JP2019066141A - Dirtiness measurement method and cleaning effect evaluation method for regenerative air preheater - Google Patents

Dirtiness measurement method and cleaning effect evaluation method for regenerative air preheater Download PDF

Info

Publication number
JP2019066141A
JP2019066141A JP2017194479A JP2017194479A JP2019066141A JP 2019066141 A JP2019066141 A JP 2019066141A JP 2017194479 A JP2017194479 A JP 2017194479A JP 2017194479 A JP2017194479 A JP 2017194479A JP 2019066141 A JP2019066141 A JP 2019066141A
Authority
JP
Japan
Prior art keywords
air preheater
measuring
light
cleaning
regenerative air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017194479A
Other languages
Japanese (ja)
Other versions
JP7047313B2 (en
Inventor
三剣 緒方
Mitsuken Ogata
三剣 緒方
将志 溝口
Masashi Mizoguchi
将志 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Engineering Co Ltd
Original Assignee
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Engineering Co Ltd filed Critical Kurita Engineering Co Ltd
Priority to JP2017194479A priority Critical patent/JP7047313B2/en
Publication of JP2019066141A publication Critical patent/JP2019066141A/en
Application granted granted Critical
Publication of JP7047313B2 publication Critical patent/JP7047313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

To provide a dirtiness measurement method for regenerative air preheater capable of quantitatively measuring dirtiness of an element in a regenerative air preheater.SOLUTION: A regenerative air preheater is configured to transmit heat of exhaust gas flowing in an exhaust gas flow passage 17, to air flowing in air flow passages 17, 18, by an element 12. A method for measuring dirtiness of an element 12 in the regenerative air preheater comprises: radiating light, emitted from a light emitter 30, from one side of an upstream side and downstream side of the element 12 toward the other side; measuring a light reception amount at a light receiver 40 arranged on the other side; and based on the measurement value, measuring degree of dirtiness of the element 12.SELECTED DRAWING: Figure 1

Description

本発明は、回転するエレメントによって排ガスの熱を空気に伝達させて空気を加熱する再生式空気予熱器の該エレメントの汚れを測定する方法に関する。また、本発明は、この測定方法を利用して再生式空気予熱器の洗浄効果を評価する方法に関する。   The present invention relates to a method of measuring fouling of an element of a regenerative air preheater, wherein the heat of the exhaust gas is transferred to the air by the rotating element to heat the air. The present invention also relates to a method of evaluating the cleaning effect of a regenerative air preheater using this measurement method.

再生式空気予熱器はボイラの排ガスの高温の熱を、回転軸回りに回転する回転エレメントを介してボイラに供給する燃焼空気に伝える熱交換器である。   A regenerative air preheater is a heat exchanger that transfers the high temperature heat of the boiler's exhaust gas to the combustion air supplied to the boiler via a rotating element that rotates about an axis of rotation.

石炭焚きボイラ設備に使用される再生式空気予熱器では、灰、硫酸や亜硫酸、酸化鉄などが汚れとしてエレメント表面に付着する。汚れ付着量が多くなると、圧損が増大すると共に、再生式空気予熱器の熱効率が低下する。   In a regenerative air preheater used for coal-fired boiler equipment, ash, sulfuric acid, sulfurous acid, iron oxide, etc. adhere to the element surface as dirt. As the amount of soiling increases, the pressure drop increases and the thermal efficiency of the regenerative air preheater decreases.

なお、エレメントは、多数の金属板を数mm程度の小間隙を介して配列設置した構造を有している。金属板は、板面を上下方向としている。燃焼排ガスは、この小間隙を通過する。   The element has a structure in which a large number of metal plates are arranged with a small gap of about several mm. The metal plate has the plate surface up and down. The flue gas passes through this small gap.

特許文献1には、図3に示すように、回転軸1回りに回転する回転エレメント2に対して洗浄水を洗浄管5,6から噴射して洗浄を行うことが記載されている。図3中のD1〜D4はダンパを示す。また、この特許文献1の0005段落には、高圧ジェット水を噴射してエレメントを洗浄することが記載されている。   In Patent Document 1, as shown in FIG. 3, it is described that washing is performed by spraying washing water from the washing pipes 5 and 6 to the rotating element 2 rotating around the rotating shaft 1. D1 to D4 in FIG. 3 indicate dampers. Further, in the 0005 paragraph of this patent document 1, it is described that the high pressure jet water is jetted to clean the element.

特開平11−37695号公報Japanese Patent Application Laid-Open No. 11-37695

高圧ジェット水によるエレメント洗浄を実施する際は、汚れの量や偏り,硬さに応じて、洗浄時間やエレメント回転速度,洗浄圧力など洗浄条件を設定する必要があるが、エレメントの間隔が数mm程度の狭い間隔であること、再生式空気予熱器自体が多量のエレメントで構成されていること、また時間的制限もあることから、洗浄前の汚れの定量的評価は困難である。そのため、ファイバースコープを用いたエレメント間汚れの画像確認によりエレメント汚れを定性的に把握し、洗浄条件を決定しているのが現状である。   When performing element cleaning with high pressure jet water, it is necessary to set the cleaning conditions such as the cleaning time, the element rotation speed, and the cleaning pressure according to the amount, deviation, and hardness of the soil, but the element spacing is several mm Because of the close spacing, the fact that the regenerative air preheater itself is made up of a large number of elements, and the time limitations, quantitative assessment of soiling before cleaning is difficult. Therefore, at present, element contamination is qualitatively grasped by image confirmation of inter-element contamination using a fiberscope, and the cleaning conditions are determined.

このように、従来技術では、汚れに対応した洗浄圧力や洗浄時間を選定できず、また、洗浄前の汚れ評価方法が定性的であるため、洗浄効果を定量的に把握できない。また、洗浄中にその場で洗浄効果を把握できないため、余裕をもった洗浄仕様を採用するか、全洗浄作業完了後の検査結果に応じて再洗浄するかを判断することとなり、洗浄作業効率に劣っていた。   As described above, according to the prior art, the cleaning pressure and the cleaning time corresponding to the contamination can not be selected, and the contamination evaluation method before cleaning is qualitative, so that the cleaning effect can not be grasped quantitatively. In addition, since the cleaning effect can not be grasped on the spot during the cleaning, it is judged whether to adopt the cleaning specification with a margin or to re-clean according to the inspection result after the completion of all the cleaning work, and the cleaning work efficiency It was inferior to.

本発明は、再生式空気予熱器のエレメントの汚れを定量的に測定することができる再生式空気予熱器の汚れ測定方法と、この測定方法を利用した洗浄効果評価方法を提供することを目的とする。   It is an object of the present invention to provide a method of measuring the soiling of a regenerative air preheater capable of quantitatively measuring the soiling of elements of the regenerative air preheater, and a method of evaluating the cleaning effect using this measuring method. Do.

本発明の再生式空気予熱器の汚れ測定方法は、排ガス流路を流れる排ガスの熱を回転するエレメントによって空気流路を流れる空気に伝達させる再生式空気予熱器の該エレメントの汚れを測定する方法であって、該エレメントの上流側及び下流側の一方の側から他方の側に向って発光部から光を照射し、該他方の側に配置した受光部で受光量を測定し、この測定値に基づいてエレメントの汚れを測定することを特徴とする。   The method of measuring the contamination of a regenerative air preheater according to the present invention is a method of measuring the contamination of an element of a regenerative air preheater in which the heat of exhaust gas flowing through the exhaust gas flow channel is transferred to the air flowing through the air flow channel by a rotating element. Light is emitted from the light emitting portion from one side of the upstream side and the downstream side of the element to the other side, and the amount of light received is measured by the light receiving portion disposed on the other side, and this measured value Measuring the fouling of the element on the basis of

本発明の一態様では、前記エレメントの回転軸は鉛直方向となっており、前記発光部の鉛直上方又は鉛直下方に前記受光部が配置されている。   In one aspect of the present invention, the rotation axis of the element is in the vertical direction, and the light receiving unit is disposed vertically above or vertically below the light emitting unit.

本発明の一態様では、前記エレメントを回転させた状態で測定を行う。   In one aspect of the invention, the measurement is performed with the element rotated.

本発明の一態様では、前記排ガス流路において前記エレメントに洗浄水を噴射してエレメントを洗浄しながら、空気流路に配置した前記発光部と受光部とによって測定を行う。   In one aspect of the present invention, while the element is cleaned by injecting washing water to the element in the exhaust gas flow path, the measurement is performed by the light emitting unit and the light receiving unit disposed in the air flow path.

本発明の再生式空気予熱器の洗浄効果評価方法は、かかる本発明の再生式空気予熱器の汚れ測定方法によって洗浄前及び洗浄後のエレメントの汚れ量をそれぞれ測定し、洗浄効果を評価する。   The cleaning effect evaluation method of the regenerative air preheater according to the present invention measures the amount of soiling of the element before and after cleaning according to the contamination measuring method of the regenerative air preheater according to the present invention to evaluate the cleaning effect.

本発明の再生式空気予熱器の汚れ測定方法によると、再生式空気予熱器のエレメントに付着した汚れ量を定量的に検出することができる。   According to the contamination measuring method of the regenerative air preheater of the present invention, it is possible to quantitatively detect the amount of dirt adhering to the element of the regenerative air preheater.

本発明の再生式空気予熱器の洗浄効果評価方法によると、エレメントの洗浄効果を定量的に評価することができる。   According to the cleaning effect evaluation method of the regenerative air preheater of the present invention, the cleaning effect of the element can be quantitatively evaluated.

実施の形態に係る再生式空気予熱器の汚れ測定方法を説明する再生式空気予熱器の概略的な縦断面図である。It is a schematic longitudinal cross-sectional view of a regenerative air preheater explaining the dirt measuring method of a regenerative air preheater concerning an embodiment. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 再生式空気予熱器の縦断面図である。It is a longitudinal cross-sectional view of a regenerative air preheater.

以下、図1,2を参照して実施の形態について説明する。再生式空気予熱器10は、回転軸心を鉛直方向とした回転軸11によって水平に回転するエレメント12を有する。エレメント12の外周囲はハウジング13によって囲まれている。ハウジング13内のうち、エレメント12の回転域の上側及び下側は、それぞれセクタープレート14,15,16によって排ガス流路17、1次空気(微粉体搬送用空気)流路18及び2次空気(燃焼用空気)流路19に分画されている。   The embodiment will be described below with reference to FIGS. The regenerative air preheater 10 has an element 12 that rotates horizontally by a rotating shaft 11 whose vertical axis is the rotating shaft. The outer periphery of the element 12 is surrounded by a housing 13. In the housing 13, the upper and lower sides of the rotation area of the element 12 are separated by the sector plates 14, 15 and 16 respectively by the exhaust gas flow path 17, the primary air (air for fine powder transfer) flow path 18 and the secondary air The combustion air is divided into the flow path 19.

ボイラからの排ガスは、排ガス入口17a、排ガス流路17、排ガス出口17bの順に流れる。1次空気は、1次空気入口18aから1次空気流路18、1次空気出口18bの順に流れる。2次空気は、図示しない2次空気入口、2次空気流路19及び2次空気出口の順に流れる。   The exhaust gas from the boiler flows in the order of the exhaust gas inlet 17a, the exhaust gas passage 17, and the exhaust gas outlet 17b. The primary air flows from the primary air inlet 18 a to the primary air flow passage 18 and the primary air outlet 18 b in this order. The secondary air flows in the order of a secondary air inlet, a secondary air flow passage 19 and a secondary air outlet not shown.

エレメント12は、高温用エレメント12a、中温用エレメント12b及び低温用エレメント12cが3段に設けられている。各エレメント12a〜12cは、小間隙を介して配列された金属板を備えている。該金属板の板面は鉛直方向となっており、該小間隙を排ガス又は空気が上下方向に通過する。   The element 12 is provided with a high temperature element 12a, a medium temperature element 12b and a low temperature element 12c in three stages. Each element 12a-12c is provided with a metal plate arranged via a small gap. The plate surface of the metal plate is in the vertical direction, and the exhaust gas or the air passes through the small gap in the vertical direction.

回転軸11及びエレメント12は、図示しない駆動装置によって回転駆動される。エレメント12は、排ガス流路17を通過する間に加熱され、空気流路18,19を通過する間に空気を加熱する。   The rotating shaft 11 and the element 12 are rotationally driven by a drive device (not shown). The element 12 is heated while passing through the exhaust gas flow path 17 and heats air while passing through the air flow paths 18 and 19.

再生式空気予熱器10を運転することによりエレメント12に汚れが付着してきた場合、エレメント12の汚れ測定と洗浄を行う。この実施の形態では、洗浄を行う場合、エレメント12の上側の排ガス流路17にガイドロッド21をハウジング13の半径方向に配置し、このガイドロッド21に沿って移動可能な洗浄ノズル22から下方に高圧水を噴射してエレメント12を洗浄する。エレメント12を回転させながら、洗浄ノズル22をガイドロッド21に沿って移動させることにより、エレメント12が万遍なく洗浄される。   When the element 12 is contaminated by operating the regenerative air preheater 10, the element 12 is measured for contamination and cleaned. In this embodiment, when cleaning is performed, the guide rod 21 is disposed in the exhaust gas flow path 17 on the upper side of the element 12 in the radial direction of the housing 13, and downward from the cleaning nozzle 22 movable along the guide rod 21. The high pressure water is jetted to wash the element 12. By rotating the cleaning nozzle 22 along the guide rod 21 while rotating the element 12, the element 12 is cleaned thoroughly.

エレメント12の汚れ量を測定するには、この実施の形態では、1次空気流路18内のエレメント12の下方に発光器30を上方に向って光を照射するように配置する。また、1次空気流路18内のエレメント12の上方に、受光器40を、下方からの光を受光するように配置する。受光器40は発光器30の鉛直上方に位置させる。   In order to measure the amount of dirt on the element 12, in this embodiment, the light emitter 30 is disposed below the element 12 in the primary air flow passage 18 so as to emit light upward. Further, the light receiver 40 is disposed above the element 12 in the primary air flow passage 18 so as to receive light from below. The light receiver 40 is positioned vertically above the light emitter 30.

なお、この実施の形態では、エレメント12は図2の矢印Eの通り反時計方向に回転する。排ガス流路17でノズル21から噴射されてエレメント12に付着した水が発光器30や受光器40に掛かる量を少なくするために、2次空気流路19よりも回転方向後流側となる1次空気流路18に測定機器(発光器30及び受光器40)を配置している。エレメント12が2次空気流路19を通過する間に、エレメント12に付着した水の一部が水切りされるので、1次空気流路18は2次空気流路19よりもエレメント12からの飛散水量が少ない。   In this embodiment, the element 12 rotates counterclockwise as shown by arrow E in FIG. In order to reduce the amount of water jetted from the nozzle 21 in the exhaust gas flow path 17 and attached to the element 12 to the light emitter 30 and the light receiver 40, the water is placed downstream of the secondary air flow path 19 in the rotational direction 1 The measurement devices (the light emitter 30 and the light receiver 40) are disposed in the next air flow path 18. Since part of the water adhering to the element 12 is drained while the element 12 passes through the secondary air flow path 19, the primary air flow path 18 scatters from the element 12 more than the secondary air flow path 19. There is little water.

この実施の形態では、発光器30はミラーユニットであり、その天板30aに傾斜をつけ、ミラーユニット上面に洗浄水が滞留しないようにしている。飛散水や湿分の影響のないハウジング13外に配置した光源ユニット31からの光を光ファイバー32でミラーユニットに送り、コリメートして鉛直上方に光を照射するようにしている。光源としては直進性の高い光源が望ましい。また、洗浄中はエレメント間に洗浄水が残るため、水に吸収されにくい光源が望ましい。このようなことから、光源としては、レーザー光や可視光が好適である。   In this embodiment, the light emitter 30 is a mirror unit, and the top plate 30a is inclined so that cleaning water does not stay on the upper surface of the mirror unit. The light from the light source unit 31 disposed outside the housing 13 which is not affected by the scattered water or moisture is sent to the mirror unit by the optical fiber 32, and collimated to irradiate the light vertically upward. A highly linear light source is desirable as the light source. In addition, since washing water remains between elements during washing, a light source that is difficult to be absorbed by water is desirable. From such a thing, a laser beam and visible light are suitable as a light source.

この実施の形態では、受光器40は防水ケーシング41内に収容されている。図2の通り、防水ケーシング41は、光軸合わせのために位置微調整可能なアジャスター42及びマグネットベース43によってセクタープレート15に取り付けられているが、受光器40の設置構造はこれに限定されない。   In this embodiment, the light receiver 40 is accommodated in the waterproof casing 41. As shown in FIG. 2, the waterproof casing 41 is attached to the sector plate 15 by means of an adjuster 42 and a magnet base 43 which can be finely adjusted for optical axis alignment, but the installation structure of the light receiver 40 is not limited thereto.

受光器40としては輝度計や照度計を用いることができる。設備規模によりエレメント高さや構造が異なるため、光源と測定機器間の距離も異なる。この距離による測定結果への影響を回避するため輝度計を採用することが好ましい。光源と測定機器が固定できる場合は照度計も利用できる。   As the light receiver 40, a luminance meter or a luminometer can be used. The distance between the light source and the measuring device is also different because the element height and the structure are different depending on the scale of the equipment. In order to avoid the influence of the distance on the measurement result, it is preferable to employ a luminance meter. An illuminometer can also be used if the light source and the measuring device can be fixed.

このようにエレメント12の上下に配置した発光器30及び受光器40を用い、エレメント12を回転させた状態で発光器30からの光を照射し、受光器40で受光し、この受光強度を検知する。エレメント12の付着汚れが多いほど、受光強度が低下するので、この受光強度に基づいてエレメント12の汚れ付着量を定量的に計測することができる。また、洗浄の前後や途中で計測を行うことにより、洗浄の効果を定量的に評価することができる。また、洗浄圧力やエレメント回転速度等洗浄条件を変化させ同様の測定を行うことにより、最適な洗浄条件を見出すことができる。   Thus, using the light emitter 30 and the light receiver 40 disposed above and below the element 12, the light from the light emitter 30 is irradiated while the element 12 is rotated, and the light receiver 40 receives light, and the light reception intensity is detected. Do. Since the light reception intensity decreases as the adhesion contamination of the element 12 increases, the contamination adhesion amount of the element 12 can be quantitatively measured based on the light reception intensity. Moreover, the effect of washing | cleaning can be quantitatively evaluated by measuring before and / or after washing | cleaning. In addition, optimum cleaning conditions can be found by changing the cleaning conditions such as the cleaning pressure and the element rotation speed and performing the same measurement.

図1に示す再生式空気予熱器10(ハウジング直径17m、エレメント12上下幅2.5m)にガイドロッド21、洗浄ノズル22を設置して洗浄可能とした。   The guide rod 21 and the cleaning nozzle 22 were installed in the regenerative air preheater 10 (housing diameter 17 m, element 12 vertical width 2.5 m) shown in FIG. 1 to make cleaning possible.

また、1次空気流路18内のエレメント12の下及び上側に図示の通り発光器30及び受光器40を配置した。光源としては可視光を用いた。   Also, the light emitter 30 and the light receiver 40 are disposed below and above the element 12 in the primary air flow passage 18 as shown. Visible light was used as a light source.

洗浄実施前にエレメントの半径方向線上の複数点で測定し、透過光の輝度が最も小さい点を選択し、受光器40として輝度計を設置した。   Before cleaning, measurement was made at a plurality of points on the radial direction of the element, and the point with the lowest luminance of the transmitted light was selected, and a luminance meter was installed as the light receiver 40.

エレメント12の洗浄前と、第1回〜第3回洗浄後にそれぞれ輝度を測定した。   The luminance was measured before the cleaning of the element 12 and after the first to third cleaning.

洗浄は、固定した洗浄ノズル22から30MPaの高圧ジェット水を55L/minで噴射させることにより行った。洗浄時にエレメント12を0.04rpmで回転させた。   Cleaning was performed by injecting high-pressure jet water of 30 MPa at 55 L / min from the fixed cleaning nozzle 22. The element 12 was rotated at 0.04 rpm during washing.

輝度の測定結果は次の通りであった。   The measurement results of luminance were as follows.

洗浄前 73.5Cd/m
第1回洗浄後 181.4Cd/m
第2回洗浄後 2,855Cd/m
第3回洗浄後 358,600Cd/m
Before washing 73.5 Cd / m 2
181.4 Cd / m 2 after the first wash
2,855 Cd / m 2 after the second cleaning
After the third wash 358,600 Cd / m 2

このように、洗浄回数を重ねるごとに輝度が上昇していることから、洗浄回数とともにエレメント表面の汚れが除去される傾向を、また3回目水洗後に汚れの除去が大幅に進む洗浄経過を知ることができた。本結果より、本洗浄条件では少なくても3回の水洗が必要であると判断できる。また、洗浄圧力やエレメント回転速度等洗浄条件を変化させ同様の測定を行うことで、洗浄条件を最適化することができる。   As described above, since the luminance increases with the number of times of cleaning, the tendency of the dirt on the surface of the element to be removed along with the number of times of cleaning and the progress of removal of the dirt significantly after the third washing It was possible. From this result, it can be judged that at least three times of water washing is necessary under the present washing conditions. The washing conditions can be optimized by changing the washing conditions such as the washing pressure and the element rotational speed and performing the same measurement.

本発明を適用することで洗浄前後のエレメントの汚れ状態を定量的に評価できるだけでなく、洗浄中の測定を通じて洗浄経過を定量的に評価できるため、洗浄状況に応じて洗浄条件を変更し、洗浄時間の短縮や排水量の削減など最適化が可能となる。   By applying the present invention, not only can the soil condition of the element before and after cleaning can be quantitatively evaluated, but also the progress of cleaning can be quantitatively evaluated through the measurement during cleaning. Therefore, the cleaning conditions are changed according to the cleaning conditions. Optimization is possible such as shortening of time and reduction of drainage volume.

以上、透過光の光測定を用いた再生式空気予熱器汚れの評価方法に関する技術仕様を添付の図面とともに説明したが、これは最も良好な実施例を例示的に説明したものであり、本発明を限定するものではない。   Although the technical specification regarding the evaluation method of the regenerative air preheater contamination using the light measurement of the transmitted light has been described above with reference to the attached drawings, this is an exemplary description of the best embodiment, and the present invention There is no limitation on

10 再生式空気予熱器
11 回転軸
12 エレメント
13 ハウジング
14,15,16 プレート
21 ガイドロッド
22 洗浄ノズル
30 発光器
40 受光器
DESCRIPTION OF SYMBOLS 10 regenerative air preheater 11 rotating shaft 12 element 13 housings 14, 15, 16 plate 21 guide rod 22 washing nozzle 30 light emitter 40 light receiver

Claims (5)

排ガス流路を流れる排ガスの熱を回転するエレメントによって空気流路を流れる空気に伝達させる再生式空気予熱器の該エレメントの汚れを測定する方法であって、
該エレメントの上流側及び下流側の一方の側から他方の側に向って発光部から光を照射し、該他方の側に配置した受光部で受光量を測定し、この測定値に基づいてエレメントの汚れを測定することを特徴とする再生式空気予熱器の汚れ測定方法。
A method of measuring the contamination of an element of a regenerative air preheater in which the heat of exhaust gas flowing through an exhaust gas flow path is transferred to air flowing through an air flow path by a rotating element,
Light is emitted from the light emitting portion from one side of the upstream side and the downstream side of the element to the other side, and the amount of light received is measured by the light receiving portion disposed on the other side, and the element is based on this measurement value A method of measuring contamination of a regenerative air preheater, comprising measuring the contamination of
請求項1において、前記エレメントの回転軸は鉛直方向となっており、前記発光部の鉛直上方又は鉛直下方に前記受光部が配置されていることを特徴とする再生式空気予熱器の汚れ測定方法。   The dirt measuring method for a regenerative air preheater according to claim 1, wherein the rotation axis of the element is in the vertical direction, and the light receiving unit is disposed vertically above or vertically below the light emitting unit. . 請求項1又は2において、前記エレメントを回転させた状態で測定を行うことを特徴とする再生式空気予熱器の汚れ測定方法。   The method according to claim 1 or 2, wherein the measurement is performed in a state where the element is rotated. 請求項3において、前記排ガス流路において前記エレメントに洗浄水を噴射してエレメントを洗浄しながら、空気流路に配置した前記発光部と受光部とによって測定を行うことを特徴とする再生式空気予熱器の汚れ測定方法。   The regeneration type air according to claim 3, wherein the light emitting unit and the light receiving unit disposed in the air flow path perform measurement while spraying the washing water to the element in the exhaust gas flow path to clean the element. Measuring method of preheater dirt. 請求項1〜3のいずれか1項に記載の再生式空気予熱器の汚れ測定方法によって洗浄前及び洗浄後のエレメントの汚れ量をそれぞれ測定し、洗浄効果を評価することを特徴とする再生式空気予熱器の洗浄効果評価方法。   The method according to any one of claims 1 to 3, wherein the amount of soiling of the element before and after cleaning is measured by the method of measuring soiling of the regenerative air preheater according to any one of claims 1 to 3, and the cleaning effect is evaluated. Evaluation method of cleaning effect of air preheater.
JP2017194479A 2017-10-04 2017-10-04 Dirt measurement method and cleaning effect evaluation method for regenerative air preheater Active JP7047313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194479A JP7047313B2 (en) 2017-10-04 2017-10-04 Dirt measurement method and cleaning effect evaluation method for regenerative air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194479A JP7047313B2 (en) 2017-10-04 2017-10-04 Dirt measurement method and cleaning effect evaluation method for regenerative air preheater

Publications (2)

Publication Number Publication Date
JP2019066141A true JP2019066141A (en) 2019-04-25
JP7047313B2 JP7047313B2 (en) 2022-04-05

Family

ID=66340416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194479A Active JP7047313B2 (en) 2017-10-04 2017-10-04 Dirt measurement method and cleaning effect evaluation method for regenerative air preheater

Country Status (1)

Country Link
JP (1) JP7047313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186317A (en) * 2019-05-09 2019-08-30 华电电力科学研究院有限公司 A kind of air preheater on-line cleaning equipment and its application method
CN112902219A (en) * 2021-02-01 2021-06-04 井哲 Magnetic contact type sealing assembly of rotary air preheater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383572A (en) * 1981-12-07 1983-05-17 The Air Preheater Company, Inc. Fire detection cleaning arrangement
JPS61161743U (en) * 1985-03-29 1986-10-07
JPH1137695A (en) * 1997-07-16 1999-02-12 Kurita Eng Kk Method of cleaning regenerative air preheater
JP2000509481A (en) * 1996-11-15 2000-07-25 エービービー エア プレヒーター インコーポレイテッド Online dirt detection system for regenerative air preheater
JP2016105034A (en) * 2014-11-19 2016-06-09 東北電力株式会社 Tube cleaning method of multitubular heat exchanger, and tube contamination detection device used in the same
JP2018004351A (en) * 2016-06-29 2018-01-11 中国電力株式会社 Deposit determination device and deposit determination method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383572A (en) * 1981-12-07 1983-05-17 The Air Preheater Company, Inc. Fire detection cleaning arrangement
JPS61161743U (en) * 1985-03-29 1986-10-07
JP2000509481A (en) * 1996-11-15 2000-07-25 エービービー エア プレヒーター インコーポレイテッド Online dirt detection system for regenerative air preheater
JPH1137695A (en) * 1997-07-16 1999-02-12 Kurita Eng Kk Method of cleaning regenerative air preheater
JP2016105034A (en) * 2014-11-19 2016-06-09 東北電力株式会社 Tube cleaning method of multitubular heat exchanger, and tube contamination detection device used in the same
JP2018004351A (en) * 2016-06-29 2018-01-11 中国電力株式会社 Deposit determination device and deposit determination method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186317A (en) * 2019-05-09 2019-08-30 华电电力科学研究院有限公司 A kind of air preheater on-line cleaning equipment and its application method
CN110186317B (en) * 2019-05-09 2024-02-09 华电电力科学研究院有限公司 Online cleaning equipment for air preheater and application method of online cleaning equipment
CN112902219A (en) * 2021-02-01 2021-06-04 井哲 Magnetic contact type sealing assembly of rotary air preheater

Also Published As

Publication number Publication date
JP7047313B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
US7607825B2 (en) Method and apparatus for monitoring the formation of deposits in furnaces
US7890197B2 (en) Dual model approach for boiler section cleanliness calculation
RU2499213C2 (en) Control of cooling air flow in sootblowing device based on blowing tube temperature
US10982598B2 (en) System and method for coking detection
JP2019066141A (en) Dirtiness measurement method and cleaning effect evaluation method for regenerative air preheater
US20120067542A1 (en) Measuring device for a heat exchanger
CN1877198A (en) Method and apparatus for controlling soot blowing using statiscical process control
JP2017533823A (en) Filter residue removal system and method
KR101760259B1 (en) Extractive continuous ammonia monitoring system
JP2014037951A (en) Heat exchanger of hot water boiler and manufacturing method thereof
JP2006226866A (en) Exhaust gas sampling device
TW200924861A (en) Automated system for waterwall cleaning and inspection
KR101160045B1 (en) Infrared carbon dioxide detector and apparatus for measuring carbon dioxide with in-situ probe using the detector
JP6772589B2 (en) Adhesion judgment device, deposit judgment method
JP2011058679A (en) Method and device for detecting leakage of gas-gas heater heat exchanger
JPH04363599A (en) Method and device for operating heat exchanger
JP5652072B2 (en) Wear amount management method of refractory material layer
JP2703548B2 (en) Air preheater performance diagnostic device
CA2685800C (en) Device for cleaning oxidized or corroded components in the presence of a halogenous gas mixture
JP2010014583A (en) Steam generating apparatus
CN114689807B (en) Kitchen oil smoke on-line monitoring device
CN101109669A (en) Pitot tube with function of contaminant separation
JPS60188724A (en) Method and device for controlling deposition of ash adheringon convection section
JP7000255B2 (en) Boiler equipment and power generation equipment
KR102404468B1 (en) Exhaust gas analysis system for power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7047313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150