JP2019062234A - Electronic/electric device - Google Patents
Electronic/electric device Download PDFInfo
- Publication number
- JP2019062234A JP2019062234A JP2018241278A JP2018241278A JP2019062234A JP 2019062234 A JP2019062234 A JP 2019062234A JP 2018241278 A JP2018241278 A JP 2018241278A JP 2018241278 A JP2018241278 A JP 2018241278A JP 2019062234 A JP2019062234 A JP 2019062234A
- Authority
- JP
- Japan
- Prior art keywords
- heat sink
- housing
- electronic
- semiconductor element
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 41
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 239000012811 non-conductive material Substances 0.000 claims abstract description 18
- 239000003507 refrigerant Substances 0.000 claims abstract description 11
- 238000009423 ventilation Methods 0.000 claims abstract description 11
- 230000003071 parasitic effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 33
- 238000001816 cooling Methods 0.000 abstract description 15
- 230000001629 suppression Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 208000032365 Electromagnetic interference Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、電子電気機器から発生する放射ノイズを少なくとも低減することが可能な電子電気機器に関する。 The present invention relates to an electronic and electrical device capable of at least reducing radiation noise generated from the electronic and electrical device.
近年、電子電気機器に搭載する半導体の高速化などにより、電子電気機器からの放射ノイズによる他の電子電気機器への影響が問題になっている。この放射ノイズによる他の電子電気機器への影響はEMI(Electro Magnetic Interference)と呼ばれ、主に無線機器、通信機器の受信障害や、電子電気機器の誤動作を引き起こす。そのため、各国では30MHz〜1GHz、あるいは使用する周波数によっては、それ以上の周波数帯域において、電子電気機器から発生する放射ノイズの規制を行っている。 2. Description of the Related Art In recent years, due to speeding up of semiconductors mounted in electronic and electrical devices, the influence of radiation noise from the electronic and electrical devices on other electronic and electrical devices has become a problem. The influence of the radiation noise on other electronic and electrical devices is called EMI (Electro Magnetic Interference), which mainly causes reception failure of wireless devices and communication devices and malfunction of the electronic and electrical devices. Therefore, in each country, 30 MHz to 1 GHz or, depending on the frequency to be used, regulation of radiation noise generated from electronic and electrical equipment is performed in a frequency band higher than that.
電子電気機器から発生する放射ノイズを抑制するために、電子電気機器内の回路基板、モジュール配線、ヒートシンクなどのノイズ放射源を、金属、導電性樹脂、メッキされた樹脂などのシールド筐体で覆う方法が広く用いられる。しかしながら、ノイズ放射源をシールド筐体で覆いシールドする方法は、冷却性能との両立性が課題となる。 In order to suppress radiation noise generated from electronic and electrical equipment, cover noise radiation sources such as circuit boards, module wiring, and heat sinks in electronic and electrical equipment with a shielding case made of metal, conductive resin, plated resin, etc. Methods are widely used. However, in the method of covering and shielding the noise radiation source with a shielding case, compatibility with the cooling performance becomes an issue.
これに対して、以下に示す特許文献1においては、筐体の外周に放熱性能を向上させるためにフィン構造を形成し、冷却性能を向上させる方法を提示している。 On the other hand, in patent document 1 shown below, in order to improve heat dissipation performance in the perimeter of a case, a fin structure is formed and a method of improving cooling performance is presented.
放射ノイズは、ノイズ放射源における共振や定在波が発生する周波数において高レベルとなる。このような特性に対する放射ノイズ抑制法として、以下に示す特許文献2においては、ヒートシンクから発生する放射ノイズの低減法が示されている。 Radiation noise is at a high level at the frequency at which resonance and standing waves occur in the noise radiation source. As a radiation noise suppression method for such characteristics, Patent Document 2 shown below shows a method of reducing the radiation noise generated from the heat sink.
図7に示されるように、一般に、半導体素子(スイッチング素子)100によって発生したノイズとヒートシンク200とが静電容量などを介して電気的に結合すると、導体であるヒートシンク200は放射ノイズを発生するアンテナとして作用する。そして、ヒートシンク200の寸法が波長の1/2となる周波数では、ヒートシンク200に定在波400が発生し、放射ノイズの放射効率は高まる。 As shown in FIG. 7, generally, when noise generated by the semiconductor element (switching element) 100 is electrically coupled to the heat sink 200 via a capacitance or the like, the heat sink 200 as a conductor generates radiation noise. Act as an antenna. Then, at a frequency at which the dimension of the heat sink 200 is a half of the wavelength, a standing wave 400 is generated in the heat sink 200, and the radiation efficiency of the radiation noise is enhanced.
このようにして発生する放射ノイズへの対策として、ノイズ放射源をシールド筐体で覆うのでなく、ヒートシンクのベース部に定在波が発生しないように、ヒートシンクの導電経路長を設計することで、放射ノイズの放射効率自体を低減する方法が提案されている。 As a measure against the radiation noise generated in this way, by designing the conductive path length of the heat sink so as to prevent standing waves from being generated at the base of the heat sink, instead of covering the noise radiation source with a shield housing. A method has been proposed to reduce the radiation efficiency of the radiation noise itself.
また以下に示す特許文献3においては、半導体パワースイッチング素子とヒートシンク間の浮遊容量を低減し、あるいはヒートシンクとインバータの筐体との間の電気抵抗を高くして、高い電圧変化による漏れ電流を抑制し、放射ノイズを低減する方法を提示している。 Further, in Patent Document 3 shown below, the stray capacitance between the semiconductor power switching element and the heat sink is reduced, or the electrical resistance between the heat sink and the casing of the inverter is increased to suppress leakage current due to high voltage change. Presents a way to reduce radiation noise.
図8は、従来の電子電気機器を構成する、半導体素子、ヒートシンク、筐体間の配置における電磁結合の発生の様子を示す図である。また図9は、図8に示した従来構成例における放射電界強度の観測例を示す図である。 FIG. 8 is a diagram showing a state of occurrence of electromagnetic coupling in the arrangement between a semiconductor element, a heat sink, and a housing, which constitute a conventional electronic / electrical device. FIG. 9 is a view showing an observation example of the radiation electric field intensity in the conventional configuration shown in FIG.
図8および図9において、半導体素子100のスイッチングにより発生したノイズ成分は、浮遊容量を介してヒートシンク200に伝搬する。このとき、ヒートシンク近傍の金属筐体との電磁結合330により、ヒートシンク200と筐体300の間に共振が発生する。するとこの共振周波数において、ヒートシンク200に伝搬したノイズ成分は大きな電界振動を発生し、高レベルの放射ノイズとして外部で観測される。図9は、その様子を示すもので、120MHzにおけるピークが、上述した共振に起因する電界成分として観測される。 In FIG. 8 and FIG. 9, the noise component generated by the switching of the semiconductor element 100 is propagated to the heat sink 200 through the stray capacitance. At this time, resonance occurs between the heat sink 200 and the housing 300 due to the electromagnetic coupling 330 with the metal housing near the heat sink. Then, at this resonance frequency, the noise component propagated to the heat sink 200 generates a large electric field vibration and is externally observed as high level radiation noise. FIG. 9 shows the situation, and a peak at 120 MHz is observed as an electric field component due to the above-mentioned resonance.
図10(a)及び図10(b)は、半導体素子と、該半導体素子の発熱を放熱するヒートシンクと、導電性材料からなる筐体を具備する従来の電子電気機器における通風の様子を示す図である。 FIGS. 10 (a) and 10 (b) are diagrams showing the state of ventilation in a conventional electronic / electrical device including a semiconductor element, a heat sink for dissipating heat generated by the semiconductor element, and a housing made of a conductive material. It is.
すなわち図10(a)においては、ファン350から排気される、開口部から吸い込まれた冷媒となる外気が、通風抵抗の小さいヒートシンク200の側部を通ることで、半導体素子100を冷やすためのヒートシンク200中を十分に外気(冷気)が流れていない様子が示されている。 That is, in FIG. 10A, a heat sink for cooling the semiconductor element 100 when the outside air exhausted from the fan 350 and serving as the refrigerant sucked from the opening passes through the side of the heat sink 200 having a small ventilation resistance. It is shown that the outside air (cold air) does not flow sufficiently in 200.
また図10(b)においては、ファン350から排気される、開口部から吸い込まれた冷媒となる外気が、通風抵抗の小さいヒートシンク200の下部を通ることで、半導体素子100を冷やすためのヒートシンク200中を十分に外気(冷気)が流れていない様子が示されている。 Further, in FIG. 10B, the heat sink 200 for cooling the semiconductor element 100 by the outside air which is exhausted from the fan 350 and becomes the refrigerant sucked from the opening passes through the lower portion of the heat sink 200 having a small ventilation resistance. It is shown that outside air (cold air) is not flowing sufficiently inside.
シールド筐体で回路を完全に覆うことにより放射ノイズを低減する方法は、前述した冷却性能との両立性の他にも、機器の重量化、高コスト化などで問題がある。 The method of reducing the radiation noise by completely covering the circuit with the shield case has problems in the weight increase and cost increase of the equipment as well as the compatibility with the cooling performance described above.
一方、特許文献2に示されるような手法によってノイズ放射効率を低減する方法は、ヒートシンク構造の複雑化やそれに伴う高コスト化などの問題がある。また特許文献2におけるその他の問題として、前述したヒートシンク単体のみならず、ヒートシンクと周囲の筐体構造の共振に起因する放射ノイズのピークが発生するため、特許文献2が提示する方策のみでは、放射ノイズ対策として十分な効果が得られないことがある。 On the other hand, the method of reducing the noise radiation efficiency by the method as shown in Patent Document 2 has problems such as the complication of the heat sink structure and the cost increase associated therewith. Further, as another problem in Patent Document 2, not only the above-described heat sink alone but also a peak of radiation noise caused by the resonance of the heat sink and the surrounding casing structure are generated. In some cases, sufficient effects can not be obtained as noise countermeasures.
またヒートシンクと周囲の筐体構造に関わる問題として、ヒートシンク上に配置された半導体素子が十分に冷却されないという問題がある。すなわち図10(a)、(b)に示されるように、ファン350から排気される、開口部から吸い込まれた冷媒となる外気が、通風抵抗の小さいヒートシンクの側部や下部を通ることで、ヒートシンク200中を十分に外気(冷気)が流れなくなるため、ヒートシンク200で十分に放熱されずに、半導体素子100の冷却が不十分となる。 Further, as a problem related to the heat sink and the surrounding housing structure, there is a problem that the semiconductor element disposed on the heat sink is not sufficiently cooled. That is, as shown in FIGS. 10 (a) and 10 (b), the outside air which is exhausted from the fan 350 and becomes the refrigerant sucked from the opening passes through the side and the lower part of the heat sink with low ventilation resistance. Since the outside air (cold air) does not sufficiently flow in the heat sink 200, the heat of the semiconductor element 100 is not sufficiently dissipated by the heat sink 200.
そこで本発明は、半導体素子、ヒートシンク、筐体の配置を含む電子電気機器から発生する放射ノイズを低減するとともに冷却性能をさらに向上させることができる電子電気機器を提供することを目的とするものである。 Therefore, an object of the present invention is to provide an electronic / electrical device capable of reducing the radiation noise generated from the electronic / electrical device including the arrangement of the semiconductor element, the heat sink, and the casing and further improving the cooling performance. is there.
上記課題を解決するために本発明の電子電気機器は、半導体素子と、該半導体素子の発熱を放熱するヒートシンクと、導電性材料からなる筐体とを具備し、上記ヒートシンクは、導電体からなるベース部と、該ベース部に立設又は該ベース部の嵌合用凹部に装着された少なくとも二以上のフィンより構成されるフィン部とを備え、該フィン部と上記筐体との間に、冷媒の通風経路をガイドする非導電性材料を配置したことを特徴とする。 In order to solve the above problems, the electronic / electrical device of the present invention comprises a semiconductor element, a heat sink for dissipating heat generated by the semiconductor element, and a housing made of a conductive material, and the heat sink is made of a conductor. A base portion, and a fin portion constituted by at least two or more fins provided in the base portion and erected in the base portion, and a refrigerant between the fin portion and the housing A non-conductive material for guiding the air flow path of the vehicle.
本発明によれば、熱及び電磁波の発生源たる半導体素子を取り巻くヒートシンクや筐体構造に関わる放射ノイズを、簡素かつ効果的に低減し得るとともに、冷媒となる外気をガイドすることでヒートシンクが十分に冷却されることで半導体素子が冷却されることが可能となる。 According to the present invention, the radiation noise related to the heat sink and the casing structure surrounding the semiconductor element which is the heat and electromagnetic wave generation source can be simply and effectively reduced, and the heat sink is sufficient by guiding the outside air as the refrigerant. The semiconductor element can be cooled by being cooled.
特に、冷媒の通風経路をガイドするために非導電性部材をヒートシンクと筐体間に配置するようにしているので、ヒートシンクと筐体間の共振を抑制しつつ、冷却性能を向上させることができる。 In particular, the non-conductive member is disposed between the heat sink and the housing in order to guide the ventilation path of the refrigerant, so that the cooling performance can be improved while suppressing the resonance between the heat sink and the housing. .
以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[実施形態1]
図1は、本発明の実施形態1に係る電子電気機器の半導体素子、ヒートシンク、および筐体の配置関係の例を示す図である。
Embodiment 1
FIG. 1 is a view showing an example of an arrangement relationship of a semiconductor element, a heat sink, and a housing of an electronic device according to a first embodiment of the present invention.
すなわち、図1は、ヒートシンク20のフィン部底面23と筐体30を面接触させた構造とすることで、ヒートシンク20と筐体30を電気的に導通させ、非所望の共振を抑制している。すなわち、半導体素子10と最も離れたフィンを長くして筐体30と直接接触させることにより、ノイズを低減させるとともに、半導体素子10付近のフィンは相対的にフィンが短くなり、冷媒となる外気(冷気)が通りやすくなるようにガイドするため、冷却性能を向上させることができる。 That is, in FIG. 1, the heat sink 20 and the case 30 are electrically conducted to suppress undesired resonance by making the bottom surface 23 of the fin portion of the heat sink 20 and the case 30 in surface contact with each other. . That is, by lengthening the fins farthest from the semiconductor element 10 and bringing them into direct contact with the housing 30, noise is reduced, and the fins in the vicinity of the semiconductor element 10 become relatively short and the outside air (refrigerant The cooling performance can be improved because the cold air is guided to be easy to pass through.
なお、構成は図示したものに限らず、冷却効果とノイズ低減効果を両立させる構造であれば他の構造であっても良い。 The configuration is not limited to that illustrated, but may be another structure as long as the cooling effect and the noise reduction effect are compatible.
[実施形態2]
図2は、本発明の実施形態2に係る電子電気機器の半導体素子、ヒートシンク、および筐体の配置関係の例を示す図である。
Second Embodiment
FIG. 2 is a view showing an example of the arrangement relationship of the semiconductor element, the heat sink, and the housing of the electronic and electrical device according to the second embodiment of the present invention.
すなわち図2は、ヒートシンク20のフィンの一部(例.最外部)に折り曲げ(例.L字型)部25を形成し、折り曲げ部25の筐体と並行する部位を筐体30と面接触させる構造とすることで、ヒートシンク20と筐体30を電気的に導通させ、非所望の共振を抑制している。 That is, FIG. 2 forms a bent (e.g. L-shaped) portion 25 in a part (e.g. the outermost part) of the fins of the heat sink 20, and a portion of the bent portion 25 parallel to the housing is in surface contact with the case 30 The heat sink 20 and the housing 30 are electrically conducted by suppressing the undesired resonance.
折り曲げ(例.L字型)部25と筐体30とが接触する部位を、必要に応じてネジ、接着剤、導電性テープ、および導電性ペースト等を用いて固着できるようにしても良い。なお図2においては、折り曲げ(例.L字型)部25を直角に曲げているが、これに限定されず、折り曲げ部25に適度の曲率(r)を持たせる構造であっても良い。 The portion where the bent (for example, L-shaped) portion 25 contacts the housing 30 may be fixed by using a screw, an adhesive, a conductive tape, a conductive paste, or the like as needed. Although the bent (eg, L-shaped) portion 25 is bent at a right angle in FIG. 2, the present invention is not limited to this, and the bent portion 25 may have a suitable curvature (r).
[実施形態3]
図3は、本発明の実施形態3に係る電子電気機器の半導体素子、ヒートシンク、筐体、およびノイズ低減用導体の配置関係の例を示す図である。
Third Embodiment
FIG. 3 is a view showing an example of the arrangement of the semiconductor element, the heat sink, the housing, and the noise reduction conductor of the electronic device according to the third embodiment of the present invention.
すなわち図3(a)〜図3(c)は、ヒートシンク20のフィン部24の側面と筐体30を面接触させることで電気的に導通させ、非所望の共振を抑制している。 That is, in FIG. 3A to FIG. 3C, by bringing the side surface of the fin portion 24 of the heat sink 20 into surface contact with the housing 30, electrical conduction is achieved, and undesired resonance is suppressed.
さらに本実施形態においては、筐体側面部32からヒートシンク20のフィン部24の側面に渡ってノイズ低減用導体40を配置して、ファン50から排気される外気によってヒートシンク20が効率良く冷却するように通風経路をガイドする。 Further, in the present embodiment, the noise reduction conductor 40 is disposed from the housing side surface portion 32 to the side surface of the fin portion 24 of the heat sink 20 so that the heat sink 20 can be efficiently cooled by the outside air exhausted from the fan 50. Guide the ventilation path.
このように構成することによって図3(a)に示すような、ヒートシンク20のフィン部24の側面への外気集中を緩和し、ヒートシンク20や冷却ファン50の大型化を伴うことなくヒートシンクの放熱効率を上げ、半導体素子を十分に冷却することができる。 With this configuration, the concentration of the outside air on the side surface of the fin portion 24 of the heat sink 20 is alleviated as shown in FIG. 3A, and the heat radiation efficiency of the heat sink can be reduced without increasing the size of the heat sink 20 or the cooling fan 50. To sufficiently cool the semiconductor device.
また、ヒートシンクの冷媒を吸気する開口部を設けた筐体側面部(図3(c)参照)が非導電体の場合は、図3(b−1)の様に金属筐体の平板面35に接触させることにより、ノイズ低減効果を持たせることができる。 Also, when the case side portion (see FIG. 3 (c)) provided with the opening for sucking in the refrigerant of the heat sink is a non-conductive body, the flat surface 35 of the metal case as shown in FIG. 3 (b-1). The noise reduction effect can be provided by contacting the
その一方、ヒートシンクの冷媒を吸気する開口部を設けた筐体側面部(図3(c)参照)が導電体の場合は、図3(b−2)の様に開口部を有する金属筐体部のみにノイズ低減用導体40を接触させても良い。 さらに、ノイズ低減用導体40はヒートシンク20のフィン部24の側面全長に渡って密着しなくても、同等の冷却効果が得られることから、図3(b−3)や図3(b−4)に示すような形状としても良い。 On the other hand, if the case side portion (see FIG. 3 (c)) provided with an opening for sucking in the refrigerant of the heat sink (see FIG. 3 (c)) is a conductor, a metal case having an opening as shown in FIG. 3 (b-2) The noise reduction conductor 40 may be in contact with only the portion. Furthermore, even if the noise reduction conductor 40 is not in close contact over the entire length of the side surface of the fin portion 24 of the heat sink 20, the same cooling effect can be obtained, so FIG. 3 (b-3) and FIG. 3 (b-4) It is good also as a shape as shown to.
また、図3(b−1)や図3(b−2)では、ノイズ低減用導体40を垂直に折り曲げている例を示しているが、図3(b−3)や図3(b−4)に示す様に、折り曲げ部に適度の曲率(r)を持たせる構造であっても良い。 3 (b-1) and 3 (b-2) show an example in which the noise reduction conductor 40 is bent vertically, but FIGS. 3 (b-3) and 3 (b-). As shown in 4), the bent portion may have a suitable curvature (r).
[実施形態4]
図4は、本発明の実施形態4に係る電子電気機器のファン、半導体素子、ヒートシンク、筐体、およびノイズ低減用導体の配置関係の例を示す図である。
Fourth Embodiment
FIG. 4 is a view showing an example of an arrangement relationship of a fan, a semiconductor element, a heat sink, a housing, and a noise reduction conductor of an electronic device according to a fourth embodiment of the present invention.
すなわち図4(a)、図4(b)は、ヒートシンク20のフィン部底面23と筐体底面部34を面接触させることで電気的に導通させ、非所望の共振を抑制している。 That is, in FIG. 4A and FIG. 4B, electrical conduction is achieved by bringing the bottom surface 23 of the heat sink 20 and the bottom surface 34 of the heat sink into surface contact, and undesired resonance is suppressed.
さらに本実施形態は、筐体底面部34とヒートシンクの間の隙間に、ファン50から排気される外気を通風させないように湾曲凸部を有するノイズ低減用導体42を配置して、ヒートシンク22を効率良く冷却するような通風経路をガイドする。 Furthermore, in the present embodiment, the noise reduction conductor 42 having a curved convex portion is disposed in the gap between the case bottom portion 34 and the heat sink so as not to ventilate the outside air exhausted from the fan 50, and the heat sink 22 Guide a ventilation path that cools well.
これによって図10(b)に示すような、ヒートシンク20と筐体底面部34間の隙間への外気の集中を緩和し、ヒートシンク20や冷却ファン50の大型化を伴うことなくヒートシンクの放熱効率を上げ、半導体素子を十分に冷却することができる。 As a result, as shown in FIG. 10B, the concentration of the outside air in the gap between the heat sink 20 and the case bottom portion 34 is alleviated, and the heat radiation efficiency of the heat sink can be increased without increasing the size of the heat sink 20 or the cooling fan 50. The semiconductor device can be sufficiently cooled.
[実施形態5]
図5は、本発明の実施形態5に係る電子電気機器のファン、半導体素子、ヒートシンク、筐体、および共振ピーク抑制用非導電性材料の配置関係の例を示す図である。
Fifth Embodiment
FIG. 5 is a view showing an example of an arrangement relationship of a fan, a semiconductor element, a heat sink, a housing, and a non-conductive material for suppressing resonance peak according to Embodiment 5 of the present invention.
すなわち図5に示すように、ヒートシンク20のフィン部底面23と筐体30間に共振ピーク抑制用非導電性材料62を配置すると、ヒートシンク20と筐体30間の浮遊容量値や抵抗値(浮遊容量中の損失成分)に影響を及ぼす。つまり図5に示すような共振ピーク抑制用非導電性材料62を備えていない場合に比べ、浮遊容量値は、共振ピーク抑制用非導電性材料の比誘電率に応じて増加する。一方で抵抗値成分は、共振ピーク抑制用非導電性材料の比誘電率と誘電正接に応じて増加する。 That is, as shown in FIG. 5, when the non-conductive material 62 for resonance peak suppression is disposed between the bottom surface 23 of the heat sink 20 and the housing 30, stray capacitance and resistance (floating) between the heat sink 20 and the housing 30 Influence the loss component). That is, compared with the case where the non-conductive material for resonance peak suppression as shown in FIG. 5 is not provided, the stray capacitance value increases according to the relative dielectric constant of the non-conductive material for resonance peak suppression. On the other hand, the resistance value component increases according to the dielectric constant and dielectric loss tangent of the non-conductive material for resonance peak suppression.
このため、共振ピーク抑制用非導電性材料62を備えさせることによって、非所望の共振発生要因となる浮遊容量成分の値を大きくし、共振発生周波数をコントロールすることができる。一例として共振周波数をノイズ源レベルの小さい周波数付近に設定するようにして、発生するノイズレベルを低減することができる。 For this reason, by providing the non-conductive material 62 for resonance peak suppression, it is possible to increase the value of the stray capacitance component that is an undesirable cause of resonance generation, and to control the resonance generation frequency. As an example, the resonance frequency can be set near a low frequency of the noise source level to reduce the noise level generated.
また共振ピーク抑制用非導電性材料62を備えさせることによって、共振のQ値が低減し共振に起因するノイズピークレベルを低減させることができる。共振ピーク抑制用非導電性材料62は誘電正接が大きいほどそのQ値の低減効果、すなわち共振ピークの抑制効果は高いため、誘電正接の大きい材料、例えばビニル系材料(ポリ塩化ビニル等)やエポキシ樹脂やその複合材料などを採用することが望ましい。 Further, by providing the non-conductive material 62 for resonance peak suppression, the Q value of the resonance can be reduced, and the noise peak level resulting from the resonance can be reduced. The larger the dielectric loss tangent, the higher the reduction effect of the Q value, that is, the suppression effect of the resonance peak, so that the resonant peak suppression non-conductive material 62 has a large dielectric loss tangent, such as vinyl materials (polyvinyl chloride etc.) It is desirable to use a resin or its composite material.
もしくは前述した共振周波数において、共振に関わる抵抗値の主要成分である、ヒートシンク固有の抵抗値、すなわちヒートシンク20の半導体素子接合部(不図示)からヒートシンク20の筐体近接部(図5においてはフィン底面部23)間の抵抗値よりも、共振ピーク抑制用非導電性材料62の誘電正接によって生じる抵抗値の方が大きくなるよう、共振ピーク抑制用非導電性材料の形状や誘電率および誘電正接を選択・決定する。これによって有意な共振ピーク抑制効果を実現することができる。 Alternatively, at the above-described resonant frequency, the main component of the resistance value related to resonance, that is, the inherent resistance value of the heat sink, that is, the semiconductor element junction (not shown) of the heat sink 20 The shape, dielectric constant, and dielectric tangent of the nonconductive material for resonance peak suppression so that the resistance value generated by the dielectric loss tangent of the nonconductive material for resonance peak suppression 62 becomes larger than the resistance value between the bottom portions 23). Select and decide This can realize a significant resonance peak suppression effect.
さらに、本非導電性材料は、筐体底面部(フィン底面部23)とヒートシンク20の間の隙間に、ファン50により排気される外気を通風させないように配置しているため、ヒートシンクが効率良く冷却するような通風経路をガイドすることができる。 Further, the non-conductive material is disposed in the gap between the bottom surface of the case (bottom surface 23) and the heat sink 20 so as not to ventilate the outside air exhausted by the fan 50, so the heat sink is efficient It is possible to guide the ventilation path for cooling.
これによって図10(b)に示すような、ヒートシンクと筐体間の隙間への外気の集中を緩和し、ヒートシンク20や冷却ファン50の大型化を伴うことなくヒートシンクの放熱効率を上げ、半導体素子を十分に冷却することができる。 As a result, as shown in FIG. 10 (b), the concentration of the outside air in the gap between the heat sink and the housing is alleviated, and the heat dissipation efficiency of the heat sink is increased without increasing the size of the heat sink 20 or the cooling fan 50. Can be cooled enough.
図6は、上記した本発明の第3ないし第5の実施形態による放射ノイズの抑制効果を従来構成との比較により示しており、従来構成における外部放射電界強度を表す図9で生じている120MHzのピーク成分が本発明の第3ないし第5の実施形態を適用することにより低減することがわかる。 FIG. 6 shows the suppression effect of the radiation noise according to the third to fifth embodiments of the present invention described above by comparison with the conventional configuration, and 120 MHz generated in FIG. 9 showing the external radiation electric field strength in the conventional configuration. It can be seen that the peak component of H is reduced by applying the third to fifth embodiments of the present invention.
10 半導体素子
20 ヒートシンク
22 ヒートシンク(ベース部)
23 フィン部底面
24 ヒートシンク(フィン部)
25 フィン折り曲げ部
30、37 筐体
32 筐体側面部
34 筐体底面部
35 平板面
40、42 ノイズ低減用導体
50 ファン
62 非導電性材料(共振ピーク抑制用)
80 ネジ
10 semiconductor element 20 heat sink 22 heat sink (base part)
23 bottom of fin 24 heat sink (fin)
Reference Signs List 25 fin bent portion 30, 37 housing 32 housing side surface portion 34 housing bottom portion 35 flat surface 40, 42 noise reduction conductor 50 fan 62 non-conductive material (for resonance peak suppression)
80 screws
Claims (3)
前記ヒートシンクは、導電体からなるベース部と、該ベース部に立設又は該ベース部の嵌合用凹部に装着された少なくとも二以上のフィンにより構成されるフィン部とを備え、
該フィン部と前記筐体との間に、冷媒の通風経路をガイドする非導電性材料を配置したことを特徴とする電子電気機器。 In an electronic / electrical device comprising a semiconductor element, a heat sink for dissipating heat generated by the semiconductor element, and a housing made of a conductor.
The heat sink includes a base portion made of a conductor, and a fin portion configured by at least two or more fins provided on the base portion or provided in a fitting recess of the base portion.
An electronic / electrical device characterized in that a nonconductive material for guiding a ventilation path of a refrigerant is disposed between the fin portion and the casing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241278A JP6583522B2 (en) | 2018-12-25 | 2018-12-25 | Electronic electrical equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241278A JP6583522B2 (en) | 2018-12-25 | 2018-12-25 | Electronic electrical equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015161056A Division JP6582718B2 (en) | 2015-08-18 | 2015-08-18 | Electronic electrical equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019062234A true JP2019062234A (en) | 2019-04-18 |
JP6583522B2 JP6583522B2 (en) | 2019-10-02 |
Family
ID=66177686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018241278A Active JP6583522B2 (en) | 2018-12-25 | 2018-12-25 | Electronic electrical equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6583522B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022997A (en) * | 2019-07-25 | 2021-02-18 | 日産自動車株式会社 | Electrical apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298889A (en) * | 1996-04-26 | 1997-11-18 | Yaskawa Electric Corp | Inverter |
JP2000208676A (en) * | 1999-01-13 | 2000-07-28 | Daido Steel Co Ltd | Radiator |
JP2000295836A (en) * | 1999-04-02 | 2000-10-20 | Fuji Electric Co Ltd | Noise suppression structure of power supply equipment |
JP2012227242A (en) * | 2011-04-18 | 2012-11-15 | Nec Corp | Heat radiation structure and electronic apparatus included in the same |
US20160037692A1 (en) * | 2014-08-04 | 2016-02-04 | Cisco Technology, Inc. | Shield to improve electromagnetic interference (emi) suppression capability |
-
2018
- 2018-12-25 JP JP2018241278A patent/JP6583522B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09298889A (en) * | 1996-04-26 | 1997-11-18 | Yaskawa Electric Corp | Inverter |
JP2000208676A (en) * | 1999-01-13 | 2000-07-28 | Daido Steel Co Ltd | Radiator |
JP2000295836A (en) * | 1999-04-02 | 2000-10-20 | Fuji Electric Co Ltd | Noise suppression structure of power supply equipment |
JP2012227242A (en) * | 2011-04-18 | 2012-11-15 | Nec Corp | Heat radiation structure and electronic apparatus included in the same |
US20160037692A1 (en) * | 2014-08-04 | 2016-02-04 | Cisco Technology, Inc. | Shield to improve electromagnetic interference (emi) suppression capability |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022997A (en) * | 2019-07-25 | 2021-02-18 | 日産自動車株式会社 | Electrical apparatus |
JP7459460B2 (en) | 2019-07-25 | 2024-04-02 | 日産自動車株式会社 | Electrical equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6583522B2 (en) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019111655A1 (en) | Electronic control device | |
TW556475B (en) | A cover apparatus for dissipating heat and shielding electromagnetic interference | |
US10847310B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
TW200917950A (en) | EMI shielding and heat dissipating structure | |
US10840014B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
US10804709B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
WO2017022221A1 (en) | Heat dissipating structure and electronic apparatus | |
CN106469695B (en) | Electronic and electric apparatus | |
US20140247559A1 (en) | Heat dissipation structure of electronic shield cover | |
CN106469694B (en) | Electronic and electric apparatus | |
JP6583522B2 (en) | Electronic electrical equipment | |
US20070053157A1 (en) | Power supply device with an electromagnetic compatiblity heatsink | |
CN106488690B (en) | A kind of water-cooled radiator of low EMI | |
JP2011187729A (en) | Electric field radiation-reducing structure | |
JPH0787739A (en) | Switching power-supply apparatus | |
JP6379353B2 (en) | DC-DC converter | |
JP2010245342A (en) | Mounting structure for integrated circuit | |
JPWO2008035540A1 (en) | Electronic device-equipped equipment and its resonance suppression method | |
JP2013012508A (en) | Electronic apparatus | |
CN210928487U (en) | Heat dissipation shielding system | |
JP4770518B2 (en) | High power amplifier | |
JP7307844B2 (en) | electronic controller | |
JP6607053B2 (en) | Power supply | |
JPWO2008120358A1 (en) | heatsink | |
Alcarria et al. | Combined Solutions for Thermal Management and Electromagnetic Shielding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181225 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20181225 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190530 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20190530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6583522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |