JP2019062601A - 電力変換システム、電力変換装置 - Google Patents

電力変換システム、電力変換装置 Download PDF

Info

Publication number
JP2019062601A
JP2019062601A JP2017183632A JP2017183632A JP2019062601A JP 2019062601 A JP2019062601 A JP 2019062601A JP 2017183632 A JP2017183632 A JP 2017183632A JP 2017183632 A JP2017183632 A JP 2017183632A JP 2019062601 A JP2019062601 A JP 2019062601A
Authority
JP
Japan
Prior art keywords
control circuit
voltage
power
command value
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183632A
Other languages
English (en)
Other versions
JP6827219B2 (ja
Inventor
渉 堀尾
Wataru Horio
渉 堀尾
賢治 花村
Kenji Hanamura
賢治 花村
智規 伊藤
Tomonori Ito
智規 伊藤
康太 前場
Kota Maeba
康太 前場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017183632A priority Critical patent/JP6827219B2/ja
Publication of JP2019062601A publication Critical patent/JP2019062601A/ja
Application granted granted Critical
Publication of JP6827219B2 publication Critical patent/JP6827219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】分離型の電力変換システム(1)において、太陽電池(2)の発電効率および電力変換効率を高くする。【解決手段】第1制御回路(12)は、DC/DCコンバータ(11)をMPPT(MaximumPowerPointTracking)制御する。第2制御回路(22)は、DC/DCコンバータ(11)とインバータ(21)間の直流バス(40)の電圧が、第1制御回路(12)によるMPPT制御により算出された電圧指令値に対応する電圧になるように、インバータ(21)を制御する。第1制御回路(12)は、直流バス(40)の電圧が、送信した電圧指令値に対応する電圧に安定した後、MPPT制御による次の電圧指令値を算出する。第2制御回路(22)は、第1制御回路(12)から電圧指令値を受信した後、受信した電圧指令値をもとにインバータ(21)を制御し、直流バス(40)の電圧が安定した後に、更新確認データを第1制御回路(12)に送信する。【選択図】図1

Description

本発明は、直流電力を交流電力に変換する電力変換システム、電力変換装置に関する。
現在、系統連系される分散型電源には、電源ソースとして太陽光発電装置、風力発電装置、定置型蓄電池、車載蓄電池などがある。分散型電源の電圧を系統連系用の電圧に昇圧するDC/DCコンバータと、DC/DCコンバータの直流電力を交流電力に変換するインバータのシステム構成として、両者が1つの筐体内に設置される一体型構成と、別々の筐体内に設置される分離型構成がある(例えば、特許文献1参照)。今後、DC/DCコンバータとインバータ間の直流バスに、様々な分散型電源を後付けしてシステムを拡張できる分離型構成が普及していくと予想されている。
特開2014−230455号公報
一般的に、分散型電源である太陽電池の出力は、DC/DCコンバータによりMPPT(Maximum Power Point Tracking) 制御される。当該DC/DCコンバータとインバータ間の直流バスの電圧を、MPPT制御により算出された電圧値に制御すると、当該DC/DCコンバータと当該インバータの損失が少なくなり、変換効率が高くなる。
上述のような分離型構成では、DC/DCコンバータとインバータ間が通信線で接続されて、両者の間で制御信号が送受信される。両者の間の通信遅延により、DC/DCコンバータによるMPPT制御に基づく電圧制御と、インバータによる直流バスの電圧制御に同期ずれが発生することがある。同期ずれが発生すると太陽電池の発電効率の低下を招く可能性がある。
本発明はこうした状況に鑑みなされたものであり、その目的は、太陽電池の発電効率および電力変換効率が高い、分離型の電力変換システム、電力変換装置を提供することにある。
上記課題を解決するために、本発明のある態様の電力変換システムは、太陽電池により発電された直流電力の電圧を調整可能なDC/DCコンバータと、前記DC/DCコンバータをMPPT(Maximum Power Point Tracking) 制御する第1制御回路と、前記DC/DCコンバータと直流バスを介して接続され、前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を電力系統へ重畳し、重畳した交流電力を負荷へ供給するインバータと、前記直流バスの電圧が、前記第1制御回路によるMPPT制御により算出された電圧指令値に対応する電圧になるように、前記インバータを制御する第2制御回路と、を備える。前記第1制御回路は、前記MPPT制御により算出した電圧指令値を通信線を介して前記第2制御回路に送信し、前記第1制御回路は、前記直流バスの電圧が、前記送信した電圧指令値に対応する電圧に安定した後、前記MPPT制御による次の電圧指令値を算出する。
本発明によれば、太陽電池の発電効率および電力変換効率が高い、分離型の電力変換システム、電力変換装置を実現することができる。
本発明の実施の形態に係る電力変換システムを説明するための図である。 第1DC/DC電力変換装置によるMPPT制御と、DC/AC電力変換装置によるバス電圧制御の具体例を説明するための図である。 太陽電池からの入力電圧と、入力電流及び入力電力との関係を示す図である。 MPPT制御部により生成された第1電圧指令値と、直流バスの電圧を制御するための第2電圧指令値との関係を示す図である。 図5(a)、(b)は、MPPT制御部の第1電圧指令値と、バス電圧制御部の第2電圧指令値の更新タイミングの一例を示す図である。 図6(a)、(b)は、入力電流、第1電圧指令値、入力電圧の遷移例を示す図である。 実施例1に係る電力変換システムを説明するための図である。 実施例2に係る、インバータ制御回路からコンバータ制御回路に送信される定期通信のタイミングを示す図である。
図1は、本発明の実施の形態に係る電力変換システム1を説明するための図である。電力変換システム1は、第1DC/DC電力変換装置10、第2DC/DC電力変換装置30、及びDC/AC電力変換装置20を備える。第1DC/DC電力変換装置10と第2DC/DC電力変換装置30は並列接続され、並列接続された第1DC/DC電力変換装置10及び第2DC/DC電力変換装置30と、DC/AC電力変換装置20とが直流バス40を介して接続される。
太陽電池2は、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。太陽電池2として、シリコン太陽電池、化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池2は、発電した電力を第1DC/DC電力変換装置10に出力する。太陽電池2は第1DC/DC電力変換装置10と接続され、発電した電力を第1DC/DC電力変換装置10に出力する。
第1DC/DC電力変換装置10は、DC/DCコンバータ11、コンバータ制御回路12を備える。DC/DCコンバータ11は、太陽電池2から出力される直流電力の電圧を調整可能なコンバータである。DC/DCコンバータ11は例えば、昇圧チョッパで構成することができる。
コンバータ制御回路12はDC/DCコンバータ11を制御する。コンバータ制御回路12は基本制御として、太陽電池2の出力電力が最大になるようDC/DCコンバータ11をMPPT(Maximum Power Point Tracking) 制御する。MPPT制御の詳細は後述する。
蓄電池3は、電力を充放電可能であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池などを使用することができる。なお蓄電池3は定置型であってもよいし、車載型であってもよい。また蓄電池3の代わりに、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタを使用してもよい。蓄電池3は第2DC/DC電力変換装置30と接続され、第2DC/DC電力変換装置30により充放電制御される。
第2DC/DC電力変換装置30は、DC/DCコンバータ31及びコンバータ制御回路32を備える。DC/DCコンバータ31は、蓄電池3と直流バス40との間に接続され、蓄電池3を充放電する双方向コンバータである。コンバータ制御回路32はDC/DCコンバータ31を制御する。コンバータ制御回路32は基本制御として、DC/AC電力変換装置20から送信されてくる指令値をもとにDC/DCコンバータ31を制御して、蓄電池3を定電流(CC)/定電圧(CV)で充電/放電する。例えばコンバータ制御回路32は、放電時においてDC/AC電力変換装置20のインバータ制御回路22から電力指令値を受信し、当該電力指令値を蓄電池3の電圧で割った値を電流指令値として、DC/DCコンバータ31に定電流放電させる。
DC/AC電力変換装置20は、インバータ21及びインバータ制御回路22を備える。インバータ21は双方向インバータであり、直流バス40から入力される直流電力を交流電力に変換し、変換した交流電力を商用電力系統(以下、単に系統4という)に接続された配電線50に出力する。当該配電線50には負荷5が接続される。またインバータ21は、系統4から供給される交流電力を直流電力に変換し、変換した直流電力を直流バス40に出力する。直流バス40には、平滑用の電解コンデンサ(不図示)が接続されている。
インバータ制御回路22はインバータ21を制御する。インバータ制御回路22は基本制御として、直流バス40の電圧が所定の電圧を維持するようにインバータ21を制御する。バス電圧制御の詳細は後述する。
第1DC/DC電力変換装置10のコンバータ制御回路12、第2DC/DC電力変換装置30のコンバータ制御回路32及びDC/AC電力変換装置20のインバータ制御回路22間は通信線60で接続され、それらの制御回路間で所定の通信規格(例えば、RS−485規格、TCP−IP規格、CAN規格)に準拠した通信が行われる。
図2は、第1DC/DC電力変換装置10によるMPPT制御と、DC/AC電力変換装置20によるバス電圧制御の具体例を説明するための図である。図2の説明では、第2DC/DC電力変換装置30による蓄電池3の充放電は停止している状態とする。
第1DC/DC電力変換装置10のコンバータ制御回路12は、MPPT制御部121及び入力電圧制御部122を含む。コンバータ制御回路12は、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコンピュータ、DSP、ROM、RAM、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。DC/AC電力変換装置20のインバータ制御回路22は、バス電圧制御部221及び出力電流制御部222を含む。インバータ制御回路22も、ハードウェア資源とソフトウェア資源の協働、またはハードウェア資源のみにより実現できる。
MPPT制御部121は、DC/DCコンバータ11の入力電圧V1、入力電流I1を計測して太陽電池2の発電電力を推定し、太陽電池2の発電電力を最大電力点(最適動作点)にするための第1電圧指令値V1*を生成する。例えば、山登り法に従い動作点電圧を所定のステップ幅で変化させて最大電力点を探索し、最大電力点を維持するように第1電圧指令値V1*を生成する。
図3は、太陽電池2からの入力電圧V1と、入力電流I1及び入力電力P1との関係を示す図である。MPPT制御部121は、第1電圧指令値V1*を操作して太陽電池2からの入力電力P1が最大電力点を維持するように制御する。
MPPT制御部121は、計測したDC/DCコンバータ11の入力電圧V1、入力電流I1と、生成した第1電圧指令値V1*を入力電圧制御部122に出力する。入力電圧制御部122は、DC/DCコンバータ11の入力電圧V1を、第1電圧指令値V1*に一致させるための駆動信号を生成し、DC/DCコンバータ11のスイッチング素子を駆動する。入力電圧制御部122は、入力電圧V1と第1電圧指令値V1*との差分信号と、搬送波(三角波)を比較するコンパレータを含み、当該コンパレータは、当該差分信号と搬送波との比較結果に応じた第1PWM信号を駆動信号として上記スイッチング素子のゲート端子に出力する。
本実施の形態では、MPPT制御部121により生成される第1電圧指令値V1*を、直流バス40の電圧を制御するための第2電圧指令値V2*として活用する。直流バス40の電圧は、系統電圧(例えば、AC200V)より高い電圧であって、できるだけ系統電圧に近い値に設定されることが好ましい。直流バス40の電圧と系統電圧の差が小さいほど、インバータ21での変換損失が少なくなる。また直流バス40の電圧が低い場合、DC/DCコンバータ11で昇圧する電圧幅が小さくなり、DC/DCコンバータ11での変換損失も少なくなる。
図4は、MPPT制御部121により生成された第1電圧指令値V1*と、直流バス40の電圧V2を制御するための第2電圧指令値V2*との関係を示す図である。第1電圧指令値V1*が閾値電圧V2ulmt以下の場合、第2電圧指令値V2*には閾値電圧V2ulmtが設定され、第1電圧指令値V1*が閾値電圧V2ulmtを超える場合、第2電圧指令値V2*に第1電圧指令値V1*が設定される。閾値電圧V2ulmtは、系統連系に必要な最低限のバス電圧であり、下記(式1)で定義される。
V2ulmt=√2Vac(p−p)+α ・・・(式1)
αはマージン値であり、例えば数V〜十数Vに設定される。
直流バス40の電圧V2が閾値電圧V2ulmtを超える領域では、太陽電池2からの入力電圧が低下にするに従い、直流バス40の電圧V2も低下する。
図2に戻る。バス電圧制御部221は、直流バス40の電圧V2を計測し、直流バス40の電圧V2を第2電圧指令値V2*に一致させるための電流指令値I3*を生成する。直流バス40の電圧V2が第2電圧指令値V2*より高い場合、インバータ21の出力電流を上げるための電流指令値I3*を生成し、直流バス40の電圧V2が第2電圧指令値V2*より低い場合、インバータ21の出力電流を下げるための電流指令値I3*を生成する。バス電圧制御部221は、生成した電流指令値I3*を出力電流制御部222に出力する。
出力電流制御部222は、インバータ21の出力電流I3を計測し、インバータ21の出力電流I3を電流指令値I3*に一致させるための駆動信号を生成し、インバータ21のスイッチング素子を駆動する。出力電流制御部222は、出力電流I3と電流指令値I3*との差分信号と搬送波を比較するコンパレータを含み、当該コンパレータは、当該差分信号と搬送波との比較結果に応じた第2PWM信号を駆動信号として上記スイッチング素子のゲート端子に出力する。
本実施の形態では、第1DC/DC電力変換装置10とDC/AC電力変換装置20が別々の筐体に分離され、通信線60を介して制御信号を送受信している。MPPT制御部121からバス電圧制御部221に第1電圧指令値V1*を送信する際に、通信遅延が発生する。第1DC/DC電力変換装置10とDC/AC電力変換装置20が一体型の筐体に収納されていれば、信号線で直接、第1電圧指令値V1*を伝送することができ、伝送遅延は基本的に発生しない。これに対して分離型の場合、所定の規格に従った通信手順を経て第1電圧指令値V1*が送受信されるため、通信遅延が発生する。
この通信遅延により、MPPT制御とバス電圧制御に矛盾が発生する場合がある。例えば、MPPT制御部121は電圧指令値V*(t)(=Vn+ΔV)に基づきMPPT制御を実行し、バス電圧制御部221は電圧指令値V*(t−2)(=Vn−ΔV)に基づきバス電圧制御を実行するといったことも発生し得る。バス電圧制御部221は、通信遅延により2回前の電圧指令値V*(t−2)(=Vn−ΔV)に基づきバス電圧制御を実行しているが、電圧を下げる指令になっており、現在の指令である電圧を上げる指令と矛盾が生じている。
そこで、MPPT制御部121とバス電圧制御部221との間で同期を取る必要がある。図2に示した例では、MPPT制御部121によるMPPT制御の周期は100ms、入力電圧制御部122による入力電圧制御の周期は2ms、バス電圧制御部221によるバス電圧制御の周期は200μs、出力電流制御部222による出力電流制御の周期は50μsにそれぞれ設定されている。
図5(a)、(b)は、MPPT制御部121の第1電圧指令値V1*と、バス電圧制御部221の第2電圧指令値V2*の更新タイミングの一例を示す図である。図5(a)は、MPPT制御部121とバス電圧制御部221間が非同期の場合の例を示しており、図5(b)は、MPPT制御部121とバス電圧制御部221間の同期が取れている場合の例を示している。
図5(a)に示す例では、図2に示したようにMPPT制御の周期は100msであり、バス電圧制御の周期は200μsである。従って、MPPT制御が1回実行される間に、バス電圧制御が500回実行される。MPPT制御部121は、第1電圧指令値V1*を更新すると、新たな第1電圧指令値V1*をバス電圧制御部221に送信する。この通信遅延が90msとすると、バス電圧制御部221は、MPPT制御部121で第1電圧指令値V1*が更新された後、90ms後に第2電圧指令値V2*を更新することになる。第2電圧指令値V2*が更新されると、直流バス40の電圧V2が過渡的に不安定な状態となる。
MPPT制御部121は、第2電圧指令値V2*が更新された直後に、次のMPPT制御を実行しようとするため、直流バス40の電圧V2が不安定な期間に、DC/DCコンバータ11の入力電圧V1と入力電流I1をサンプリングすることになる。この場合、MPPT制御部121の動作が不安定になる。
図5(b)に示す例では、バス電圧制御部221からMPPT制御部121に同期信号を送信する。バス電圧制御部221は、第2電圧指令値V2*を更新した後、直流バス40の電圧V2が安定した後に、更新確認データとしてパルス信号をMPPT制御部121に送信する。バス電圧制御部221は、第2電圧指令値V2*を更新した後、直流バス40の電圧V2が安定すると想定される一定時間後にパルス信号を送信してもよいし、直流バス40の電圧V2の計測値が実際に安定したことを確認してからパルス信号を送信してもよい。図5(b)に示すようにパルス信号の送信周期は、バス電圧制御の制御周期より長くなる。
MPPT制御部121は、当該パルス信号を受信したことを契機として次のMPPT制御を実行する。この場合、直流バス40の電圧V2が安定している期間に、DC/DCコンバータ11の入力電圧V1と入力電流I1をサンプリングすることができるため、MPPT制御部121の動作が安定する。なお図5(b)に示す例では、MPPT制御の周期が100msを超過することを許容する。
図6(a)、(b)は、入力電流I1、第1電圧指令値V1*、入力電圧V1の遷移例を示す図である。図6(a)は、MPPT制御部121とバス電圧制御部221間が非同期の場合の例を示しており、図6(b)は、MPPT制御部121とバス電圧制御部221間の同期が取れている場合の例を示している。矢印で示される期間は、MPPT制御部121による入力電流I1と入力電圧V1のサンプリング期間を示している。
図6(a)に示す例では、点線に示すように第2電圧指令値V2*の変化が遅れるため、変化中の不確かな入力電流I1と入力電圧V1をサンプリングすることになる。一方、図6(b)に示す例では、第2電圧指令値V2*の変化後、一定時間が経過した安定した期間に、入力電流I1と入力電圧V1をサンプリングしている。従って、図6(b)に示す例の方が、第1電圧指令値V1*を精度よく更新していくことができる。
以下、バス電圧制御部221とMPPT制御部121との間で同期を取る具体的な方法を説明する。第1の方法として専用線を使用することが考えられる。
図7は、実施例1に係る電力変換システム1を説明するための図である。実施例1では、第1DC/DC電力変換装置10のコンバータ制御回路12と、DC/AC電力変換装置20のインバータ制御回路22との間が、通信線60と別の専用線70でさらに接続される。インバータ制御回路22は、図5(b)に示したように、コンバータ制御回路12から第1電圧指令値V1*を受信した後、受信した第1電圧指令値V1*をもとにインバータ21を制御し、直流バス40の電圧V2が安定した後に、パルス信号を専用線70を介してコンバータ制御回路12に送信する。パルス信号の送信にのみ使用される専用線70では、所定の規格に従った通信手順が不要であり、パルス信号を瞬時に送信することができる。
バス電圧制御部221とMPPT制御部121との間で同期を取る第2の方法として、定期通信を使用することが考えられる。インバータ制御回路22は、第1DC/DC電力変換装置10のコンバータ制御回路12及び第2DC/DC電力変換装置30のコンバータ制御回路32と、通信線60を介して定期通信を行っている。例えば、10ms間隔でDC/AC電力変換装置20の状態データや各種の指令値を送信している。例えば、第2DC/DC電力変換装置30のコンバータ制御回路32には10ms間隔で電力指令値を送信している。
図8は、実施例2に係る、インバータ制御回路22からコンバータ制御回路12に送信される定期通信のタイミングを示す図である。インバータ制御回路22は、コンバータ制御回路12から第1電圧指令値V1*を受信した後、受信した第1電圧指令値V1*をもとにインバータ21を制御し、直流バス40の電圧V2が安定した後、次のタイミングの定期通信に更新確認データとしてフラグ信号を含めている。当該フラグ信号は、上記パルス信号の代替信号となる。図8に示すように、インバータ制御回路22からコンバータ制御回路12への定期通信の送信周期は、コンバータ制御回路12からインバータ制御回路22への第1電圧指令値V1*の送信周期より短くなっている。
コンバータ制御回路12は、インバータ制御回路22に送信する第1電圧指令値V1*のそれぞれに一意の識別番号を付与してもよい。この場合、インバータ制御回路22は、コンバータ制御回路12に返信する更新確認データに、受信した第1電圧指令値V1*の識別番号を付与することができる。これによれば、コンバータ制御回路12とインバータ制御回路22間で、より確実な同期を取ることができる。
バス電圧制御部221とMPPT制御部121との間で同期を取る第3の方法として、インバータ21の起動時に予め設定された手順で自律的に、コンバータ制御回路12とインバータ制御回路22のクロックタイミングを調整することが考えられる。第3の方法では、バス電圧制御部221とMPPT制御部121間で定常時には同期を取らず、起動時の1回のみ同期を取る。
インバータ21の運転開始時、インバータ21が直流バス40の電力を吸収するため、直流バス40の電圧V2、DC/DCコンバータ11の入力電圧V1は瞬間的に低下する。コンバータ制御回路12は、通信線60の遅延量を補償する補償値を加算したタイミングを基準タイミングとしてMPPT制御を実行する。通信線60の遅延量は、予め実験やシミュレーションより推定することができる。コンバータ制御回路12は、通信線60を介して第1電圧指令値V1*をインバータ制御回路22に送信した後、通信線60の遅延量に対応する想定時間と、第2電圧指令値V2*の更新後の直流バス40の電圧V2が安定する想定時間を経過した後、次のMPPT制御を実行する。
以上説明したように本実施の形態によれば、コンバータ制御回路12とインバータ制御回路22間でMPPT制御の同期を取ることにより、安定したMPPT制御を実現することができる。また直流バス40の電圧V2を最適な電圧に維持できるため、インバータ21及びDC/DCコンバータ11での損失を低減することができる。また、並列接続されたDC/DCコンバータ間の横流を防止でき、横流による損失を防止することができる。従って、高効率な分離型の電力変換システム1を構築することができる。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上述の実施の形態では、太陽電池2の第1DC/DC電力変換装置10と並列に、蓄電池3の第2DC/DC電力変換装置30を接続する例を説明した。この点、第2DC/DC電力変換装置30の接続は必須ではなく、蓄電池3及び第2DC/DC電力変換装置30が省略された電力変換システム1も可能である。また直流バス40に対して、太陽電池2の第1DC/DC電力変換装置10と並列に、燃料電池の電力変換装置などの別の分散型直流電源をさらに接続してもよい。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
太陽電池(2)により発電された直流電力の電圧を調整可能なDC/DCコンバータ(11)と、
前記DC/DCコンバータ(11)をMPPT(Maximum Power Point Tracking) 制御する第1制御回路(12)と、
前記DC/DCコンバータ(11)と直流バス(40)を介して接続され、前記直流バス(40)から入力される直流電力を交流電力に変換し、当該交流電力を電力系統(4)へ重畳し、重畳した交流電力を負荷(5)へ供給するインバータ(21)と、
前記直流バス(40)の電圧が、前記第1制御回路(12)によるMPPT制御により算出された電圧指令値に対応する電圧になるように、前記インバータ(21)を制御する第2制御回路(22)と、を備え、
前記第1制御回路(12)は、前記MPPT制御により算出した電圧指令値を通信線(60)を介して前記第2制御回路(22)に送信し、
前記第1制御回路(12)は、前記直流バス(40)の電圧が、前記送信した電圧指令値に対応する電圧に安定した後、前記MPPT制御による次の電圧指令値を算出することを特徴とする電力変換システム(1)。
これによれば、第1制御回路(12)と第2制御回路(22)が分離され、通信線(60)で接続される構成において、安定したMPPT制御を実現することができる。
[項目2]
前記第2制御回路(22)は、前記第1制御回路(12)から前記電圧指令値を受信した後、受信した電圧指令値をもとに前記インバータ(21)を制御し、前記直流バス(40)の電圧が安定した後に、更新確認データを前記第1制御回路(12)に送信することを特徴とする項目1に記載の電力変換システム(1)。
これによれば、第1制御回路(12)と第2制御回路(22)との間で同期を取ることができる。
[項目3]
前記第1制御回路(12)と前記第2制御回路(22)間は、前記通信線(60)と別の専用線(70)でさらに接続されており、
前記第2制御回路は、前記専用線(70)を介して前記更新確認データを前記第1制御回路(12)に送信することを特徴とする項目2に記載の電力変換システム(1)。
これによれば、第1制御回路(12)と第2制御回路(22)との間で高精度に同期を取ることができる。
[項目4]
前記第2制御回路(22)は、前記通信線(60)を介して前記第1制御回路(12)に、前記MPPT制御周期より短い周期で定期通信を行っており、前記定期通信に前記更新確認データを含めることを特徴とする項目2に記載の電力変換システム(1)。
これによれば、専用線(70)を追加せずに、第1制御回路(12)と第2制御回路(22)との間で同期を取ることができる。
[項目5]
前記第1制御回路(12)は、前記インバータ(21)の起動時の電圧変動を検出したタイミングに、自己のクロックタイミングを合わせ、前記通信線(60)の遅延量に対応する想定時間を加味して前記MPPT制御を行うことを特徴とする項目1に記載の電力変換システム(1)。
これによれば、第2制御回路(22)から第1制御回路(12)に定常的に更新確認データを送信せずとも、MPPT制御を安定化させることができる。
[項目6]
太陽電池(2)により発電された直流電力の電圧を調整可能なDC/DCコンバータ(11)と、
前記DC/DCコンバータ(11)をMPPT(Maximum Power Point Tracking) 制御する第1制御回路(12)と、を備え、
前記DC/DCコンバータ(11)は、直流バス(40)を介して、前記直流バス(40)から入力される直流電力を交流電力に変換し、当該交流電力を電力系統(4)へ重畳し、重畳した交流電力を負荷(5)へ供給するインバータ(21)と接続されており、
前記インバータ(21)は、第2制御回路(22)により、前記直流バス(40)の電圧が、前記第1制御回路(12)によるMPPT制御により算出された電圧指令値に対応する電圧になるように制御されており、
前記第1制御回路(12)は、前記MPPT制御により算出した電圧指令値を通信線(60)を介して前記第2制御回路(22)に送信し、
前記第1制御回路(12)は、前記直流バス(40)の電圧が、前記送信した電圧指令値に対応する電圧に安定した後、前記MPPT制御による次の電圧指令値を算出することを特徴とする電力変換装置(10)。

これによれば、第1制御回路(12)と第2制御回路(22)が分離され、通信線(60)で接続される構成において、安定したMPPT制御を実現することができる。
[項目7]
太陽電池(2)により発電された直流電力の電圧を調整可能なDC/DCコンバータ(11)と直流バス(40)を介して接続され、前記直流バス(40)から入力される直流電力を交流電力に変換し、当該交流電力を電力系統(4)へ重畳し、重畳した交流電力を負荷(5)へ供給するインバータ(21)と、
前記直流バス(40)の電圧が、前記DC/DCコンバータ(11)を制御する第1制御回路(12)によるMPPT(Maximum Power Point Tracking)制御により算出された電圧指令値に対応する電圧になるように、前記インバータ(21)を制御する第2制御回路(22)と、を備え、
前記第1制御回路(12)は、前記MPPT制御により算出した電圧指令値を通信線(60)を介して前記第2制御回路(22)に送信し、
前記第2制御回路(22)は、前記第1制御回路(12)から前記電圧指令値を受信した後、受信した電圧指令値をもとに前記インバータ(21)を制御し、前記直流バス(40)の電圧が安定した後に、更新確認データを、前記MPPT制御による次の電圧指令値を算出するための同期データとして、前記第1制御回路(12)に送信することを特徴とする電力変換装置(20)。
これによれば、第1制御回路(12)と第2制御回路(22)が分離され、通信線(60)で接続される構成において、安定したMPPT制御を実現することができる。
1 電力変換システム、 2 太陽電池、 3 蓄電池、 4 電力系統、 5 負荷、 10 第1DC/DC電力変換装置、 11 DC/DCコンバータ、 12 コンバータ制御回路、 121 MPPT制御部、 122 入力電圧制御部、 20 DC/AC電力変換装置、 21 インバータ、 22 インバータ制御回路、 221 バス電圧制御部、 222 出力電流制御部、 30 第2DC/DC電力変換装置、 31 DC/DCコンバータ、 32 コンバータ制御回路、 40 直流バス、 50 配電線、 60 通信線、 70 専用線。

Claims (7)

  1. 太陽電池により発電された直流電力の電圧を調整可能なDC/DCコンバータと、
    前記DC/DCコンバータをMPPT(Maximum Power Point Tracking) 制御する第1制御回路と、
    前記DC/DCコンバータと直流バスを介して接続され、前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を電力系統へ重畳し、重畳した交流電力を負荷へ供給するインバータと、
    前記直流バスの電圧が、前記第1制御回路によるMPPT制御により算出された電圧指令値に対応する電圧になるように、前記インバータを制御する第2制御回路と、を備え、
    前記第1制御回路は、前記MPPT制御により算出した電圧指令値を通信線を介して前記第2制御回路に送信し、
    前記第1制御回路は、前記直流バスの電圧が、前記送信した電圧指令値に対応する電圧に安定した後、前記MPPT制御による次の電圧指令値を算出することを特徴とする電力変換システム。
  2. 前記第2制御回路は、前記第1制御回路から前記電圧指令値を受信した後、受信した電圧指令値をもとに前記インバータを制御し、前記直流バスの電圧が安定した後に、更新確認データを前記第1制御回路に送信することを特徴とする請求項1に記載の電力変換システム。
  3. 前記第1制御回路と前記第2制御回路間は、前記通信線と別の専用線でさらに接続されており、
    前記第2制御回路は、前記専用線を介して前記更新確認データを前記第1制御回路に送信することを特徴とする請求項2に記載の電力変換システム。
  4. 前記第2制御回路は、前記通信線を介して前記第1制御回路に、前記MPPT制御周期より短い周期で定期通信を行っており、前記定期通信に前記更新確認データを含めることを特徴とする請求項2に記載の電力変換システム。
  5. 前記第1制御回路は、前記インバータの起動時の電圧変動を検出したタイミングに、自己のクロックタイミングを合わせ、前記通信線の遅延量に対応する想定時間を加味して前記MPPT制御を行うことを特徴とする請求項1に記載の電力変換システム。
  6. 太陽電池により発電された直流電力の電圧を調整可能なDC/DCコンバータと、
    前記DC/DCコンバータをMPPT(Maximum Power Point Tracking) 制御する第1制御回路と、を備え、
    前記DC/DCコンバータは、直流バスを介して、前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を電力系統へ重畳し、重畳した交流電力を負荷へ供給するインバータと接続されており、
    前記インバータは、第2制御回路により、前記直流バスの電圧が、前記第1制御回路によるMPPT制御により算出された電圧指令値に対応する電圧になるように制御されており、
    前記第1制御回路は、前記MPPT制御により算出した電圧指令値を通信線を介して前記第2制御回路に送信し、
    前記第1制御回路は、前記直流バスの電圧が、前記送信した電圧指令値に対応する電圧に安定した後、前記MPPT制御による次の電圧指令値を算出することを特徴とする電力変換装置。
  7. 太陽電池により発電された直流電力の電圧を調整可能なDC/DCコンバータと直流バスを介して接続され、前記直流バスから入力される直流電力を交流電力に変換し、当該交流電力を電力系統へ重畳し、重畳した交流電力を負荷へ供給するインバータと、
    前記直流バスの電圧が、前記DC/DCコンバータを制御する第1制御回路によるMPPT(Maximum Power Point Tracking)制御により算出された電圧指令値に対応する電圧になるように、前記インバータを制御する第2制御回路と、を備え、
    前記第1制御回路は、前記MPPT制御により算出した電圧指令値を通信線を介して前記第2制御回路に送信し、
    前記第2制御回路は、前記第1制御回路から前記電圧指令値を受信した後、受信した電圧指令値をもとに前記インバータを制御し、前記直流バスの電圧が安定した後に、更新確認データを、前記MPPT制御による次の電圧指令値を算出するための同期データとして、前記第1制御回路に送信することを特徴とする電力変換装置。
JP2017183632A 2017-09-25 2017-09-25 電力変換システム、電力変換装置 Active JP6827219B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183632A JP6827219B2 (ja) 2017-09-25 2017-09-25 電力変換システム、電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183632A JP6827219B2 (ja) 2017-09-25 2017-09-25 電力変換システム、電力変換装置

Publications (2)

Publication Number Publication Date
JP2019062601A true JP2019062601A (ja) 2019-04-18
JP6827219B2 JP6827219B2 (ja) 2021-02-10

Family

ID=66177785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183632A Active JP6827219B2 (ja) 2017-09-25 2017-09-25 電力変換システム、電力変換装置

Country Status (1)

Country Link
JP (1) JP6827219B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391676A (zh) * 2019-08-09 2019-10-29 阳光电源股份有限公司 一种多路mppt逆变器及其控制方法
CN114884116A (zh) * 2022-06-07 2022-08-09 国网湖北综合能源服务有限公司 电源电路、新能源控制系统及能源协调方法
WO2022253189A1 (zh) * 2021-05-31 2022-12-08 华为数字能源技术有限公司 一种光储控制模块、光储控制方法以及光储系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039026A (ja) * 2011-07-29 2013-02-21 General Electric Co <Ge> 過渡事象ライド・スルー能力を伴う電力変換システムおよびその方法
JP2014174777A (ja) * 2013-03-11 2014-09-22 Hitachi Industrial Equipment Systems Co Ltd 太陽電池の制御装置
WO2014147771A1 (ja) * 2013-03-20 2014-09-25 富士電機株式会社 太陽光発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039026A (ja) * 2011-07-29 2013-02-21 General Electric Co <Ge> 過渡事象ライド・スルー能力を伴う電力変換システムおよびその方法
JP2014174777A (ja) * 2013-03-11 2014-09-22 Hitachi Industrial Equipment Systems Co Ltd 太陽電池の制御装置
WO2014147771A1 (ja) * 2013-03-20 2014-09-25 富士電機株式会社 太陽光発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391676A (zh) * 2019-08-09 2019-10-29 阳光电源股份有限公司 一种多路mppt逆变器及其控制方法
CN110391676B (zh) * 2019-08-09 2021-07-20 阳光电源股份有限公司 一种多路mppt逆变器及其控制方法
WO2022253189A1 (zh) * 2021-05-31 2022-12-08 华为数字能源技术有限公司 一种光储控制模块、光储控制方法以及光储系统
CN114884116A (zh) * 2022-06-07 2022-08-09 国网湖北综合能源服务有限公司 电源电路、新能源控制系统及能源协调方法

Also Published As

Publication number Publication date
JP6827219B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
US10622811B2 (en) Stand-alone micro-grid autonomous control system and method
US11031785B1 (en) Device and method for intelligent control of power supply source connection
US9477247B2 (en) Device and method for global maximum power point tracking
US10283964B2 (en) Predictive control for energy storage on a renewable energy system
US20180248376A1 (en) Power conversion system and control device
US20130181519A1 (en) Power conversion system for energy storage system and controlling method of the same
JP6827219B2 (ja) 電力変換システム、電力変換装置
KR102087063B1 (ko) 전력 변환 동안 개선된 버스트 모드를 위한 방법 및 장치
US9444366B2 (en) Dual mode micro-inverter system and operation
US11025056B2 (en) Power conversion apparatus, power conversion system, and method for controlling power conversion apparatus
JP6011739B1 (ja) 制御装置および電力変換システム
US20120013190A1 (en) Grid-connected power conversion circuitry and power conversion method thereof
Rajesh et al. Implementation of an adaptive control strategy for solar photo voltaic generators in microgrlds with MPPT and energy storage
Khongkhachat et al. Hierarchical control strategies in AC microgrids
KR20160129266A (ko) 태양광 컨버터, 에너지 저장 컨버터 및 풍력 컨버터를 이용한 계통 연계형 통합 장치
US8664924B2 (en) Standalone solar energy conversion system with maximum power point tracing and method of operating the same
KR101443027B1 (ko) 분산 전원 제어 시스템 및 방법
EP4207530A1 (en) Alternating current electrolysis system, and method and device for controlling the same
WO2015095013A1 (en) Method and apparatus for maximum power point tracking for multi-input power converter
US10965129B2 (en) Mobile micro-grid unit and micro-grid system
JP2015056933A (ja) 電力変換装置
KR20200136658A (ko) 가상 저항 방식의 pcs 드룹 제어 장치 및 이를 이용한 에너지 저장 시스템
JP2018182872A (ja) 電源システム、制御方法、及び制御プログラム
US20200259330A1 (en) Energy storage system with string balance function
US20180323726A1 (en) Initializing virtual oscillator control

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R151 Written notification of patent or utility model registration

Ref document number: 6827219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151