any one of claims 1 to 3.
  5.  前記スライドレールは、車両の座席用のスライドレールである、請求項4に記載の無線電力伝送装置。 The wireless power transmission device according to claim 4, wherein the slide rail is a slide rail for a vehicle seat.
  6.  前記座席は、左側脚部と右側脚部とを備え、
     前記スライドレールは、前記左側脚部を支持する左側スライドレールと、前記右側脚部を支持する右側スライドレールとを含み、
     前記送電側フレームは、前記左側スライドレールおよび前記右側スライドレールの一方における前記固定レールの側部に取り付けられ、
     前記受電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記可動レールの側部に取り付けられる、
    請求項5に記載の無線電力伝送装置。
    The seat comprises a left leg and a right leg.
    The slide rail includes a left slide rail that supports the left leg and a right slide rail that supports the right leg.
    The power transmission side frame is attached to a side portion of the fixed rail on one of the left side slide rail and the right side slide rail.
    The power receiving side frame is attached to the side portion of the movable rail on the left side slide rail and the right side slide rail.
    The wireless power transmission device according to claim 5.
  7.  前記送電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記固定レールの内側の側部に取り付けられ、
     前記受電側フレームは、前記左側スライドレールおよび前記右側スライドレールの前記一方における前記可動レールの内側の側部に取り付けられる、
    請求項6に記載の無線電力伝送装置。
    The power transmission side frame is attached to the inner side portion of the fixed rail on the left side slide rail and the right side slide rail.
    The power receiving side frame is attached to the inner side portion of the movable rail on the left side slide rail and the right side slide rail.
    The wireless power transmission device according to claim 6.
  8.  前記可動装置は、車両に設けられ、
     前記送電アンテナおよび前記受電アンテナの各々は、前記床面に垂直に配置される、請求項1から7のいずれかに記載の無線電力伝送装置。
    The movable device is provided on the vehicle.
    The wireless power transmission device according to any one of claims 1 to 7, wherein each of the power transmission antenna and the power reception antenna is arranged vertically on the floor surface.
  9.  前記可動装置は、車両に設けられ、
     前記送電アンテナおよび前記受電アンテナの各々は、前記床面に平行に配置される、請求項1から7のいずれかに記載の無線電力伝送装置。
    The movable device is provided on the vehicle.
    The wireless power transmission device according to any one of claims 1 to 7, wherein each of the power transmission antenna and the power reception antenna is arranged in parallel with the floor surface.
  10.  前記送電側フレームは、前記第1の方向に延びるスリットを有する筐体を備え、
     前記受電側フレームは、前記筐体の内部に配置される第1の部分と、前記可動部に固定される第2の部分と、前記スリットを通って前記第1の部分と前記第2の部分とを接続する第3の部分とを含む、
    請求項1から9のいずれかに記載の無線電力伝送装置。
    The power transmission side frame includes a housing having a slit extending in the first direction.
    The power receiving side frame includes a first portion arranged inside the housing, a second portion fixed to the movable portion, the first portion and the second portion through the slit. Including a third part that connects with,
    The wireless power transmission device according to any one of claims 1 to 9.
  11.  前記スリットは、前記筐体の側部に開口する、請求項10に記載の無線電力伝送装置。 The wireless power transmission device according to claim 10, wherein the slit opens to a side portion of the housing.
  12.  前記可動装置は、車両に設けられ、
     前記第1の方向は、前記車両の床面に平行である、
    請求項1から11のいずれかに記載の無線電力伝送装置。
    The movable device is provided on the vehicle.
    The first direction is parallel to the floor of the vehicle.
    The wireless power transmission device according to any one of claims 1 to 11.
  13.  前記送電アンテナは、送電コイルであり、
     前記受電アンテナは、受電コイルである、
    請求項1から12のいずれかに記載の無線電力伝送装置。
    The power transmission antenna is a power transmission coil.
    The power receiving antenna is a power receiving coil.
    The wireless power transmission device according to any one of claims 1 to 12.
  14.  請求項1から13のいずれかに記載の無線電力伝送装置と、
     前記可動装置と、
     前記可動装置の前記可動部に支持される座席と、
    を備える車両用スライドシート。
    The wireless power transmission device according to any one of claims 1 to 13.
    With the movable device
    A seat supported by the movable portion of the movable device and
    Vehicle slide seats.
  15.  請求項1から13のいずれかに記載の無線電力伝送装置において用いられる送電モジュール。 A power transmission module used in the wireless power transmission device according to any one of claims 1 to 13.
  16.  請求項1から13のいずれかに記載の無線電力伝送装置において用いられる受電モジュール。 A power receiving module used in the wireless power transmission device according to any one of claims 1 to 13.
PCT/JP2020/017044 2019-05-10 2020-04-20 Wireless power transmission device, vehicle seat, power transmission module, and power receiving module WO2020230535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-089468 2019-05-10
JP2019089468 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020230535A1 true WO2020230535A1 (en) 2020-11-19

Family

ID=73289437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017044 WO2020230535A1 (en) 2019-05-10 2020-04-20 Wireless power transmission device, vehicle seat, power transmission module, and power receiving module

Country Status (1)

Country Link
WO (1) WO2020230535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049181A1 (en) * 2022-09-01 2024-03-07 주식회사 아모센스 Wireless power supply device for vehicle seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092729A (en) * 1998-09-11 2000-03-31 Harness Syst Tech Res Ltd Feeding device for slide door
JP2017210090A (en) * 2016-05-25 2017-11-30 トヨタ車体株式会社 Slide rail for vehicle seat and power supply device of slide seat
JP2018074380A (en) * 2016-10-28 2018-05-10 パナソニックIpマネジメント株式会社 Wireless power transmission device
JP2018093706A (en) * 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 Wireless power feeding unit, power transmission module, power reception module, and wireless power transmission system
JP2018203208A (en) * 2017-06-09 2018-12-27 トヨタ紡織株式会社 Power supply device for seating seat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092729A (en) * 1998-09-11 2000-03-31 Harness Syst Tech Res Ltd Feeding device for slide door
JP2017210090A (en) * 2016-05-25 2017-11-30 トヨタ車体株式会社 Slide rail for vehicle seat and power supply device of slide seat
JP2018074380A (en) * 2016-10-28 2018-05-10 パナソニックIpマネジメント株式会社 Wireless power transmission device
JP2018093706A (en) * 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 Wireless power feeding unit, power transmission module, power reception module, and wireless power transmission system
JP2018203208A (en) * 2017-06-09 2018-12-27 トヨタ紡織株式会社 Power supply device for seating seat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049181A1 (en) * 2022-09-01 2024-03-07 주식회사 아모센스 Wireless power supply device for vehicle seat

Similar Documents

Publication Publication Date Title
CN105957859B (en) Semiconductor power component and the power inverter for using it
US10366826B2 (en) Dual-mode choke coil and high-frequency filter using same, and on-board motor integrated electric power steering and on-board charging device
US20210159736A1 (en) Transmission module and wireless power data transmission device
US11348724B2 (en) Primary-sided and a secondary-sided arrangement of winding structures, a system for inductive power transfer and a method for inductively supplying power to a vehicle
US10979014B2 (en) Voltage filter and power conversion device
EP3664274B1 (en) Power conversion device and vehicle equipped with power conversion device
JP5991137B2 (en) Power converter
JP5915857B2 (en) antenna
US9117789B2 (en) Semiconductor device
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP2008136333A (en) Power converter
US11013104B2 (en) Power conversion apparatus
CN108988655B (en) Electric power electronic controller and electric automobile
WO2017199361A1 (en) Coil unit
JP2017184561A (en) Non-contact power transmission system and power reception device
WO2020230535A1 (en) Wireless power transmission device, vehicle seat, power transmission module, and power receiving module
JP2021078233A (en) Electric power conversion system
JP5843299B1 (en) Inverter drive
JP5384195B2 (en) Non-contact power supply device
CN107769397A (en) A kind of constant three phase dynamic radio energy transmission system of output voltage
CN112514224A (en) High-voltage filter and power conversion device
KR101872035B1 (en) Power electronic system having a first subsystem and a second subsystem
JP2017079547A (en) Power conversion device
JP2010016941A (en) Power converter
US9899138B1 (en) Coil structure for generating a uniform magnetic field and coil apparatus having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP