JP7051654B2 - Wax-containing foam particles, foam moldings and methods for producing them - Google Patents

Wax-containing foam particles, foam moldings and methods for producing them Download PDF

Info

Publication number
JP7051654B2
JP7051654B2 JP2018177562A JP2018177562A JP7051654B2 JP 7051654 B2 JP7051654 B2 JP 7051654B2 JP 2018177562 A JP2018177562 A JP 2018177562A JP 2018177562 A JP2018177562 A JP 2018177562A JP 7051654 B2 JP7051654 B2 JP 7051654B2
Authority
JP
Japan
Prior art keywords
particles
wax
foamed
molded product
foamed particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018177562A
Other languages
Japanese (ja)
Other versions
JP2019065272A (en
Inventor
広隆 近藤
裕一 権藤
雅之 高野
洵史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Publication of JP2019065272A publication Critical patent/JP2019065272A/en
Application granted granted Critical
Publication of JP7051654B2 publication Critical patent/JP7051654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ワックス含有発泡粒子、発泡成形体及びそれらの製造方法に関する。更に詳しくは、本発明は、融着性が向上した発泡成形体を与え得るワックス含有発泡粒子、融着性が向上した発泡成形体及びそれらの製造方法に関する。 The present invention relates to wax-containing foamed particles, foamed molded products, and methods for producing them. More specifically, the present invention relates to wax-containing foamed particles that can give a foamed molded product with improved meltability, a foamed molded product with improved meltability, and a method for producing them.

従来、緩衝材や梱包材として、ポリスチレン、ポリプロピレン等からなる発泡粒子を複数個融着させた発泡成形体が汎用されている。発泡粒子を複数個融着させた発泡成形体は、押出発泡による発泡成形体に比べて、複雑な形状を形成可能であるという利点を有している。ポリスチレン、ポリプロピレン等からなる発泡成形体は、高い反発弾性が求められる用途では使用し難いという課題があった。そのため、高い反発弾性を実現できる発泡成形体が求められていた。 Conventionally, as a cushioning material or a packing material, a foamed molded product in which a plurality of foamed particles made of polystyrene, polypropylene or the like are fused is widely used. The foamed molded product obtained by fusing a plurality of foamed particles has an advantage that a complicated shape can be formed as compared with the foamed molded product obtained by extrusion foaming. A foam molded product made of polystyrene, polypropylene, or the like has a problem that it is difficult to use it in applications that require high impact resilience. Therefore, there has been a demand for a foam molded product capable of achieving high impact resilience.

上記求めに応じて、特開2016-190989号公報(特許文献1)には、アミド系エラストマー発泡粒子を用いた発泡成形体が提案されている。 In response to the above request, Japanese Patent Application Laid-Open No. 2016-190989 (Patent Document 1) proposes a foamed molded product using amide-based elastomer foamed particles.

特開2016-190989号公報Japanese Unexamined Patent Publication No. 2016-190989

本発明の発明者等は、アミド系エラストマー以外に、優れた反発弾性を有するエステル系エラストマーでも発泡粒子を製造できることを見い出している。ここで、複数の発泡粒子の融着体からなる発泡成形体には、発泡粒子相互の融着性が高いことが求められる。そのためエステル系エラストマーを基材樹脂とする発泡粒子から得られた発泡成形体においても、融着性を向上させることを検討した。 The inventors of the present invention have found that foamed particles can be produced not only with an amide-based elastomer but also with an ester-based elastomer having excellent impact resilience. Here, the foamed molded product made of a fused body of a plurality of foamed particles is required to have high fusion property between the foamed particles. Therefore, it was investigated to improve the fusion property even in the foamed molded product obtained from the foamed particles using the ester-based elastomer as the base resin.

本発明の発明者等は、エステル系エラストマー発泡粒子が、基材樹脂としてのエステル系エラストマーと、特定量の融着向上剤としてのワックスとを含む樹脂組成物から構成されることで、融着性の向上した発泡成形体を提供できることを見い出し本発明に至った。
かくして本発明によれば、基材樹脂としてのエステル系エラストマーと、融着向上剤としてのワックスとを含む樹脂組成物から構成され、前記ワックスが、炭素数12~22の高級脂肪酸アミド、炭素数25~46の高級脂肪酸ビスアミド及び炭素数12~22の高級脂肪酸塩から選択され、かつ前記エステル系エラストマー100質量部に対して、0.01~5質量部含まれることを特徴とするワックス含有発泡粒子が提供される。
また、本発明によれば、上記ワックス含有発泡粒子を製造する方法であって、
前記エステル系エラストマーと前記ワックスとを含む樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、前記発泡性粒子を発泡させる工程とを含むことを特徴とするワックス含有発泡粒子の製造方法が提供される。
更に、本発明によれば、上記ワックス含有発泡粒子を型内発泡させて得られた発泡成形体が提供される。
また、本発明によれば、上記発泡成形体を製造する方法であって、
ゲージ圧0.05~0.4MPaの水蒸気を加熱媒体として上記ワックス含有発泡粒子を型内発泡させる工程を含むことを特徴とする発泡成形体の製造方法が提供される。
The inventors of the present invention have described that the ester-based elastomer foam particles are composed of a resin composition containing an ester-based elastomer as a base resin and a specific amount of wax as a fusion improver. We have found that it is possible to provide a foamed molded product having improved properties, and have arrived at the present invention.
Thus, according to the present invention, it is composed of a resin composition containing an ester-based elastomer as a base resin and a wax as a fusion improver, and the wax is a higher fatty acid amide having 12 to 22 carbon atoms and a carbon number of carbon atoms. Wax-containing foam selected from 25 to 46 higher fatty acid bisamides and 12 to 22 carbon atoms and containing 0.01 to 5 parts by mass with respect to 100 parts by mass of the ester-based elastomer. Particles are provided.
Further, according to the present invention, it is a method for producing the wax-containing foamed particles.
A method for producing wax-containing foamed particles, which comprises a step of impregnating resin particles containing the ester-based elastomer and the wax with a foaming agent to obtain foamable particles, and a step of foaming the foamable particles. Is provided.
Further, according to the present invention, there is provided a foamed molded product obtained by in-mold foaming of the wax-containing foamed particles.
Further, according to the present invention, it is a method for producing the above-mentioned foam molded product.
Provided is a method for producing a foamed molded product, which comprises a step of in-mold foaming the wax-containing foamed particles using steam having a gauge pressure of 0.05 to 0.4 MPa as a heating medium.

本発明のワックス含有発泡粒子は、融着性の向上した発泡成形体を提供できる。 The wax-containing foamed particles of the present invention can provide a foamed molded product having improved fusion property.

また、以下のいずれかの場合、より融着性の向上した発泡成形体を製造し得るワックス含有発泡粒子を提供できる。
(1)ワックスが、高級脂肪酸アミド、高級脂肪酸ビスアミド及び高級脂肪酸塩から選択される。
(2)ワックスが、炭素数12~22の高級脂肪酸アミド、炭素数25~46の高級脂肪酸ビスアミド及び炭素数12~22の高級脂肪酸塩から選択される。
(3)樹脂組成物が、
(i)0~65のショアD硬度
(ii)100~200℃の融点
(iii)結晶化温度Tcにおける溶融粘弾性測定による貯蔵弾性率が1×10~2×10Paの範囲
(iv)ビカット軟化温度Tv-10℃における固体粘弾性測定による貯蔵弾性率が1×10~2×10Paの範囲
のいずれかの物性を少なくとも有する。
(4)ワックス含有発泡粒子が、
(i)0.02~0.4g/cmの嵩密度
(ii)10~300μmの平均気泡径
(iii)60~100%の独立気泡率
(iv)1.5~15mmの平均粒子径
のいずれかの物性を少なくとも有する。
Further, in any of the following cases, it is possible to provide wax-containing foamed particles capable of producing a foamed molded product having further improved fusion properties.
(1) The wax is selected from higher fatty acid amides, higher fatty acid bisamides and higher fatty acid salts.
(2) The wax is selected from a higher fatty acid amide having 12 to 22 carbon atoms, a higher fatty acid bisamide having 25 to 46 carbon atoms, and a higher fatty acid salt having 12 to 22 carbon atoms.
(3) The resin composition is
(I) Shore D hardness of 0 to 65 (ii) Melting point of 100 to 200 ° C. (iii) Storage elastic modulus measured by melt viscoelasticity at crystallization temperature Tc is in the range of 1 × 10 6 to 2 × 10 7 Pa (iv). ) The storage elastic modulus measured by solid viscoelasticity at the Vicat softening temperature Tv-10 ° C. has at least one of the physical properties in the range of 1 × 10 7 to 2 × 10 8 Pa.
(4) Wax-containing foamed particles
(I) Bulk density of 0.02 to 0.4 g / cm 3 (ii) Average bubble diameter of 10 to 300 μm (iii) Closed cell ratio of 60 to 100% (iv) Average particle diameter of 1.5 to 15 mm Has at least one of the physical characteristics.

実施例1の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 1. 実施例2の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 2. 実施例3の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 3. 実施例4の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 4. 実施例5の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 5. 実施例6の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 6. 実施例7の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 7. 実施例8の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Example 8. 比較例1の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Comparative Example 1. 比較例2の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Comparative Example 2. 比較例3の発泡粒子の断面写真である。It is a cross-sectional photograph of the foamed particles of Comparative Example 3.

(ワックス含有発泡粒子)
本発明のワックス含有発泡粒子(以下、単に発泡粒子)は、基材樹脂としてのエステル系エラストマーと、融着向上剤としてのワックスとを含む樹脂組成物から構成されている。
(1)エステル系エラストマー
エステル系エラストマーは、発泡成形体を与えさえすれば特に限定されない。例えば、ハードセグメントとソフトセグメントとを含むエステル系エラストマーが挙げられる。
(Wax-containing foam particles)
The wax-containing foamed particles of the present invention (hereinafter, simply foamed particles) are composed of a resin composition containing an ester-based elastomer as a base resin and wax as a fusion improver.
(1) Ester-based elastomer The ester-based elastomer is not particularly limited as long as it is provided with a foamed molded product. For example, an ester-based elastomer containing a hard segment and a soft segment can be mentioned.

ハードセグメントは、例えば、ジカルボン酸成分及び/又はジオール成分から構成される。ジカルボン酸成分と、ジカルボン酸成分及びジオール成分との2成分から構成されていてもよい。
ジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸等の脂肪族ジカルボン酸及びその誘導体、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びその誘導体に由来する成分が挙げられる。
ジオール成分としては、エチレングリコール、プロピレングリコール、ブタンジオール(例えば、1,4-ブタンジオール)等のC2-10アルキレングリコール、(ポリ)オキシC2-10アルキレングリコール、C5-12シクロアルカンジオール、ビスフェノール類又はこれらのアルキレンオキサイド付加体等が挙げられる。ハードセグメントは、結晶性を有していてもよい。
The hard segment is composed of, for example, a dicarboxylic acid component and / or a diol component. It may be composed of two components, a dicarboxylic acid component and a dicarboxylic acid component and a diol component.
Examples of the dicarboxylic acid component include aliphatic dicarboxylic acids such as oxalic acid, malonic acid and succinic acid and their derivatives, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid and their derivatives.
Examples of the diol component include C 2-10 alkylene glycol such as ethylene glycol, propylene glycol and butanediol (for example, 1,4-butanediol), (poly) oxy C 2-10 alkylene glycol, and C 5-12 cycloalkanediol. , Bisphenols or alkylene oxide adducts thereof and the like. The hard segment may have crystallinity.

ソフトセグメントは、ポリエステルタイプ及び/又はポリエーテルタイプのセグメントを使用できる。
ポリエステルタイプのソフトセグメントとしては、ジカルボン酸類(アジピン酸のような脂肪族C4-12ジカルボン酸)とジオール類(1,4-ブタンジオールのようなC2-10アルキレングリコール、エチレングリコールのような(ポリ)オキシC2-10アルキレングリコール)との重縮合体、オキシカルボン酸の重縮合体やラクトン(ε-カプロラクトンのようなC3-12ラクトン)の開環重合体等の脂肪族ポリエステルが挙げられる。ポリエステルタイプのソフトセグメントは、非晶性であってもよい。ソフトセグメントとしてのポリエステルの具体例としては、カプロラクトン重合体、ポリエチレンアジペート、ポリブチレンアジペート等のC2-6アルキレングリコールとC6-12アルカンジカルボン酸とのポリエステルが挙げられる。このポリエステルの数平均分子量は、200~15000の範囲であってもよく、200~10000の範囲であってもよく、300~8000の範囲であってもよい。
ポリエーテルタイプのソフトセグメントとしては、ポリアルキレングリコール(例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール)のような脂肪族ポリエーテルに由来するセグメントが挙げられる。ポリエーテルの数平均分子量は、200~10000の範囲であってもよく、200~6000の範囲であってもよく、300~5000の範囲であってもよい。
As the soft segment, a polyester type and / or a polyether type segment can be used.
Polyester-type soft segments include dicarboxylic acids (aliphatic C 4-12 dicarboxylic acids such as adipic acid) and diols (C 2-10 alkylene glycols such as 1,4-butanediol, ethylene glycols). (Poly) Poly-polyesters such as polycondensates with oxyC 2-10 alkylene glycol), polycondensates with oxycarboxylic acids and ring-opening polymers of lactones (C 3-12 lactones such as ε-caprolactone) Can be mentioned. The polyester type soft segment may be amorphous. Specific examples of the polyester as a soft segment include polyesters of C 2-6 alkylene glycols such as caprolactone polymer, polyethylene adipate and polybutylene adipate and C 6-12 alkandicarboxylic acid. The number average molecular weight of this polyester may be in the range of 200 to 15,000, may be in the range of 200 to 10000, or may be in the range of 300 to 8000.
Examples of the polyether type soft segment include segments derived from aliphatic polyethers such as polyalkylene glycol (for example, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol). The number average molecular weight of the polyether may be in the range of 200 to 10000, may be in the range of 200 to 6000, or may be in the range of 300 to 5000.

ソフトセグメントは、脂肪族のポリエステルとポリエーテルとの共重合体(ポリエーテル-ポリエステル)のようなポリエーテル単位を有するポリエステル、ポリオキシアルキレングリコール(例えば、ポリオキシテトラメチレングリコール)のようなポリエーテルと脂肪族ジカルボン酸とのポリエステルに由来するセグメントであってもよい。
ハードセグメントとソフトセグメントとの質量割合は、20:80~90:10であってもよく、30:70~90:10であってもよく、30:70~80:20であってもよく、40:60~80:20であってもよく、40:60~75:25であってもよい。
また、ジカルボン酸成分が、テレフタル酸成分とそれ以外のジカルボン酸成分である場合、エステル系エラストマーが、ハードセグメントを30~80質量%の割合で含み、かつテレフタル酸成分以外のジカルボン酸成分を5~30質量%の割合で含んでいてもよい。テレフタル酸成分以外のジカルボン酸成分の割合は5~25質量%であってもよく、5~20質量%でもよく、10~20質量%でもよい。なお、ジカルボン酸成分の割合は、樹脂のNMRスペクトルを定量評価することにより入手できる。
テレフタル酸成分以外のジカルボン酸成分が、イソフタル酸成分であることが好ましい。イソフタル酸成分を含むことで、エラストマーの結晶化度が下がる傾向があり、発泡成形性が向上してより低密度の発泡成形体を得ることができる。
The soft segment is a polyester having a polyether unit such as a copolymer of an aliphatic polyester and a polyether (polyester-polyester), a polyether such as polyoxyalkylene glycol (eg, polyoxytetramethylene glycol). It may be a segment derived from polyester with an aliphatic dicarboxylic acid.
The mass ratio between the hard segment and the soft segment may be 20:80 to 90:10, 30:70 to 90:10, or 30:70 to 80:20. It may be 40:60 to 80:20 or 40:60 to 75:25.
When the dicarboxylic acid component is a terephthalic acid component and other dicarboxylic acid components, the ester-based elastomer contains a hard segment in a proportion of 30 to 80% by mass and contains 5 dicarboxylic acid components other than the terephthalic acid component. It may be contained in a proportion of up to 30% by mass. The ratio of the dicarboxylic acid component other than the terephthalic acid component may be 5 to 25% by mass, 5 to 20% by mass, or 10 to 20% by mass. The proportion of the dicarboxylic acid component can be obtained by quantitatively evaluating the NMR spectrum of the resin.
It is preferable that the dicarboxylic acid component other than the terephthalic acid component is an isophthalic acid component. By containing the isophthalic acid component, the crystallinity of the elastomer tends to decrease, the foam moldability is improved, and a foam molded product having a lower density can be obtained.

樹脂組成物は、
(i)0~65のショアD硬度
(ii)100~200℃の融点
(iii)結晶化温度Tcにおける溶融粘弾性測定による貯蔵弾性率が1×10~2×10Paの範囲
(iv)ビカット軟化温度Tv-10℃における固体粘弾性測定による貯蔵弾性率が1×10~2×10Paの範囲
のいずれかの物性を少なくとも有することが好ましい。
ショアD硬度が65より大きい場合、発泡時の軟化が困難になり、低密度の発泡成形体を得ることができないことがある。ショアD硬度は、20~60の範囲であってもよく、25~60の範囲であってもよく、30~60の範囲であってもよい。
融点が100℃未満の場合、予備発泡工程後に収縮が起こり、成形が難しくなることがある。200℃より高い場合、発泡時の軟化が困難になり、低密度の発泡成形体を得ることができないことがある。融点は、120~200℃の範囲であってもよく、120~190℃の範囲であってもよい。
貯蔵弾性率(溶融粘弾性)が1×10Pa未満の場合、発泡後の冷却過程において発泡形状を維持することができずに収縮してしまうことがある。2×10Paより大きい場合、発泡時の軟化が困難になり、所望の発泡倍数(密度)が得られないことがある。貯蔵弾性率(溶融粘弾性)は、1×10~1.5×10Paの範囲であってもよく、1×10~1×10Paの範囲であってもよく、3×10~1×10Paの範囲であってもよい。
貯蔵弾性率(固体粘弾性)が1×10未満の場合、発泡後の冷却過程において発泡形状を維持することができずに収縮してしまうことがある。2×10Paより大きい場合、発泡時の軟化が困難になり、所望の発泡倍数(密度)が得られないことがある。貯蔵弾性率(固体粘弾性)は、1×10~1.5×10Paの範囲であってもよく、1×10~1×10Paの範囲であってもよく、1×10~8×10Paの範囲であってもよい。
The resin composition is
(I) Shore D hardness of 0 to 65 (ii) Melting point of 100 to 200 ° C. (iii) Storage elastic modulus measured by melt viscoelasticity at crystallization temperature Tc is in the range of 1 × 10 6 to 2 × 10 7 Pa (iv). ) It is preferable that the storage elastic modulus by solid viscoelasticity measurement at the Vicat softening temperature Tv-10 ° C. has at least one of the physical properties in the range of 1 × 10 7 to 2 × 10 8 Pa.
If the shore D hardness is greater than 65, softening during foaming becomes difficult, and a low-density foamed molded product may not be obtained. The shore D hardness may be in the range of 20 to 60, in the range of 25 to 60, or in the range of 30 to 60.
If the melting point is less than 100 ° C., shrinkage may occur after the prefoaming step, making molding difficult. If the temperature is higher than 200 ° C., softening during foaming becomes difficult, and a low-density foamed molded product may not be obtained. The melting point may be in the range of 120 to 200 ° C. or may be in the range of 120 to 190 ° C.
If the storage elastic modulus (molten viscoelasticity) is less than 1 × 10 6 Pa, the foamed shape may not be maintained and shrinkage may occur during the cooling process after foaming. If it is larger than 2 × 10 7 Pa, softening during foaming becomes difficult, and a desired foaming multiple (density) may not be obtained. The storage elastic modulus (molten viscoelasticity) may be in the range of 1 × 10 6 to 1.5 × 10 7 Pa, or may be in the range of 1 × 10 6 to 1 × 10 7 Pa, 3 ×. It may be in the range of 10 6 to 1 × 10 7 Pa.
If the storage elastic modulus (solid viscoelasticity) is less than 1 × 107 , the foamed shape cannot be maintained and shrinks during the cooling process after foaming. If it is larger than 2 × 10 8 Pa, softening during foaming becomes difficult, and a desired foaming multiple (density) may not be obtained. The storage elastic modulus (solid viscoelasticity) may be in the range of 1 × 10 7 to 1.5 × 10 8 Pa, or may be in the range of 1 × 10 7 to 1 × 10 8 Pa, and may be in the range of 1 × 10 7 to 1 × 10 8 Pa. It may be in the range of 10 7 to 8 × 10 7 Pa.

(2)基材樹脂
基材樹脂には、本発明の効果を阻害しない範囲で、エステル系エラストマー以外に、他の樹脂が含まれていてもよい。他の樹脂は、公知の熱可塑性樹脂、熱硬化性樹脂であってもよい。
基材樹脂は、他に、難燃剤、着色剤、帯電防止剤、展着剤、可塑剤、難燃助剤、架橋剤、充填剤、滑剤等を含んでいてもよい。
難燃剤としては、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等が挙げられる。
着色剤としては、カーボンブラック、グラファイト、酸化チタン等の無機顔料、フタロシアニンブルー、フタロシアニングリーン、キナクリドンレッド、イソインドリノンイエロー等の有機顔料、金属粉、パール等の特殊顔料が挙げられる。
帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。
展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイル等が挙げられる。
(2) Substrate Resin The base resin may contain other resins in addition to the ester-based elastomer as long as the effects of the present invention are not impaired. The other resin may be a known thermoplastic resin or thermosetting resin.
The base resin may also contain a flame retardant, a colorant, an antistatic agent, a spreading agent, a plasticizer, a flame retardant aid, a cross-linking agent, a filler, a lubricant and the like.
Examples of the flame retardant include hexabromocyclododecane, triallyl isocyanurate 6 bromide and the like.
Examples of the colorant include inorganic pigments such as carbon black, graphite and titanium oxide, organic pigments such as phthalocyanine blue, phthalocyanine green, quinacridone red and isoindolenone yellow, and special pigments such as metal powder and pearl.
Examples of the antistatic agent include polyoxyethylene alkylphenol ether, stearic acid monoglyceride and the like.
Examples of the spreading agent include polybutene, polyethylene glycol, silicone oil and the like.

(3)ワックス
ワックスは、発泡粒子相互の融着を向上させることが可能でありさえすれば、特に限定されない。ワックスは、例えば、高級脂肪酸アミド、高級脂肪酸ビスアミド及び高級脂肪酸塩から選択できる。より具体的には、高級脂肪酸アミドは、ラウリン酸アミド、トリデシル酸アミド、ミリスチン酸アミド、ペンタデシル酸アミド、パルミチン酸アミド、マルガリン酸アミド、ステアリン酸アミド、ノナデシル酸アミド、アラキジン酸アミド、ヘンイコシル酸アミド、ベヘン酸アミド、12-ヒドロキシステアリン酸アミド、オレイン酸アミド及びエルカ酸アミド(炭素数12~22の高級脂肪酸アミド)から、高級脂肪酸ビスアミドは、メチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド(炭素数25~46の高級脂肪酸ビスアミド)から、高級脂肪酸塩はラウリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム及びステアリン酸亜鉛(炭素数12~22の高級脂肪酸塩)から選択できる。
ワックスは、エステル系エラストマー100質量部に対して、0.01~5質量部含まれる。ワックスの含有量が0.01質量部未満の場合、発泡粒子相互の融着が十分に得られないことがある。5質量部より多い場合、樹脂物性が変化し、例えば発泡成形体の強度や反発弾性率の低下が起こることがある。
(3) Wax Wax is not particularly limited as long as it is possible to improve the fusion of the foamed particles to each other. The wax can be selected from, for example, higher fatty acid amides, higher fatty acid bisamides and higher fatty acid salts. More specifically, the higher fatty acid amides are lauric acid amides, tridecyl acid amides, myristic acid amides, pentadecyl acid amides, palmitic acid amides, margaric acid amides, stearic acid amides, nonadesilic acid amides, arachidic acid amides, and henicosyl acid amides. , Bechenic acid amide, 12-hydroxystearic acid amide, oleic acid amide and erucic acid amide (higher fatty acid amide having 12 to 22 carbon atoms), higher fatty acid bisamides are methylene bisstearic acid amides, ethylene bislauric acid amides, ethylene. From bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide (higher fatty acid bisamide having 25 to 46 carbon atoms), higher fatty acid salts are magnesium laurate, calcium laurate, zinc laurate, magnesium stearate, steer. It can be selected from calcium phosphate and zinc stearate (higher fatty acid salts having 12 to 22 carbon atoms).
The wax is contained in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the ester-based elastomer. If the wax content is less than 0.01 parts by mass, sufficient fusion between the foamed particles may not be obtained. If it is more than 5 parts by mass, the physical properties of the resin may change, and for example, the strength and the elastic modulus of the foam may decrease.

(4)発泡粒子の物性
発泡粒子は、
(i)0.02~0.4g/cmの嵩密度
(ii)10~300μmの平均気泡径
(iii)60~100%の独立気泡率
(iv)1.5~15mmの平均粒子径
のいずれかの物性を少なくとも有することが好ましい。
嵩密度が0.02g/cm未満の場合、収縮して外観不良を起こしたり、強度が低下することがある。0.4g/cmより大きい場合、軽量の発泡成形体を得ることができないことがある。嵩密度は、0.04~0.4g/cmの範囲であってもよく、0.06~0.4g/cmの範囲であってもよく、0.06~0.3g/cmの範囲であってもよい。
平均気泡径が10μm未満の場合、収縮して外観不良を起こすことがある。300μmより大きい場合、成形時に発泡粒子同士の融着が悪くなり強度が低下することがある。平均気泡径は、10~250μmの範囲であってもよく、10~200μmの範囲であってもよい。
独立気泡率が60%未満の場合、内圧付与が難しくなり、成形性が低下することがある。独立気泡率は、65~100%の範囲であってもよく、70~100%の範囲であってもよい。
平均粒子径が1.5mm未満の場合、発泡粒子の製造自体が困難であり、かつ製造コストが増大することがある。15mmより大きい場合、型内成形により発泡成形体を作製する際に、金型への充填性が低下することがある。平均粒子径は、1.5~12mmの範囲であってもよく、1.5~9mmの範囲であってもよい。
(4) Physical characteristics of foamed particles Foamed particles are
(I) Bulk density of 0.02 to 0.4 g / cm 3 (ii) Average bubble diameter of 10 to 300 μm (iii) 60 to 100% closed cell ratio (iv) Average particle diameter of 1.5 to 15 mm It is preferable to have at least one of the physical properties.
If the bulk density is less than 0.02 g / cm 3 , it may shrink to cause poor appearance or decrease in strength. If it is larger than 0.4 g / cm 3 , it may not be possible to obtain a lightweight foam molded product. The bulk density may be in the range of 0.04 to 0.4 g / cm 3 , may be in the range of 0.06 to 0.4 g / cm 3 , and may be in the range of 0.06 to 0.3 g / cm 3 . It may be in the range of.
If the average bubble diameter is less than 10 μm, it may shrink and cause poor appearance. If it is larger than 300 μm, the fusion of the foamed particles may be poor during molding and the strength may be lowered. The average bubble diameter may be in the range of 10 to 250 μm or may be in the range of 10 to 200 μm.
When the closed cell ratio is less than 60%, it becomes difficult to apply the internal pressure, and the moldability may be deteriorated. The closed cell ratio may be in the range of 65 to 100% or 70 to 100%.
If the average particle size is less than 1.5 mm, it may be difficult to produce the foamed particles and the production cost may increase. If it is larger than 15 mm, the filling property into the mold may decrease when the foamed molded product is produced by in-mold molding. The average particle size may be in the range of 1.5 to 12 mm or may be in the range of 1.5 to 9 mm.

(ワックス含有発泡粒子の製造方法)
ワックス含有発泡粒子は、エステル系エラストマーとワックスとを含む樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、発泡性粒子を発泡させる工程とを含む方法により製造できる。
(Manufacturing method of wax-containing foamed particles)
The wax-containing foamed particles can be produced by a method including a step of impregnating resin particles containing an ester-based elastomer and wax with a foaming agent to obtain foamable particles, and a step of foaming the foamable particles.

(1)発泡性粒子
発泡性粒子は、樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程(含浸工程)を経て得ることができる。
発泡剤は有機ガスであってもよく、無機ガスであってもよい。無機ガスとしては、空気、窒素及び二酸化炭素(炭酸ガス)等がある。有機ガスとしてはプロパン、ブタン、ペンタン等の炭化水素、フッ素系発泡剤が挙げられる。上記発泡剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
基材樹脂に含まれる発泡剤の量は、基材樹脂100質量部に対して、1~12質量部であってもよい。1質量部未満であると、発泡力が低くなり、発泡倍数を高くすることが困難である。発泡剤の含有量が12質量部を超えると、可塑化効果が大きくなり、発泡時に収縮が生じて良好な発泡粒子を得られないことがある。発泡剤の量は5~12質量部であってもよい。この範囲内であれば、発泡力を十分に高めることができ、より一層良好に発泡させることができる。
樹脂粒子に発泡剤を含浸させる方法としては、公知の方法を用い得る。例えば、オートクレーブ内に、樹脂粒子、分散剤及び水を供給して撹拌することによって、樹脂粒子を水中に分散させて分散液を製造し、この分散液中に発泡剤を圧入し、樹脂粒子中に発泡剤を含浸させる方法が挙げられる。
分散剤としては、特に限定されず、例えば、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難水溶性無機物や、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤が挙げられる。
(1) Effervescent particles Effervescent particles can be obtained through a step (impregnation step) of impregnating resin particles with a foaming agent to obtain effervescent particles.
The foaming agent may be an organic gas or an inorganic gas. Examples of the inorganic gas include air, nitrogen and carbon dioxide (carbonic acid gas). Examples of the organic gas include hydrocarbons such as propane, butane and pentane, and fluorine-based foaming agents. Only one kind of the above foaming agent may be used, or two or more kinds may be used in combination.
The amount of the foaming agent contained in the base resin may be 1 to 12 parts by mass with respect to 100 parts by mass of the base resin. If it is less than 1 part by mass, the foaming power becomes low, and it is difficult to increase the foaming multiple. If the content of the foaming agent exceeds 12 parts by mass, the plasticizing effect becomes large, shrinkage occurs during foaming, and good foamed particles may not be obtained. The amount of the foaming agent may be 5 to 12 parts by mass. Within this range, the foaming power can be sufficiently increased, and foaming can be performed even better.
As a method of impregnating the resin particles with a foaming agent, a known method can be used. For example, resin particles, a dispersant, and water are supplied into an autoclave and stirred to disperse the resin particles in water to produce a dispersion liquid, and a foaming agent is press-fitted into the dispersion liquid to be contained in the resin particles. Is impregnated with a foaming agent.
The dispersant is not particularly limited, and examples thereof include poorly water-soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, and magnesium oxide, and surfactants such as sodium dodecylbenzene sulfonate.

樹脂粒子への発泡剤の含浸温度は、低いと、樹脂粒子に発泡剤を含浸させるのに要する時間が長くなって生産効率が低下することがある。また、高いと、樹脂粒子同士が融着して結合粒が発生することがある。含浸温度は、-20~120℃であってもよく、0~120℃であってもよく、20~120℃であってもよく、40~120℃であってもよい。発泡助剤(可塑剤)や気泡調整剤を、発泡剤と併用してもよい。
発泡助剤(可塑剤)としては、アジピン酸ジイソブチル、トルエン、シクロヘキサン、エチルベンゼン等が挙げられる。
If the impregnation temperature of the foaming agent into the resin particles is low, the time required for impregnating the resin particles with the foaming agent becomes long, and the production efficiency may decrease. If it is high, the resin particles may be fused to each other to generate bonded particles. The impregnation temperature may be −20 to 120 ° C., 0 to 120 ° C., 20 to 120 ° C., or 40 to 120 ° C. A foaming aid (plasticizer) or a bubble adjusting agent may be used in combination with the foaming agent.
Examples of the effervescence aid (plasticizer) include diisobutyl adipate, toluene, cyclohexane, ethylbenzene and the like.

気泡調整剤としては、高級脂肪酸アミド、高級脂肪酸ビスアミド、高級脂肪酸塩、無機気泡核剤等が挙げられる。これら気泡調整剤は、複数種組み合わせてもよい。
高級脂肪酸アミドとしては、ステアリン酸アミド、12-ヒドロキシステアリン酸アミド等が挙げられる。
高級脂肪酸ビスアミドとしては、エチレンビスステアリン酸アミド、メチレンビスステアリン酸アミド等が挙げられる。
高級脂肪酸塩としては、ステアリン酸カルシウムが挙げられる。
無機気泡核剤としては、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素等が挙げられる。
上記以外に化学気泡剤としての役割も果たす気泡調整剤を使用してもよい。そのような気泡調整剤としては、重曹クエン酸、炭酸水素ナトリウム、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド等が挙げられる。
気泡調整剤の含有量は、発泡性粒子100質量部に対して、0.005~2質量部であってもよく、0.01~1.5質量部であってもよい。気泡調整剤が0.005質量部よりも少ない場合、気泡径の制御が難しくなることがある。気泡調整剤が2質量部よりも多い場合、樹脂物性が変化し、例えば成形体強度の低下が起こることがある。
Examples of the bubble adjusting agent include higher fatty acid amides, higher fatty acid bisamides, higher fatty acid salts, and inorganic bubble nucleating agents. A plurality of types of these bubble adjusting agents may be combined.
Examples of the higher fatty acid amide include stearic acid amide and 12-hydroxystearic acid amide.
Examples of the higher fatty acid bisamide include ethylene bisstearic acid amide and methylene bisstearic acid amide.
Examples of the higher fatty acid salt include calcium stearate.
Examples of the inorganic bubble nucleating agent include talc, calcium silicate, synthetically or naturally produced silicon dioxide, and the like.
In addition to the above, a bubble adjusting agent that also serves as a chemical foaming agent may be used. Examples of such a bubble adjusting agent include citric acid sodium bicarbonate, sodium hydrogencarbonate, azodicarbonamide, dinitrosopentamethylenetetramine, benzenesulfonylhydrazide, hydrazodicarbonamide and the like.
The content of the bubble adjusting agent may be 0.005 to 2 parts by mass or 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the effervescent particles. If the amount of bubble adjusting agent is less than 0.005 part by mass, it may be difficult to control the bubble diameter. When the amount of the bubble adjusting agent is more than 2 parts by mass, the physical characteristics of the resin may change, and for example, the strength of the molded product may decrease.

(2)樹脂粒子
樹脂粒子の形状は、特に限定されず、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状等が挙げられる。
樹脂粒子は原料ペレットをそのまま使用してもよく、任意のサイズや形状にリペレットしてもよい。
樹脂粒子は、長さ0.5~5mm及び平均径0.5~5mmを有してもよい。長さが0.5mm未満及び平均径が0.5mm未満の場合、発泡性粒子とした場合のガス保持性が低くなるため、発泡することが困難なことがある。長さが5mmより大きい及び平均径が5mmより大きい場合、発泡させた際、内部まで熱が伝わらないため、発泡粒子に有芯が生じてしまうことがある。ここで、樹脂粒子の長さL及び平均径Dは、ノギスを用いて次のように測定する。リペレットする際の押出方向の樹脂粒子の長さを長さL、押出方向に直交する方向の樹脂粒子の最小直径(最小径)及び最大直径(最大径)の平均値を平均径Dとする。
(2) Resin particles The shape of the resin particles is not particularly limited, and examples thereof include a true spherical shape, an elliptical spherical shape (egg shape), a columnar shape, a prismatic shape, a pellet shape, and a granular shape.
As the resin particles, the raw material pellets may be used as they are, or may be repelled to any size and shape.
The resin particles may have a length of 0.5 to 5 mm and an average diameter of 0.5 to 5 mm. When the length is less than 0.5 mm and the average diameter is less than 0.5 mm, it may be difficult to foam because the gas retention of the effervescent particles is low. When the length is larger than 5 mm and the average diameter is larger than 5 mm, heat is not transferred to the inside when foamed, so that the foamed particles may have a core. Here, the length L and the average diameter D of the resin particles are measured as follows using a caliper. The length of the resin particles in the extrusion direction at the time of repelling is defined as the length L, and the average value of the minimum diameter (minimum diameter) and the maximum diameter (maximum diameter) of the resin particles in the direction orthogonal to the extrusion direction is defined as the average diameter D.

(3)発泡粒子
発泡粒子は、発泡性粒子を発泡させる工程(発泡工程)を経て得ることができる。
発泡粒子の形状は、特に限定されず、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状等が挙げられる。
発泡工程では、発泡性粒子を発泡させて、発泡粒子を得ることができれば発泡温度、加熱媒体は特に限定されない。
(3) Effervescent Particles Effervescent particles can be obtained through a step of foaming the effervescent particles (foaming step).
The shape of the foamed particles is not particularly limited, and examples thereof include a true spherical shape, an elliptical spherical shape (egg shape), a columnar shape, a prismatic shape, a pellet shape, and a granular shape.
In the foaming step, the foaming temperature and the heating medium are not particularly limited as long as the foamable particles can be foamed to obtain the foamed particles.

発泡工程において、発泡性粒子に、合着防止剤を添加してもよい。合着防止剤の添加量は、発泡性粒子100質量部に対して、0.03~0.3質量部の範囲でもよく、0.05~0.25質量部の範囲でもよい。合着防止剤が0.03質量部よりも少ない場合、合着防止効果を十分にだすことができないことがある。合着防止剤が0.3質量部よりも多い場合、発泡成形体の強度低下が起こったり、洗浄コストが増えることがある。
なお、発泡前に、発泡性粒子の表面に、ステアリン酸亜鉛のような粉末状金属石鹸類、炭酸カルシウム及び水酸化アルミニウムを塗布してもよい。この塗布により、発泡工程における発泡性粒子同士の結合を減少できる。また、帯電防止剤、展着剤等の表面処理剤を塗布してもよい。
In the foaming step, an anti-coupling agent may be added to the effervescent particles. The amount of the anti-adhesion agent added may be in the range of 0.03 to 0.3 parts by mass or in the range of 0.05 to 0.25 parts by mass with respect to 100 parts by mass of the foamable particles. If the amount of the anti-adhesion agent is less than 0.03 parts by mass, the anti-adhesion effect may not be sufficiently obtained. If the amount of the anti-bonding agent is more than 0.3 parts by mass, the strength of the foamed molded product may be lowered or the cleaning cost may be increased.
Before foaming, powdered metal soaps such as zinc stearate, calcium carbonate and aluminum hydroxide may be applied to the surface of the foamable particles. By this coating, the bond between the effervescent particles in the effervescent step can be reduced. Further, a surface treatment agent such as an antistatic agent or a spreading agent may be applied.

(発泡成形体)
(1)各種物性
発泡成形体は、0.02~0.4g/cmの密度を有し得る。密度が0.4g/cmよりも大きい場合、発泡成形体の軽量性が低下することがある。密度が0.02g/cmよりも小さい場合、発泡成形体が収縮して外観不良を起こしたり、強度が低下することがある。密度は、0.04~0.4g/cmの範囲であってもよく、0.06~0.4g/cmの範囲であってもよく、0.06~0.3g/cmの範囲であってもよい。
発泡成形体は、50~100%の反発弾性率を有し得る。反発弾性率が50%よりも低い場合、反発弾性が求められる用途での使用が難しくなる。
発泡成形体は、0~15%の圧縮永久歪を有し得る。圧縮永久歪が15%よりも大きい場合、圧縮応力がかかる環境下での使用が難しくなる。圧縮永久歪は0~13%の範囲であってもよく、0~11%の範囲であってもよい。
発泡成形体は、20~65のアスカーC硬度を有し得る。アスカーC硬度が20よりも小さい場合、発泡成形体の形状安定性が低下することがある。65より大きい場合、例えば十分な反発弾性や柔軟性を得られない場合がある。アスカーC硬度は、20~60の範囲であってもよく、20~55の範囲であってもよい。
発泡成形体は、10~100%の融着率を有し得る。融着率が10%未満の場合、発泡成形体に十分な強度を付与することができないことがある。融着率が10~100%の場合、発泡成形体に十分な強度を付与することができる。融着率は、20~100%であってもよく、30~100%であってもよく、40~100%であってもよく、50~100%であってもよい。
発泡成形体は、例えば、建築資材、靴の部材、スポーツ用品、緩衝材、シートクッション、自動車部材等に用いることができる。具体的には、シューズのミッドソール・インソール・アウトソール部材、ラケットやバット等のスポーツ用品の打具類の芯材、パッドやプロテクター等のスポーツ用品の防具類、パッドやプロテクター等の医療・介護・福祉・ヘルスケア用品、自転車や車椅子等のタイヤ芯材、自動車等の輸送機器の内装材・シート芯材・衝撃吸収部材・振動吸収部材、防舷材やフロート等の衝撃吸収材、玩具、床下地材、壁材、鉄道車両、飛行機、ベッド、クッション等に用いることができる。
発泡成形体は、上記用途に応じて適切な形状を取り得る。
(Effervescent molded product)
(1) Various physical properties The foamed molded product may have a density of 0.02 to 0.4 g / cm 3 . If the density is greater than 0.4 g / cm 3 , the lightness of the foam may be reduced. If the density is less than 0.02 g / cm 3 , the foamed molded product may shrink, resulting in poor appearance or reduced strength. The density may be in the range of 0.04 to 0.4 g / cm 3 , may be in the range of 0.06 to 0.4 g / cm 3 , and may be in the range of 0.06 to 0.3 g / cm 3 . It may be a range.
The foam molded product may have a rebound resilience of 50 to 100%. If the rebound resilience is lower than 50%, it becomes difficult to use it in applications where rebound resilience is required.
The foam molded article may have a compression set of 0-15%. If the compression set is greater than 15%, it will be difficult to use in an environment where compressive stress is applied. The compression set may be in the range of 0 to 13% or in the range of 0 to 11%.
The foam molded article may have an Asker C hardness of 20-65. If the Asker C hardness is less than 20, the shape stability of the foamed molded product may decrease. If it is larger than 65, for example, sufficient impact resilience and flexibility may not be obtained. The Asker C hardness may be in the range of 20 to 60 or may be in the range of 20 to 55.
The foam molded product can have a fusion rate of 10 to 100%. If the fusion rate is less than 10%, it may not be possible to impart sufficient strength to the foamed molded product. When the fusion rate is 10 to 100%, sufficient strength can be imparted to the foamed molded product. The fusion rate may be 20 to 100%, 30 to 100%, 40 to 100%, or 50 to 100%.
The foam molded product can be used, for example, for building materials, shoe members, sporting goods, cushioning materials, seat cushions, automobile members, and the like. Specifically, the midsole, insole, and outsole members of shoes, the core material of hitting tools for sports equipment such as rackets and bats, the protective equipment for sports equipment such as pads and protectors, and medical and nursing care such as pads and protectors.・ Welfare / healthcare products, tire cores for bicycles and wheelchairs, interior materials for transportation equipment such as automobiles, seat cores, shock absorbers, vibration absorbers, shock absorbers such as fenders and floats, toys, etc. It can be used for floor base materials, wall materials, railway vehicles, airplanes, beds, cushions, etc.
The foam molded product can take an appropriate shape according to the above application.

(2)製造方法
発泡成形体の製造方法は、ゲージ圧0.05~0.4MPaの水蒸気を加熱媒体として発泡粒子を型内発泡させる工程を含む。例えば、多数の小孔を有する閉鎖金型内に発泡粒子を充填し、水蒸気で発泡粒子を加熱発泡させ、発泡粒子間の空隙を埋めると共に、発泡粒子を相互に融着させ、一体化させることにより得ることができる。その際、例えば、金型内への発泡粒子の充填量を調整する等して、発泡成形体の密度を調整できる。水蒸気のゲージ圧が0.05MPa未満の場合、発泡粒子を型内発泡することが難しくなり発泡粒子同士の融着が低下して、発泡成形体に十分な強度を付与できないことがある。0.4MPaより高い場合、発泡成形体が収縮して、外観が良好な発泡成形体を得られないことがある。水蒸気のゲージ圧は、0.05~0.35MPaであってもよく、0.05~0.3MPaであってもよく、0.1~0.3MPaであってもよい。
更に、発泡粒子に不活性ガス又は空気(以下、不活性ガス等と称する)を含浸させて、発泡粒子の発泡力を向上させてもよい(内圧付与工程)。発泡力を向上させることにより、型内発泡時に発泡粒子同士の融着性が向上し、発泡成形体は更に優れた機械的強度を有する。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。
発泡粒子に不活性ガス等を含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス等雰囲気下に発泡粒子を置くことによって、発泡粒子中に不活性ガス等を含浸させる方法が挙げられる。発泡粒子は、金型内に充填する前に不活性ガス等が含浸されてもよいが、発泡粒子を金型内に充填した後に金型ごと不活性ガス等雰囲気下に置くことで含浸されてもよい。なお、不活性ガスが窒素である場合、ゲージ圧0.1~2MPaの窒素雰囲気中に発泡粒子を20分~24時間に亘って放置してもよい。
(2) Production Method The method for producing an effervescent molded product includes a step of in-mold foaming of foamed particles using steam having a gauge pressure of 0.05 to 0.4 MPa as a heating medium. For example, the foamed particles are filled in a closed mold having a large number of small pores, the foamed particles are heated and foamed with steam to fill the voids between the foamed particles, and the foamed particles are fused and integrated with each other. Can be obtained by At that time, for example, the density of the foamed molded product can be adjusted by adjusting the filling amount of the foamed particles in the mold. When the gauge pressure of water vapor is less than 0.05 MPa, it may be difficult to foam the foamed particles in the mold, the fusion between the foamed particles may be reduced, and sufficient strength may not be imparted to the foamed molded product. If it is higher than 0.4 MPa, the foamed molded product may shrink and a foamed molded product having a good appearance may not be obtained. The gauge pressure of water vapor may be 0.05 to 0.35 MPa, 0.05 to 0.3 MPa, or 0.1 to 0.3 MPa.
Further, the foamed particles may be impregnated with an inert gas or air (hereinafter referred to as an inert gas or the like) to improve the foaming power of the foamed particles (internal pressure applying step). By improving the foaming power, the fusion property between the foamed particles is improved at the time of foaming in the mold, and the foamed molded product has further excellent mechanical strength. Examples of the inert gas include carbon dioxide, nitrogen, helium, argon and the like.
As a method of impregnating the foamed particles with an inert gas or the like, for example, a method of impregnating the foamed particles with the inert gas or the like by placing the foamed particles in an atmosphere such as an inert gas having a pressure higher than normal pressure is used. Can be mentioned. The foamed particles may be impregnated with an inert gas or the like before being filled in the mold, but are impregnated by placing the foamed particles in an atmosphere such as an inert gas together with the mold after being filled in the mold. May be good. When the inert gas is nitrogen, the foamed particles may be left for 20 minutes to 24 hours in a nitrogen atmosphere having a gauge pressure of 0.1 to 2 MPa.

発泡粒子に不活性ガス等を含浸させた場合、発泡粒子をこのまま、金型内にて加熱、発泡させてもよいが、発泡粒子を金型内に充填する前に加熱、発泡させて、低嵩密度の発泡粒子とした上で金型内に充填して加熱、発泡させてもよい。このような低嵩密度の発泡粒子を用いることによって、低密度の発泡成形体を得ることができる。
また、発泡粒子の製造時に、合着防止剤を用いた場合、発泡成形体の製造時に、合着防止剤が発泡粒子に付着したまま成形を行ってもよい。また、発泡粒子相互の融着を促進するために、合着防止剤を成形工程前に洗浄して除去してもよい。
When the foamed particles are impregnated with an inert gas or the like, the foamed particles may be heated and foamed in the mold as they are, but the foamed particles are heated and foamed before being filled in the mold to be low. The particles may be made into bulky foamed particles, filled in a mold, heated, and foamed. By using such low bulk density foam particles, a low density foam molded product can be obtained.
Further, when the anti-coupling agent is used in the production of the foamed particles, the anti-coupling agent may be adhered to the foamed particles during the production of the foamed molded product. Further, in order to promote the fusion of the foamed particles to each other, the anti-coupling agent may be washed and removed before the molding step.

次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
<樹脂粒子のショアD硬度>
100℃で3時間乾燥した樹脂粒子を融点Tm+30℃の温度で熱プレスし、平滑な厚み3mm以上のフィルムを作製した。これを温度23±2℃、湿度50±5%の環境下で24時間以上状態調節後、テクロック社製「テクロックデュロメータタイプD」硬度計を用いて測定した。押針が試験片測定面に垂直になるように加圧面を密着させて、直ちに目盛を読み取った。試料の5箇所を測定し、これらの平均値をショアD硬度とした。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
<Shore D hardness of resin particles>
The resin particles dried at 100 ° C. for 3 hours were hot-pressed at a temperature of melting point Tm + 30 ° C. to prepare a smooth film having a thickness of 3 mm or more. This was measured using a "Teklock Durometer Type D" hardness tester manufactured by Teclock Co., Ltd. after adjusting the state for 24 hours or more in an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5%. The pressure surface was brought into close contact with the test piece so that the needle was perpendicular to the measurement surface of the test piece, and the scale was immediately read. Five points of the sample were measured, and the average value of these was taken as the shore D hardness.

<樹脂粒子の融点Tm、結晶化温度Tc及び結晶化熱量>
融点及び結晶化温度は、JIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。試料をアルミニウム製測定容器の底にすきまのないよう5~7mg充てん後、アルミニウム製の蓋をした。次いで、日立ハイテクサイエンス社製「DSC7000X、AS-3」又はSIIナノテクノロジー社製「DSC6220」示差走査熱量計を用い、窒素ガス流量20mL/分のもと、30℃から-70℃まで降温した後10分間保持し、-70℃から220℃まで昇温(1回目昇温)、10分間保持後220℃から-70℃まで降温(冷却)、10分間保持後-70℃から220℃まで昇温(2回目昇温)した時のDSC曲線を得た。なお、全ての昇温・降温は速度10℃/分で行い、基準物質としてアルミナを用いた。本発明において、融解温度(融点)とは、装置付属の解析ソフトを用いて、2回目昇温過程にみられる最も大きな融解ピークのトップの温度を読みとった値とした。
更に、結晶化温度は、装置付属の解析ソフトを用いて、冷却過程にみられる最も高温側の結晶化ピークのトップの温度を読み取った値とした。
結晶化熱量は、JIS K7122:1987、JIS K7122:2012「プラスチックの転移熱測定方法」に記載されている方法で測定した。冷却過程における最も高温側の結晶化ピークの結晶化熱量は、装置付属の解析ソフトを用い、高温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び低温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。
<Melting point Tm of resin particles, crystallization temperature Tc and heat of crystallization>
The melting point and crystallization temperature were measured by the methods described in JIS K7121: 1987, JIS K7121: 2012 “Method for measuring transition temperature of plastics”. However, the sampling method and temperature conditions were as follows. After filling the bottom of the aluminum measuring container with 5 to 7 mg of the sample so that there was no gap, the aluminum lid was put on. Next, using a differential scanning calorimeter manufactured by Hitachi High-Tech Science Co., Ltd. "DSC7000X, AS-3" or SII Nanotechnology Co., Ltd. "DSC6220", the temperature was lowered from 30 ° C. to -70 ° C. under a nitrogen gas flow rate of 20 mL / min. Hold for 10 minutes and raise the temperature from -70 ° C to 220 ° C (first temperature rise), hold for 10 minutes and then lower the temperature from 220 ° C to -70 ° C (cool), hold for 10 minutes and then raise the temperature from -70 ° C to 220 ° C. The DSC curve at the time of (the second temperature rise) was obtained. All temperature raising and lowering were performed at a rate of 10 ° C./min, and alumina was used as a reference material. In the present invention, the melting temperature (melting point) is a value obtained by reading the temperature at the top of the largest melting peak observed in the second temperature raising process using the analysis software attached to the apparatus.
Further, the crystallization temperature was set as the value obtained by reading the temperature of the top of the crystallization peak on the highest temperature side observed in the cooling process using the analysis software attached to the apparatus.
The amount of heat of crystallization was measured by the method described in JIS K7122: 1987, JIS K7122: 2012 “Method for measuring transition heat of plastic”. For the amount of heat of crystallization of the crystallization peak on the highest temperature side in the cooling process, the point where the DSC curve deviates from the baseline on the high temperature side and the point where the DSC curve returns to the baseline on the low temperature side again using the analysis software attached to the device. It was calculated from the area of the part surrounded by the straight line connecting the DSC curve and the DSC curve.

<樹脂粒子のビカット軟化温度Tv>
JIS K7206:2016「プラスチック-熱可塑性プラスチックービカット軟化温度(VST)の求め方」のA法に準拠して測定した。100℃で3時間乾燥した樹脂粒子を融点Tm+30℃で熱プレスをして、10mm×10mm×厚み5mmの試験片を作製した。安田精機製作所社製「HAD-6型」ヒートディストーションテスターを用いて、昇温速度50℃/時、試験荷重10Nの条件で3回測定を行い、これらの平均値をビカット軟化温度とした。
<Vicut softening temperature Tv of resin particles>
The measurement was performed in accordance with the method A of JIS K7206: 2016 "Plastic-thermoplastic plastic-how to determine the bicut softening temperature (VST)". The resin particles dried at 100 ° C. for 3 hours were hot-pressed at a melting point of Tm + 30 ° C. to prepare a test piece having a thickness of 10 mm × 10 mm × thickness 5 mm. Using a "HAD-6 type" heat distortion tester manufactured by Yasuda Seiki Seisakusho Co., Ltd., measurements were performed three times under the conditions of a temperature rise rate of 50 ° C./hour and a test load of 10 N, and the average value of these was taken as the Vicat softening temperature.

<樹脂粒子の貯蔵弾性率(固体粘弾性)>
90~100℃で3時間乾燥した樹脂を熱プレス機にて、温度190~200℃の条件下で、長さ120mm、幅10mm、厚さ0.7~10mmの短冊状試料を作製した。固体粘弾性測定装置には、エスアイアイ・ナノテクノロジー社製「EXSTAR DMS6100」粘弾性スペクトロメータを用いた。試料を長さ40~50mmにサンプリングし、引張制御モードにて窒素雰囲気下で周波数1Hz、昇温速度5℃/分、測定開始温度30℃~測定終了温度220℃、チャック間隔20mm、歪振幅5μm、最小張力/圧縮力20mN、張力/圧縮力ゲイン1.2、力振幅初期値20mNの条件で測定した。なお、装置付属の解析ソフトを用いて解析を行い、試験片の寸法測定には、ミツヨト社製デジマチックキャリパCD-15タイプを用いた。
<Restoration elastic modulus of resin particles (solid viscoelasticity)>
The resin dried at 90 to 100 ° C. for 3 hours was prepared into a strip-shaped sample having a length of 120 mm, a width of 10 mm, and a thickness of 0.7 to 10 mm under the conditions of a temperature of 190 to 200 ° C. using a hot press machine. As the solid viscoelasticity measuring device, an "EXSTAR DMS6100" viscoelasticity spectrometer manufactured by SII Nanotechnology Co., Ltd. was used. The sample is sampled to a length of 40 to 50 mm, and in a tension control mode, the frequency is 1 Hz, the temperature rise rate is 5 ° C./min, the measurement start temperature is 30 ° C. to the measurement end temperature of 220 ° C., the chuck interval is 20 mm, and the strain amplitude is 5 μm. The measurement was performed under the conditions of minimum tension / compressive force 20 mN, tension / compressive force gain 1.2, and initial force amplitude 20 mN. The analysis was performed using the analysis software attached to the device, and the Digimatic Caliper CD-15 type manufactured by Mitsuyoto Co., Ltd. was used for measuring the dimensions of the test piece.

<樹脂粒子の貯蔵弾性率(溶融粘弾性)>
本発明における動的粘弾性測定はAnton Paar社製「PHYSICA MCR301」粘弾性測定装置及び「CTD450」温度制御システムにて測定した。まず、90~100℃で3時間乾燥した樹脂を熱プレス機にて、温度190~200℃の条件下で、直径25mm、厚さ3mmの円盤状試験片を作製した。次に試験片を測定開始温度220℃に加熱した粘弾性測定装置のプレート上にセットし窒素雰囲気下にて5分間に亘って加熱し溶融させた。その後、直径25mmのパラレルプレートにて間隔を2mmまで押しつぶし、プレートからはみ出した樹脂を取り除いた。更に測定開始温度220±1℃に達してから5分間加熱後、歪み0.025%、周波数1Hz、降温速度2℃/分、測定間隔30秒、ノーマルフォース0Nの条件下にて、動的粘弾性測定を行い、220~80℃の範囲の貯蔵弾性率を測定した。
<Store elastic modulus of resin particles (molten viscoelasticity)>
The dynamic viscoelasticity measurement in the present invention was measured by the "PHYSICA MCR301" viscoelasticity measuring device manufactured by Antonio Par and the "CTD450" temperature control system. First, a disk-shaped test piece having a diameter of 25 mm and a thickness of 3 mm was prepared from a resin dried at 90 to 100 ° C. for 3 hours using a hot press machine under the condition of a temperature of 190 to 200 ° C. Next, the test piece was set on a plate of a viscoelasticity measuring device heated to a measurement start temperature of 220 ° C., and heated and melted in a nitrogen atmosphere for 5 minutes. Then, the interval was crushed to 2 mm with a parallel plate having a diameter of 25 mm, and the resin protruding from the plate was removed. After heating for 5 minutes after reaching the measurement start temperature of 220 ± 1 ° C, dynamic viscoelasticity is performed under the conditions of strain 0.025%, frequency 1 Hz, temperature lowering rate 2 ° C / min, measurement interval 30 seconds, and normal force 0N. A viscoelasticity measurement was performed, and the storage elastic modulus in the range of 220 to 80 ° C. was measured.

<発泡性粒子の含浸ガス量>
得られた発泡性粒子の質量W1(g)を直ちに計量し、温度23±2℃、湿度50±5%の環境下で24時間静置した。静置後、発泡性粒子の質量W2(g)を計量し、次式により発泡性粒子の含浸ガス量を算出した。
発泡性粒子の含浸ガス量(質量%)=(W1-W2)/W1×100
<Amount of impregnated gas of effervescent particles>
The mass W1 (g) of the obtained effervescent particles was immediately weighed and allowed to stand for 24 hours in an environment with a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5%. After standing, the mass W2 (g) of the effervescent particles was weighed, and the amount of impregnated gas of the effervescent particles was calculated by the following formula.
Amount of impregnated gas (mass%) of effervescent particles = (W1-W2) / W1 × 100

<発泡粒子の嵩密度>
発泡粒子を測定試料として任意の質量W(g)計量した。この測定試料をメスシリンダー内に自然落下させた後、メスシリンダーの底をたたいて体積を一定にし、試料の見掛け体積V(cm)を測定した。下記式に基づいて発泡粒子の嵩密度を算出した。
嵩密度(g/cm)=測定試料の質量W/測定試料の体積V
<Volume density of foamed particles>
The foamed particles were weighed with an arbitrary mass W (g) as a measurement sample. After the measurement sample was naturally dropped into the graduated cylinder, the bottom of the graduated cylinder was tapped to make the volume constant, and the apparent volume V (cm 3 ) of the sample was measured. The bulk density of the foamed particles was calculated based on the following formula.
Bulk density (g / cm 3 ) = mass of measurement sample W / volume V of measurement sample

<発泡粒子の平均粒子径>
発泡粒子の直径の最大値と最小値をミツトヨ社製デジマチックキャリパで測定して、下記式により平均粒子径(mm)を算出した。無作為に選択した10個の発泡粒子の平均粒子径の平均値を平均粒子径とした。
平均粒子径(mm)=(直径の最大値+直径の最小値)/2
<Average particle size of foamed particles>
The maximum and minimum diameters of the foamed particles were measured with a Digimatic Caliper manufactured by Mitutoyo Co., Ltd., and the average particle diameter (mm) was calculated by the following formula. The average value of the average particle diameters of 10 randomly selected foamed particles was taken as the average particle diameter.
Average particle diameter (mm) = (maximum diameter + minimum diameter) / 2

<発泡粒子の平均気泡径>
発泡粒子の平均気泡径は、次の方法で測定した。具体的には、発泡粒子の中心を通るように、剃刀を用いて発泡粒子を2等分して、切断面を日立製作所社製「S-3000N」又は日立ハイテクノロジーズ社製「S-3400N」走査電子顕微鏡にて、発泡粒子断面全体が写るように撮影した。撮影した画像をA4用紙に印刷し、気泡20個以上に接する発泡粒子断面の中心を通る任意の直線を描き、直線の長さLを測定すると共に、直線に接している気泡数Nを数えた。任意の直線は可能な限り接点でのみ接しないようにし、接してしまう場合は気泡数に含めた。気泡が小さく数えることが難しい場合は、写真を拡大して撮影、計測した。下記式により、発泡粒子3個の断面の平均気泡径Dを算出し、これらの平均値を平均気泡径とした。
平均弦長t(μm)=線長L/(気泡数N×写真の倍率)
平均気泡径D(μm)=平均弦長t/0.616
<Average bubble diameter of foamed particles>
The average bubble diameter of the foamed particles was measured by the following method. Specifically, the foamed particles are divided into two equal parts using a microscope so as to pass through the center of the foamed particles, and the cut surface is "S-3000N" manufactured by Hitachi, Ltd. or "S-3400N" manufactured by Hitachi High-Technologies Corporation. The image was taken with a scanning electron microscope so that the entire cross section of the foamed particles could be seen. The captured image was printed on A4 paper, an arbitrary straight line passing through the center of the cross section of the foamed particles in contact with 20 or more bubbles was drawn, the length L of the straight line was measured, and the number of bubbles N in contact with the straight line was counted. .. Arbitrary straight lines should not touch only at the contacts as much as possible, and if they do touch, they are included in the number of bubbles. If the bubbles were small and difficult to count, the photographs were magnified and measured. The average bubble diameter D of the cross section of the three foamed particles was calculated by the following formula, and the average value of these was taken as the average bubble diameter.
Average chord length t (μm) = line length L / (number of bubbles N x magnification of photo)
Average bubble diameter D (μm) = average chord length t / 0.616

<発泡粒子の独立気泡率と連続気泡率>
東京サイエンス社製「空気比較式比重計1000型」の試料カップを準備し、この試料カップの80%程度を満たす量の発泡粒子の全重量A(g)を測定した。前記発泡粒子全体の体積B(cm3)を、空気比較式比重計を用いて1-1/2-1気圧法により測定し、標準球(大28.96cc 小8.58cc)にて補正を行った。続いて、蓋を閉じた状態で入れた発泡粒子がこぼれることのない金網製の空容器を水中に浸漬し、水中に浸漬した状態における金網製の空容器の重量C(g)を測定した。次に、この金網製の容器内に前記発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、容器を数回振って、容器と発泡粒子に付着した気泡を除去後、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた重量D(g)を測定した。なお、水中での重量測定には大和製衡社製「電子天秤HB3000」(最小目盛り0.01g)を使用した。そして、下記式により発泡粒子の見掛け体積E(cm)を算出した。この見掛け体積E(cm3)と前記発泡粒子全体の体積B(cm)に基づいて下記式1により発泡粒子の連続気泡率、式2より独立気泡率を算出した。なお、水1gの体積を1cm、樹脂密度1.17g/cm(F)とし、試験数は5とした。試料は予め、JIS K7100-1999 記号23/50、2級の環境下で16時間保管した後、同環境下において測定を実施した。
式1
見掛け体積E(cm3)=A+(C-D)
連続気泡率(%)=100×(E-B)/E
式2
独立気泡率(%)=100×(B-(A/F))/E
<The closed cell ratio and open cell ratio of foamed particles>
A sample cup of "Air Comparative Hydrometer 1000 Type" manufactured by Tokyo Science Co., Ltd. was prepared, and the total weight A (g) of the foamed particles satisfying about 80% of the sample cup was measured. The volume B (cm 3 ) of the entire foamed particles was measured by the 1-1 / 2-1 atm method using an air comparative hydrometer, and corrected with a standard sphere (large 28.96 cc small 8.58 cc). gone. Subsequently, an empty wire mesh container placed with the lid closed so that the foamed particles did not spill was immersed in water, and the weight C (g) of the empty wire mesh container in the state of being immersed in water was measured. Next, after putting all the foamed particles in the wire mesh container, the wire mesh container is immersed in water, and the container is shaken several times to remove air bubbles adhering to the container and the foamed particles. The weight D (g) of the wire mesh container in a state of being immersed in water and the total amount of foamed particles placed in the wire mesh container was measured. An "electronic balance HB3000" (minimum scale 0.01 g) manufactured by Yamato Scale Co., Ltd. was used for weight measurement in water. Then, the apparent volume E (cm 3 ) of the foamed particles was calculated by the following formula. Based on this apparent volume E (cm 3 ) and the volume B (cm 3 ) of the entire foamed particles, the open cell ratio of the foamed particles was calculated by the following formula 1 and the closed cell ratio was calculated from the formula 2. The volume of 1 g of water was 1 cm 3 , the resin density was 1.17 g / cm 3 (F), and the number of tests was 5. The sample was stored in advance in a JIS K710-1999 symbol 23/50, class 2 environment for 16 hours, and then measured in the same environment.
Equation 1
Apparent volume E (cm 3 ) = A + (CD)
Open cell ratio (%) = 100 × (EB) / E
Equation 2
Closed cell ratio (%) = 100 × (B- (A / F)) / E

<発泡粒子の含浸ガス量>
まず、内圧付与前の発泡粒子の質量W1(g)を計量した。次に、内圧付与後の発泡粒子の質量W2(g)を計量した。次式により発泡粒子の含浸ガス量を算出した。
発泡粒子の含浸ガス量(質量%)=(W2-W1)/W2×100
<Amount of impregnated gas of foamed particles>
First, the mass W1 (g) of the foamed particles before applying the internal pressure was measured. Next, the mass W2 (g) of the foamed particles after applying the internal pressure was measured. The amount of impregnated gas of the foamed particles was calculated by the following formula.
Amount of impregnated gas (mass%) of foamed particles = (W2-W1) / W2 × 100

<発泡成形体の密度>
成形直後に発泡成形体を温度40℃で12時間乾燥し、乾燥後に温度23±2℃、湿度50±5%の環境下で72時間状態調節した。状態調節した発泡成形体の質量W(g)を小数点2桁まで測定すると共に、外寸をミツトヨ社製デジマチックキャリパで1/100mmまで測定して、見掛けの体積V(cm)を求めた。発泡成形体の密度を次式により算出した。
発泡成形体密度(g/cm3)=発泡成形体質量W/見掛けの体積V
<Density of foam molded product>
Immediately after molding, the foamed molded product was dried at a temperature of 40 ° C. for 12 hours, and after drying, the state was adjusted for 72 hours in an environment of a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5%. The mass W (g) of the foamed molded product whose condition was adjusted was measured to two decimal places, and the outer dimensions were measured to 1/100 mm with a Digimatic caliper manufactured by Mitutoyo Co., Ltd. to obtain the apparent volume V (cm 3 ). .. The density of the foam molded product was calculated by the following formula.
Foam molded body density (g / cm 3 ) = Foamed molded body mass W / apparent volume V

<発泡成形体のアスカーC硬度>
アスカーC硬度は、平滑な面を有する厚み10mm以上の試験片を温度23±2℃、湿度50±5%の環境下で72時間以上状態調節後、高分子計器社製「アスカーゴム・プラスチック硬度計C形」硬度計を用いて測定した。押針が試験片の平滑な測定面に垂直になるように加圧面を密着させて、直ちに目盛を読み取った。発泡粒子同士の融着面をさけて、試料の5箇所を測定し、これらの平均値をアスカーC硬度とした。
<Asker C hardness of foam molded product>
Asker C hardness is determined by adjusting the condition of a test piece with a smooth surface and a thickness of 10 mm or more for 72 hours or more in an environment with a temperature of 23 ± 2 ° C and a humidity of 50 ± 5%. Measured using a "C-shaped" hardness tester. The pressure surface was brought into close contact with the press needle so that it was perpendicular to the smooth measurement surface of the test piece, and the scale was immediately read. Five points of the sample were measured while avoiding the fusion surface between the foamed particles, and the average value of these was taken as the Asker C hardness.

<発泡成形体の反発弾性率>
JIS K 6400-3:2011に準拠して測定した。高分子計器社製「FR-2」反発弾性試験機に、温度23±2℃、湿度50±5%の環境下で72時間以上状態調節した、同一の発泡体から切り出した試料を厚み40mm以上になるように重ねてセットし、500mmの高さ(a)から銅球(φ5/8インチ、16.3g)を自由落下させて、その反発最高到達時の高さ(b)を読み取り、式(b)/(a)×100により反発弾性率(%)を算出した。ただし、同一試験片を用いて3回測定を行い、これらの平均値を反発弾性率とした。
<Repulsive modulus of foam molded product>
Measured according to JIS K 6400-3: 2011. A sample cut out from the same foam, which was condition-adjusted for 72 hours or more in an environment with a temperature of 23 ± 2 ° C and a humidity of 50 ± 5%, was placed in a “FR-2” rebound resilience tester manufactured by Polymer Instruments Co., Ltd. and had a thickness of 40 mm or more. A copper ball (φ5 / 8 inch, 16.3 g) is freely dropped from a height (a) of 500 mm, and the height (b) at the time of reaching the maximum repulsion is read and the formula is used. The elastic modulus (%) was calculated by (b) / (a) × 100. However, the same test piece was used for three measurements, and the average value of these was taken as the rebound resilience.

<発泡成形体の融着率>
発泡成形体の表面に、一対の長辺の中心同士を結ぶ直線に沿ってカッターナイフで深さ約5mmの切り込み線を入れた後、この切り込み線に沿って発泡成形体を2分割した。この2分割された発泡成形体の破断面の発泡粒子について、50個の発泡粒子を含む任意の範囲を設定し、この範囲内において発泡粒子内で破断している発泡粒子数(a)と、発泡粒子同士の界面で破断している発泡粒子数(b)を数え、下記式により融着率F(%)を算出した。
融着率F(%)=a/(a+b)×100
<Fusion rate of foam molded product>
A cut line having a depth of about 5 mm was made on the surface of the foam molded product with a cutter knife along a straight line connecting the centers of the pair of long sides, and then the foam molded product was divided into two along the cut line. For the foamed particles having a fracture surface of the split foamed product, an arbitrary range including 50 foamed particles is set, and the number of foamed particles (a) broken in the foamed particles within this range is determined. The number of foamed particles (b) broken at the interface between the foamed particles was counted, and the fusion rate F (%) was calculated by the following formula.
Fusing rate F (%) = a / (a + b) × 100

<実施例1>
(1)樹脂粒子
ポリエチレン製規格袋に、100℃で3時間乾燥したエステル系エラストマー(商品名:「ペルプレンP-75M」、東洋紡社製、ハードセグメント:ポリブチレンテレフタレート及びポリブチレンイソフタレート、ソフトセグメント:脂肪族ポリエーテル)100質量部とワックス(エチレンビスステアリン酸アミド、商品名:「花王ワックスEBFF」、花王社製)0.1質量部とを入れて混合した後、二軸押出機に供給して180~250℃で溶融混練した。次に、溶融状態の樹脂を冷却して粘度を調節した後、二軸押出機の先端に取り付けたノズル金型(口径:3mm)から押し出した樹脂を20~60℃の水で冷却して、固化した樹脂をカットして樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
内容積5Lの撹拌機付オートクレーブに、樹脂粒子500g(100質量部)、蒸留水3.0L、界面活性剤(直鎖アルキルベンゼンスルホン酸ナトリウム、商品名:「ニューレックスR」、油化産業社製)4gを投入し、密閉した後、撹拌状態で発泡剤のブタン(ノルマルブタン:イソブタン=7:3)20質量部を窒素ガスと共に圧入した。次に、オートクレーブを100℃で2時間加熱して、25℃まで冷却した。冷却完了後にオートクレーブを除圧し、直ちに蒸留水で界面活性剤を洗浄し、脱水することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.7質量%であった。
(3)発泡粒子
発泡性粒子500g(100質量部)に合着防止剤(ポリオキシエチレンポリオキシプロピレングリコール、商品名:「エパン450」、第一工業製薬社製)0.3質量部を塗布した後、内容積50Lの撹拌機付円筒型予備発泡機に投入し、撹拌させながらゲージ圧0.14MPaの水蒸気で加熱して、発泡粒子を得た。
(4)発泡成形体
発泡粒子をオートクレーブに投入し、ゲージ圧0.5MPaの圧縮空気を圧入した後、室温で18時間静置して、発泡粒子に窒素ガスを含浸した(内圧付与工程)。窒素の含浸量は0.9質量%であった。
発泡粒子をオートクレーブから取り出して、直ちに水蒸気孔を有する300mm×50mm×厚み25mmの大きさの成形用キャビティ内に充填し、ゲージ圧0.16MPaの水蒸気で加熱成形を行い、発泡成形体を得た。
<Example 1>
(1) Resin particles Ester-based elastomer dried at 100 ° C for 3 hours in a polyethylene standard bag (trade name: "Perprene P-75M", manufactured by Toyobo Co., Ltd., hard segment: polybutylene terephthalate and polybutylene isophthalate, soft segment : 100 parts by mass of aliphatic polyether) and 0.1 part by mass of wax (ethylene bisstearic acid amide, trade name: "Kao Wax EBFF", manufactured by Kao Co., Ltd.) are added and mixed, and then supplied to a twin-screw extruder. Then, it was melt-kneaded at 180 to 250 ° C. Next, after cooling the molten resin to adjust the viscosity, the resin extruded from the nozzle die (diameter: 3 mm) attached to the tip of the twin-screw extruder is cooled with water at 20 to 60 ° C. The solidified resin was cut to obtain resin particles. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles In an autoclave with a stirrer with an internal volume of 5 L, 500 g (100 parts by mass) of resin particles, 3.0 L of distilled water, a surfactant (straight chain alkylbenzene sulfonate sodium, trade name: "Nurex R" (Manufactured by Yuka Sangyo Co., Ltd.) 4 g was added and sealed, and then 20 parts by mass of the foaming agent butane (normal butane: isobutane = 7: 3) was press-fitted together with nitrogen gas in a stirred state. The autoclave was then heated at 100 ° C. for 2 hours and cooled to 25 ° C. After the cooling was completed, the autoclave was decompressed, and the surfactant was immediately washed with distilled water and dehydrated to obtain effervescent particles. The amount of impregnated gas of the effervescent particles was 6.7% by mass.
(3) Foamed particles Apply 0.3 parts by mass of an anti-adhesion agent (polyoxyethylene polyoxypropylene glycol, trade name: "Epan 450", manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to 500 g (100 parts by mass) of foamable particles. Then, the particles were put into a cylindrical prefoaming machine with an internal volume of 50 L and heated with steam having a gauge pressure of 0.14 MPa while stirring to obtain foamed particles.
(4) Effervescent molded body The effervescent particles were put into an autoclave, compressed air having a gauge pressure of 0.5 MPa was press-fitted, and then allowed to stand at room temperature for 18 hours to impregnate the effervescent particles with nitrogen gas (internal pressure applying step). The amount of nitrogen impregnated was 0.9% by mass.
The foamed particles were immediately taken out from the autoclave, immediately filled in a molding cavity having a size of 300 mm × 50 mm × thickness 25 mm having steam holes, and heat-molded with steam having a gauge pressure of 0.16 MPa to obtain a foamed molded product. ..

<実施例2>
エステル系エラストマー(商品名:「ペルプレンP-75M」、東洋紡社製、ハードセグメント:ポリブチレンテレフタレート及びポリブチレンイソフタレート、ソフトセグメント:脂肪族ポリエーテル)100質量部とワックス(エチレンビスステアリン酸アミド、商品名:「花王ワックスEBFF」、花王社製)0.3質量部を単軸押出機に供給し、180~280℃で溶融混練した。次に、溶融状態のエステル系エラストマーを冷却して粘度を調整した後、単軸押出機の前端に取り付けたマルチノズル金型(直径1.3mmのノズルを8穴有する)の各ノズルから樹脂を押し出し、30~50℃の水中でカットした。得られた樹脂粒子は、粒子の長さLが1.4~1.8mm、粒子の平均径Dが1.4~1.8mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、7.2質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
キャビティの大きさを300mm×400×厚み11mmに変更したこと以外は、実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.9質量%であった。
<Example 2>
Ester-based elastomer (trade name: "Perprene P-75M", manufactured by Toyobo Co., Ltd., hard segment: polybutylene terephthalate and polybutylene isophthalate, soft segment: aliphatic polyether) 100 parts by mass and wax (ethylene bisstearic acid amide, Product name: "Kao Wax EBFF", manufactured by Kao Co., Ltd.) 0.3 parts by mass was supplied to a single-screw extruder and melt-kneaded at 180 to 280 ° C. Next, after cooling the molten ester-based elastomer to adjust the viscosity, the resin is removed from each nozzle of the multi-nozzle mold (having 8 nozzles with a diameter of 1.3 mm) attached to the front end of the single-screw extruder. It was extruded and cut in water at 30-50 ° C. The obtained resin particles had a particle length L of 1.4 to 1.8 mm and an average particle diameter D of 1.4 to 1.8 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 7.2% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded article A foam molded article was obtained in the same manner as in Example 1 except that the size of the cavity was changed to 300 mm × 400 × thickness 11 mm. The amount of nitrogen impregnated was 0.9% by mass.

<実施例3>
(1)樹脂粒子
ワックス種をステアリン酸カルシウム(商品名:「ステアリン酸カルシウムSC-PF」、堺化学工業社製)、ワックス添加量を0.3質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.4質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は1.0質量%であった。
<Example 3>
(1) Resin particles Same as Example 1 except that the wax type was changed to calcium stearate (trade name: "Calcium stearate SC-PF", manufactured by Sakai Chemical Industry Co., Ltd.) and the amount of wax added was changed to 0.3 parts by mass. Resin particles were obtained by the method. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.4% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 1.0% by mass.

<実施例4>
(1)樹脂粒子
ワックス(エチレンビスステアリン酸アミド)の添加量を0.5質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.4質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.8質量%であった。
<Example 4>
(1) Resin particles Resin particles were obtained in the same manner as in Example 1 except that the amount of wax (ethylene bisstearic acid amide) added was changed to 0.5 parts by mass. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.4% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.8% by mass.

<実施例5>
(1)樹脂粒子
ワックス(エチレンビスステアリン酸アミド)の添加量を1質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.5質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.9質量%であった。
<Example 5>
(1) Resin Particles Resin particles were obtained by the same method as in Example 1 except that the amount of wax (ethylene bisstearic acid amide) added was changed to 1 part by mass. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.5% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.9% by mass.

<実施例6>
(1)樹脂粒子
ワックス種をステアリン酸アミド(商品名:「脂肪酸アマイドS」、花王社製)、ワックス添加量を3質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.3質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.9質量%であった。
<Example 6>
(1) Resin particles Resin particles are prepared by the same method as in Example 1 except that the wax type is stearic acid amide (trade name: "fatty acid amide S", manufactured by Kao Corporation) and the amount of wax added is changed to 3 parts by mass. Obtained. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.3% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.9% by mass.

<実施例7>
(1)樹脂粒子
ワックス(エチレンビスステアリン酸アミド)の添加量を5質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.1質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.7質量%であった。
<Example 7>
(1) Resin Particles Resin particles were obtained by the same method as in Example 1 except that the amount of wax (ethylene bisstearic acid amide) added was changed to 5 parts by mass. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.1% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.7% by mass.

<実施例8>
(1)発泡性粒子
内容積5Lのオートクレーブに、実施例7で作製した樹脂粒子500gを投入し、密閉した後、二酸化炭素(発泡剤)で大気圧からゲージ圧4MPaまで加圧した。次に、オートクレーブを室温で24時間静置した後、徐圧することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、5.1質量%であった。
(2)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(3)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.7質量%であった。
<Example 8>
(1) Effervescent particles 500 g of the resin particles prepared in Example 7 were put into an autoclave having an internal volume of 5 L, sealed, and then pressurized from atmospheric pressure to a gauge pressure of 4 MPa with carbon dioxide (foaming agent). Next, the autoclave was allowed to stand at room temperature for 24 hours and then depressurized to obtain effervescent particles. The amount of impregnated gas of the effervescent particles was 5.1% by mass.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(3) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.7% by mass.

<比較例1>
(1)樹脂粒子
ワックス(エチレンビスステアリン酸アミド)を添加しなかったこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例1と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、6.3質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.9質量%であった。
<Comparative Example 1>
(1) Resin particles Resin particles were obtained in the same manner as in Example 1 except that wax (ethylene bisstearic acid amide) was not added. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1. The amount of impregnated gas of the effervescent particles was 6.3% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.9% by mass.

<比較例2>
(1)発泡性粒子
内容積5Lのオートクレーブに、比較例1で作製した樹脂粒子500gを投入し、密閉した後、二酸化炭素(発泡剤)で大気圧からゲージ圧4MPaまで加圧した。次に、オートクレーブを室温で24時間静置した後、徐圧することで発泡性粒子を得た。発泡性粒子の含浸ガス量は、5.2質量%であった。
(2)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(3)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.7質量%であった。
<Comparative Example 2>
(1) Effervescent particles 500 g of the resin particles prepared in Comparative Example 1 was put into an autoclave having an internal volume of 5 L, sealed, and then pressurized from atmospheric pressure to a gauge pressure of 4 MPa with carbon dioxide (foaming agent). Next, the autoclave was allowed to stand at room temperature for 24 hours and then depressurized to obtain effervescent particles. The amount of impregnated gas of the effervescent particles was 5.2% by mass.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(3) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.7% by mass.

<比較例3>
(1)樹脂粒子
ワックス(エチレンビスステアリン酸アミド)の添加量を7質量部に変更したこと以外は実施例1と同様の方法で樹脂粒子を得た。得られた樹脂粒子は、粒子の長さLが2~3mm、粒子の平均径Dが2~2.5mmであった。
(2)発泡性粒子
実施例8と同様の方法で発泡性粒子を得た。発泡性粒子の含浸ガス量は、4.9質量%であった。
(3)発泡粒子
実施例1と同様の方法で発泡粒子を得た。
(4)発泡成形体
実施例1と同様の方法で発泡成形体を得た。なお、窒素の含浸量は0.7質量%であった。ワックス無添加の比較例1及び2の発泡成形体と比較して、反発弾性率の大きな低下が起こり、反発弾性率が50%未満であった。
実施例1~8及び比較例1~3の各種物性値をまとめて表1に示す。また、実施例1~8及び比較例1~3の発泡粒子の断面写真を図1~11に示す。
<Comparative Example 3>
(1) Resin Particles Resin particles were obtained in the same manner as in Example 1 except that the amount of wax (ethylene bisstearic acid amide) added was changed to 7 parts by mass. The obtained resin particles had a particle length L of 2 to 3 mm and an average particle diameter D of 2 to 2.5 mm.
(2) Effervescent particles Effervescent particles were obtained in the same manner as in Example 8. The amount of impregnated gas of the effervescent particles was 4.9% by mass.
(3) Effervescent particles Effervescent particles were obtained in the same manner as in Example 1.
(4) Foam molded product A foam molded product was obtained in the same manner as in Example 1. The amount of nitrogen impregnated was 0.7% by mass. Compared with the foam molded products of Comparative Examples 1 and 2 to which no wax was added, the rebound resilience was significantly reduced, and the rebound resilience was less than 50%.
Table 1 summarizes various physical property values of Examples 1 to 8 and Comparative Examples 1 to 3. Further, cross-sectional photographs of the foamed particles of Examples 1 to 8 and Comparative Examples 1 to 3 are shown in FIGS. 1 to 11.

Figure 0007051654000001
Figure 0007051654000001

表1から、実施例1~8の発泡成形体は、融着性が向上していることが分かる。 From Table 1, it can be seen that the foam molded products of Examples 1 to 8 have improved fusion properties.

Claims (8)

基材樹脂としてのエステル系エラストマーと、融着向上剤としてのワックスとを含む樹脂組成物から構成され、
前記ワックスが、炭素数12~22の高級脂肪酸アミド、炭素数25~46の高級脂肪酸ビスアミド及び炭素数12~22の高級脂肪酸塩から選択され、かつ前記エステル系エラストマー100質量部に対して、0.01~5質量部含まれることを特徴とするワックス含有発泡粒子。
It is composed of a resin composition containing an ester-based elastomer as a base resin and a wax as a fusion improver.
The wax is selected from a higher fatty acid amide having 12 to 22 carbon atoms, a higher fatty acid bisamide having 25 to 46 carbon atoms, and a higher fatty acid salt having 12 to 22 carbon atoms, and is 0 with respect to 100 parts by mass of the ester-based elastomer. 0.01 to 5 parts by mass of wax-containing foamed particles.
前記樹脂組成物が、
(i)0~65のショアD硬度
(ii)100~200℃の融点
(iii)結晶化温度Tcにおける周波数1Hzでの溶融粘弾性測定による貯蔵弾性率が1×106~2×107Paの範囲
(iv)ビカット軟化温度Tv-10℃における周波数1Hzでの固体粘弾性測定による貯蔵弾性率が1×107~2×108Paの範囲
のいずれかの物性を少なくとも有する請求項1に記載のワックス含有発泡粒子。
The resin composition is
(I) Shore D hardness of 0 to 65 (ii) Melting point of 100 to 200 ° C. (iii) Storage elastic modulus measured by melt viscoelasticity measurement at a frequency of 1 Hz at a crystallization temperature Tc is 1 × 10 6 to 2 × 10 7 Pa. Range (iv) According to claim 1 , the storage elastic modulus by solid viscoelasticity measurement at a frequency of 1 Hz at a Vicat softening temperature Tv-10 ° C. has at least one of the physical properties in the range of 1 × 10 7 to 2 × 10 8 Pa. The wax-containing foam particles described.
前記ワックス含有発泡粒子が、
(i)0.02~0.4g/cm3の嵩密度
(ii)10~300μmの平均気泡径
(iii)60~100%の独立気泡率
(iv)1.5~15mmの平均粒子径
のいずれかの物性を少なくとも有する請求項1又は2に記載のワックス含有発泡粒子。
The wax-containing foamed particles
(I) Bulk density of 0.02 to 0.4 g / cm 3 (ii) Average bubble diameter of 10 to 300 μm (iii) 60 to 100% closed cell ratio (iv) Average particle diameter of 1.5 to 15 mm The wax-containing foamed particles according to claim 1 or 2 , which have at least one of the physical characteristics.
請求項1~のいずれか1つに記載のワックス含有発泡粒子を製造する方法であって、
前記エステル系エラストマーと前記ワックスとを含む樹脂粒子に発泡剤を含浸させて発泡性粒子を得る工程と、前記発泡性粒子を発泡させる工程とを含むことを特徴とするワックス含有発泡粒子の製造方法。
The method for producing wax-containing foamed particles according to any one of claims 1 to 3 .
A method for producing wax-containing foamed particles, which comprises a step of impregnating resin particles containing the ester-based elastomer and the wax with a foaming agent to obtain foamable particles, and a step of foaming the foamable particles. ..
請求項1~のいずれか1つに記載のワックス含有発泡粒子を型内発泡させて得られた発泡成形体。 A foamed molded product obtained by in-mold foaming of the wax-containing foamed particles according to any one of claims 1 to 3 . 前記発泡成形体が、
(i)0.02~0.4g/cm3の密度
(ii)50~100%の反発弾性率
(iii)20~65のアスカーC硬度
のいずれかの物性を少なくとも有する請求項に記載の発泡成形体。
The foam molded product
(I) The 5 . Foam molded body.
前記発泡成形体が、建築資材、靴の部材、スポーツ用品、緩衝材、シートクッション又は自動車部材として用いられる請求項又はに記載の発泡成形体。 The foam molded body according to claim 5 or 6 , wherein the foam molded body is used as a building material, a shoe member, a sporting goods, a cushioning material, a seat cushion, or an automobile member. 請求項のいずれか1つに記載の発泡成形体を製造する方法であって、
ゲージ圧0.05~0.4MPaの水蒸気を加熱媒体として請求項1~のいずれか1つに記載のワックス含有発泡粒子を型内発泡させる工程を含むことを特徴とする発泡成形体の製造方法。
The method for producing a foam molded product according to any one of claims 5 to 7 .
Manufacture of a foamed molded product comprising a step of in-mold foaming the wax-containing foamed particles according to any one of claims 1 to 3 using steam having a gauge pressure of 0.05 to 0.4 MPa as a heating medium. Method.
JP2018177562A 2017-09-29 2018-09-21 Wax-containing foam particles, foam moldings and methods for producing them Active JP7051654B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190083 2017-09-29
JP2017190083 2017-09-29

Publications (2)

Publication Number Publication Date
JP2019065272A JP2019065272A (en) 2019-04-25
JP7051654B2 true JP7051654B2 (en) 2022-04-11

Family

ID=66337659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018177562A Active JP7051654B2 (en) 2017-09-29 2018-09-21 Wax-containing foam particles, foam moldings and methods for producing them

Country Status (1)

Country Link
JP (1) JP7051654B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020526A (en) 2000-07-07 2002-01-23 Asahi Kasei Corp Expandable resin beads
JP2008045120A (en) 2006-07-19 2008-02-28 Nitto Denko Corp Polyester-based elastomer foam, and sealing material constituted by the same and used for electric/electronic instrument
JP2010155451A (en) 2008-12-02 2010-07-15 Unitika Ltd Release film
WO2010095444A1 (en) 2009-02-19 2010-08-26 積水化成品工業株式会社 Expandable polystyrene resin particles for low-ratio expansion molding and method for producing same, low-ratio expanded particles, low-ratio expanded molded article, cushion material for hume pipe, and method for producing low-ratio expanded molded article and cushion material for hume pipe
US20120041086A1 (en) 2010-08-13 2012-02-16 Basf Se Expandable pelletized materials based on polyester
JP2012140532A (en) 2010-12-28 2012-07-26 Toyobo Co Ltd Thermoplastic polyester resin composition and foaming-molded article
JP2013053298A (en) 2011-08-10 2013-03-21 Nitto Denko Corp Polyester elastomer foam
JP2014005445A (en) 2012-05-28 2014-01-16 Nitto Denko Corp Resin foam and foam component
WO2014098252A1 (en) 2012-12-21 2014-06-26 日東電工株式会社 Polyester resin foam and foam seal material
JP2016512850A (en) 2013-03-15 2016-05-09 ナイキ イノヴェイト シーヴィー Decorative foam and method
JP2016521796A (en) 2013-06-13 2016-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Production of expanded pellets
JP2016532737A (en) 2013-10-11 2016-10-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing foamed thermoplastic elastomer particles
JP2017171846A (en) 2016-03-25 2017-09-28 積水化成品工業株式会社 Thermoplastic elastomer foamed body and manufacturing method of thermoplastic elastomer foamed body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641122B2 (en) * 1993-06-22 1997-08-13 積水化成品工業株式会社 Method for producing thermoplastic resin pre-expanded particles

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020526A (en) 2000-07-07 2002-01-23 Asahi Kasei Corp Expandable resin beads
JP2008045120A (en) 2006-07-19 2008-02-28 Nitto Denko Corp Polyester-based elastomer foam, and sealing material constituted by the same and used for electric/electronic instrument
JP2010155451A (en) 2008-12-02 2010-07-15 Unitika Ltd Release film
WO2010095444A1 (en) 2009-02-19 2010-08-26 積水化成品工業株式会社 Expandable polystyrene resin particles for low-ratio expansion molding and method for producing same, low-ratio expanded particles, low-ratio expanded molded article, cushion material for hume pipe, and method for producing low-ratio expanded molded article and cushion material for hume pipe
US20120041086A1 (en) 2010-08-13 2012-02-16 Basf Se Expandable pelletized materials based on polyester
JP2012140532A (en) 2010-12-28 2012-07-26 Toyobo Co Ltd Thermoplastic polyester resin composition and foaming-molded article
JP2013053298A (en) 2011-08-10 2013-03-21 Nitto Denko Corp Polyester elastomer foam
JP2014005445A (en) 2012-05-28 2014-01-16 Nitto Denko Corp Resin foam and foam component
WO2014098252A1 (en) 2012-12-21 2014-06-26 日東電工株式会社 Polyester resin foam and foam seal material
JP2016512850A (en) 2013-03-15 2016-05-09 ナイキ イノヴェイト シーヴィー Decorative foam and method
JP2016521796A (en) 2013-06-13 2016-07-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Production of expanded pellets
JP2016532737A (en) 2013-10-11 2016-10-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing foamed thermoplastic elastomer particles
JP2017171846A (en) 2016-03-25 2017-09-28 積水化成品工業株式会社 Thermoplastic elastomer foamed body and manufacturing method of thermoplastic elastomer foamed body

Also Published As

Publication number Publication date
JP2019065272A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6081674B2 (en) Amide-based elastomer expanded particles, method for producing the same, foamed molded article, and method for producing the same
JP6253839B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
JP6534645B2 (en) Shock absorbing foam and shock absorbing material
JP6227202B1 (en) Ester elastomer foam molding, its use and ester elastomer foam particles
JP7051654B2 (en) Wax-containing foam particles, foam moldings and methods for producing them
JP6867265B2 (en) High-gloss foam particles, foam moldings and methods for manufacturing them
JP2019065273A (en) Pigment-containing foamed particles, foamed molding, and method for producing them
JP2019044123A (en) Method for producing thermoplastic elastomer expandable particle and method for producing foam molding
JP2018172535A (en) Ester-based elastomer foam molding and method for producing the same
JP6882967B2 (en) Ester-based elastomer foam particles, foam moldings and methods for producing them
JP6998808B2 (en) Foam and its manufacturing method
WO2020090335A1 (en) Foam particles
JP7165068B2 (en) Method for producing foam molded article
JP2020158655A (en) Ester elastomer foam molding, use therefor, and ester elastomer foam particle
WO2024070887A1 (en) Amide elastomer foam particles, amide elastomer foam molded body, and method for producing said foam molded body
WO2020196020A1 (en) Plant-derived polyamide-based elastomer foam molded body, method for manufacturing same, and foam particles thereof
JP6874108B2 (en) Thermoplastic Elastomer Composition, Foamed Particles and Foamed Molds
JP2024050390A (en) Amide-based elastomer expanded particles, amide-based elastomer expanded molded product, and method for producing said expanded molded product
JP2018050767A (en) insole
JP2020164629A (en) Foam-molded body of biodegradable thermoplastic elastomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7051654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150