JP2019065800A - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP2019065800A
JP2019065800A JP2017193489A JP2017193489A JP2019065800A JP 2019065800 A JP2019065800 A JP 2019065800A JP 2017193489 A JP2017193489 A JP 2017193489A JP 2017193489 A JP2017193489 A JP 2017193489A JP 2019065800 A JP2019065800 A JP 2019065800A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ignition
self
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017193489A
Other languages
Japanese (ja)
Other versions
JP6915490B2 (en
Inventor
啓一 明城
Keiichi Myojo
啓一 明城
勇喜 野瀬
Yuki Nose
勇喜 野瀬
美紗子 伴
Misako Ban
美紗子 伴
英二 生田
Eiji Ikuta
英二 生田
良行 正源寺
Yoshiyuki Shogenji
良行 正源寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017193489A priority Critical patent/JP6915490B2/en
Publication of JP2019065800A publication Critical patent/JP2019065800A/en
Application granted granted Critical
Publication of JP6915490B2 publication Critical patent/JP6915490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To provide an internal combustion engine control device capable of continuing a dither control after self-ignition.SOLUTION: A CPU 32 executes a dither control for making one of cylinders #1 to #4 to a rich combustion cylinder whose air-fuel ratio is richer than a stoichiometric air-fuel ratio, and others of the cylinders to lean combustion cylinders whose air-fuel ratio is leaner than the stoichiometric air-fuel ratio, under a condition that a temperature rise request occurs to a three-way catalyst 24. The CPU 32 exceptionally increases an injection amount of a cylinder in which self-ignition occurs in its combustion cycle without stopping the dither control, when the self-ignition occurs.SELECTED DRAWING: Figure 1

Description

本発明は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とする内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that controls an internal combustion engine including an exhaust gas purification device that purifies exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders.

たとえば特許文献1には、触媒装置(触媒)の昇温要求がある場合、一部の気筒を、その空燃比が理論空燃比よりもリッチとなるリッチ燃焼気筒とし、残りの気筒を、その空燃比が理論空燃比よりもリーンとなるリーン燃焼気筒とするディザ制御を実行する制御装置が記載されている。   For example, in Patent Document 1, when there is a temperature increase request of a catalyst device (catalyst), some cylinders are rich combustion cylinders whose air fuel ratio becomes richer than the theoretical air fuel ratio, and the remaining cylinders are empty A control device is described which executes dither control to make a lean combustion cylinder in which the fuel ratio is leaner than the stoichiometric air fuel ratio.

特開2004−218541号公報Unexamined-Japanese-Patent No. 2004-218541

ところで、内燃機関の燃焼室内の温度領域には、点火装置の火花放電に先立って混合気が自着火する現象が生じやすい領域がある。自着火が生じると、燃焼室内の温度が上昇するため、連続して自着火が生じやすくなり、連続して自着火が生じる場合には、ディザ制御自体を停止せざるを得なくなり、結果として、ディザ制御による昇温効果が低下する。   By the way, in the temperature range in the combustion chamber of the internal combustion engine, there is a range in which the phenomenon that the air-fuel mixture self-ignites easily occurs prior to the spark discharge of the igniter. When self-ignition occurs, the temperature in the combustion chamber rises, so self-ignition tends to occur continuously, and when self-ignition occurs continuously, the dither control itself has to be stopped, and as a result, The temperature rise effect by dither control is reduced.

上記課題を解決すべく、内燃機関の制御装置は、複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、前記ディザ制御処理が実行されているときに自着火を検出する検出処理と、前記検出処理によって自着火が検出された場合、自着火が生じた気筒の噴射量を前記ディザ制御処理によって要求される量に対して増量する増量処理と、を実行する。   In order to solve the above problems, a control device for an internal combustion engine controls an internal combustion engine including an exhaust gas purification device for purifying exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders. The target is that some of the plurality of cylinders are rich combustion cylinders whose air fuel ratio is richer than the theoretical air fuel ratio, and cylinders other than the some cylinders of the plurality of cylinders are used. A dither control process for operating the fuel injection valve so as to make the air-fuel ratio leaner than the stoichiometric air-fuel ratio, and a detection process for detecting self-ignition when the dither control process is being performed; When self-ignition is detected by the detection processing, an increase processing is performed to increase the injection amount of the cylinder in which self-ignition has occurred with respect to the amount required by the dither control processing.

上記構成では、ディザ制御中に自着火が生じると、増量処理によって、自着火が生じた気筒の噴射量を増量することにより、自着火が生じた気筒を冷却する。これにより、その気筒において自着火が連続して生じる事態となることを抑制できる。このため、自着火が生じた後もディザ制御を継続することが可能となる。   In the above configuration, when self-ignition occurs during dither control, the amount of injection of the cylinder where self-ignition occurs is increased by the increase processing to cool the cylinder where self-ignition has occurred. As a result, it is possible to suppress the occurrence of continuous self-ignition in the cylinder. Therefore, dither control can be continued even after self-ignition occurs.

一実施形態にかかる制御装置および内燃機関を示す図。FIG. 1 shows a control device and an internal combustion engine according to one embodiment. 同実施形態にかかる制御装置が実行する処理の手順を示す流れ図。The flowchart which shows the procedure of the process which the control apparatus concerning the embodiment performs.

以下、内燃機関の制御装置にかかる一実施形態について図面を参照しつつ説明する。
図1に示す内燃機関10において、吸気通路12から吸入された空気は、過給機14を介して各気筒の燃焼室16に流入する。燃焼室16には、燃料を噴射する燃料噴射弁18と、火花放電を生じさせる点火装置20とが設けられている。燃焼室16において、空気と燃料との混合気は、燃焼に供され、燃焼に供された混合気は、排気として、排気通路22に排出される。排気通路22のうちの過給機14の下流には、酸素吸蔵能力を有した三元触媒24が設けられている。
Hereinafter, an embodiment according to a control device for an internal combustion engine will be described with reference to the drawings.
In the internal combustion engine 10 shown in FIG. 1, air taken in from the intake passage 12 flows into the combustion chamber 16 of each cylinder via the supercharger 14. The combustion chamber 16 is provided with a fuel injection valve 18 for injecting fuel and an igniter 20 for generating spark discharge. In the combustion chamber 16, the mixture of air and fuel is subjected to combustion, and the mixture supplied to combustion is discharged to the exhaust passage 22 as exhaust gas. A three-way catalyst 24 having an oxygen storage capacity is provided downstream of the turbocharger 14 in the exhaust passage 22.

制御装置30は、内燃機関10を制御対象とし、その制御量(トルク、排気成分等)を制御するために、燃料噴射弁18や点火装置20等の内燃機関10の操作部を操作する。この際、制御装置30は、三元触媒24の上流側の空燃比センサ40によって検出される空燃比Afや、クランク角センサ44の出力信号Scr、エアフローメータ46によって検出される吸入空気量Ga、ノッキングセンサ48の出力信号Snを参照する。制御装置30は、CPU32、ROM34、およびRAM36を備えており、ROM34に記憶されたプログラムをCPU32が実行することにより上記制御量の制御を実行する。   The control device 30 controls the internal combustion engine 10, and operates the operation part of the internal combustion engine 10 such as the fuel injection valve 18 and the ignition device 20 in order to control the control amount (torque, exhaust component, etc.). At this time, the controller 30 controls the air-fuel ratio Af detected by the air-fuel ratio sensor 40 upstream of the three-way catalyst 24, the output signal Scr of the crank angle sensor 44, the intake air amount Ga detected by the air flow meter 46, The output signal Sn of the knocking sensor 48 is referred to. The control device 30 includes a CPU 32, a ROM 34, and a RAM 36. The CPU 32 executes a program stored in the ROM 34 to control the control amount.

図2に、制御装置30が実行する処理の1つを示す。図2に示す処理は、ROM34に記憶されたプログラムをCPU32がたとえば所定周期で繰り返し実行することにより実現される。   FIG. 2 shows one of the processes performed by the control device 30. The process shown in FIG. 2 is realized by the CPU 32 repeatedly executing the program stored in the ROM 34 at a predetermined cycle, for example.

図2に示す一連の処理において、CPU32は、まず、ディザ制御による三元触媒24の昇温要求があるか否かを判定する(S10)。本実施形態では、三元触媒24の暖機要求が生じていることと、硫黄被毒回復処理の実行要求が生じていることとの論理和が真である場合に、ディザ制御による昇温要求があると判定する。ここで、三元触媒24の暖機要求は、内燃機関10の始動からの吸入空気量Gaの積算値InGaが第1規定値Inth1以上である旨の条件(ア)と、積算値InGaが第2規定値Inth2以下である旨の条件(イ)との論理積が真である場合に生じるものとする。ここで、第2規定値Inth2は、第1規定値Inth1よりも大きい。なお、条件(ア)は、三元触媒24の上流側の端部の温度が活性温度となっていると判定される条件である。また、条件(イ)は、三元触媒24の全体が未だ活性状態となっていないと判定される条件である。一方、硫黄被毒回復処理の実行要求は、硫黄被毒量が所定量以上となる場合に生じるものとする。ここで、CPU32は、図2とは別の処理で、燃料噴射弁18の噴射量の積算値に基づき硫黄被毒量を算出する。   In the series of processes shown in FIG. 2, the CPU 32 first determines whether there is a temperature increase request for the three-way catalyst 24 by dither control (S10). In the present embodiment, the temperature increase request by dither control is performed when the logical sum of the request for warm-up of the three-way catalyst 24 and the request for execution of the sulfur poisoning recovery processing is true. It is determined that there is Here, the warm-up requirement of the three-way catalyst 24 is the condition (i) that the integrated value InGa of the intake air amount Ga from the start of the internal combustion engine 10 is greater than or equal to the first specified value Inth1; (2) It occurs when the logical product with the condition (i) that the specified value Inth2 or less is true is true. Here, the second predetermined value Inth2 is larger than the first predetermined value Inth1. Condition (a) is a condition determined that the temperature of the upstream end of the three-way catalyst 24 is the activation temperature. Condition (i) is a condition under which it is determined that the entire three-way catalyst 24 has not yet been activated. On the other hand, the execution request of the sulfur poisoning recovery process is generated when the sulfur poisoning amount is equal to or more than a predetermined amount. Here, the CPU 32 calculates the sulfur poisoning amount based on the integrated value of the injection amount of the fuel injection valve 18 in a process different from that of FIG. 2.

CPU32は、昇温要求があると判定する場合(S10:YES)、ベース噴射量Qbにフィードバック操作量KAFを乗算することによって要求噴射量Qdを算出する(S12)。ここで、ベース噴射量Qbは、燃焼室16における混合気の空燃比を目標空燃比に開ループ制御するための操作量である開ループ操作量であり、CPU32により、クランク角センサ44の出力信号Scrに基づき算出された回転速度NEと吸入空気量Gaとに基づき算出される。一方、フィードバック操作量KAFは、フィードバック制御量である空燃比Afを目標値Af*にフィードバック制御するための操作量である。本実施形態では、目標値Af*と空燃比Afとの差を入力とする比例要素、積分要素、および微分要素の各出力値の和を、ベース噴射量Qbの補正比率δとし、フィードバック操作量KAFを、「1+δ」とする。   When determining that there is a temperature increase request (S10: YES), the CPU 32 multiplies the base injection amount Qb by the feedback operation amount KAF to calculate the required injection amount Qd (S12). Here, the base injection amount Qb is an open loop operation amount that is an operation amount for open loop control of the air fuel ratio of the air fuel mixture in the combustion chamber 16 to the target air fuel ratio, and the CPU 32 outputs an output signal of the crank angle sensor 44 It is calculated based on the rotational speed NE calculated based on Scr and the intake air amount Ga. On the other hand, the feedback operation amount KAF is an operation amount for performing feedback control of the air-fuel ratio Af, which is a feedback control amount, to the target value Af *. In this embodiment, the sum of the output values of the proportional element, the integral element, and the differential element, which receives the difference between the target value Af * and the air-fuel ratio Af, is taken as the correction ratio δ of the base injection amount Qb. Let KAF be “1 + δ”.

次に、CPU32は、内燃機関10の気筒#1〜#4のそれぞれから排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等としつつも、燃焼対象とする混合気の空燃比を気筒間で異ならせるディザ制御による要求噴射量Qdの補正要求値(噴射量補正要求値α)を算出して出力する(S14)。ここで、本実施形態にかかるディザ制御では、第1の気筒#1〜第4の気筒#4のうちの1つの気筒を、混合気の空燃比を理論空燃比よりもリッチとするリッチ燃焼気筒とし、残りの3つの気筒を、混合気の空燃比を理論空燃比よりもリーンとするリーン燃焼気筒とする。そして、リッチ燃焼気筒における噴射量を、上記要求噴射量Qdの「1+α」倍とし、リーン燃焼気筒における噴射量を、要求噴射量Qdの「1−(α/3)」倍とする。リーン燃焼気筒とリッチ燃焼気筒との上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、内燃機関10の各気筒#1〜#4から排出される排気全体の成分を、気筒#1〜#4の全てで燃焼対象とする混合気の空燃比を目標空燃比とした場合と同等とすることができる。なお、上記噴射量の設定によれば、気筒#1〜#4のそれぞれに充填される空気量が同一であるなら、各気筒において燃焼対象とされる混合気の燃空比の平均値の逆数が目標空燃比となる。なお、燃空比とは、空燃比の逆数のことである。   Next, the CPU 32 sets the air-fuel ratio of the air-fuel mixture to be burned by all the cylinders # 1 to # 4 as the component of the entire exhaust discharged from each of the cylinders # 1 to # 4 of the internal combustion engine 10 to the target air-fuel ratio The correction required value (the injection amount correction required value α) of the required injection amount Qd is calculated and output by the dither control in which the air fuel ratio of the mixture to be combusted is made different among the cylinders while being equivalent to the case S14). Here, in the dither control according to the present embodiment, a rich combustion cylinder in which one of the first cylinder # 1 to the fourth cylinder # 4 is made richer in air-fuel ratio of air-fuel mixture than stoichiometric air-fuel ratio Let the remaining three cylinders be lean-burning cylinders in which the air-fuel ratio of the mixture is leaner than the stoichiometric air-fuel ratio. Then, the injection amount in the rich combustion cylinder is made “1 + α” times the required injection amount Qd, and the injection amount in the lean combustion cylinder is made “1− (α / 3)” times the required injection amount Qd. According to the setting of the injection amount of the lean combustion cylinder and the rich combustion cylinder, if the amount of air charged in each of the cylinders # 1 to # 4 is the same, from each cylinder # 1 to # 4 of the internal combustion engine 10 The component of the entire exhaust gas to be discharged can be made equal to the case where the air-fuel ratio of the mixture to be burned in all the cylinders # 1 to # 4 is made the target air-fuel ratio. Note that according to the setting of the injection amount, if the amount of air charged in each of the cylinders # 1 to # 4 is the same, the reciprocal of the average value of the fuel / air ratio of the mixture to be burned in each cylinder Becomes the target air-fuel ratio. The fuel-air ratio is the reciprocal of the air-fuel ratio.

詳しくは、CPU32は、内燃機関10の動作点を規定する回転速度NEおよび負荷率KLに基づき、噴射量補正要求値αを可変設定する。ここで、負荷率KLは、燃焼室16内に充填される空気量を示すパラメータであり、CPU32により、吸入空気量Gaに基づき算出される。負荷率KLは、基準流入空気量に対する、1気筒の1燃焼サイクル当たりの流入空気量の比である。ちなみに、基準流入空気量は、回転速度NEに応じて可変設定される量としてもよい。   Specifically, the CPU 32 variably sets the injection amount correction request value α based on the rotational speed NE and the load factor KL that define the operating point of the internal combustion engine 10. Here, the load factor KL is a parameter indicating the amount of air charged into the combustion chamber 16, and is calculated by the CPU 32 based on the amount of intake air Ga. The load factor KL is a ratio of the amount of inflowing air per one combustion cycle of one cylinder to the reference amount of inflowing air. Incidentally, the reference inflow air amount may be an amount variably set according to the rotational speed NE.

次にCPU32は、ノッキングセンサ48の出力信号Snに基づき、点火装置20の火花放電が生じるタイミング(点火時期)以前に燃焼室16内で混合気の燃焼が生じているか否かを、換言すれば自着火が生じているか否かを判定する(S16)。この処理は、点火時期以前に、燃焼に伴う振動をノッキングセンサ48が検知するか否かの判定処理となる。   Next, based on the output signal Sn of the knocking sensor 48, the CPU 32 determines whether combustion of air-fuel mixture occurs in the combustion chamber 16 before the timing (ignition timing) at which spark discharge of the ignition device 20 occurs. It is determined whether self-ignition has occurred (S16). This process is a process of determining whether or not the knocking sensor 48 detects a vibration associated with the combustion before the ignition timing.

CPU32は、自着火が生じていないと判定する場合(S16:NO)、今回、燃料噴射の対象となる気筒がリッチ燃焼気筒であるか否かを判定する(S18)。そしてCPU32は、リッチ燃焼気筒であると判定する場合(S18:YES)、噴射量指令値Q*に、「Qd・(1+α)」を代入する(S20)。これに対し、CPU32は、リーン燃焼気筒であると判定する場合(S18:NO)、噴射量指令値Q*に、「Qd・{1−(α/3)}」を代入する(S22)。そしてCPU32は、燃料噴射弁18から噴射量指令値Q*に応じた量の燃料を噴射すべく、燃料噴射弁18に操作信号MS2を出力する(S24)。   When it is determined that the self-ignition has not occurred (S16: NO), the CPU 32 determines whether the cylinder targeted for fuel injection is a rich combustion cylinder (S18). Then, when determining that the cylinder is a rich combustion cylinder (S18: YES), the CPU 32 substitutes “Qd · (1 + α)” for the injection amount command value Q * (S20). On the other hand, when determining that the cylinder is a lean combustion cylinder (S18: NO), the CPU 32 substitutes “Qd · {1- (α / 3)}” for the injection amount command value Q * (S22). Then, the CPU 32 outputs an operation signal MS2 to the fuel injection valve 18 in order to inject fuel of an amount according to the injection amount command value Q * from the fuel injection valve 18 (S24).

一方、CPU32は自着火を検出する場合(S16:YES)、要求噴射量Qdの増量係数Kを算出する(S26)。ここで、CPU32は、回転速度NEが大きいほど増量係数Kを大きい値に算出し、負荷率KLが大きいほど増量係数Kを大きい値に算出する。ここで、「K・Qd>Qd・(1+α)」である。次にCPU32は、要求噴射量Qdに増量係数Kを乗算した値を噴射量指令値Q*に代入する(S28)。そしてCPU32は、S24の処理に移行する。   On the other hand, when detecting self-ignition (S16: YES), the CPU 32 calculates the increase coefficient K of the required injection amount Qd (S26). Here, the CPU 32 calculates the increase coefficient K to a larger value as the rotation speed NE increases, and calculates the increase coefficient K to a larger value as the load factor KL increases. Here, “K · Qd> Qd · (1 + α)”. Next, the CPU 32 substitutes a value obtained by multiplying the required injection amount Qd by the increase coefficient K into the injection amount command value Q * (S28). Then, the CPU 32 shifts to the processing of S24.

なお、CPU32は、S24の処理が完了する場合や、S10の処理において否定判定する場合には、図2に示す一連の処理を一旦終了する。
ここで、本実施形態の作用を説明する。
When the process of S24 is completed or when the determination of step S10 is negative, the CPU 32 temporarily ends the series of processes shown in FIG.
Here, the operation of the present embodiment will be described.

CPU32は、自着火を検出すると、ディザ制御自体を停止することなく、自着火が生じた気筒について、その燃焼サイクル中に例外的にディザ制御による噴射量よりも増量された噴射量「K・Qd」の燃料を噴射することにより、自着火が生じた気筒を冷却する。これにより、自着火が連続的に生じることを抑制できることから、その後は、ディザ制御の要求通りに燃料を噴射することができる。したがって、ディザ制御による三元触媒24の昇温効果を高く維持することができる。   When the CPU 32 detects self-ignition, the injection amount “K · Qd increased exceptionally over the injection amount by the dither control during the combustion cycle for the cylinder where self-ignition occurred, without stopping the dither control itself. By injecting fuel, the cylinder in which self-ignition has occurred is cooled. As a result, it is possible to suppress the occurrence of self-ignition continuously, and thereafter, it is possible to inject fuel as required for dither control. Therefore, the temperature increase effect of the three-way catalyst 24 by the dither control can be maintained high.

以上説明した本実施形態によれば、さらに以下に記載する効果が得られる。
(1)リーン燃焼気筒は、もともとの噴射量が少ないため、もともとの噴射量を増量したところで自着火抑制効果が低くなるおそれがある。そこで、自着火を生じた気筒がリッチ燃焼気筒であるかリーン燃焼気筒であるかにかかわらず、噴射量「K・Qd」の燃料を噴射することにより、自着火の抑制効果を確保した。
According to the embodiment described above, the following effects can be obtained.
(1) Since the lean combustion cylinder has a small amount of original injection, there is a possibility that the self-ignition suppressing effect becomes low when the original amount of injection is increased. Therefore, regardless of whether the self-ignitioned cylinder is a rich-burning cylinder or a lean-burning cylinder, the injection suppression effect of the self-ignition is secured by injecting the fuel of the injection amount “K · Qd”.

(2)自着火した場合の噴射量の増量量を、内燃機関10の動作点に応じて可変設定した。これにより、過度に増量量が多くなることを抑制できることから、空燃比の乱れを極力抑制できる。   (2) The amount of increase of the injection amount at the time of self-ignition is variably set according to the operating point of the internal combustion engine 10. As a result, it is possible to suppress an excessive increase in the amount of increase, so it is possible to suppress the disturbance of the air-fuel ratio as much as possible.

<対応関係>
上記実施形態における事項と、上記「課題を解決するための手段」の欄に記載した事項との対応関係は、次の通りである。排気浄化装置は、三元触媒24に対応し、ディザ制御処理は、S18〜S24の処理に対応し、検出処理は、S16の処理に対応し、増量処理は、S26,S28の処理に対応する。
<Correspondence relationship>
Correspondence between the matters in the above-mentioned embodiment and the matters described in the above-mentioned "means for solving the problem" is as follows. The exhaust gas purification apparatus corresponds to the three-way catalyst 24, the dither control processing corresponds to the processing of S18 to S24, the detection processing corresponds to the processing of S16, and the increase processing corresponds to the processing of S26 and S28. .

<その他の実施形態>
なお、上記実施形態の各事項の少なくとも1つを、以下のように変更してもよい。
・上記実施形態では、ノッキングセンサ48の出力信号Snに基づき自着火を検出したが、これに限らない。たとえば、燃焼室16内の圧力(筒内圧)を検出するセンサの出力信号に基づき、点火時期に先立って筒内圧が大きく上昇する場合に自着火を検出するなどしてもよい。
<Other Embodiments>
In addition, you may change at least one of each matter of the said embodiment as follows.
-Although self-ignition was detected based on output signal Sn of knocking sensor 48 in the above-mentioned embodiment, it does not restrict to this. For example, self-ignition may be detected based on an output signal of a sensor that detects the pressure in the combustion chamber 16 (in-cylinder pressure), when the in-cylinder pressure is largely increased prior to the ignition timing.

・上記実施形態では、負荷率KLに基づき増量係数Kを可変設定したが、内燃機関10の負荷としては、負荷率KLに限らず、たとえば、ベース噴射量Qbであってもよく、またたとえばアクセル操作量等であってもよい。   In the above embodiment, the increasing coefficient K is variably set based on the load factor KL. However, the load of the internal combustion engine 10 is not limited to the load factor KL, and may be, for example, the base injection amount Qb. It may be an operation amount or the like.

・増量係数Kを可変設定するパラメータとしては、回転速度NEおよび負荷に限らない。たとえば、内燃機関10の冷却水の温度等、内燃機関10の温度を示すパラメータであってもよい。この場合、内燃機関10の温度が高い場合に低い場合よりも増量係数Kを大きい値に算出すればよい。またたとえば、吸気バルブの閉弁タイミングが可変設定可能な内燃機関10においては、閉弁タイミングに応じて増量係数Kを可変設定してもよい。   The parameters for variably setting the increasing coefficient K are not limited to the rotational speed NE and the load. For example, the parameter may indicate the temperature of the internal combustion engine 10, such as the temperature of the cooling water of the internal combustion engine 10. In this case, the increase coefficient K may be calculated to be a larger value when the temperature of the internal combustion engine 10 is high than when the temperature is low. Further, for example, in the internal combustion engine 10 in which the valve closing timing of the intake valve can be variably set, the increase coefficient K may be variably set according to the valve closing timing.

・増量係数Kを可変設定すること自体必須ではない。
・上記実施形態では、自着火が生じた場合、その燃焼サイクルにおいて自着火が生じた気筒において噴射量を増量したが、噴射量の増量が間に合わない場合、次の燃焼サイクルにおいて自着火が生じた気筒の噴射量を増量してもよい。
It is not essential to variably set the increase coefficient K.
In the above embodiment, when self-ignition occurs, the injection amount is increased in the cylinder where self-ignition occurred in the combustion cycle, but when the increase in injection amount is not in time, auto-ignition occurred in the next combustion cycle The injection amount of the cylinder may be increased.

・内燃機関としては、4気筒の内燃機関に限らない。また、燃料噴射弁としては、燃焼室16に燃料を噴射するものに限らず、吸気通路12に燃料を噴射するものであってもよい。ただし、その場合、自着火が生じた場合、その燃焼サイクルにおいて自着火が生じた気筒において噴射量を増量できないと思われるため、次の燃焼サイクルにおいて自着火が生じた気筒の噴射量を増量する。   The internal combustion engine is not limited to a four-cylinder internal combustion engine. Further, the fuel injection valve is not limited to one injecting fuel into the combustion chamber 16, but may be one injecting fuel into the intake passage 12. However, in this case, when self-ignition occurs, it seems that the injection amount can not be increased in the cylinder where self-ignition occurred in that combustion cycle, so the injection amount of the cylinder where self-ignition occurred in the next combustion cycle is increased .

10…内燃機関、12…吸気通路、14…過給機、16…燃焼室、18…燃料噴射弁、20…点火装置、22…排気通路、24…三元触媒、30…制御装置、32…CPU、34…ROM、36…RAM、40…空燃比センサ、44…クランク角センサ、46…エアフローメータ、48…ノッキングセンサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 12 ... Intake passage, 14 ... Turbocharger, 16 ... Combustion chamber, 18 ... Fuel injection valve, 20 ... Ignition device, 22 ... Exhaust passage, 24 ... Three-way catalyst, 30 ... Control device, 32 ... CPU, 34: ROM, 36: RAM, 40: Air-fuel ratio sensor, 44: Crank angle sensor, 46: Air flow meter, 48: Knocking sensor.

Claims (1)

複数の気筒から排出された排気を浄化する排気浄化装置と、前記複数の気筒毎に設けられた燃料噴射弁と、を備える内燃機関を制御対象とし、
前記複数の気筒のうちの一部の気筒を、空燃比が理論空燃比よりもリッチであるリッチ燃焼気筒とし、前記複数の気筒のうちの前記一部の気筒とは別の気筒を、空燃比が理論空燃比よりもリーンであるリーン燃焼気筒とすべく、前記燃料噴射弁を操作するディザ制御処理と、
前記ディザ制御処理が実行されているときに自着火を検出する検出処理と、
前記検出処理によって自着火が検出された場合、自着火が生じた気筒の噴射量を前記ディザ制御処理によって要求される量に対して増量する増量処理と、を実行する内燃機関の制御装置。
An internal combustion engine including an exhaust gas purification device for purifying exhaust gas discharged from a plurality of cylinders, and a fuel injection valve provided for each of the plurality of cylinders as a control target,
A part of the plurality of cylinders is a rich combustion cylinder whose air-fuel ratio is richer than the stoichiometric air-fuel ratio, and a cylinder other than the part of the plurality of cylinders is an air-fuel ratio Dither control processing for operating the fuel injection valve so as to make the lean combustion cylinder leaner than the stoichiometric air fuel ratio;
Detection processing for detecting self-ignition when the dither control processing is being performed;
A control device for an internal combustion engine that executes an increase processing to increase the injection amount of a cylinder in which self-ignition has occurred with respect to the amount required by the dither control processing when self-ignition is detected by the detection processing.
JP2017193489A 2017-10-03 2017-10-03 Internal combustion engine control device Active JP6915490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193489A JP6915490B2 (en) 2017-10-03 2017-10-03 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193489A JP6915490B2 (en) 2017-10-03 2017-10-03 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2019065800A true JP2019065800A (en) 2019-04-25
JP6915490B2 JP6915490B2 (en) 2021-08-04

Family

ID=66337810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193489A Active JP6915490B2 (en) 2017-10-03 2017-10-03 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6915490B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261129A (en) * 1995-03-20 1996-10-08 Toyota Motor Corp Preignition detecting device for internal combustion engine
JPH0988564A (en) * 1995-09-18 1997-03-31 Denso Corp Controller for internal combustion engine
JP2004218541A (en) * 2003-01-15 2004-08-05 Toyota Motor Corp Control device for internal combustion engine
JP2011163322A (en) * 2010-02-15 2011-08-25 Nippon Soken Inc Control device for internal combustion engine
JP2015014229A (en) * 2013-07-04 2015-01-22 株式会社日本自動車部品総合研究所 Abnormal combustion avoidance device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261129A (en) * 1995-03-20 1996-10-08 Toyota Motor Corp Preignition detecting device for internal combustion engine
JPH0988564A (en) * 1995-09-18 1997-03-31 Denso Corp Controller for internal combustion engine
JP2004218541A (en) * 2003-01-15 2004-08-05 Toyota Motor Corp Control device for internal combustion engine
JP2011163322A (en) * 2010-02-15 2011-08-25 Nippon Soken Inc Control device for internal combustion engine
JP2015014229A (en) * 2013-07-04 2015-01-22 株式会社日本自動車部品総合研究所 Abnormal combustion avoidance device for internal combustion engine

Also Published As

Publication number Publication date
JP6915490B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP5348190B2 (en) Control device for internal combustion engine
JP2004218541A (en) Control device for internal combustion engine
US10550788B2 (en) Controller and control method for internal combustion engine
CN109595086B (en) Control device and method for internal combustion engine
US10174696B2 (en) Control apparatus for internal combustion engine
US10677180B2 (en) Controller and control method for internal combustion engine
JP2019065820A (en) Internal combustion engine control device
JP6866827B2 (en) Internal combustion engine control device
US10989125B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP6737209B2 (en) Control device for internal combustion engine
US11454182B2 (en) Controller and control method for internal combustion engine
JP2019100295A (en) Control device of internal combustion engine
JP6915490B2 (en) Internal combustion engine control device
JP7196391B2 (en) Control device for internal combustion engine
US10900428B2 (en) Controller for internal combustion engine
US10626818B2 (en) Control device for internal combustion engine
JP6881247B2 (en) Internal combustion engine control device
JP2018105225A (en) Control device of internal combustion engine
JP6828646B2 (en) Internal combustion engine control device
JP6984552B2 (en) Internal combustion engine control device
JP2023067573A (en) Control device for internal combustion engine
JP2019031960A (en) Internal combustion engine control device
JP2022163953A (en) Control device of internal combustion engine
JP2023132154A (en) Control device for internal combustion engine
JP2018141382A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R151 Written notification of patent or utility model registration

Ref document number: 6915490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151