JP2019065115A - High-gloss foamed particles, foamed molding, and method for producing them - Google Patents

High-gloss foamed particles, foamed molding, and method for producing them Download PDF

Info

Publication number
JP2019065115A
JP2019065115A JP2017190109A JP2017190109A JP2019065115A JP 2019065115 A JP2019065115 A JP 2019065115A JP 2017190109 A JP2017190109 A JP 2017190109A JP 2017190109 A JP2017190109 A JP 2017190109A JP 2019065115 A JP2019065115 A JP 2019065115A
Authority
JP
Japan
Prior art keywords
particles
foam
gloss
foaming
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017190109A
Other languages
Japanese (ja)
Other versions
JP6867265B2 (en
Inventor
近藤 広隆
Hirotaka Kondo
広隆 近藤
裕一 権藤
Yuichi Gondo
裕一 権藤
高野 雅之
Masayuki Takano
雅之 高野
洵史 山下
Junshi Yamashita
洵史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd, Toyobo Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2017190109A priority Critical patent/JP6867265B2/en
Publication of JP2019065115A publication Critical patent/JP2019065115A/en
Application granted granted Critical
Publication of JP6867265B2 publication Critical patent/JP6867265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide high-gloss foamed particles capable of providing a foamed molding having a surface with high glossiness.SOLUTION: High-gloss foamed particles are formed of a resin composition containing an ester-based elastomer as a base material resin, where the high-gloss foamed particles have a plurality of air bubbles satisfying a relationship of A>B (A is average bubble diameter of surface layer part, and B is average bubble diameter of center part), the average bubble diameter of the surface layer part is 80-400 μm, and the average bubble diameter of the center part is 10-200 μm. In the high-gloss foamed particles, A and B satisfy a relationship of A/B>1. In the high-gloss foamed particles, the resin composition has at least one of storage elastic modulus by solid viscoelasticity measurement at Vicat softening temperature Tv-10°C of 1×10to 2×10Pa, and storage elastic modulus at a crystallization temperature Tc of 1×10to 2×10Pa.SELECTED DRAWING: Figure 1

Description

本発明は、高光沢発泡粒子、発泡成形体及びそれらの製造方法に関する。更に詳しくは、本発明は、光沢性の高い表面を有する発泡成形体を与え得る高光沢発泡粒子及びその製造方法、光沢性の高い表面を有する発泡成形体及びそれらの製造方法に関する。   The present invention relates to high gloss foam particles, foam moldings and methods for their production. More particularly, the present invention relates to high gloss foam particles capable of providing a foam having a high gloss surface, a method for producing the same, a foam having a high gloss surface, and a method for producing them.

従来、緩衝材や梱包材として、ポリスチレン、ポリプロピレン等からなる発泡粒子を複数個融着させた発泡成形体が汎用されている。発泡粒子を複数個融着させた発泡成形体は、押出発泡による発泡成形体に比べて、複雑な形状を形成可能であるという利点を有している。ポリスチレン、ポリプロピレン等からなる発泡成形体は、高い反発弾性が求められる用途では使用し難いという課題があった。そのため、高い反発弾性を実現できる発泡成形体が求められていた。
上記求めに応じて、特開2016−190989号公報(特許文献1)には、アミド系エラストマー発泡粒子を用いた発泡成形体が提案されている。
Conventionally, as a shock absorbing material or a packing material, a foam molded article in which a plurality of foam particles made of polystyrene, polypropylene or the like are fused is widely used. A foam molded article in which a plurality of foam particles are fused is advantageous in that it can form a complicated shape as compared to a foam molded article by extrusion foaming. There has been a problem that a foam molded article made of polystyrene, polypropylene or the like is difficult to use in applications where high impact resilience is required. Therefore, a foam molded article that can realize high impact resilience has been required.
According to the said request | requirement, the foaming molding using an amide-type elastomer foam particle is proposed by Unexamined-Japanese-Patent No. 2016-190989 (patent document 1).

特開2016−190989号公報JP, 2016-190989, A

本発明の発明者等は、アミド系エラストマー以外に、優れた反発弾性を有するエステル系エラストマーでも発泡粒子を製造できることを見い出している。
ところで、発泡粒子やこれから得られた発泡成形体を人目につく様な外部構造に使用する場合、デザイン性を向上させるために、表面に高い光沢性を求められることがある。光沢性の付与方法には、基材樹脂に光沢性付与材(パール顔料や金属粉末)を混合する方法、発泡粒子や発泡成形体の表面を光沢性付与材を含む塗料で塗装する方法が挙げられる。しかし、前者の方法では、光沢性付与材が発泡時に気泡核剤として働くため、気泡径の制御が困難であるという課題があった。後者の方法では、塗装工程の追加によるコスト増加や、剥がれによる塗装の耐久性が劣る、という課題があった。
The inventors of the present invention have found that, in addition to the amide-based elastomer, foamed particles can be produced even with an ester-based elastomer having excellent resilience.
By the way, when using a foaming particle or the foaming molding obtained from this for an external structure which can be noticed visually, high glossiness may be calculated | required by the surface in order to improve design property. Examples of the method for imparting gloss include a method of mixing a gloss imparting material (pearl pigment or metal powder) with a base resin, and a method of coating the surface of a foamed particle or a foam molded article with a paint containing a gloss imparting material. Be However, the former method has a problem that it is difficult to control the cell diameter because the gloss-imparting material acts as a cell nucleating agent at the time of foaming. In the latter method, there is a problem that the cost increases due to the addition of the coating process and the durability of the coating due to peeling is inferior.

本発明の発明者等は、鋭意検討の結果、表層部と中心部との平均気泡径が特定の関係を有する発泡粒子であれば、光沢性の高い表面を有する発泡成形体を提供できることを意外にも見い出すことで本発明に至った。   The inventors of the present invention were surprised that, as a result of intensive studies, if foam particles having an average cell diameter between the surface layer portion and the center portion have a specific relationship, a foam molded article having a surface with high glossiness can be provided. The present invention has been made by finding out also.

かくして本発明によれば、エステル系エラストマーを基材樹脂として含む樹脂組成物から構成される高光沢発泡粒子であり、
前記高光沢発泡粒子が、A>Bの関係(Aは表層部の平均気泡径、Bは中心部の平均気泡径)を満たす複数の気泡を有し、
前記表層部の平均気泡径が、80〜400μmであり、前記中心部の平均気泡径が、10〜200μmであることを特徴とする高光沢発泡粒子が提供される。
また、本発明によれば、上記高光沢発泡粒子を製造する方法であって、
前記エステル系エラストマーを基材樹脂とする樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、前記発泡性粒子を発泡させる工程とを含むことを特徴とする高光沢発泡粒子の製造方法が提供される。
更に、本発明によれば、上記高光沢発泡粒子を型内発泡させて得られた発泡成形体が提供される。
また、本発明によれば、上記発泡成形体を製造する方法であって、
ゲージ圧0.05〜0.4MPaの水蒸気を加熱媒体として上記高光沢発泡粒子を型内発泡させる工程を含むことを特徴とする発泡成形体の製造方法が提供される。
Thus, according to the present invention, high-gloss foam particles composed of a resin composition containing an ester elastomer as a base resin,
The high gloss foam particles have a plurality of cells satisfying the relationship of A> B (A is an average cell diameter of the surface layer portion and B is an average cell diameter of a center portion),
The high gloss foam particles are provided, wherein the average cell diameter of the surface layer portion is 80 to 400 μm, and the average cell diameter of the central portion is 10 to 200 μm.
Further, according to the present invention, there is provided a method of producing the above-mentioned high gloss foam particles,
A method of producing high-gloss foam particles, comprising the steps of: impregnating a resin particle containing the ester elastomer as a base resin with a foaming agent to obtain foamable particles; and foaming the foamable particles. Is provided.
Furthermore, according to the present invention, there is provided a foam molded article obtained by in-mold foaming of the high gloss foam particles.
Further, according to the present invention, there is provided a method of producing the above-mentioned foam molded article,
A process for producing a foam molded article is provided, including the step of in-mold foaming of the high gloss foam particles using a steam having a gauge pressure of 0.05 to 0.4 MPa as a heating medium.

本発明の高光沢発泡粒子は、光沢性の高い表面を有する発泡成形体を提供できる。   The high gloss foam particles of the present invention can provide a foam molded article having a high gloss surface.

また、以下のいずれかの場合、より光沢性の高い表面を有する発泡成形体を製造し得る高光沢発泡粒子を提供できる。
(1)A及びBが、A/B>1.5の関係を満たす。
(2)樹脂組成物が、(i)1×10〜2×10Paのビカット軟化温度Tv−10℃における固体粘弾性による貯蔵弾性率、及び(ii)1×10〜2×10Paの結晶化温度Tcにおける溶融粘弾性測定による貯蔵弾性率のいずれかの物性を有する。
(3)高光沢発泡粒子が、
(i)0.02〜0.4g/cmの嵩密度
(ii)1.5〜15mmの平均粒子径
のいずれかの物性を少なくとも有する。
In addition, in any of the following cases, high gloss foam particles can be provided which can produce a foam molded article having a surface having a higher glossiness.
(1) A and B satisfy the relationship of A / B> 1.5.
(2) The resin composition is (i) a storage elastic modulus by solid viscoelasticity at a Vicat softening temperature Tv-10 ° C. of 1 × 10 7 to 2 × 10 8 Pa, and (ii) 1 × 10 6 to 2 × 10 It has any physical properties of storage elastic modulus by melt viscoelasticity measurement at a crystallization temperature Tc of 7 Pa.
(3) High gloss foam particles,
(I) Bulk density of 0.02 to 0.4 g / cm 3 (ii) It has at least physical properties of any of average particle diameter of 1.5 to 15 mm.

実施例1の発泡粒子の断面写真である。It is a cross-sectional photograph of the foaming particle of Example 1. 実施例2の発泡粒子の断面写真である。7 is a cross-sectional photograph of the expanded beads of Example 2. 実施例3の発泡粒子の断面写真である。7 is a cross-sectional photograph of the foamed particles of Example 3. 比較例1の発泡粒子の断面写真である。It is a cross-sectional photograph of the foaming particle of comparative example 1.

(高光沢発泡粒子)
本発明の高光沢発泡粒子(以下、単に発泡粒子)は、基材樹脂としてのエステル系エラストマーを含む樹脂組成物から構成される。本明細書において高い光沢性とは、正反射方向の反射の度合いが高く、樹脂光沢を有する状態を意味すると発明者等は考えている。
(High gloss foam particles)
The high gloss foamed particles (hereinafter simply referred to as foamed particles) of the present invention are composed of a resin composition containing an ester elastomer as a base resin. In the present specification, the inventors consider that high glossiness means a state in which the degree of reflection in the regular reflection direction is high and the resin has gloss.

(1)エステル系エラストマー
エステル系エラストマーは、発泡成形体を与えさえすれば特に限定されない。例えば、ハードセグメントとソフトセグメントとを含むエステル系エラストマーが挙げられる。
ハードセグメントは、例えば、ジカルボン酸成分及び/又はジオール成分から構成される。ジカルボン酸成分と、ジカルボン酸成分及びジオール成分との2成分から構成されていてもよい。
ジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸等の脂肪族ジカルボン酸及びその誘導体、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びその誘導体に由来する成分が挙げられる。
ジオール成分としては、エチレングリコール、プロピレングリコール、ブタンジオール(例えば、1,4−ブタンジオール)等のC2−10アルキレングリコール、(ポリ)オキシC2−10アルキレングリコール、C5−12シクロアルカンジオール、ビスフェノール類又はこれらのアルキレンオキサイド付加体等が挙げられる。ハードセグメントは、結晶性を有していてもよい。
(1) Ester-Based Elastomer The ester-based elastomer is not particularly limited as long as it provides a foam. For example, an ester-based elastomer containing a hard segment and a soft segment can be mentioned.
The hard segment is composed of, for example, a dicarboxylic acid component and / or a diol component. You may be comprised from 2 components of a dicarboxylic acid component, and a dicarboxylic acid component and a diol component.
Examples of the dicarboxylic acid component include components derived from aliphatic dicarboxylic acids such as oxalic acid, malonic acid and succinic acid and derivatives thereof, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene dicarboxylic acid and derivatives thereof.
As a diol component, C 2-10 alkylene glycol such as ethylene glycol, propylene glycol, butanediol (eg, 1,4-butanediol), (poly) oxy C 2-10 alkylene glycol, C 5-12 cycloalkanediol And bisphenols or alkylene oxide adducts thereof. The hard segment may have crystallinity.

ソフトセグメントは、ポリエステルタイプ及び/又はポリエーテルタイプのセグメントを使用できる。
ポリエステルタイプのソフトセグメントとしては、ジカルボン酸類(アジピン酸のような脂肪族C4−12ジカルボン酸)とジオール類(1,4−ブタンジオールのようなC2−10アルキレングリコール、エチレングリコールのような(ポリ)オキシC2−10アルキレングリコール)との重縮合体、オキシカルボン酸の重縮合体やラクトン(ε−カプロラクトンのようなC3−12ラクトン)の開環重合体等の脂肪族ポリエステルが挙げられる。ポリエステルタイプのソフトセグメントは、非晶性であってもよい。ソフトセグメントとしてのポリエステルの具体例としては、カプロラクトン重合体、ポリエチレンアジペート、ポリブチレンアジペート等のC2−6アルキレングリコールとC6−12アルカンジカルボン酸とのポリエステルが挙げられる。このポリエステルの数平均分子量は、200〜15000の範囲であってもよく、200〜10000の範囲であってもよく、300〜8000の範囲であってもよい。
ポリエーテルタイプのソフトセグメントとしては、ポリアルキレングリコール(例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール)のような脂肪族ポリエーテルに由来するセグメントが挙げられる。ポリエーテルの数平均分子量は、200〜10000の範囲であってもよく、200〜6000の範囲であってもよく、300〜5000の範囲であってもよい。
As the soft segment, polyester type and / or polyether type segments can be used.
Polyester-type soft segments include dicarboxylic acids (aliphatic C 4-12 dicarboxylic acids such as adipic acid) and diols (C 2-10 alkylene glycols such as 1,4-butanediol, ethylene glycol) Aliphatic polyesters such as polycondensates with (poly) oxy C 2-10 alkylene glycols, polycondensates of oxycarboxylic acids and ring-opening polymers of lactones (C 3-12 lactones such as ε-caprolactone) It can be mentioned. The polyester type soft segment may be amorphous. Specific examples of the polyester as the soft segment include polyesters of C 2-6 alkylene glycol such as caprolactone polymer, polyethylene adipate and polybutylene adipate and C 6-12 alkanedicarboxylic acid. The number average molecular weight of this polyester may be in the range of 200 to 15,000, may be in the range of 200 to 10,000, and may be in the range of 300 to 8,000.
Soft segments of polyether type include segments derived from aliphatic polyethers such as polyalkylene glycols (eg, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol). The number average molecular weight of the polyether may be in the range of 200 to 10000, may be in the range of 200 to 6000, and may be in the range of 300 to 5000.

ソフトセグメントは、脂肪族のポリエステルとポリエーテルとの共重合体(ポリエーテル−ポリエステル)のようなポリエーテル単位を有するポリエステル、ポリオキシアルキレングリコール(例えば、ポリオキシテトラメチレングリコール)のようなポリエーテルと脂肪族ジカルボン酸とのポリエステルに由来するセグメントであってもよい。
ハードセグメントとソフトセグメントとの質量割合は、20:80〜90:10であってもよく、30:70〜90:10であってもよく、30:70〜80:20であってもよく、40:60〜80:20であってもよく、40:60〜75:25であってもよい。
また、ジカルボン酸成分が、テレフタル酸成分とそれ以外のジカルボン酸成分である場合、エステル系エラストマーが、ハードセグメントを30〜80質量%の割合で含み、かつテレフタル酸成分以外のジカルボン酸成分を5〜30質量%の割合で含んでいてもよい。テレフタル酸成分以外のジカルボン酸成分の割合は5〜25質量%であってもよく、5〜20質量%でもよく、10〜20質量%でもよい。なお、ジカルボン酸成分の割合は、樹脂のNMRスペクトルを定量評価することにより入手できる。
テレフタル酸成分以外のジカルボン酸成分が、イソフタル酸成分であることが好ましい。イソフタル酸成分を含むことで、エラストマーの結晶化度が下がる傾向があり、発泡成形性が向上してより低密度の発泡成形体を得ることができる。
エステル系エラストマーには、東洋紡社製ペルプレン(PELPRENE)シリーズやバイロン(VYLON)シリーズが好適に使用できる。特に、ペルプレンシリーズを使用することが好ましい。
The soft segment is a polyester having a polyether unit such as a copolymer of aliphatic polyester and polyether (polyether-polyester), a polyether such as polyoxyalkylene glycol (eg, polyoxytetramethylene glycol) It may be a segment derived from a polyester of and aliphatic dicarboxylic acid.
The mass ratio of the hard segment to the soft segment may be 20:80 to 90:10, 30:70 to 90:10, or 30:70 to 80:20. It may be 40: 60-80: 20, and may be 40: 60-75: 25.
When the dicarboxylic acid component is a terephthalic acid component and a dicarboxylic acid component other than that, the ester elastomer contains a hard segment in a proportion of 30 to 80% by mass, and the dicarboxylic acid component other than the terephthalic acid component is 5 You may contain in the ratio of -30 mass%. The proportion of the dicarboxylic acid component other than the terephthalic acid component may be 5 to 25% by mass, 5 to 20% by mass, or 10 to 20% by mass. The proportion of the dicarboxylic acid component can be obtained by quantitatively evaluating the NMR spectrum of the resin.
It is preferable that dicarboxylic acid components other than a terephthalic acid component are isophthalic acid components. By including the isophthalic acid component, the crystallinity of the elastomer tends to decrease, and the foam moldability can be improved to obtain a foam having a lower density.
As ester-based elastomers, Pelprene series manufactured by Toyobo Co., Ltd. and VYLON series can be suitably used. In particular, it is preferable to use the Pelprene series.

樹脂組成物は、1×10〜2×10Paの貯蔵弾性率(ビカット軟化温度Tv−10℃における固体粘弾性測定による値)を有している。この範囲の貯蔵弾性率(固体粘弾性)を有することで、高反発弾性の発泡成形体を製造可能な発泡粒子を提供できる。貯蔵弾性率(固体粘弾性)は、1×10〜1.5×10Paの範囲であってもよく、1×10〜1×10Paの範囲であってもよく、1×10〜8×10Paの範囲であってもよい。
また、樹脂組成物は、結晶化温度Tc−10℃における溶融粘弾性測定による貯蔵弾性率が1×10〜2×10Paの範囲を有していることが好ましい。貯蔵弾性率(溶融粘弾性)が1×10Pa未満の場合、発泡後の冷却過程において発泡形状を維持することができずに収縮してしまうことがある。2×10Paより大きい場合、発泡時の軟化が困難になり、所望の発泡倍数(密度)が得られないことがある。貯蔵弾性率(溶融粘弾性)は、1×10〜1.5×10Paの範囲であってもよく、1×10〜1×10Paの範囲であってもよく、3×10〜1×10Paの範囲であってもよい。
The resin composition has a storage modulus of 1 × 10 7 to 2 × 10 8 Pa (value determined by solid viscoelasticity measurement at Vicat softening temperature Tv−10 ° C.). By having a storage elastic modulus (solid viscoelasticity) within this range, it is possible to provide foam particles capable of producing a foam having a high impact resilience. The storage elastic modulus (solid viscoelasticity) may be in the range of 1 × 10 7 to 1.5 × 10 8 Pa, or in the range of 1 × 10 7 to 1 × 10 8 Pa, or 1 × It may be in the range of 10 7 to 8 × 10 7 Pa.
Moreover, it is preferable that the storage elastic modulus by melt-viscoelasticity measurement in crystallization temperature Tc-10 degreeC has the range of 1 * 10 < 6 > -2 * 10 < 7 > Pa in a resin composition. When the storage elastic modulus (melt viscoelasticity) is less than 1 × 10 6 Pa, the expanded shape may not be maintained in the cooling process after foaming, and the resin may shrink. When it is larger than 2 × 10 7 Pa, softening during foaming becomes difficult, and a desired expansion ratio (density) may not be obtained. The storage elastic modulus (melt viscoelasticity) may be in the range of 1 × 10 6 to 1.5 × 10 7 Pa, or in the range of 1 × 10 6 to 1 × 10 7 Pa, or 3 × It may be in the range of 10 6 to 1 × 10 7 Pa.

(2)基材樹脂
基材樹脂には、本発明の効果を阻害しない範囲で、エステル系エラストマー以外に、他の樹脂が含まれていてもよい。他の樹脂は、公知の熱可塑性樹脂、熱硬化性樹脂であってもよい。
基材組成物は、他に、難燃剤、着色剤、帯電防止剤、展着剤、可塑剤、難燃助剤、架橋剤、充填剤、滑剤等を含んでいてもよい。
難燃剤としては、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等が挙げられる。
着色剤としては、カーボンブラック、グラファイト、酸化チタン等の無機顔料、フタロシアニンブルー、キナクリドンレッド、イソインドリノンエロー等の有機顔料、金属粉、パール等の特殊顔料が挙げられる。
帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
(2) Base Resin In addition to the ester elastomer, another resin may be contained in the base resin as long as the effects of the present invention are not impaired. The other resin may be a known thermoplastic resin or thermosetting resin.
The base material composition may further contain a flame retardant, a colorant, an antistatic agent, a spreading agent, a plasticizer, a flame retardant auxiliary, a crosslinking agent, a filler, a lubricant, and the like.
Examples of the flame retardant include hexabromocyclododecane and triallyl isocyanurate hexabromide.
Examples of the colorant include inorganic pigments such as carbon black, graphite and titanium oxide, organic pigments such as phthalocyanine blue, quinacridone red and isoindolinone yellow, and special pigments such as metal powder and pearl.
Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride.
As the spreading agent, polybutene, polyethylene glycol, silicone oil and the like can be mentioned.

(3)発泡粒子の物性
発泡粒子は、A>Bの関係(Aは表層部の平均気泡径、Bは中心部の平均気泡径)を満たす複数の気泡を有している。この関係を有することで、A≦Bの関係を有する発泡粒子よりも、光沢性の高い表面を有する発泡成形体を提供できる。発明者等は、この理由を光の乱反射を低減できることにあると推測している。
なお、本明細書において、表層部とは、発泡粒子の表面から中心に向かって、発泡粒子の半径の約30%までの領域を意味する。一方、中心部とは、発泡粒子の中心から表面に向かって、発泡粒子の半径の約70%までの領域を意味する。
また、表層部の平均気泡径は、80〜400μmである。一方、中心部の平均気泡径は、10〜200μmである。表層部の平均気泡径が80μm未満の場合、十分な光沢性を得ることができないことがある。400μmより大きい場合、成形性が悪くなることがある。中心部の平均気泡径が10μm未満の場合、収縮して外観不良を起こすことがある。200μmより大きい場合、成形時に発泡粒子同士の融着が悪くなり強度が低下することがある。表層部の平均気泡径は、80〜350μmであることが好ましく、90〜350μmであることがより好ましい。一方、中心部の平均気泡径は、20〜200μmであることが好ましく、30〜200μmであることがより好ましい。
更に、AとBは、A/B>1.5の関係を有することが好ましい。この関係は、発泡粒子の表層部に位置する気泡が、中心部に位置する気泡よりも、かなり大きな平均気泡径を有していることを意味している。
(3) Physical Properties of Foamed Particles The foamed particles have a plurality of cells that satisfy the relationship A> B (A is the average cell diameter of the surface layer portion and B is the average cell diameter of the center portion). By having this relationship, it is possible to provide a foam molded article having a surface with a higher gloss than foam particles having a relationship of A ≦ B. The inventors speculate that the reason is that the diffuse reflection of light can be reduced.
In the present specification, the surface layer portion means an area of up to about 30% of the radius of the foam particle from the surface of the foam particle to the center. On the other hand, the central part means an area of up to about 70% of the radius of the foam particle from the center of the foam particle to the surface.
Moreover, the average bubble diameter of a surface layer part is 80-400 micrometers. On the other hand, the average bubble diameter at the central portion is 10 to 200 μm. When the average cell diameter of the surface layer portion is less than 80 μm, sufficient glossiness may not be obtained. If it is larger than 400 μm, the formability may be deteriorated. If the average cell diameter at the center is less than 10 μm, it may shrink to cause appearance defects. When it is larger than 200 μm, fusion between the foamed particles may be deteriorated at the time of molding, and the strength may be reduced. The average cell diameter of the surface layer is preferably 80 to 350 μm, and more preferably 90 to 350 μm. On the other hand, the average cell diameter of the central portion is preferably 20 to 200 μm, and more preferably 30 to 200 μm.
Furthermore, A and B preferably have a relationship of A / B> 1.5. This relationship means that the bubbles located in the surface layer portion of the foamed particles have a considerably larger average bubble diameter than the bubbles located in the center portion.

発泡粒子は、
(i)0.02〜0.4g/cmの嵩密度
(ii)1.5〜15mmの平均粒子径
のいずれかの物性を少なくとも有することが好ましい。
嵩密度が0.02g/cm未満の場合、収縮して外観不良を起こしたり、強度が低下することがある。0.4g/cmより大きい場合、軽量の発泡成形体を得ることができないことがある。嵩密度は、0.04〜0.4g/cmの範囲であってもよく、0.06〜0.4g/cmの範囲であってもよく、0.06〜0.3g/cmの範囲であってもよい。
平均粒子径が1.5mm未満の場合、発泡粒子の製造自体が困難であり、かつ製造コストが増大することがある。15mmより大きい場合、型内成形により発泡成形体を作製する際に、金型への充填性が低下することがある。平均粒子径は、1.5〜12mmの範囲であってもよく、1.5〜9mmの範囲であってもよい。
The foam particles are
(I) Bulk density of 0.02 to 0.4 g / cm 3 (ii) It is preferable to have at least physical properties of any of average particle sizes of 1.5 to 15 mm.
If the bulk density is less than 0.02 g / cm 3 , it may shrink to cause appearance defects or decrease in strength. When it is larger than 0.4 g / cm 3 , it may not be possible to obtain a lightweight foam. The bulk density may be in the range of 0.04~0.4g / cm 3, it may be in the range of 0.06~0.4g / cm 3, 0.06~0.3g / cm 3 It may be in the range of
If the average particle size is less than 1.5 mm, it may be difficult to produce the foamed particle itself, and the production cost may be increased. When it is larger than 15 mm, the filling property to the mold may be reduced when producing the foam molded body by in-mold molding. The average particle size may be in the range of 1.5 to 12 mm, or in the range of 1.5 to 9 mm.

(高光沢発泡粒子の製造方法)
発泡粒子は、エステル系エラストマー(基材樹脂)を含む樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、発泡性粒子を発泡させる工程とを含む方法により製造できる。
(Method for producing high gloss foam particles)
The foamed particles can be produced by a method including the steps of impregnating resin particles containing an ester-based elastomer (base resin) with a foaming agent to obtain expandable particles, and expanding the expandable particles.

(1)発泡性粒子
発泡性粒子は、樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程(含浸工程)を経て得ることができる。
発泡剤は有機ガスであってもよく、無機ガスであってもよい。無機ガスとしては、空気、窒素及び二酸化炭素(炭酸ガス)等がある。有機ガスとしてはプロパン、ブタン、ペンタン等の炭化水素、フッ素系発泡剤が挙げられる。上記発泡剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
基材樹脂に含まれる発泡剤の量は、基材樹脂100質量部に対して、1〜12質量部であってもよい。1質量部未満であると、発泡力が低くなり、発泡倍数を高くすることが困難である。発泡剤の含有量が12質量部を超えると、可塑化効果が大きくなり、発泡時に収縮が生じて良好な発泡粒子を得られないことがある。発泡剤の量は5〜12質量部であってもよい。この範囲内であれば、発泡力を十分に高めることができ、より一層良好に発泡させることができる。
樹脂粒子に発泡剤を含浸させる方法としては、公知の方法を用い得る。例えば、オートクレーブ内に、樹脂粒子、分散剤及び水を供給して撹拌することによって、樹脂粒子を水中に分散させて分散液を製造し、この分散液中に発泡剤を圧入し、樹脂粒子中に発泡剤を含浸させる方法が挙げられる。
分散剤としては、特に限定されず、例えば、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難水溶性無機物や、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤が挙げられる。
(1) Expandable Particles Expandable particles can be obtained through the step of impregnating resin particles with a foaming agent to obtain expandable particles (impregnation step).
The blowing agent may be an organic gas or an inorganic gas. As the inorganic gas, there are air, nitrogen, carbon dioxide (carbon dioxide gas) and the like. Examples of the organic gas include hydrocarbons such as propane, butane and pentane, and fluorine-based blowing agents. Only one type of the above-mentioned foaming agent may be used, or two or more types may be used in combination.
The amount of the foaming agent contained in the base resin may be 1 to 12 parts by mass with respect to 100 parts by mass of the base resin. If the amount is less than 1 part by mass, the foaming power is low, and it is difficult to increase the foaming ratio. When the content of the foaming agent exceeds 12 parts by mass, the plasticizing effect is increased, and shrinkage may occur during foaming, so that good foamed particles may not be obtained. The amount of blowing agent may be 5 to 12 parts by weight. Within this range, the foaming power can be sufficiently enhanced, and the foam can be further enhanced.
A publicly known method can be used as a method of impregnating resin particles with a foaming agent. For example, resin particles, a dispersing agent and water are supplied and stirred in an autoclave to disperse the resin particles in water to produce a dispersion, and a foaming agent is pressed into the dispersion to obtain resin particles in the resin particles. Are impregnated with a blowing agent.
The dispersant is not particularly limited, and examples thereof include poorly water-soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate and magnesium oxide, and surfactants such as sodium dodecylbenzene sulfonate.

樹脂粒子への発泡剤の含浸温度は、低いと、樹脂粒子に発泡剤を含浸させるのに要する時間が長くなって生産効率が低下することがある。また、高いと、樹脂粒子同士が融着して結合粒が発生することがある。含浸温度は、−20〜120℃であってもよく、0〜120℃であってもよく、20〜120℃であってもよく、40〜120℃であってもよい。発泡助剤(可塑剤)や気泡調整剤を、発泡剤と併用してもよい。
発泡助剤(可塑剤)としては、アジピン酸ジイソブチル、トルエン、シクロヘキサン、エチルベンゼン等が挙げられる。
When the temperature at which the foaming agent is impregnated into the resin particles is low, the time required for impregnating the resin particles with the foaming agent may be prolonged, and the production efficiency may be lowered. Moreover, when high, resin particles may fuse and a bond grain may generate | occur | produce. The impregnation temperature may be −20 to 120 ° C., 0 to 120 ° C., 20 to 120 ° C., or 40 to 120 ° C. A foaming aid (plasticizer) or a cell regulator may be used in combination with the foaming agent.
Examples of the foaming assistant (plasticizer) include diisobutyl adipate, toluene, cyclohexane, ethylbenzene and the like.

気泡調整剤としては、高級脂肪酸アミド、高級脂肪酸ビスアミド、高級脂肪酸塩、無機気泡核剤等が挙げられる。これら気泡調整剤は、複数種組み合わせてもよい。
高級脂肪酸アミドとしては、ステアリン酸アミド、12−ヒドロキシステアリン酸アミド等が挙げられる。
高級脂肪酸ビスアミドとしては、エチレンビスステアリン酸アミド、メチレンビスステアリン酸アミド等が挙げられる。
高級脂肪酸塩としては、ステアリン酸カルシウムが挙げられる。
無機気泡核剤としては、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素等が挙げられる。
上記以外に化学気泡剤としての役割も果たす気泡調整剤を使用してもよい。そのような気泡調整剤としては、重曹クエン酸、炭酸水素ナトリウム、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド等が挙げられる。
気泡調整剤の含有量は、発泡性粒子100質量部に対して、0.005〜2質量部であってもよく、0.01〜1.5質量部であってもよい。気泡調整剤が0.005質量部よりも少ない場合、気泡径の制御が難しくなることがある。気泡調整剤が2質量部よりも多い場合、樹脂物性が変化し、例えば成形体強度の低下が起こることがある。
Examples of the cell regulator include higher fatty acid amides, higher fatty acid bisamides, higher fatty acid salts, inorganic cell nucleating agents, and the like. These cell regulators may be used in combination of two or more.
As higher fatty acid amides, stearic acid amide, 12-hydroxystearic acid amide and the like can be mentioned.
Examples of higher fatty acid bisamides include ethylenebisstearic acid amide and methylenebisstearic acid amide.
Higher fatty acid salts include calcium stearate.
As the inorganic cell nucleating agent, talc, calcium silicate, synthetically or naturally produced silicon dioxide and the like can be mentioned.
In addition to the above, it is also possible to use a foam control agent which also plays a role as a chemical foam. As such a foam control agent, sodium bicarbonate citric acid, sodium hydrogencarbonate, azodicarbonamide, dinitrosopentamethylenetetramine, benzenesulfonyl hydrazide, hydrazodicarbonamide and the like can be mentioned.
The content of the cell regulator may be 0.005 to 2 parts by mass, or 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the expandable particles. If the amount of the cell regulator is less than 0.005 parts by mass, it may be difficult to control the cell diameter. When the amount of the cell regulator is more than 2 parts by mass, the physical properties of the resin may be changed, for example, a decrease in the strength of the molded body may occur.

(2)樹脂粒子
樹脂粒子の形状は、特に限定されず、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状等が挙げられる。
樹脂粒子は、長さ0.5〜5mm及び平均径0.5〜5mmを有してもよい。長さが0.5mm未満及び平均径が0.5mm未満の場合、発泡性粒子とした場合のガス保持性が低くなるため、発泡することが困難なことがある。長さが5mmより大きい及び平均径が5mmより大きい場合、発泡させた際、内部まで熱が伝わらないため、発泡粒子に有芯が生じてしまうことがある。ここで、樹脂粒子の長さL及び平均径Dは、ノギスを用いて次のように測定する。リペレットする際の押出方向の樹脂粒子の長さを長さL、押出方向に直交する方向の樹脂粒子の最小直径(最小径)及び最大直径(最大径)の平均値を平均径Dとする。
(2) Resin Particles The shape of the resin particles is not particularly limited, and examples thereof include a spherical shape, an oval spherical shape (egg shape), a cylindrical shape, a prismatic shape, a pellet shape or a granular shape.
The resin particles may have a length of 0.5 to 5 mm and an average diameter of 0.5 to 5 mm. If the length is less than 0.5 mm and the average diameter is less than 0.5 mm, it may be difficult to foam since the gas retention property in the case of forming the expandable particles is low. When the length is more than 5 mm and the average diameter is more than 5 mm, when the foam is made, since the heat is not transmitted to the inside, a core of the foam particle may be generated. Here, the length L and the average diameter D of the resin particles are measured using a caliper as follows. The length of the resin particle in the extrusion direction at the time of re-pelletizing is taken as length L, and the average value of the minimum diameter (minimum diameter) and the maximum diameter (maximum diameter) of the resin particles in the direction orthogonal to the extrusion direction is taken as the average diameter D.

(3)発泡粒子
発泡粒子は、発泡性粒子を発泡させる工程(発泡工程)を経て得ることができる。
発泡粒子の形状は、特に限定されず、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状等が挙げられる。
発泡工程では、発泡性粒子を発泡させて、発泡粒子を得ることができれば発泡温度、加熱媒体は特に限定されない。
(3) Expanded Particles Expanded particles can be obtained through the step of expanding expandable particles (expanding step).
The shape of the foamed particles is not particularly limited, and examples thereof include a spherical shape, an oval spherical shape (egg shape), a cylindrical shape, a prismatic shape, a pellet shape, and a granular shape.
In the foaming step, the foaming temperature and the heating medium are not particularly limited as long as foamable particles can be foamed to obtain foamable particles.

発泡工程において、発泡性粒子に、合着防止剤を添加してもよい。合着防止剤の添加量は、発泡性粒子100質量部に対して、0.03〜0.3質量部の範囲でもよく、0.05〜0.25質量部の範囲でもよい。合着防止剤が0.03質量部よりも少ない場合、合着防止効果を十分にだすことができないことがある。合着防止剤が0.3質量部よりも多い場合、発泡成形体の強度低下が起こったり、洗浄コストが増えることがある。
なお、発泡前に、発泡性粒子の表面に、ステアリン酸亜鉛のような粉末状金属石鹸類、炭酸カルシウム及び水酸化アルミニウムを塗布してもよい。この塗布により、発泡工程における発泡性粒子同士の結合を減少できる。また、帯電防止剤、展着剤等の表面処理剤を塗布してもよい。
In the foaming step, a cohesion inhibitor may be added to the foamable particles. The addition amount of the cohesion inhibitor may be in the range of 0.03 to 0.3 parts by mass, or in the range of 0.05 to 0.25 parts by mass with respect to 100 parts by mass of the expandable particles. If the cohesion preventing agent is less than 0.03 parts by mass, the cohesion preventing effect may not be sufficiently exhibited. If the cohesion preventing agent is more than 0.3 parts by mass, the strength of the foam molded article may decrease or the cleaning cost may increase.
Powdered metal soaps such as zinc stearate, calcium carbonate and aluminum hydroxide may be applied to the surface of the foamable particles before foaming. This application can reduce the bonding between the expandable particles in the expansion step. Moreover, you may apply | coat surface treatment agents, such as an antistatic agent and a spreading agent.

(発泡成形体)
(1)各種物性
発泡成形体は、0.02〜0.4g/cmの密度を有し得る。密度が0.4g/cmよりも大きい場合、発泡成形体の軽量性が低下することがある。密度が0.02g/cmよりも小さい場合、発泡成形体が収縮して外観不良を起こしたり、強度が低下することがある。密度は、0.04〜0.4g/cmの範囲であってもよく、0.06〜0.4g/cmの範囲であってもよく、0.06〜0.3g/cmの範囲であってもよい。
発泡成形体は、50〜100%の反発弾性率を有し得る。反発弾性率が50%よりも低い場合、反発弾性が求められる用途での使用が難しくなる。
発泡成形体は、20〜65のアスカーC硬度を有し得る。アスカーC硬度が20よりも小さい場合、発泡成形体の形状安定性が低下することがある。65より大きい場合、例えば十分な反発弾性や柔軟性を得られない場合がある。アスカーC硬度は、20〜60の範囲であってもよく、20〜55の範囲であってもよい。
発泡成形体は、例えば、建築資材、靴の部材、スポーツ用品、緩衝材、シートクッション、自動車部材等に用いることができる。具体的には、シューズのミッドソール・インソール・アウトソール部材、ラケットやバット等のスポーツ用品の打具類の芯材、パッドやプロテクター等のスポーツ用品の防具類、パッドやプロテクター等の医療・介護・福祉・ヘルスケア用品、自転車や車椅子等のタイヤ芯材、自動車等の輸送機器の内装材・シート芯材・衝撃吸収部材・振動吸収部材、防舷材やフロート等の衝撃吸収材、玩具、床下地材、壁材、鉄道車両、飛行機、ベッド、クッション等に用いることができる。
発泡成形体は、上記用途に応じて適切な形状を取り得る。
(Foam molded body)
(1) Various physical properties The foamed molded article may have a density of 0.02 to 0.4 g / cm 3 . If the density is greater than 0.4 g / cm 3 , the lightness of the foam may be reduced. If the density is less than 0.02 g / cm 3 , the foamed molded product may shrink to cause appearance defects or decrease in strength. Density may be in the range of 0.04~0.4g / cm 3, it may be in the range of 0.06~0.4g / cm 3, the 0.06~0.3g / cm 3 It may be a range.
The foamed molded article may have a 50 to 100% impact resilience. If the impact resilience is lower than 50%, it will be difficult to use in applications where impact resilience is required.
The foam molding may have an Asker C hardness of 20-65. If the Asker C hardness is less than 20, the shape stability of the foam molded article may be reduced. When it is larger than 65, for example, sufficient resilience and flexibility may not be obtained. Asker C hardness may be in the range of 20 to 60, and may be in the range of 20 to 55.
The foam molded article can be used, for example, as a building material, a shoe member, a sporting goods, a shock absorbing material, a seat cushion, an automobile member and the like. Specifically, midsoles, insoles and outsoles of shoes, core materials for batting products such as rackets and bats, armors for sports products such as pads and protectors, and medical and nursing care such as pads and protectors・ Welfare and health care products, tire core materials such as bicycles and wheelchairs, interior materials of transport equipment such as automobiles, sheet core materials of shock absorbers, vibration absorption members, shock absorbers such as fenders and floats, toys, It can be used for flooring, wall materials, railway cars, airplanes, beds, cushions, etc.
The foam molding may take any suitable shape depending on the application.

(2)製造方法
発泡成形体の製造方法は、ゲージ圧0.05〜0.4MPaの水蒸気を加熱媒体として発泡粒子を型内発泡させる工程を含む。例えば、多数の小孔を有する閉鎖金型内に発泡粒子を充填し、水蒸気で発泡粒子を加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させ、一体化させることにより得ることができる。その際、例えば、金型内への発泡粒子の充填量を調整する等して、発泡成形体の密度を調整できる。水蒸気のゲージ圧が0.05MPa未満の場合、発泡粒子を型内発泡することが難しくなり発泡粒子同士の融着が低下して、発泡成形体に十分な強度を付与できないことがある。0.4MPaより高い場合、発泡成形体が収縮して、外観が良好な発泡成形体を得られないことがある。水蒸気のゲージ圧は、0.05〜0.35MPaであってもよく、0.05〜0.3MPaであってもよく、0.1〜0.3MPaであってもよい。
更に、発泡粒子に不活性ガス又は空気(以下、不活性ガス等と称する)を含浸させて、発泡粒子の発泡力を向上させてもよい(内圧付与工程)。発泡力を向上させることにより、型内発泡時に発泡粒子同士の融着性が向上し、発泡成形体は更に優れた機械的強度を有する。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。
発泡粒子に不活性ガス等を含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス等雰囲気下に発泡粒子を置くことによって、発泡粒子中に不活性ガス等を含浸させる方法が挙げられる。発泡粒子は、金型内に充填する前に不活性ガス等が含浸されてもよいが、発泡粒子を金型内に充填した後に金型ごと不活性ガス等雰囲気下に置くことで含浸されてもよい。なお、不活性ガスが窒素である場合、ゲージ圧0.1〜2MPaの窒素雰囲気中に発泡粒子を20分〜24時間に亘って放置してもよい。
(2) Manufacturing method The manufacturing method of a foaming molding includes the process of carrying out the in-mold foaming of the foaming particle by making the water vapor | steam of gauge pressure 0.05-0.4MPa into a heating medium. For example, filling foam particles in a closed mold having a large number of pores, heating foam the foam particles with steam, filling voids between the foam particles, fusing the foam particles to one another, and integrating them. It can be obtained by At that time, for example, the density of the foam molded article can be adjusted by adjusting the filling amount of the foam particles in the mold. When the gauge pressure of the water vapor is less than 0.05 MPa, it is difficult to foam the foam particles in the mold, and the fusion between the foam particles is reduced, which may make it impossible to impart sufficient strength to the foam. When it is higher than 0.4 MPa, the foam molded product may shrink and a foam molded product having a good appearance may not be obtained. The gauge pressure of the steam may be 0.05 to 0.35 MPa, 0.05 to 0.3 MPa, or 0.1 to 0.3 MPa.
Furthermore, the foaming particles may be impregnated with an inert gas or air (hereinafter referred to as an inert gas or the like) to improve the foaming power of the foaming particles (internal pressure application step). By improving the foaming power, the adhesion between the foamed particles is improved at the time of in-mold foaming, and the foam molded article has further excellent mechanical strength. In addition, as an inert gas, a carbon dioxide, nitrogen, helium, argon etc. are mentioned, for example.
As a method of impregnating the foamed particles with the inert gas and the like, for example, a method of impregnating the foamed particles with the inert gas and the like by placing the foamed particles under an atmosphere of inert gas having a pressure higher than normal pressure It can be mentioned. The foam particles may be impregnated with an inert gas or the like before filling into the mold, but after being filled with the foam particles into the mold, the foam particles are impregnated by being placed under an atmosphere such as inert gas together with the mold It is also good. When the inert gas is nitrogen, the foamed particles may be left in a nitrogen atmosphere with a gauge pressure of 0.1 to 2 MPa for 20 minutes to 24 hours.

発泡粒子に不活性ガス等を含浸させた場合、発泡粒子をこのまま、金型内にて加熱、発泡させてもよいが、発泡粒子を金型内に充填する前に加熱、発泡させて、低嵩密度の発泡粒子とした上で金型内に充填して加熱、発泡させてもよい。このような低嵩密度の発泡粒子を用いることによって、低密度の発泡成形体を得ることができる。
また、発泡粒子の製造時に、合着防止剤を用いた場合、発泡成形体の製造時に、合着防止剤が発泡粒子に付着したまま成形を行ってもよい。また、発泡粒子相互の融着を促進するために、合着防止剤を成形工程前に洗浄して除去してもよい。
When the foamed particles are impregnated with an inert gas or the like, the foamed particles may be heated and foamed in the mold as it is, but the foamed particles are heated and foamed before filling in the mold to reduce After being made into bulk density foam particles, they may be filled in a mold for heating and foaming. By using such low bulk density foam particles, a low density foam can be obtained.
Moreover, when using a cohesion inhibiting agent at the time of manufacture of a foaming particle, you may perform shaping | molding with a cohesion inhibiting agent adhering to a foaming particle at the time of manufacture of a foaming molding. In addition, in order to promote the fusion between the expanded particles, the coalescent agent may be washed and removed before the molding step.

次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
<樹脂粒子のショアD硬度>
100℃で3時間乾燥した樹脂粒子を融点Tm+30℃の温度で熱プレスし、平滑な厚み3mm以上のフィルムを作製した。これを温度23±2℃、湿度50±5%の環境下で24時間以上状態調節後、テクロック社製「テクロックデュロメータタイプD」硬度計を用いて測定した。押針が試験片測定面に垂直になるように加圧面を密着させて、直ちに目盛を読み取った。試料の5箇所を測定し、これらの平均値をショアD硬度とした。
EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
<Shore D hardness of resin particles>
The resin particles dried at 100 ° C. for 3 hours were heat-pressed at a temperature of melting point Tm + 30 ° C. to produce a smooth film having a thickness of 3 mm or more. This was conditioned for 24 hours or more under an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5%, and then measured using a “Teclock Durometer Type D” hardness tester manufactured by Tek Co., Ltd. The pressure surface was brought into close contact so that the needle was perpendicular to the test piece measurement surface, and the scale was read immediately. Five places of a sample were measured, and these average values were made into Shore D hardness.

<樹脂粒子の融点Tm、結晶化温度Tc及び結晶化熱量>
融点及び結晶化温度は、JIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。試料をアルミニウム製測定容器の底にすきまのないよう5〜7mg充てん後、アルミニウム製の蓋をした。次いで、日立ハイテクサイエンス社製「DSC7000X、AS−3」又はSIIナノテクノロジー社製「DSC6220」示差走査熱量計を用い、窒素ガス流量20mL/分のもと、30℃から−70℃まで降温した後10分間保持し、−70℃から220℃まで昇温(1回目昇温)、10分間保持後220℃から−70℃まで降温(冷却)、10分間保持後−70℃から220℃まで昇温(2回目昇温)した時のDSC曲線を得た。なお、全ての昇温・降温は速度10℃/分で行い、基準物質としてアルミナを用いた。本発明において、融解温度(融点)とは、装置付属の解析ソフトを用いて、2回目昇温過程にみられる最も大きな融解ピークのトップの温度を読みとった値とした。
更に、結晶化温度は、装置付属の解析ソフトを用いて、冷却過程にみられる最も高温側の結晶化ピークのトップの温度を読み取った値とした。
結晶化熱量は、JIS K7122:1987、JIS K7122:2012「プラスチックの転移熱測定方法」に記載されている方法で測定した。冷却過程における最も高温側の結晶化ピークの結晶化熱量は、装置付属の解析ソフトを用い、高温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び低温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。
<Melting point Tm of resin particles, crystallization temperature Tc, and crystallization heat amount>
The melting point and the crystallization temperature were measured by the methods described in JIS K7121: 1987 and JIS K 7121: 2012 “Method for measuring transition temperature of plastic”. However, the sampling method and temperature conditions were as follows. The sample was filled with 5 to 7 mg so that the bottom of the aluminum measurement container was not separated, and then an aluminum lid was attached. Next, after lowering the temperature from 30 ° C to -70 ° C using a nitrogen gas flow rate of 20 mL / min using “DSC7000X, AS-3” manufactured by Hitachi High-Tech Science Co. or “DSC6220” manufactured by SII Nanotechnology Inc. Hold for 10 minutes, increase temperature from -70 ° C to 220 ° C (first temperature increase), hold for 10 minutes, decrease temperature from 220 ° C to -70 ° C (cooling), increase temperature from -70 ° C to 220 ° C after holding for 10 minutes A DSC curve was obtained when (the second temperature rise). In addition, all temperature rising / falling was performed at a rate of 10 ° C./min, and alumina was used as a reference substance. In the present invention, the melting temperature (melting point) is a value obtained by reading the temperature at the top of the largest melting peak observed in the second heating process using analysis software attached to the apparatus.
Further, the crystallization temperature was a value obtained by reading the temperature at the top of the crystallization peak on the highest temperature side observed in the cooling process using analysis software attached to the apparatus.
The heat of crystallization was measured by the method described in JIS K 7122: 1987, JIS K 7122: 2012 “Method of measuring heat of transition of plastic”. The heat of crystallization of the crystallization peak at the highest temperature in the cooling process is the point at which the DSC curve leaves the baseline at the high temperature side and the point at which the DSC curve returns to the baseline again at the low temperature side And the area of the part surrounded by the DSC curve.

<樹脂粒子のビカット軟化温度Tv>
JIS K7206:2016「プラスチックー熱可塑性プラスチックービカット軟化温度(VST)の求め方」のA法に準拠して測定した。100℃で3時間乾燥した樹脂粒子を融点Tm+30℃で熱プレスをして、10mm×10mm×厚み5mmの試験片を作製した。安田精機製作所社製「HAD−6型」ヒートディストーションテスターを用いて、昇温速度50℃/時、試験荷重10Nの条件で3回測定を行い、これらの平均値をビカット軟化温度とした。
<Vicat softening temperature Tv of resin particles>
It measured based on A method of JISK7206: 2016 "plastics-thermoplastics-how to obtain | require Vicat softening temperature (VST)." The resin particles dried at 100 ° C. for 3 hours were heat pressed at a melting point Tm + 30 ° C. to prepare a test piece of 10 mm × 10 mm × 5 mm thickness. The measurement was performed three times under the conditions of a temperature increase rate of 50 ° C./hour and a test load of 10 N using a “HAD-6 type” heat distortion tester manufactured by Yasuda Seiki Seisakusho Co., Ltd., and the average value thereof was taken as the Vicat softening temperature.

<樹脂粒子の貯蔵弾性率(固体粘弾性)>
90〜100℃で3時間乾燥した樹脂を熱プレス機にて、温度190〜200℃の条件下で、長さ120mm、幅10mm、厚さ0.7〜10mmの短冊状試料を作製した。固体粘弾性測定装置には、SIIナノテクノロジー社製「EXSTRAR DMS6100」粘弾性スペクトロメータを用いた。試料を長さ40〜50mmにサンプリングし、引張制御モードにて窒素雰囲気下で周波数1Hz、昇温速度5℃/分、測定温度30℃〜260℃、チャック間隔20mm、歪振幅5μm、最小張力/圧縮力20mN、張力/圧縮力ゲイン1.2、力振幅初期値20mNの条件で測定した。なお、解析は装置付属の解析ソフトを用いた。
<Storage elastic modulus of resin particles (solid viscoelasticity)>
The resin dried at 90 to 100 ° C. for 3 hours was heated at a temperature of 190 to 200 ° C. to prepare a strip-like sample having a length of 120 mm, a width of 10 mm and a thickness of 0.7 to 10 mm. For the solid viscoelasticity measurement apparatus, “EXSTRAR DMS 6100” viscoelasticity spectrometer manufactured by SII Nanotechnology Inc. was used. The sample is sampled to a length of 40 to 50 mm, frequency 1 Hz, temperature rising rate 5 ° C./min, measurement temperature 30 ° C. to 260 ° C., chuck interval 20 mm, strain amplitude 5 μm, minimum tension / frequency under nitrogen atmosphere in tension control mode It measured on the conditions of 20 mN of compressive force, tension / compression force gain 1.2, and 20 mN of force amplitude initial values. The analysis used analysis software attached to the device.

<樹脂粒子の貯蔵弾性率(溶融粘弾性)>
本発明における動的粘弾性測定はAnton Paar社製「PHYSICA MCR301」粘弾性測定装置及び「CTD450」温度制御システムにて測定した。まず、90〜100℃で3時間乾燥した樹脂を熱プレス機にて、温度190〜200℃の条件下で、直径25mm、厚さ3mmの円盤状試験片を作製した。次に試験片を測定開始温度220℃に加熱した粘弾性測定装置のプレート上にセットし窒素雰囲気下にて5分間に亘って加熱し溶融させた。その後、直径25mmのパラレルプレートにて間隔を2mmまで押しつぶし、プレートからはみ出した樹脂を取り除いた。更に測定開始温度220±1℃に達してから5分間加熱後、歪み0.025%、周波数1Hz、降温速度2℃/分、測定間隔30秒、ノーマルフォース0Nの条件下にて、動的粘弾性測定を行い、220〜80℃の範囲の貯蔵弾性率を測定した。
<Storage elastic modulus of resin particles (melt viscoelasticity)>
The dynamic viscoelasticity measurement in the present invention was measured by "PHYSICA MCR 301" viscoelasticity measurement apparatus and "CTD 450" temperature control system manufactured by Anton Paar. First, a disk-shaped test piece of 25 mm in diameter and 3 mm in thickness was produced from the resin dried at 90 to 100 ° C. for 3 hours with a heat press at a temperature of 190 to 200 ° C. Next, the test piece was set on a plate of a viscoelasticity measuring device heated to a measurement start temperature of 220 ° C., and heated and melted for 5 minutes under a nitrogen atmosphere. Then, the space | interval was crushed to 2 mm with the parallel plate of diameter 25 mm, and the resin which protruded from the plate was removed. After heating for 5 minutes after reaching the measurement start temperature of 220 ± 1 ° C, the dynamic viscosity under the conditions of strain 0.025%, frequency 1 Hz, temperature decrease rate 2 ° C / minute, measurement interval 30 seconds, normal force 0N Elastic measurements were taken to determine storage modulus in the range of 220-80 ° C.

<発泡性粒子の含浸ガス量>
得られた発泡性粒子の質量W1(g)を直ちに計量し、温度23±2℃、湿度50±5%の環境下で24時間静置した。静置後、発泡性粒子の質量W2(g)を計量し、次式により発泡性粒子の含浸ガス量を算出した。
発泡性粒子の含浸ガス量(質量%)=(W1−W2)/W1×100
<Immersion gas amount of expandable particles>
The mass W1 (g) of the obtained expandable particles was immediately weighed, and allowed to stand for 24 hours under an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5%. After standing, the mass W2 (g) of the foamable particles was measured, and the amount of impregnated gas of the foamable particles was calculated by the following equation.
Amount of impregnated gas of expandable particles (mass%) = (W1−W2) / W1 × 100

<発泡粒子の嵩密度>
発泡粒子を測定試料として任意の質量W(g)計量した。この測定試料をメスシリンダー内に自然落下させた後、メスシリンダーの底をたたいて体積を一定にし、試料の見掛け体積V(cm)を測定した。下記式に基づいて発泡粒子の嵩密度を算出した。
嵩密度(g/cm)=測定試料の質量W/測定試料の体積V
<Bulk density of foamed particles>
The foamed particles were weighed at an arbitrary mass W (g) as a measurement sample. The measurement sample was allowed to fall naturally into a measuring cylinder, and then the bottom of the measuring cylinder was tapped to make the volume constant, and the apparent volume V (cm 3 ) of the sample was measured. The bulk density of the foamed particles was calculated based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample W / volume V of measurement sample

<発泡粒子の平均粒子径>
発泡粒子の直径の最大値と最小値をミツトヨ社製デジマチックキャリパで測定して、下記式により平均粒子径(mm)を算出した。無作為に選択した10個の発泡粒子の平均粒子径の平均値を平均粒子径とした。
平均粒子径(mm)=(直径の最大値+直径の最小値)/2
<Average Particle Size of Foamed Particles>
The maximum value and the minimum value of the diameter of the expanded particles were measured with a Mitutoyo Digimatic caliper, and the average particle size (mm) was calculated by the following equation. The average value of the average particle size of 10 randomly selected expanded particles was taken as the average particle size.
Average particle size (mm) = (maximum diameter + minimum diameter) / 2

<発泡粒子の平均気泡径>
発泡粒子の平均気泡径は、次の方法で測定した。具体的には、発泡粒子の中心を通るように、剃刀を用いて発泡粒子を2等分して、切断面を日立製作所社製「S−3000N」又は日立ハイテクノロジーズ社製「S−3400N」走査電子顕微鏡にて撮影した。撮影した画像をA4用紙に印刷し、発泡粒子の中心を通る最小径及び最大径を引いた。中心から、最小径を基準とする半径7/10の円を描いた。描かれた円の内側を中心部としての領域Bとした。また、中心から、最大径を基準とする半径7/10の円を描いた。描かれた円の外側を表層部としての領域Aとした。
領域Bの中に気泡20個以上に接する任意の直線を描き、直線の長さLを測定すると共に、直線に接している気泡数Nを数えた。気泡20個に接する直線が描けない場合は、領域内で最も長い直線を描いた。任意の直線は可能な限り接点でのみ接しないようにし、接してしまう場合は気泡数に含めた。気泡が小さく数えることが難しい場合は、拡大して撮影、計測を行った。計測結果から、下記式により平均弦長t及び気泡径Dを算出し、気泡径Dの算術平均を平均気泡径(中心部)とした。
平均弦長t(μm)=線長L/(気泡数N×写真の倍率)
気泡径D(μm)=平均弦長t/0.616
領域Aについても同様に算出し、これらの算術平均を平均気泡径(表層部)とした。
<Average bubble diameter of foam particles>
The average cell diameter of the foamed particles was measured by the following method. Specifically, the foam particles are divided into two halves using a razor so that the center of the foam particles passes through, and the cut surface is divided into "S-3000N" manufactured by Hitachi, Ltd. or "S-3400N" manufactured by Hitachi High-Technologies Corporation. Photographed with a scanning electron microscope. The photographed image was printed on A4 paper, and the minimum diameter and the maximum diameter passing through the center of the foamed particles were subtracted. From the center, a circle with a radius of 7/10 was drawn based on the smallest diameter. The inside B of the drawn circle was taken as the area B as the center. Also, a circle with a radius of 7/10 was drawn from the center with respect to the largest diameter. The outside of the drawn circle was taken as the area A as the surface layer.
In the region B, an arbitrary straight line contacting with 20 or more bubbles was drawn, the length L of the straight line was measured, and the number N of bubbles touching the straight line was counted. If a straight line contacting 20 bubbles could not be drawn, the longest straight line was drawn in the region. Arbitrary straight lines should be connected only as far as possible, and included in the number of bubbles if they could. When the bubbles were small and difficult to count, they were enlarged and photographed and measured. From the measurement results, the average chord length t and the bubble diameter D were calculated by the following formulas, and the arithmetic mean of the bubble diameter D was taken as the average bubble diameter (central portion).
Average chord length t (μm) = line length L / (number of bubbles N × magnification of photograph)
Bubble diameter D (μm) = average chord length t / 0.616
It calculated similarly about the area | region A, and made these arithmetic mean the average bubble diameter (surface layer part).

<発泡粒子の含浸ガス量>
まず、内圧付与前の発泡粒子の質量W1(g)を計量した。次に、内圧付与後の発泡粒子の質量W2(g)を計量した。次式により発泡粒子の含浸ガス量を算出した。
発泡粒子の含浸ガス量(質量%)=(W2−W1)/W2×100
<Impregnated gas amount of foam particles>
First, the mass W1 (g) of the foamed particles before internal pressure application was measured. Next, the mass W2 (g) of the foamed particles after internal pressure application was measured. The amount of impregnated gas of the foamed particles was calculated by the following equation.
Impregnation gas amount (mass%) of foam particles = (W2-W1) / W2 × 100

<発泡成形体の密度>
成形直後に発泡成形体を温度40℃で12時間乾燥し、乾燥後に温度23±2℃、湿度50±5%の環境下で72時間状態調節した。状態調節した発泡成形体の質量a(g)を小数点2桁まで測定すると共に、外寸をデジマチックキャリパ(ミツトヨ社製)で1/100mmまで測定して、見掛けの体積b(cm3)を求めた。発泡成形体の密度を次式により算出した。
密度(g/cm3)=a/b
<Density of Foamed Molding>
Immediately after molding, the foamed molded article was dried at a temperature of 40 ° C. for 12 hours, and after drying, conditioned for 72 hours under an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5%. The mass a (g) of the conditioned foam molded body is measured to two decimal places, and the outer dimension is measured to 1/100 mm with a Digimatic caliper (manufactured by Mitutoyo Co., Ltd.) to obtain an apparent volume b (cm 3 ) I asked. The density of the foam molded article was calculated by the following equation.
Density (g / cm 3 ) = a / b

<発泡成形体のアスカーC硬度>
アスカーC硬度は、平滑な面を有する厚み10mm以上の試験片を温度23±2℃、湿度50±5%の環境下で72時間以上状態調節後、高分子計器社製「アスカーゴム・プラスチック硬度計C形」硬度計を用いて測定した。押針が試験片の平滑な測定面に垂直になるように加圧面を密着させて、直ちに目盛を読み取った。発泡粒子同士の融着面をさけて、試料の5箇所を測定し、これらの平均値をアスカーC硬度とした。
<Asker C hardness of foam molding>
Asker C hardness is a “Asker rubber plastic hardness tester manufactured by Kobunshi Keiki Co., Ltd.” after conditioning a test piece having a smooth surface with a thickness of 10 mm or more for 72 hours or more under an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5%. It was measured using a "C" hardness tester. The pressure surface was brought into close contact so that the needle was perpendicular to the smooth measurement surface of the test piece, and the scale was read immediately. The fused surface of the foam particles was not used, and 5 points of the sample were measured, and the average value of these was taken as Asker C hardness.

<発泡成形体の反発弾性率>
JIS K 6400−3:2011に準拠して測定した。高分子計器社製「FR−2」反発弾性試験機に、温度23±2℃、湿度50±5%の環境下で72時間以上状態調節した、同一の発泡体から切り出した試料を厚み40mm以上になるように重ねてセットし、500mmの高さ(a)から銅球(φ5/8インチ、16.3g)を自由落下させて、その反発最高到達時の高さ(b)を読み取り、式(b)/(a)×100により反発弾性率(%)を算出した。ただし、同一試験片を用いて3回測定を行い、これらの平均値を反発弾性率とした。
<Resilience modulus of foam molding>
It measured based on JIS K 6400-3: 2011. A sample cut from the same foam that has been conditioned for at least 72 hours in an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5% on a “FR-2” rebound resilience tester manufactured by Kobunshi Keiki Co. 40 mm or more in thickness Set so as to be stacked, and let the copper ball (φ 5/8 inch, 16.3 g) fall freely from the height (a) of 500 mm, and read the height (b) when the repulsion maximum reached, formula The rebound resilience (%) was calculated by (b) / (a) × 100. However, measurement was performed 3 times using the same test piece, and these average values were made into the impact resilience modulus.

<発泡成形体の光沢性>
蛍光灯下で発泡成形体を45°傾けた際に、目視で光沢性が確認できる場合は○、確認できない場合は×とした。
<Glossiness of Foamed Molding>
When the foamed molded product was inclined 45 ° under a fluorescent lamp, when the glossiness could be confirmed visually, it was evaluated as ○, and when it could not be confirmed, it was evaluated as x.

<実施例1>
(1)樹脂粒子
エステル系エラストマー(商品名:「ペルプレン GP−475」、東洋紡社製、ハードセグメント:ポリブチレンテレフタレート及びポリブチレンイソフタレート、ソフトセグメント:脂肪族ポリエーテル)100質量部と有機系気泡調整剤(エチレンビスステアリン酸アミド、商品名:「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給し、180〜280℃で溶融混練した。次に、溶融状態のエステル系エラストマーを冷却して粘度を調整した後、単軸押出機の前端に取り付けたマルチノズル金型(直径1.3mmのノズルを8穴有する)の各ノズルから樹脂を押し出し、30〜50℃の水中でカットした。得られた樹脂粒子は、粒子の長さLが1.4〜1.8mm、粒子の平均径Dが1.4〜1.8mmであった。
(2)発泡性粒子
内容積5Lの撹拌機付オートクレーブに、樹脂粒子1.5kg(100質量部)、蒸留水3L、界面活性剤(直鎖アルキルベンゼンスルホン酸ナトリウム、商品名:「ニューレックスR」、油化産業社製)4gを投入し、密閉した後、撹拌状態で発泡剤のブタン(ノルマルブタン:イソブタン=7:3)16質量部を圧入した。次に、オートクレーブを70℃で2時間加熱して、25℃まで冷却した。冷却完了後にオートクレーブを除圧し、直ちに蒸留水で界面活性剤を洗浄し、脱水することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.6質量%であった。
Example 1
(1) Resin particles Ester based elastomer (trade name: "Pelprene GP-475", manufactured by Toyobo Co., Ltd., hard segment: polybutylene terephthalate and polybutylene isophthalate, soft segment: aliphatic polyether) 100 parts by mass and organic foam 0.3 parts by mass of a modifier (ethylenebisstearic acid amide, trade name: "Kao wax EBFF", manufactured by Kao Corporation) was supplied to a single-screw extruder, and melt-kneaded at 180 to 280 ° C. Next, the molten ester elastomer is cooled to adjust its viscosity, and then the resin is taken from each nozzle of a multi-nozzle die (having 8 nozzles with a diameter of 1.3 mm) attached to the front end of the single screw extruder. It was extruded and cut in water at 30 to 50 ° C. The obtained resin particles had a particle length L of 1.4 to 1.8 mm and an average particle diameter D of 1.4 to 1.8 mm.
(2) Effervescent particles Into an autoclave with a stirrer having a volume of 5 L, 1.5 kg (100 parts by mass) of resin particles, 3 L of distilled water, surfactant (sodium linear alkyl benzene sulfonate, trade name: "Neurex R" Then, 4 g of Yuka Sangyo Co., Ltd. was charged and sealed, and 16 parts by mass of butane (normal butane: isobutane = 7: 3) as a foaming agent was injected under stirring. The autoclave was then heated to 70 ° C. for 2 hours and cooled to 25 ° C. After cooling was completed, the autoclave was depressurized, and the surfactant was immediately washed with distilled water and dehydrated to obtain foamable particles. The amount of impregnation gas of the foamable particles was 6.6% by mass.

(3)発泡粒子
発泡性粒子1.5kg(100質量部)に合着防止剤(ポリオキシエチレンポリオキシプロピレングリコール、商品名:「エパン450」、第一工業製薬社製)0.25質量部を塗布した後、内容積50Lの撹拌機付円筒型予備発泡機に投入し、撹拌させながらゲージ圧0.12MPaの水蒸気で加熱して、発泡粒子を得た。
(4)発泡成形体
発泡粒子をオートクレーブに投入し、ゲージ圧0.3MPaの窒素ガスを圧入した後、30℃で18時間静置して、発泡粒子に窒素ガスを含浸した(内圧付与)。窒素ガスの含浸量は、0.9質量%であった。
発泡粒子をオートクレーブから取り出して、直ちに水蒸気孔を有する400mm×300mm×厚み20mmの大きさの成形用キャビティ内に充填し、ゲージ圧0.21MPaの水蒸気で加熱成形を行い、発泡成形体を得た。
(3) Foamed particles 1.5 kg (100 parts by mass) of the expandable particles 0.25 parts by mass of an anti-cohesion agent (polyoxyethylene polyoxypropylene glycol, trade name: "Epan 450", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) The solution was applied to a cylindrical prefoamer equipped with a stirrer and having an inner volume of 50 L, and heated with steam having a gauge pressure of 0.12 MPa while stirring to obtain foam particles.
(4) Foam Molded Body Foamed particles were charged into an autoclave, and after introducing nitrogen gas with a gauge pressure of 0.3 MPa, the foam particles were allowed to stand at 30 ° C. for 18 hours to impregnate the foam particles with nitrogen gas (internal pressure applied). The impregnated amount of nitrogen gas was 0.9% by mass.
The foamed particles were taken out of the autoclave and immediately filled in a molding cavity having a size of 400 mm × 300 mm × 20 mm thick having water vapor holes, and heat molded with water vapor having a gauge pressure of 0.21 MPa to obtain a foam molded article .

<実施例2>
(1)発泡性粒子
内容積5Lの撹拌機付オートクレーブに、実施例1で作製した樹脂粒子1.5kg(100質量部)、蒸留水3L、界面活性剤(直鎖アルキルベンゼンスルホン酸ナトリウム、商品名:「ニューレックスR」、油化産業社製)4gを投入し、密閉した後、撹拌状態で発泡剤のブタン(ノルマルブタン:イソブタン=7:3)16質量部及びペンタン(ノルマルペンタン:イソペンタン=8:2)1質量部を圧入した。次に、オートクレーブを70℃で2時間加熱して、25℃まで冷却した。冷却完了後にオートクレーブを除圧し、直ちに蒸留水で界面活性剤を洗浄し、脱水することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.5質量%であった。
(2)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(3)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、内圧付与による発泡粒子の窒素ガス含浸量は、0.8質量%であった。
Example 2
(1) Foamable particles 1.5 kg (100 parts by mass) of resin particles prepared in Example 1, 3 liters of distilled water, surfactant (sodium linear alkyl benzene sulfonate, trade name) in an agitator with an internal volume of 5 liters 4 g of “Neurex R” (manufactured by Yuka Sangyo Co., Ltd.) is charged, and after sealing, 16 parts by mass of butane (normal butane: isobutane = 7: 3) as a foaming agent under stirring condition and pentane (normal pentane: isopentane = 8: 2) 1 part by mass was pressed in. The autoclave was then heated to 70 ° C. for 2 hours and cooled to 25 ° C. After cooling was completed, the autoclave was depressurized, and the surfactant was immediately washed with distilled water and dehydrated to obtain foamable particles. The amount of impregnation gas of the foamable particles was 6.5% by mass.
(2) Expanded Particles Expanded particles were obtained in the same manner as in Example 1.
(3) Foam Molded Product A foam molded product was obtained in the same manner as in Example 1. In addition, the nitrogen gas impregnation amount of the foaming particle by internal pressure provision was 0.8 mass%.

<実施例3>
(1)発泡性粒子
実施例1で作製した樹脂粒子を用いて、オートクレーブの加熱温度を100℃に変更したこと以外は実施例1と同様の方法で発泡性粒子を得た。なお、発泡性粒子の含浸ガス量は、6.7質量%であった。
(2)発泡粒子
発泡性粒子1.5kg(100質量部)に合着防止剤(ポリオキシエチレンポリオキシプロピレングリコール、商品名:「エパン450」、第一工業製薬社製)0.25質量部を塗布して、オートクレーブから抜出後20分間経過の時点で、内容積50Lの撹拌機付円筒型予備発泡機に投入し、撹拌させながらゲージ圧0.14MPaの水蒸気で加熱して、発泡粒子を得た。
(3)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、なお、内圧付与による発泡粒子の窒素ガス含浸量は、0.8質量%であった。
Example 3
(1) Expandable Particles Expandable particles were obtained in the same manner as in Example 1 except that the heating temperature of the autoclave was changed to 100 ° C. using the resin particles produced in Example 1. In addition, the amount of impregnation gas of the foamable particles was 6.7% by mass.
(2) Foamed particles 1.5 kg (100 parts by mass) of the expandable particles 0.25 parts by mass of an antibonding agent (polyoxyethylene polyoxypropylene glycol, trade name: "Epan 450", manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) The solution is charged into a cylindrical prefoamer with an internal volume of 50 L at 20 minutes after extraction from the autoclave, heated with steam at a gauge pressure of 0.14 MPa while stirring, and then foamed particles are obtained. I got
(3) Foam Molded Product A foam molded product was obtained in the same manner as in Example 1. In addition, the nitrogen gas impregnation amount of the foaming particle by internal pressure provision was 0.8 mass%.

<比較例1>
(1)発泡性粒子
内容積5Lの撹拌機付オートクレーブに、実施例1で作製した樹脂粒子1.5kg(100質量部)、蒸留水3L、界面活性剤(直鎖アルキルベンゼンスルホン酸ナトリウム、商品名:「ニューレックスR」、油化産業社製)4gを投入し、密閉した後、撹拌状態で発泡剤のブタン(ノルマルブタン:イソブタン=7:3)16質量部を圧入した。次に、オートクレーブを100℃で2時間加熱して、25℃まで冷却した。冷却完了後にオートクレーブを除圧し、直ちに蒸留水で界面活性剤を洗浄し、脱水することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、7.2質量%であった。
(2)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(3)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、内圧付与による発泡粒子の窒素ガス含浸量は、0.9質量%であった。
実施例1〜3及び比較例1の各種物性値をまとめて表1に示す。また、実施例1〜3及び比較例1の発泡粒子の断面写真を図1〜4に示す。
Comparative Example 1
(1) Foamable particles 1.5 kg (100 parts by mass) of resin particles prepared in Example 1, 3 liters of distilled water, surfactant (sodium linear alkyl benzene sulfonate, trade name) in an agitator with an internal volume of 5 liters 4 g of “Neurex R” (manufactured by Yuka Sangyo Co., Ltd.) was charged, and after sealing, 16 parts by mass of butane (normal butane: isobutane = 7: 3) as a foaming agent was injected under stirring. The autoclave was then heated to 100 ° C. for 2 hours and cooled to 25 ° C. After cooling was completed, the autoclave was depressurized, and the surfactant was immediately washed with distilled water and dehydrated to obtain foamable particles. The amount of impregnation gas of the foamable particles was 7.2% by mass.
(2) Expanded Particles Expanded particles were obtained in the same manner as in Example 1.
(3) Foam Molded Product A foam molded product was obtained in the same manner as in Example 1. In addition, the nitrogen gas impregnation amount of the foaming particle by internal pressure provision was 0.9 mass%.
Various physical property values of Examples 1 to 3 and Comparative Example 1 are summarized in Table 1. Moreover, the cross-sectional photograph of the foaming particle of Examples 1-3 and the comparative example 1 is shown to FIGS.

表1から、実施例1〜3の発泡成形体は、光沢性の高い表面を有していることが分かる。図1〜4から、実施例1〜3の発泡粒子は、表層部の平均気泡径が大きいことが分かる。   It can be seen from Table 1 that the foam molded articles of Examples 1 to 3 have high gloss surfaces. It can be seen from FIGS. 1 to 4 that the foamed particles of Examples 1 to 3 have a large average cell diameter in the surface layer portion.

Claims (9)

エステル系エラストマーを基材樹脂として含む樹脂組成物から構成される高光沢発泡粒子であり、
前記高光沢発泡粒子が、A>Bの関係(Aは表層部の平均気泡径、Bは中心部の平均気泡径)を満たす複数の気泡を有し、
前記表層部の平均気泡径が、80〜400μmであり、前記中心部の平均気泡径が、10〜200μmであることを特徴とする高光沢発泡粒子。
High gloss foam particles composed of a resin composition containing an ester elastomer as a base resin,
The high gloss foam particles have a plurality of cells satisfying the relationship of A> B (A is an average cell diameter of the surface layer portion and B is an average cell diameter of a center portion),
High gloss foam particles characterized in that the average cell diameter of the surface layer portion is 80 to 400 μm, and the average cell diameter of the central portion is 10 to 200 μm.
前記A及びBが、A/B>1.5の関係を満たす請求項1又は2に記載の高光沢発泡粒子。   The high gloss foam particles according to claim 1 or 2, wherein the A and B satisfy the relationship of A / B> 1.5. 前記樹脂組成物が、(i)1×10〜2×10Paのビカット軟化温度Tv−10℃における固体粘弾性測定による貯蔵弾性率、及び(ii)1×10〜2×10Paの結晶化温度Tcにおける溶融粘弾性測定による貯蔵弾性率のいずれかの物性を少なくとも有する請求項1又は2のいずれか1つに記載の高光沢発泡粒子。 The resin composition has (i) a storage elastic modulus by solid viscoelasticity measurement at a Vicat softening temperature Tv−10 ° C. of 1 × 10 7 to 2 × 10 8 Pa, and (ii) 1 × 10 6 to 2 × 10 7 The high-gloss expanded particles according to any one of claims 1 or 2, which have at least one physical property of storage elastic modulus by melt viscoelasticity measurement at a crystallization temperature Tc of Pa. 前記高光沢発泡粒子が、
(i)0.02〜0.4g/cmの嵩密度
(ii)1.5〜15mmの平均粒子径
のいずれかの物性を少なくとも有する請求項1〜3のいずれか1つに記載の高光沢発泡粒子。
The high gloss foam particles are
(I) The bulk density according to any one of claims 1 to 3 having at least one physical property of an average particle diameter of a bulk density of 0.02 to 0.4 g / cm 3 (ii) 1.5 to 15 mm. Glossy foam particles.
請求項1〜4のいずれか1つに記載の高光沢発泡粒子を製造する方法であって、
前記エステル系エラストマーを基材樹脂とする樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、前記発泡性粒子を発泡させる工程とを含むことを特徴とする高光沢発泡粒子の製造方法。
It is a method of manufacturing the high gloss foaming particles according to any one of claims 1 to 4,
A method of producing high-gloss foam particles, comprising the steps of: impregnating a resin particle containing the ester elastomer as a base resin with a foaming agent to obtain foamable particles; and foaming the foamable particles. .
請求項1〜5のいずれか1つに記載の高光沢発泡粒子を型内発泡させて得られた発泡成形体。   A foam molded article obtained by in-mold foaming of the high gloss foam particles according to any one of claims 1 to 5. 前記発泡成形体が、
(i)0.02〜0.4g/cmの密度
(ii)50〜100%の反発弾性率
(iii)20〜65のアスカーC硬度
のいずれかの物性を少なくとも有する請求項6に記載の発泡成形体。
The foam molded body is
(I) A density of 0.02 to 0.4 g / cm 3 (ii) Repulsion modulus of 50 to 100% (iii) An Asker C hardness of 20 to 65 according to claim 6 at least having physical properties Foam molded body.
前記発泡成形体が、建築資材、靴の部材、スポーツ用品、緩衝材、シートクッション又は自動車部材として用いられる請求項6又は7に記載の発泡成形体。   The foam molded article according to claim 6 or 7, wherein the foam molded article is used as a construction material, a shoe member, a sporting goods, a shock absorbing material, a seat cushion or an automobile member. 請求項6〜8のいずれか1つに記載の発泡成形体を製造する方法であって、
ゲージ圧0.05〜0.4MPaの水蒸気を加熱媒体として請求項1〜4のいずれか1つに記載の高光沢発泡粒子を型内発泡させる工程を含むことを特徴とする発泡成形体の製造方法。
A method of producing the foam molded article according to any one of claims 6 to 8, wherein
Production of a foam molded article comprising the step of in-mold foaming of the high-gloss foam particles according to any one of claims 1 to 4 using a steam having a gauge pressure of 0.05 to 0.4 MPa as a heating medium Method.
JP2017190109A 2017-09-29 2017-09-29 High-gloss foam particles, foam moldings and methods for manufacturing them Active JP6867265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190109A JP6867265B2 (en) 2017-09-29 2017-09-29 High-gloss foam particles, foam moldings and methods for manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190109A JP6867265B2 (en) 2017-09-29 2017-09-29 High-gloss foam particles, foam moldings and methods for manufacturing them

Publications (2)

Publication Number Publication Date
JP2019065115A true JP2019065115A (en) 2019-04-25
JP6867265B2 JP6867265B2 (en) 2021-04-28

Family

ID=66337649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190109A Active JP6867265B2 (en) 2017-09-29 2017-09-29 High-gloss foam particles, foam moldings and methods for manufacturing them

Country Status (1)

Country Link
JP (1) JP6867265B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137170U (en) * 1977-04-05 1978-10-30
JPH0526816U (en) * 1991-09-20 1993-04-06 積水化成品工業株式会社 Inner packaging for paper boxes
JPH05271453A (en) * 1992-03-25 1993-10-19 Toyobo Co Ltd Production of thermoplastic polyester elastomer foam
WO2009119549A1 (en) * 2008-03-27 2009-10-01 東洋製罐株式会社 Stretched foam plastic container and process for producing the stretched foam plastic container
JP2009263639A (en) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
WO2016052387A1 (en) * 2014-09-30 2016-04-07 積水化成品工業株式会社 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body
JP2017171846A (en) * 2016-03-25 2017-09-28 積水化成品工業株式会社 Thermoplastic elastomer foamed body and manufacturing method of thermoplastic elastomer foamed body
JP6227202B1 (en) * 2016-07-13 2017-11-08 積水化成品工業株式会社 Ester elastomer foam molding, its use and ester elastomer foam particles
WO2019050032A1 (en) * 2017-09-11 2019-03-14 積水化成品工業株式会社 Thermoplastic elastomer composition, foam particle, and foam molded body
JP2019065273A (en) * 2017-09-29 2019-04-25 積水化成品工業株式会社 Pigment-containing foamed particles, foamed molding, and method for producing them

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137170U (en) * 1977-04-05 1978-10-30
JPH0526816U (en) * 1991-09-20 1993-04-06 積水化成品工業株式会社 Inner packaging for paper boxes
JPH05271453A (en) * 1992-03-25 1993-10-19 Toyobo Co Ltd Production of thermoplastic polyester elastomer foam
WO2009119549A1 (en) * 2008-03-27 2009-10-01 東洋製罐株式会社 Stretched foam plastic container and process for producing the stretched foam plastic container
JP2009263639A (en) * 2008-03-31 2009-11-12 Sekisui Plastics Co Ltd Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body
WO2016052387A1 (en) * 2014-09-30 2016-04-07 積水化成品工業株式会社 Amide elastomer foam particles, method for producing same, foam molded body and method for producing foam molded body
JP2017171846A (en) * 2016-03-25 2017-09-28 積水化成品工業株式会社 Thermoplastic elastomer foamed body and manufacturing method of thermoplastic elastomer foamed body
JP6227202B1 (en) * 2016-07-13 2017-11-08 積水化成品工業株式会社 Ester elastomer foam molding, its use and ester elastomer foam particles
WO2019050032A1 (en) * 2017-09-11 2019-03-14 積水化成品工業株式会社 Thermoplastic elastomer composition, foam particle, and foam molded body
JP2019065273A (en) * 2017-09-29 2019-04-25 積水化成品工業株式会社 Pigment-containing foamed particles, foamed molding, and method for producing them

Also Published As

Publication number Publication date
JP6867265B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP6081674B2 (en) Amide-based elastomer expanded particles, method for producing the same, foamed molded article, and method for producing the same
JP6253839B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
JP6227202B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
JP6534645B2 (en) Shock absorbing foam and shock absorbing material
JP6867265B2 (en) High-gloss foam particles, foam moldings and methods for manufacturing them
JP2019065273A (en) Pigment-containing foamed particles, foamed molding, and method for producing them
JP2018172535A (en) Ester-based elastomer foam molding and method for producing the same
JP7051654B2 (en) Wax-containing foam particles, foam moldings and methods for producing them
JP2019044123A (en) Method for producing thermoplastic elastomer expandable particle and method for producing foam molding
JP6864775B1 (en) Thermoplastic resin foam sheet, thermoplastic resin foam sheet molded product and manufacturing method thereof
JP7165068B2 (en) Method for producing foam molded article
JP6998808B2 (en) Foam and its manufacturing method
JP6882967B2 (en) Ester-based elastomer foam particles, foam moldings and methods for producing them
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
WO2024070887A1 (en) Amide elastomer foam particles, amide elastomer foam molded body, and method for producing said foam molded body
WO2020090335A1 (en) Foam particles
JP2020158655A (en) Ester elastomer foam molding, use therefor, and ester elastomer foam particle
WO2020196020A1 (en) Plant-derived polyamide-based elastomer foam molded body, method for manufacturing same, and foam particles thereof
JP2024050390A (en) Amide-based elastomer expanded particles, amide-based elastomer expanded molded product, and method for producing said expanded molded product
JP7424855B2 (en) Polyamide resin foam particles and polyamide resin foam particle moldings
JP2018050767A (en) insole
JP2020164629A (en) Foam-molded body of biodegradable thermoplastic elastomer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210408

R150 Certificate of patent or registration of utility model

Ref document number: 6867265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350