JP2019061957A - coaxial cable - Google Patents

coaxial cable Download PDF

Info

Publication number
JP2019061957A
JP2019061957A JP2018178175A JP2018178175A JP2019061957A JP 2019061957 A JP2019061957 A JP 2019061957A JP 2018178175 A JP2018178175 A JP 2018178175A JP 2018178175 A JP2018178175 A JP 2018178175A JP 2019061957 A JP2019061957 A JP 2019061957A
Authority
JP
Japan
Prior art keywords
coaxial cable
stranded wire
twisting
outer conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018178175A
Other languages
Japanese (ja)
Other versions
JP6893496B2 (en
Inventor
克昭 加藤
Katsuaki Kato
克昭 加藤
橋本 賢
Masaru Hashimoto
賢 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Publication of JP2019061957A publication Critical patent/JP2019061957A/en
Application granted granted Critical
Publication of JP6893496B2 publication Critical patent/JP6893496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

To provide a coaxial cable excellent in resistance to flexure and twisting, and excellent in electrical characteristic such as attenuation while thinning a wire.SELECTED DRAWING: Figure 1

Description

本発明は、産業用ロボットや半導体装置等、可動部に用いられる同軸ケーブルに関する。 The present invention relates to a coaxial cable used for a movable part such as an industrial robot or a semiconductor device.

近年、産業用ロボットや半導体装置等、可動部に用いられる同軸ケーブルにおいては、屈曲及び捻回に対する更なる耐久性向上が求められている。また、省スペース化に伴い、同軸ケーブルの細線化が求められるとともに、高速伝送化に伴い減衰特性等、電気特性も重要視される。 In recent years, in coaxial cables used for movable parts, such as industrial robots and semiconductor devices, further improvement in durability against bending and twisting is required. In addition, along with space saving, thinning of the coaxial cable is required, and as high speed transmission is made, electrical characteristics such as attenuation characteristics are regarded as important.

特許文献1は、内部導体の外周に未焼結PTFE樹脂層を有し、さらに未焼結PTFE樹脂テープを巻きつけて配設された構造を有する同軸ケーブルが記されている。
未焼成PTFEは、多孔質体すなわち低誘電率であることから伝送特性に優れ、柔軟性においても優れるが、機械特性に弱く、屈曲・捻回時に伝送特性が悪化するという問題点があり、屈曲及び捻回に対する耐久性向上の要求に対して、更なる改良が求められている。
Patent Document 1 describes a coaxial cable having a non-sintered PTFE resin layer on the outer periphery of an inner conductor and further having a structure in which a non-sintered PTFE resin tape is wound and disposed.
Unsintered PTFE is excellent in transmission characteristics because it is a porous body, that is, low in dielectric constant, and excellent in flexibility, but is weak in mechanical characteristics and has problems of deterioration in transmission characteristics during bending and twisting. There is a need for further improvement to the demand for improved durability against twisting and twisting.

特許文献2は、外部導体として、高強度補強線の周囲に複数本の銅線を配置して撚り合わせた構造である金属線を用いた、同軸ケーブルが記されている。
1本の高強度補強線の周囲に銅線を撚り合わせる構造は、中心の高強度補強線に負荷が集中し断線する問題に対して有効ではあるが、屈曲及び捻回に対する更なる耐久性向上の要求に対して、未だ不十分であると共に、単に高強度補強線を用いるだけでは、誘電体が未焼結PTFE樹脂層の場合、屈曲・捻回時に誘電体への負荷が伝わりやすい、すなわちトルク伝達性が高くなってしまう、という問題点が生じる。
Patent Document 2 describes a coaxial cable using a metal wire having a structure in which a plurality of copper wires are arranged and twisted around a high-strength reinforcing wire as an outer conductor.
A structure in which a copper wire is twisted around one high strength reinforcing line is effective for the problem that the load is concentrated on the central high strength reinforcing line and breaks, but the further improvement in resistance to bending and twisting is achieved. In the case where the dielectric is a non-sintered PTFE resin layer, the load on the dielectric is likely to be transmitted at the time of bending and twisting, if the dielectric is a green PTFE resin layer, that is, The problem arises that the torque transferability is increased.

特開平9−320362号公報JP-A-9-320362 特開2017−103117号公報JP, 2017-103117, A

本発明の課題は、屈曲及び捻回に対する耐久性向上を図ると共に、細線化する一方で、減衰量等の電気特性についても優れる同軸ケーブルを提供することにある。 It is an object of the present invention to provide a coaxial cable which is improved in durability against bending and twisting and which is made thin while having excellent electrical characteristics such as attenuation.

本発明の要旨は以下のとおりである。 The gist of the present invention is as follows.

(1)内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
内部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線を、更に複数本束ねて撚ることで形成される複合撚線構造を有し、
素線の撚り方向と、集合撚線の撚り方向は、同じ方向であることを特徴とする。
(2)内部導体を構成する複合撚線は、集合撚線の本数が15本以下であることが好ましい。
(3)内部導体を構成する集合撚線は、素線の本数が7本以上であることが好ましい。
(4)内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
誘電体が、前内部導体の外周に未焼結PTFE樹脂層を有し、さらに多孔質ふっ素樹脂テープを巻きつけて配設された層の、少なくとも二層以上の構造からなることを特徴とする。
(5)内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線構造を有し、
外部導体が、誘電体の外周に、複数の集合撚線が横巻きされて配設された構造を有することを特徴とする。
(6)内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線を、更に複数本撚って形成される複合撚線構造を有し、
素線の撚り方向と、集合撚線の撚り方向は、同じ方向であり、
外部導体が、誘電体の外周に、複数の複合撚線が横巻きされて配設された構造を有することを特徴とする。
(7)同軸ケーブルの長手方向に対する、外部導体の横巻き角度は、5度以上50度以下であることが好ましい。
(8)同軸ケーブルの長手方向に対する、外部導体の横巻きの方向は、内部導体を構成する素線の撚り方向と同じであることが好ましい。
(9)同軸ケーブルの長手方向に対する、外部導体の横巻きの方向は、外部導体を構成する素線の撚り方向と同じであることが好ましい。
(10)外部導体を構成する複合撚線は、集合撚線の本数が15本以下であることが好ましい。
(11)外部導体を構成する集合撚線は、素線の本数が7本以上であることが好ましい。
(12)同軸ケーブルにおいて、外部導体の外周に、テープを巻きつけて配設された構造を有することが好ましい。
(13)同軸ケーブルにおいて、テープの外周に樹脂層を有し、テープと樹脂層との間に空隙を有することが好ましい。
(1) In a coaxial cable in which at least a dielectric and an outer conductor are sequentially coated on the outer periphery of the inner conductor,
The inner conductor has a composite stranded wire structure formed by further bundling a plurality of collective stranded wires formed by twisting a plurality of conductive strands,
The stranding direction of the strands of wire and the stranding direction of the combined stranded wire are characterized by being the same direction.
(2) As for the composite stranded wire which constitutes an internal conductor, it is preferable that the number of a group stranded wire is 15 or less.
(3) It is preferable that the number of strands of an assembly stranded wire which comprises an internal conductor is seven or more.
(4) A coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The dielectric is characterized in that it has a structure of at least two or more layers having a green PTFE resin layer on the outer periphery of the front inner conductor and further having a porous fluororesin tape wound and disposed. .
(5) In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a collective stranded wire structure formed by twisting a plurality of conductive strands,
The outer conductor is characterized in that it has a structure in which a plurality of collective stranded wires are horizontally wound around a periphery of a dielectric.
(6) In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a composite stranded wire structure formed by further twisting a plurality of collective stranded wires formed by twisting a plurality of conductive strands,
The stranding direction of the strands and the stranding direction of the collective strand are the same direction,
The outer conductor is characterized in that it has a structure in which a plurality of composite stranded wires are transversely wound around a periphery of a dielectric.
(7) The lateral winding angle of the outer conductor with respect to the longitudinal direction of the coaxial cable is preferably 5 degrees or more and 50 degrees or less.
(8) The direction of the lateral winding of the outer conductor with respect to the longitudinal direction of the coaxial cable is preferably the same as the twisting direction of the strands constituting the inner conductor.
(9) The direction of the lateral winding of the outer conductor with respect to the longitudinal direction of the coaxial cable is preferably the same as the twisting direction of the strands of wire constituting the outer conductor.
(10) It is preferable that the composite stranded wire which comprises an outer conductor is 15 or less of numbers of a group stranded wire.
(11) It is preferable that the number of strands of an assembly stranded wire which comprises an outer conductor is seven or more.
(12) The coaxial cable preferably has a structure in which a tape is wound around the outer periphery of the outer conductor.
(13) In the coaxial cable, it is preferable to have a resin layer on the outer periphery of the tape and to have an air gap between the tape and the resin layer.

本発明によれば、以下に記載する優れた効果が期待できる。 According to the present invention, the following excellent effects can be expected.

(1)内部導体が複合撚線構造を有しており、さらに本発明の構成の場合、屈曲及び捻回に対する耐久性が向上する。
(2)内部導体の外周に、未焼結PTFE樹脂層を有するため、柔軟性の向上による屈曲及び捻回に対する耐久性の向上と、低誘電率特性による細線化及び電気特性の向上を両立できる。
(3)未焼結PTFE樹脂層の外周に、多孔質PTFE樹脂テープを巻きつけて配設しているため、外部導体との滑り性が向上し、結果として、特定の箇所に応力が集中することを回避できる。また、トルク伝達性が低いため、未焼結PTFE樹脂層への負荷を緩和でき、屈曲及び捻回に対する耐久性の向上に寄与する。
(4)外部導体が集合撚線構造、または複合撚線構造を有しており、さらに本発明の構成の場合、屈曲及び捻回に対する耐久性が向上する。
(5)外部導体の外周に、テープを巻きつけて配設する場合、屈曲や捻回等の可動時に外部導体が緩むことを防止し、屈曲及び捻回に対する耐久性が向上する。
(6)外部導体とジャケット間に空隙がある場合、ケーブル内部のトルク伝達性を低く
でき、屈曲及び捻回に対する耐久性が向上する。
(7)本発明の内部導体、誘電体、外部導体を組み合わせた同軸ケーブルは、各構造に
おける効果を合わせて期待できる。すなわち、柔軟性の向上や低いトルク伝達性による
屈曲及び捻回に対する耐久性の大きな向上と、低誘電率特性による細線化及び電気特性
の向上、全てにおいて優れる。
(1) The inner conductor has a composite stranded wire structure, and in the case of the configuration of the present invention, the durability against bending and twisting is improved.
(2) Since the non-sintered PTFE resin layer is provided on the outer periphery of the inner conductor, it is possible to simultaneously improve the durability against bending and twisting due to the improvement of the flexibility and the thinning and the electrical characteristics by the low dielectric constant characteristics. .
(3) Since the porous PTFE resin tape is wound around the outer periphery of the unsintered PTFE resin layer, the sliding property with the outer conductor is improved, and as a result, stress is concentrated at a specific location. You can avoid that. In addition, since the torque transmission property is low, the load on the unsintered PTFE resin layer can be relaxed, which contributes to the improvement of the durability against bending and twisting.
(4) The outer conductor has a collective stranded wire structure or a composite stranded wire structure, and in the case of the configuration of the present invention, the resistance to bending and twisting is improved.
(5) When a tape is wound and disposed around the outer periphery of the outer conductor, the outer conductor is prevented from loosening at the time of movement such as bending and twisting, and the durability against bending and twisting is improved.
(6) When there is an air gap between the outer conductor and the jacket, the torque transmission inside the cable can be lowered, and the resistance to bending and twisting is improved.
(7) The coaxial cable in which the inner conductor, the dielectric and the outer conductor according to the present invention are combined can be expected together with the effects in each structure. That is, it is excellent in the improvement of the softness | flexibility, the large improvement of the durability with respect to bending | flexion and torsion by low torque transmission property, and the refinement | miniaturization by the low-dielectric characteristic and the improvement of an electrical property, all.

本発明の同軸ケーブルにおける断面図の一例を示す。An example of sectional drawing in the coaxial cable of this invention is shown. 本発明の同軸ケーブルにおける断面図の他の一例を示す。The other example of sectional drawing in the coaxial cable of this invention is shown. 本発明における集合撚線の断面図の一例を示す。An example of sectional drawing of the group stranded wire in this invention is shown. 本発明における複合撚線の断面図の一例を示す。An example of sectional drawing of the composite strand in this invention is shown. 本発明における屈曲試験方法及び捻回試験方法を表す概略図を示す。The schematic diagram showing the bending test method in this invention and a torsion test method is shown.

以下、本発明の同軸ケーブルの一例として、基本構成について、図面を参照しながら説明する。 Hereinafter, as an example of the coaxial cable of the present invention, a basic configuration will be described with reference to the drawings.

図1の同軸ケーブル1は、中心より順に、内部導体2、誘電体5を形成する未焼結PTFE樹脂層3と多孔質ふっ素樹脂テープ層4、外部導体6、テープ材7、空隙8、そして、ジャケット9である。 The coaxial cable 1 of FIG. 1 includes, in order from the center, the inner conductor 2, the unsintered PTFE resin layer 3 forming the dielectric 5, the porous fluorocarbon resin tape layer 4, the outer conductor 6, the tape 7, the air gap 8, and , Jacket 9.

内部導体2の材質は、導電性を有する材質であれば特に限定されないが、例えば、銅等の金属線や、あるいは、それらに錫、鉄、亜鉛、ニッケル等を添加した合金線等を素線として用いられる。金属線の表面は、適宜、銀、錫等のメッキが施されてもよい。電気特性及び機械特性の観点で、銀メッキ銅合金線、または錫メッキ銅合金線が好ましい。 The material of the internal conductor 2 is not particularly limited as long as it is a conductive material, but, for example, a metal wire such as copper or an alloy wire obtained by adding tin, iron, zinc, nickel or the like to them Used as The surface of the metal wire may be appropriately plated with silver, tin or the like. Silver-plated copper alloy wires or tin-plated copper alloy wires are preferred in terms of electrical properties and mechanical properties.

内部導体2の構成について、素線を複数本束ねて撚ることにより形成される集合撚線(図3)、あるいは集合撚線を束ねて更に複数本撚って形成される複合撚線(図4)を用いる。
複合撚線は、上述の複合撚線をさらに束ね、複数本撚って形成されてもよく、複合撚線の構成は限定されない。
屈曲及び捻回に対する耐久性向上を考慮すると、複合撚線がより好ましい。複合撚線は、単線や集合撚線等と比べ、屈曲及び捻回時に、同軸ケーブル1にかかる負荷がさらに分散される。
Regarding the configuration of the inner conductor 2, a collective stranded wire (FIG. 3) formed by bundling and twisting a plurality of strands or a composite stranded wire formed by bundling a plurality of bundled stranded wires (FIG. Use 4).
The composite stranded wire may be formed by further bundling the above-mentioned composite stranded wire and twisting a plurality of strands, and the configuration of the composite stranded wire is not limited.
A composite stranded wire is more preferable in consideration of improvement in durability against bending and twisting. In the composite stranded wire, the load applied to the coaxial cable 1 is further dispersed at the time of bending and twisting as compared with a single wire, a collective stranded wire or the like.

複合撚線の構成について特に限定されないが、素線径は0.02mm以上0.3mm以下が好ましい。耐屈曲及び耐捻回の観点で、より好ましくは、0.03mm以上0.2mm以下、さらに好ましくは、素線径が0.05mm以上、0.1mm以下である。 The configuration of the composite stranded wire is not particularly limited, but the strand diameter is preferably 0.02 mm or more and 0.3 mm or less. From the viewpoint of bending resistance and twisting resistance, more preferably, it is 0.03 mm or more and 0.2 mm or less, and further preferably, the wire diameter is 0.05 mm or more and 0.1 mm or less.

さらに、複合撚線の撚り方向については、素線の撚り方向と、集合撚線の撚り方向は同じ方向であると、さらに屈曲及び捻回に対する耐久性を向上でき、より好ましい。 Furthermore, with respect to the twisting direction of the composite stranded wire, it is more preferable that the twisting direction of the strands and the twisting direction of the collective stranded wire are the same direction because the durability against bending and twisting can be further improved.

複合撚線の構成について特に限定されないが、電気特性向上の観点で、集合撚線の束が15本以下で構成されていることが好ましい。また、集合撚線が7本の場合、中心の集合撚線1本の周りに6本配設される構造であり、中心の集合撚線1本に負荷が集中し断線しやすい(図4(c))。そのため、特定の集合撚線に負荷が集中しない、集合撚線の構成がより好ましい(例えば、図4(a)に示す3本撚り、図4(b)に示す4本撚り等)。 The configuration of the composite stranded wire is not particularly limited, but from the viewpoint of improving the electrical characteristics, it is preferable that the bundle of gathered stranded wires be 15 or less. In addition, when there are seven collective stranded wires, six are arranged around one central collective stranded wire, and the load is concentrated on one central collective stranded wire and is likely to be broken (see FIG. c)). Therefore, the configuration of the collective stranded wire is more preferable, in which the load does not concentrate on a specific collective stranded wire (for example, three twist shown in FIG. 4A, four twist shown in FIG. 4B).

集合撚線の構成については特に限定されず、例えば素線が7本以上で構成されている(図3)。
複合撚線を構成する集合撚線の本数が少ないと、屈曲及び捻回に対する耐久性が向上しない。また、素線が7本の場合、中心の素線1本の周りに6本配設される構造であり、中心の素線1本に負荷が集中し断線しやすい。そのため、特定の素線に負荷が集中しない、集合撚線の構成がより好ましい(例えば10本撚り等)。
The configuration of the collective stranded wire is not particularly limited, and, for example, seven or more strands are configured (FIG. 3).
When the number of collective stranded wires constituting the composite stranded wire is small, the durability against bending and twisting does not improve. Further, in the case where there are seven strands, six strands are arranged around one central strand, so that the load is concentrated on one central strand and it is easy to break it. Therefore, a configuration of a collective stranded wire in which the load is not concentrated on a specific strand is more preferable (for example, 10 strands).

集合撚線及び複合撚線のピッチについては、特に限定されないが、
集合撚線は、素線の撚りのピッチが、集合撚線の外径の5倍以上50倍以下であり、かつ、複合撚線は、集合撚線の撚りのピッチが、複合撚線の外径の5倍以上50倍以下が適している。
好ましくは、素線の撚りのピッチが、集合撚線の外径の8倍以上40倍以下であり、かつ、集合撚線の撚りのピッチが、複合撚線の外径の8倍以上40倍以下である。
No particular limitation is imposed on the pitch of the collective stranded wire and the composite stranded wire, but
The collective stranded wire has a pitch of strand twist of 5 to 50 times the outer diameter of the collective stranded wire, and the composite stranded wire has a pitch of the collective stranded wire outside the composite stranded wire Five to fifty times the diameter is suitable.
Preferably, the twist pitch of the strands is at least 8 times and at most 40 times the outer diameter of the collective stranded wire, and the pitch of the twist of the collective strand is at least 8 times and 40 times the outer diameter of the composite stranded wire. It is below.

複合撚線の場合における、集合撚線及び複合撚線の撚りピッチについては、特に限定されないが、
屈曲及び捻回に対する耐久性を考慮し、素線の撚りピッチは、集合撚線の撚りピッチよりも小さいことが好ましい。素線の撚りピッチが、集合撚線の撚りピッチよりも大きい場合、耐屈曲性は向上するが、耐捻回性は低下する。
No particular limitation is imposed on the twisting pitch of the collective stranded wire and the composite stranded wire in the case of the composite stranded wire,
In consideration of durability against bending and twisting, the stranding pitch of the strands is preferably smaller than the stranding pitch of the collective strand. When the stranding pitch of the strands is larger than the stranding pitch of the collective strand, the bending resistance is improved but the twisting resistance is reduced.

誘電体5の構成について、内側に施される未焼結PTFE樹脂層3、及び、外側に施される多孔質ふっ素樹脂テープ層4から構成される。
未焼結PTFE樹脂層は、多孔質体であることから柔軟性に優れ、低誘電率特性により、細径化及び電気特性に優れており、最も好ましいが、多孔質体で柔軟性に優れる材質であればこれに限定されない。(例えば、発泡PFA等)
誘電率は特に限定されないが、1.4〜1.8が好ましい。電気特性及び機械特性の観点において、特に好ましくは、1.6〜1.8がより好ましい。
未焼結PTFE樹脂層の成形方法は特に限定されず、未焼結PTFE樹脂テープを巻き付ける構成も知られているが、生産性の観点で一般的なペースト押出成形が好ましい。
About the structure of the dielectric 5, it is comprised from the un-sintered PTFE resin layer 3 given to the inner side, and the porous fluorine resin tape layer 4 given to the outer side.
The unsintered PTFE resin layer is excellent in flexibility because it is a porous body, is excellent in diameter reduction and electrical characteristics due to its low dielectric constant characteristics, and is most preferably a material that is excellent in flexibility and flexibility. If it is, it will not be limited to this. (For example, foam PFA etc.)
The dielectric constant is not particularly limited, but is preferably 1.4 to 1.8. From the viewpoint of electrical properties and mechanical properties, particularly preferably 1.6 to 1.8 are more preferred.
The method for forming the unsintered PTFE resin layer is not particularly limited, and a configuration in which the unsintered PTFE resin tape is wound is also known, but general paste extrusion is preferable from the viewpoint of productivity.

多孔質ふっ素樹脂テープ層4は、未焼結PTFE樹脂層3の上に巻き付けられる。
テープの材質は特に限定されないが、特に好ましくは延伸PTFE樹脂テープである。
延伸PTFE樹脂テープは多孔質体のため低誘電率である上、焼結されたPTFEであるため機械特性についても優れる。
多孔質ふっ素樹脂テープ層4(例えば延伸PTFE樹脂テープ)を、未焼結PTFE樹脂層3の上に巻き付けることで、外部導体との滑り性が向上するため、トルク伝達性を低く抑え、特定の箇所に応力が集中することを回避でき、未焼成PTFE樹脂層3への負荷を格段に軽減される。その結果、屈曲及び捻回に対する耐久性が大幅に向上される。
The porous fluorine resin tape layer 4 is wound on the green PTFE resin layer 3.
The material of the tape is not particularly limited, but is particularly preferably an expanded PTFE resin tape.
The expanded PTFE resin tape has a low dielectric constant because of a porous body, and is excellent in mechanical characteristics because it is sintered PTFE.
By winding the porous fluorocarbon resin tape layer 4 (for example, an expanded PTFE resin tape) on the non-sintered PTFE resin layer 3, the slipperiness with the external conductor is improved, so the torque transmission property is suppressed low, and the specific It is possible to avoid the concentration of stress on the portion, and the load on the unsintered PTFE resin layer 3 is significantly reduced. As a result, the resistance to bending and twisting is greatly improved.

多孔質ふっ素樹脂テープ層4のラップ幅について特に限定しないが、誘電体5の平滑性に優れ電気特性に寄与する点で1/2ラップが好ましい。
多孔質ふっ素樹脂テープ層4は、未焼結PTFE樹脂層3の潰れ防止等、保護層として機能する。
The wrap width of the porous fluorocarbon resin tape layer 4 is not particularly limited, but is preferably 1/2 wrap in that the smoothness of the dielectric 5 is excellent and the electrical properties are contributed.
The porous fluorine resin tape layer 4 functions as a protective layer, such as preventing the crushing of the unsintered PTFE resin layer 3.

以上より、本発明の同軸ケーブルの誘電体5の構成は、未焼結PTFE樹脂層3及び多孔質ふっ素樹脂テープ層4から構成されることから、柔軟性に優れる上、電気特性及び耐屈曲・撚回に優れる。 From the above, the configuration of the dielectric 5 of the coaxial cable according to the present invention is composed of the unsintered PTFE resin layer 3 and the porous fluorocarbon resin tape layer 4 so that it is excellent in flexibility, electrical properties and bending resistance. Excellent twisting.

誘電体5のその他の構成について、図1においては、未焼結PTFE樹脂層3と多孔質ふっ素樹脂テープ層4が一層ずつであるが、これに限定されず、例えば、多孔質ふっ素樹脂テープ層4を二層以上施してもよい。 Regarding the other configuration of the dielectric 5, in FIG. 1, although the unsintered PTFE resin layer 3 and the porous fluorocarbon resin tape layer 4 are one by one, it is not limited thereto, for example, the porous fluorocarbon resin tape layer Two or more layers of 4 may be provided.

外部導体6の材質は、導電性を有する材質であれば特に限定されないが、例えば、銅等の金属線や、あるいは、それらに錫、鉄、亜鉛、ニッケル等を添加した合金線等を素線として用いられる。金属線の表面は、適宜、銀、錫等のメッキが施されてもよい。電気特性及び機械特性の観点で、銀メッキ銅合金線、または錫メッキ銅合金線が好ましい。 The material of the outer conductor 6 is not particularly limited as long as it has conductivity. For example, a metal wire such as copper or an alloy wire obtained by adding tin, iron, zinc, nickel or the like to the wire is used as a wire Used as The surface of the metal wire may be appropriately plated with silver, tin or the like. Silver-plated copper alloy wires or tin-plated copper alloy wires are preferred in terms of electrical properties and mechanical properties.

外部導体6の構成について、素線を複数本束ねて撚ることにより形成される集合撚線(図3)、あるいは集合撚線を更に複数本撚って形成される複合撚線(図4)を用いる。
屈曲及び捻回に対する耐久性向上を考慮すると、複合撚線がより好ましい。複合撚線は、単線や集合撚線等と比べ、屈曲及び捻回時に、同軸ケーブル1にかかる負荷がさらに分散される。
Regarding the configuration of the outer conductor 6, a collective stranded wire (FIG. 3) formed by bundling and twisting a plurality of strands (FIG. 3) or a composite stranded wire formed by further twisting a plurality of collective twisted lines (FIG. 4) Use
A composite stranded wire is more preferable in consideration of improvement in durability against bending and twisting. In the composite stranded wire, the load applied to the coaxial cable 1 is further dispersed at the time of bending and twisting as compared with a single wire, a collective stranded wire or the like.

複合撚線の構成について特に限定されないが、素線径は0.02mm以上0.3mm以下が好ましい。耐屈曲及び耐捻回の観点で、より好ましくは、0.03mm以上0.2mm以下、さらに好ましくは、素線径が0.05mm以上、0.1mm以下である。 The configuration of the composite stranded wire is not particularly limited, but the strand diameter is preferably 0.02 mm or more and 0.3 mm or less. From the viewpoint of bending resistance and twisting resistance, more preferably, it is 0.03 mm or more and 0.2 mm or less, and further preferably, the wire diameter is 0.05 mm or more and 0.1 mm or less.

さらに、複合撚線の撚り方向については、素線の撚り方向と、集合撚線の撚り方向は同じ方向であると、さらに屈曲及び捻回に対する耐久性を向上でき、より好ましい。 Furthermore, with respect to the twisting direction of the composite stranded wire, it is more preferable that the twisting direction of the strands and the twisting direction of the collective stranded wire are the same direction because the durability against bending and twisting can be further improved.

複合撚線の構成について特に限定されないが、電気特性向上の観点で、集合撚線の束が15本以下で構成されていることが好ましい。また、集合撚線が7本の場合、中心の集合撚線1本の周りに6本配設される構造であり、中心の集合撚線1本に負荷が集中し断線しやすい(図4(c))。そのため、特定の集合撚線に負荷が集中しない、集合撚線の構成がより好ましい(例えば図4(a)に示す3本撚り、図4(b)に示す4本撚り等)。 The configuration of the composite stranded wire is not particularly limited, but from the viewpoint of improving the electrical characteristics, it is preferable that the bundle of gathered stranded wires be 15 or less. In addition, when there are seven collective stranded wires, six are arranged around one central collective stranded wire, and the load is concentrated on one central collective stranded wire and is likely to be broken (see FIG. c)). Therefore, the configuration of the collective stranded wire is more preferable, in which the load does not concentrate on a specific collective stranded wire (for example, three twisted strands shown in FIG. 4A, four twisted strands shown in FIG. 4B).

集合撚線の構成については特に限定されず、例えば素線が7本以上で構成されている(図3)。
複合撚線を構成する集合撚線の本数が少ないと、屈曲及び捻回に対する耐久性が向上しない。また、素線が7本の場合、中心の素線1本の周りに6本配設される構造であり、中心の素線1本に負荷が集中し断線しやすい。そのため、特定の素線に負荷が集中しない、集合撚線の構成がより好ましい(例えば10本撚り等)。
The configuration of the collective stranded wire is not particularly limited, and, for example, seven or more strands are configured (FIG. 3).
When the number of collective stranded wires constituting the composite stranded wire is small, the durability against bending and twisting does not improve. Further, in the case where there are seven strands, six strands are arranged around one central strand, so that the load is concentrated on one central strand and it is easy to break it. Therefore, a configuration of a collective stranded wire in which the load is not concentrated on a specific strand is more preferable (for example, 10 strands).

集合撚線及び複合撚線のピッチについては、特に限定されないが、
集合撚線は、素線の撚りのピッチが、集合撚線の外径の5倍以上50倍以下であり、かつ、複合撚線は、集合撚線の撚りのピッチが、複合撚線の外径の5倍以上50倍以下が適している。
好ましくは、素線の撚りのピッチが、集合撚線の外径の8倍以上40倍以下であり、かつ、集合撚線の撚りのピッチが、複合撚線の外径の8倍以上40倍以下である。
No particular limitation is imposed on the pitch of the collective stranded wire and the composite stranded wire, but
The collective stranded wire has a pitch of strand twist of 5 to 50 times the outer diameter of the collective stranded wire, and the composite stranded wire has a pitch of the collective stranded wire outside the composite stranded wire Five to fifty times the diameter is suitable.
Preferably, the twist pitch of the strands is at least 8 times and at most 40 times the outer diameter of the collective stranded wire, and the pitch of the twist of the collective strand is at least 8 times and 40 times the outer diameter of the composite stranded wire. It is below.

複合撚線の場合における、集合撚線及び複合撚線の撚りピッチについては、特に限定されないが、
屈曲及び捻回に対する耐久性を考慮し、素線の撚りピッチは、集合撚線の撚りピッチよりも小さいことが好ましい。素線の撚りピッチが、集合撚線の撚りピッチよりも大きい場合、耐屈曲性は向上するが、耐捻回性は低下する。
No particular limitation is imposed on the twisting pitch of the collective stranded wire and the composite stranded wire in the case of the composite stranded wire,
In consideration of durability against bending and twisting, the stranding pitch of the strands is preferably smaller than the stranding pitch of the collective strand. When the stranding pitch of the strands is larger than the stranding pitch of the collective strand, the bending resistance is improved but the twisting resistance is reduced.

外部導体6は、複合撚線または集合撚線を、ケーブル長手方向に沿って螺旋状に巻きつけた、横巻き構造が好ましい。横巻き構造は、編組構造と比較して、捻回に対する耐久性が大幅に向上する。同軸ケーブルの長手方向に対する、外部導体6の横巻きの方向は、外部導体6を構成する素線の撚り方向と、及び/または、外部導体6を構成する集合撚線の撚り方向と同じであることが好ましい。さらに、外部導体6の横巻きの方向が、内部導体2を構成する素線の撚り方向と、及び/または、内部導体2を構成する集合撚線の撚り方向と同じであることが、より好ましい。
同軸ケーブルの長手方向に対する、外部導体6の横巻き角度は、5度以上50度以下が好ましい。さらに好ましくは10度以上40度以下であり、最も好ましくは、外部導体6の横巻き角度は15度以上35度以下である。
外部導体6の横巻き角度は、小さく設定すると、耐捻回性は向上するが、耐屈曲性は低下する。逆に、外部導体6の横巻き角度を大きく設定すると、耐屈曲性は向上するが、耐捻回性は低下する。屈曲及び捻回に対する耐久性を両立させるには、ケーブルの構造等に応じて、最適な横巻き角度を適宜決定する必要がある。
The outer conductor 6 is preferably a laterally wound structure in which a composite stranded wire or a collective stranded wire is spirally wound along the longitudinal direction of the cable. The lateral winding structure significantly improves the resistance to twisting as compared to the braided structure. The direction of the lateral winding of the outer conductor 6 with respect to the longitudinal direction of the coaxial cable is the same as the twisting direction of the strands constituting the outer conductor 6 and / or the twisting direction of the collective strand constituting the outer conductor 6. Is preferred. Furthermore, it is more preferable that the lateral winding direction of the outer conductor 6 is the same as the twisting direction of the strands of the inner conductor 2 and / or the twisting direction of the collective stranded wire of the inner conductor 2. .
The lateral winding angle of the outer conductor 6 with respect to the longitudinal direction of the coaxial cable is preferably 5 degrees or more and 50 degrees or less. More preferably, it is 10 degrees or more and 40 degrees or less, and most preferably, the lateral winding angle of the outer conductor 6 is 15 degrees or more and 35 degrees or less.
When the lateral winding angle of the outer conductor 6 is set small, the resistance to twisting improves but the resistance to bending decreases. On the other hand, when the lateral winding angle of the outer conductor 6 is set large, the bending resistance is improved but the torsion resistance is reduced. In order to make the durability against bending and twisting compatible, it is necessary to appropriately determine the optimum lateral winding angle according to the structure of the cable and the like.

本発明の同軸ケーブル1は、適宜、外部導体6の上にテープ材7が施されてよい。構成は限定されないが、巻き付けが好ましい。
屈曲や捻回等の可動時に、外部導体6の素線ばらけを抑制する役割の他、外部導体6間の滑り性向上により、結果として、特定の箇所に応力が集中することを回避できる。また、トルク伝達性が低いため、未焼結PTFE樹脂層への負荷を緩和でき、屈曲及び捻回に対する耐久性の向上に寄与する。
テープの材質は、樹脂材料、金属箔等、特に限定されないが、摩擦係数が少ないこと等を考慮し、延伸PTFE樹脂テープが好ましい。
In the coaxial cable 1 of the present invention, a tape material 7 may be applied on the outer conductor 6 as appropriate. Although the configuration is not limited, winding is preferred.
In addition to the role of suppressing the wire breakage of the outer conductor 6 at the time of movement such as bending or twisting, the slip property between the outer conductors 6 is improved, and as a result, it is possible to avoid concentration of stress on a specific location. In addition, since the torque transmission property is low, the load on the unsintered PTFE resin layer can be relaxed, which contributes to the improvement of the durability against bending and twisting.
The material of the tape is not particularly limited, such as resin material and metal foil, but in consideration of the fact that the coefficient of friction is small, etc., an expanded PTFE resin tape is preferable.

ジャケット9の材質は特に限定されないが、例えば、ポリ塩化ビニル、ポリウレタン、ポリエチレン、ふっ素樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル系エラストマー等が挙げられる。
柔軟性及び汎用性の観点で、軟質のポリ塩化ビニルが好ましい。
The material of the jacket 9 is not particularly limited, and examples thereof include polyvinyl chloride, polyurethane, polyethylene, fluorine resin, polyamide resin, polyimide resin, polyester elastomer and the like.
Soft polyvinyl chloride is preferred in terms of flexibility and versatility.

またテープ材7とジャケット9の間には、空隙8が設けられることが好ましい。
空隙8が設けられることにより、ケーブル内部への負荷が緩和され、同軸ケーブル1の屈曲及び捻回に対する耐久性が向上する。
Further, it is preferable that a space 8 be provided between the tape material 7 and the jacket 9.
By providing the air gap 8, the load on the inside of the cable is relieved, and the durability of the coaxial cable 1 against bending and twisting is improved.

以下、本発明の同軸ケーブル1(図1)に関して実施例をあげ具体的に説明するが、本発明の範囲について、これらに限定されるものではない。 Examples of the coaxial cable 1 (FIG. 1) of the present invention will be specifically described below, but the scope of the present invention is not limited to these.

実施例は、内部導体が複合撚線(ロープ撚線)構造、誘電体が未焼結PTFE樹脂層を有し、さらに多孔質ふっ素樹脂テープを巻きつけて配設された2層の構造、外部導体が複合撚線(ロープ撚線)を横巻きした構造、外部導体の外周にテープを巻きつけて配設し、さらにその外周に軟質のポリ塩化ビニル層を有し、テープと軟質のポリ塩化ビニル層との間に、空隙を有する構造を基本としている。
実施例1は、内部導体の撚りピッチを変更し、「実施例1−1〜1−5」と記載する。具体的な値は表1にて後述する。
実施例1−3は、内部導体の撚りピッチが最適な値の条件において、内部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数を変更した。「実施例1−3−1〜
1−3−3」と記載する。
実施例2は、内部導体の撚りピッチ、及び内部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数が最適な値の条件において、外部導体の撚りピッチを変更し、「実施例2−1〜2−5」と記載する。具体的な値は表2にて後述する。
実施例2−3は、外部導体の撚りピッチが最適な値の条件において、外部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数を変更した。「実施例2−3−1〜
2−3−3」と記載する。
実施例3は、内部導体の撚りピッチ、及び内部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数が最適な値の条件において、外部導体の横巻き角度を変更し、「実施例3−1〜3−5」と記載する。具体的な値は表2にて後述する。
実施例4は、内部導体の撚りピッチ、及び内部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数が最適な値の条件において、外部導体の構成を複合撚線(ロープ撚線)から集合撚線に変更したケーブルについて、外部導体の撚りピッチを変更し、「実施例4−1〜4−5」と記載する。具体的な値は表2にて後述する。
実施例5は、内部導体及び外部導体が最適な条件において、誘電体が未焼結PTFE樹脂層を有し、さらに多孔質ふっ素樹脂テープを巻きつけて配設された2層の構造である。すなわち、内部導体の撚りピッチ、内部導体の複合撚線(ロープ撚線)を構成する集合撚線の本数、外部導体の撚りピッチ、及び外部導体の複合撚線(ロープ撚線)を構成する集合撚線の本数が、全て最適な値の条件である。具体的な値は表3にて後述する。
In the embodiment, the inner conductor has a composite stranded wire (rope stranded wire) structure, the dielectric has a non-sintered PTFE resin layer, and further has a two-layer structure provided by winding a porous fluorocarbon resin tape, and the outer side. The conductor has a structure in which the composite stranded wire (rope stranded wire) is wound in a transverse direction, and the tape is wound around the outer conductor, and further has a soft polyvinyl chloride layer on the outer periphery. It is based on a structure having an air gap between it and the vinyl layer.
Example 1 changes the twist pitch of an internal conductor, and describes it as "Example 1-1 to 1-5." Specific values will be described later in Table 1.
In Example 1-3, the number of collective stranded wires constituting the composite stranded wire (rope stranded wire) of the inner conductor was changed under the condition that the twist pitch of the inner conductor is an optimal value. Example 1-3-1
It describes as 1-3-3.
In Example 2, the twist pitch of the outer conductor is changed under the condition that the number of gathered stranded wires constituting the inner conductor twist pitch and the inner conductor composite stranded wire (rope stranded wire) is an optimal value, It describes as "Example 2-1-2-5". Specific values will be described later in Table 2.
In Example 2-3, the number of collective stranded wires constituting the composite stranded wire (rope stranded wire) of the outer conductor was changed under the condition that the twist pitch of the outer conductor is an optimal value. "Example 2-3-1 to
It describes as "2-3-3."
In the third embodiment, the lateral winding angle of the outer conductor is changed under the condition that the number of gathered stranded wires constituting the inner conductor twist pitch and the inner conductor composite stranded wire (rope stranded wire) is an optimum value, It describes as "Example 3-1-3-5." Specific values will be described later in Table 2.
Example 4 is a composite stranded wire (rope of the configuration of the outer conductor under the condition that the number of gathered stranded wires is an optimal value, which constitutes the twisted pitch of the inner conductor and the composite stranded wire (rope stranded wire) of the inner conductor. The twist pitch of the outer conductor is changed for the cable changed from the stranded wire to the collective stranded wire, and is described as “Examples 4-1 to 4-5”. Specific values will be described later in Table 2.
Example 5 is a two-layer structure in which the dielectric has a non-sintered PTFE resin layer and the porous fluorocarbon resin tape is wound around the inner conductor and the outer conductor under optimum conditions. That is, the twist pitch of the inner conductor, the number of collective stranded wires constituting the composite stranded wire (rope twisted wire) of the inner conductor, the twist pitch of the outer conductor, and the collective wire constituting the composite stranded wire (rope twisted wire) of the outer conductor The number of stranded wires is the condition of all optimal values. Specific values will be described later in Table 3.

比較例1は、実施例1のうち、内部導体を集合撚線とした構造である。撚りピッチ等の具体的な値は、表1にて後述する。
比較例2は、誘電体が未焼結PTFE樹脂層を有し、さらに未焼結ふっ素樹脂テープを巻きつけて配設された2層の構造である。その他の構造は、実施例5と同じである。
The comparative example 1 is the structure which made the inner conductor a collective stranded wire among Example 1. FIG. Specific values of the twist pitch and the like will be described later in Table 1.
In Comparative Example 2, the dielectric has a non-sintered PTFE resin layer, and further has a two-layer structure in which a non-sintered fluorine resin tape is wound and disposed. The other structure is the same as that of the fifth embodiment.

従来例は、内部導体が同芯撚線構造、誘電体がFEP樹脂層、外部導体が単線を横巻きした構造、外部導体の外周に焼結PTFEテープを巻きつけて配設し、さらにその外周に軟質のポリ塩化ビニル層を有し、焼結PTFEテープと軟質のポリ塩化ビニル層との間に、空隙を有する構造である。 In the conventional example, the inner conductor has a concentric stranded wire structure, the dielectric has a FEP resin layer, the outer conductor has a single wire wound sideways, a sintered PTFE tape is wound around the outer conductor, The soft polyvinyl chloride layer is a structure having a void between the sintered PTFE tape and the soft polyvinyl chloride layer.

上記、実施例、比較例、従来例について、耐屈曲性、耐撚回性について評価する。
誘電体の構造が異なる、実施例5及び比較例2については、屈曲試験前後における特性インピーダンスの変化量にする。
各評価方法の詳細を以下に示す。
The bending resistance and twisting resistance are evaluated for the above examples, comparative examples and conventional examples.
For Example 5 and Comparative Example 2 in which the structure of the dielectric is different, the amount of change in the characteristic impedance before and after the bending test is used.
Details of each evaluation method are shown below.

(屈曲試験方法)
屈曲試験方法を表す概略図を、図5(a)に示す。
サンプルの長さは1m、曲げ半径Rは15mm、荷重は100gfである。
図5(a)中の矢印のように、試験サンプルを180度屈曲させた後、直線状に戻し、次に反対方向に180度屈曲させ、直線状に戻す。この1サイクルを1回と数える。
一定回数屈曲させた後に、内部導体、外部導体の抵抗値を測定する。試験前の抵抗値と比較して、測定値が5%以上変化した際の屈曲回数の平均値を表1に記載する。
(Bending test method)
A schematic diagram showing a bending test method is shown in FIG. 5 (a).
The sample length is 1 m, the bending radius R is 15 mm, and the load is 100 gf.
As shown by the arrows in FIG. 5 (a), the test sample is bent 180 degrees and then returned to a straight line, and then bent in the opposite direction by 180 degrees and returned to a straight line. This one cycle is counted once.
After flexing a fixed number of times, measure the resistance value of the inner conductor and the outer conductor. The average value of the number of bending when the measured value changes by 5% or more as compared to the resistance value before the test is described in Table 1.

(捻回試験方法)
屈曲試験方法を表す概略図を、図5(b)に示す。
サンプルの長さは1m、固定間距離は127mm、荷重は100gfである。
図5(b)中の矢印のように、試験装置側のサンプル端を190度捻じった後、元に戻し、次に反対方向に190度捻じり、元に戻す。この1サイクルを1回と数える。
一定回数捻回させた後に、内部導体、外部導体の抵抗値を測定する。試験前の抵抗値と比較して、測定値が5%以上変化した際の捻回回数の平均値を表1に記載する。
(Screw test method)
A schematic diagram representing the flex test method is shown in FIG. 5 (b).
The sample length is 1 m, the fixing distance is 127 mm, and the load is 100 gf.
As shown by the arrows in FIG. 5 (b), after twisting the sample end on the test device side by 190 degrees, it is put back and then put in the opposite direction by 190 degrees and put back. This one cycle is counted once.
After twisting a certain number of times, measure the resistance value of the inner conductor and the outer conductor. The average value of the number of times of twisting when the measured value changes by 5% or more as compared to the resistance value before the test is described in Table 1.

なお、表1、表2における評価欄の記号は以下の通りである。
(屈曲試験及び捻回試験の評価方法)
◎:耐屈曲、耐捻回が共に100万回以上
○:耐屈曲、耐捻回が共に10万回以上
△:耐屈曲、耐捻回が共に5万回以上(良品限界)
×:耐屈曲、耐捻回が上記△の基準に満たない
In addition, the symbol of the evaluation column in Table 1 and Table 2 is as follows.
(Evaluation method of bending test and twisting test)
:: Bending resistance and twisting resistance are both 1,000,000 or more ○: Bending resistance and twisting resistance are more than 100,000 times Δ: Bending resistance and twisting resistance are both 50,000 and more (good product limit)
X: Resistance against bending and twisting does not meet the above criteria of 上 記

(特性インピーダンス試験方法)
特性インピーダンス試験は、屈曲試験前後の屈曲部における特性インピーダンスの変化量を測定する。
測定器はネットワークアナライザ(キーサイト製:5071C)を用い、サンプル長は1mとする。
上述の屈曲試験方法にて30万回屈曲し、屈曲部における特性インピーダンス初期値及び屈曲後の測定値を記載する(表3)。
(Characteristic impedance test method)
The characteristic impedance test measures the amount of change in characteristic impedance at the bending portion before and after the bending test.
The measuring instrument uses a network analyzer (manufactured by Keysight: 5071C), and the sample length is 1 m.
The sample is bent 300,000 times by the above-mentioned flexing test method, and the characteristic impedance initial value and the measured value after flexing at the bent portion are described (Table 3).

試験結果を表1、表2、及び表3に示す。 The test results are shown in Table 1, Table 2 and Table 3.

Figure 2019061957
Figure 2019061957

Figure 2019061957
Figure 2019061957

Figure 2019061957
Figure 2019061957

実施例1は、内部導体を構成する集合撚線の撚りのピッチが、複合撚線の外径の8倍以上40倍以下の範囲で、特に良好な耐屈曲性、耐捻回性を有する。
中でも、撚りピッチが最適な値である、実施例1−3−1、1−3−2は、耐屈曲、耐捻回が共に100万回以上という、非常に高い値を得られた。
ただし、実施例1−3−3のように、内部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数が7本撚りの場合は、耐屈曲性、耐捻回性が共に低下する。これは上述の通り、中心の1本に負荷が集中したためと考えられる。
実施例2は、外部導体を構成する集合撚線の撚りのピッチが、複合撚線の外径の8倍以上40倍以下の範囲で、特に良好な耐屈曲性、耐捻回性を有する。
中でも、撚りピッチが最適な値である、実施例2−3−1、2−3−2は、耐屈曲、耐捻回が共に100万回以上という、非常に高い値を得られた。
ただし、実施例2−3−3のように、外部導体の複合撚線(ロープ撚線)を構成する、集合撚線の本数が7本撚りの場合は、耐屈曲性、耐捻回性が共に低下する。これは上述の通り、中心の1本に負荷が集中したためと考えられる。
実施例3は、外部導体の横巻き角度が、15度以上35度以下の範囲で、特に良好な耐屈曲性、耐捻回性を有する。
上述の通り、横巻き角度が小さい実施例3−1は、耐屈曲性が特に低下する。逆に、横巻き角度が大きい実施例3−5は、耐屈曲性は良好であるが、耐捻回性は低下する。
実施例4は、外部導体を構成する素線の撚りのピッチが、集合撚線の外径の8倍以上40倍以下の範囲で、特に良好な耐屈曲性、耐捻回性を有する。
しかし、実施例2と比較すると、耐屈曲性、耐捻回性が共に劣る。この結果より、外部導体の構成は、集合撚線より複合撚線(ロープ撚線)の方が、良好な耐屈曲性、耐捻回性が得られることがわかる。
In Example 1, the twisting pitch of the collective stranded wire constituting the inner conductor has particularly good bending resistance and twisting resistance in the range of 8 times to 40 times the outer diameter of the composite stranded wire.
Among them, in Examples 1-3-1 and 1-3-2 in which the twist pitch is the optimum value, very high values of 1,000,000 or more times of bending resistance and twist resistance were obtained.
However, as in Example 1-3-3, in the case where the number of collective stranded wires constituting the composite stranded wire (rope stranded wire) of the inner conductor is seven, the bending resistance and the twisting resistance are Both decrease. This is considered to be because the load was concentrated on one of the centers, as described above.
In Example 2, the twisting pitch of the collective stranded wire constituting the outer conductor has particularly excellent bending resistance and twisting resistance in the range of 8 times to 40 times the outer diameter of the composite stranded wire.
Among them, in Examples 2-3-1 and 2-3-3, in which the twist pitch is the optimum value, very high values of 1,000,000 or more times of bending resistance and twist resistance were obtained.
However, as in Example 2-3-3, in the case where the number of collective stranded wires constituting the composite stranded wire (rope stranded wire) of the outer conductor is seven, the bending resistance and the twisting resistance are Both decrease. This is considered to be because the load was concentrated on one of the centers, as described above.
In Example 3, the lateral winding angle of the outer conductor has particularly good bending resistance and twisting resistance in the range of 15 degrees to 35 degrees.
As described above, in Example 3-1 with a small lateral winding angle, bending resistance is particularly reduced. On the contrary, in Examples 3-5 in which the lateral winding angle is large, the bending resistance is good but the torsion resistance is lowered.
In Example 4, the twisting pitch of the strands constituting the outer conductor has particularly good bending resistance and twisting resistance in the range of 8 times to 40 times the outer diameter of the collective stranded wire.
However, compared with Example 2, both of the bending resistance and the twisting resistance are inferior. From this result, it can be seen that in the configuration of the outer conductor, the composite stranded wire (rope stranded wire) has better bending resistance and twisting resistance than the collective stranded wire.

比較例1は、実施例1よりも耐屈曲性、耐捻回性が共に劣る。この結果より、内部導体の構成は、集合撚線より複合撚線(ロープ撚線)の方が、良好な耐屈曲性、耐捻回性が得られることがわかる。 Comparative Example 1 is inferior to both Example 1 in flex resistance and torsional resistance. From this result, it can be seen that in the configuration of the inner conductor, the composite stranded wire (rope stranded wire) has better bending resistance and twisting resistance than the collective stranded wire.

比較例2は、実施例5よりも耐屈曲性、耐捻回性が共に劣る。この結果より、誘電体の構成は、「未焼結PTFE樹脂層の外周に、未焼結ふっ素樹脂テープを巻きつけた構造」よりも「未焼結PTFE樹脂層の外周に、多孔質ふっ素樹脂テープを巻きつけた構造」の方が、良好な耐屈曲性、耐捻回性が得られることがわかる。
また、実施例5は比較例2と比較し、屈曲前後での特性インピーダンスの変化量が小さい。これは、実施例5で使用される多孔質ふっ素樹脂テープは、比較例2の未焼結ふっ素樹脂テープと比較し、機械特性に優れ潰れにくいことと、摺動性に優れるためトルク伝達による屈曲・捻回時の負荷が、誘電体へ伝わり難いため、誘電体の変形を防止できることが寄与している。
Comparative Example 2 is inferior to Example 5 in bending resistance and twisting resistance. From this result, the structure of the dielectric is "a porous fluorine resin on the outer periphery of the green PTFE resin layer" than "a structure in which the green fluorine resin tape is wound around the outer periphery of the green PTFE resin layer". It can be seen that the structure “wound with tape” provides better bending resistance and twisting resistance.
Moreover, Example 5 is smaller than Comparative Example 2 in that the amount of change in the characteristic impedance before and after bending is smaller. This is because the porous fluorocarbon resin tape used in Example 5 has excellent mechanical properties and is less likely to be crushed as compared with the non-sintered fluorocarbon resin tape of Comparative Example 2, and is excellent in slidability because it is bent by torque transmission. The load at the time of twisting is hard to be transmitted to the dielectric, which contributes to the prevention of deformation of the dielectric.

全ての実施例について、耐屈曲、耐捻回が共に10万回以上であり、屈曲及び捻回の耐久性について、優位性を有する。
一方、比較例1では、耐捻回が10万回未満であり、従来例では、耐屈曲が5万回未満である。
In all the examples, both of the bending resistance and the twisting resistance are at least 100,000 times, and the resistance to bending and twisting is superior.
On the other hand, in Comparative Example 1, the twisting resistance is less than 100,000 times, and in the conventional example, the bending resistance is less than 50,000 times.

本発明の同軸ケーブルは、屈曲及び捻回に対する耐久性に優れると共に、細線化する一方で、減衰量等の電気特性についても優れるため、特に産業用ロボットや半導体装置等、可動部に用いられる同軸ケーブル等において有用であるが、用途は限定されない。
The coaxial cable according to the present invention is excellent in durability against bending and twisting and thins, and also excellent in electric characteristics such as attenuation amount, so that the coaxial used particularly for movable parts such as industrial robots and semiconductor devices. Although it is useful in a cable etc., a use is not limited.

1 同軸ケーブル
2 内部導体
3 未焼結PTFE樹脂層
4 多孔質ふっ素樹脂テープ層
5 誘電体
6 外部導体
7 テープ材
8 空隙
9 ジャケット
Reference Signs List 1 coaxial cable 2 inner conductor 3 unsintered PTFE resin layer 4 porous fluorine resin tape layer 5 dielectric 6 outer conductor 7 tape material 8 air gap 9 jacket

Claims (16)

内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記内部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線を、更に複数本束ねて撚ることで形成される複合撚線構造を有し、
前記素線の撚り方向と、前記集合撚線の撚り方向は、同じ方向であることを特徴とする、同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The inner conductor has a composite stranded wire structure formed by further bundling a plurality of collective stranded wires formed by twisting a plurality of conductive strands,
A coaxial cable characterized in that a twisting direction of the strands and a twisting direction of the collective stranded wire are the same.
前記内部導体を構成する前記複合撚線は、前記集合撚線の束の本数が15本以下であることを特徴とする、
請求項1に記載の同軸ケーブル。
The composite stranded wire forming the inner conductor is characterized in that the number of bundles of the collective stranded wire is 15 or less.
The coaxial cable according to claim 1.
前記内部導体を構成する前記集合撚線は、前記素線の本数が7本以上であることを特徴とする、
請求項1または2に記載の同軸ケーブル。
The collective stranded wire constituting the internal conductor is characterized in that the number of the strands is seven or more.
The coaxial cable according to claim 1 or 2.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記誘電体が、前記内部導体の外周に未焼結PTFE樹脂層を有し、さらに多孔質ふっ素樹脂テープを巻きつけて配設された層の、少なくとも二層以上の構造からなることを特徴とする、同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The dielectric is characterized in that it has a structure of at least two or more layers having a green PTFE resin layer on the outer periphery of the inner conductor and further having a porous fluorine resin tape wound and disposed. Coax cable.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記誘電体が、前記内部導体の外周に未焼結PTFE樹脂層を有し、さらに多孔質ふっ素樹脂テープを巻きつけて配設された層の、少なくとも二層以上の構造からなることを特徴とする、
請求項1〜3のいずれか1項に記載の同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The dielectric is characterized in that it has a structure of at least two or more layers having a green PTFE resin layer on the outer periphery of the inner conductor and further having a porous fluorine resin tape wound and disposed. Do,
The coaxial cable according to any one of claims 1 to 3.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線構造を有し、
前記外部導体が、前記誘電体の外周に、複数の前記集合撚線が横巻きされて配設された構造を有することを特徴とする、同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a collective stranded wire structure formed by twisting a plurality of conductive strands.
A coaxial cable characterized in that the outer conductor has a structure in which a plurality of the collective stranded wires are horizontally wound around an outer periphery of the dielectric.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線構造を有し、
前記外部導体が、前記誘電体の外周に、複数の前記集合撚線が横巻きされて配設された構造を有することを特徴とする、
請求項5に記載の同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a collective stranded wire structure formed by twisting a plurality of conductive strands.
The outer conductor has a structure in which a plurality of the collective stranded wires are horizontally wound around an outer periphery of the dielectric.
The coaxial cable according to claim 5.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線を、更に複数本撚って形成される複合撚線構造を有し、
前記素線の撚り方向と、前記集合撚線の撚り方向は、同じ方向であり、
前記外部導体が、前記誘電体の外周に、複数の前記複合撚線が横巻きされて配設された構造を有することを特徴とする、同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a composite stranded wire structure formed by further twisting a plurality of collective stranded wires formed by twisting a plurality of conductive strands.
The stranding direction of the strands and the stranding direction of the combined stranded wire are the same direction,
A coaxial cable characterized in that the outer conductor has a structure in which a plurality of the composite stranded wires are horizontally wound around the outer periphery of the dielectric.
内部導体の外周に、少なくとも誘電体、外部導体を、順次被覆してなる同軸ケーブルにおいて、
前記外部導体が、導電性を有する素線を複数本撚ることにより形成される集合撚線を、更に複数本撚って形成される複合撚線構造を有し、
前記素線の撚り方向と、前記集合撚線の撚り方向は、同じ方向であり、
前記外部導体が、前記誘電体の外周に、複数の前記複合撚線が横巻きされて配設された構造を有することを特徴とする、
請求項5に記載の同軸ケーブル。
In a coaxial cable in which at least a dielectric and an outer conductor are sequentially covered on the outer periphery of the inner conductor,
The outer conductor has a composite stranded wire structure formed by further twisting a plurality of collective stranded wires formed by twisting a plurality of conductive strands.
The stranding direction of the strands and the stranding direction of the combined stranded wire are the same direction,
The outer conductor has a structure in which a plurality of the composite stranded wires are horizontally wound around an outer periphery of the dielectric.
The coaxial cable according to claim 5.
前記同軸ケーブルの長手方向に対する、前記外部導体の横巻き角度は、5度以上50度以下であることを特徴とする、
請求項6〜9のいずれか1項に記載の同軸ケーブル。
The lateral winding angle of the outer conductor with respect to the longitudinal direction of the coaxial cable is 5 degrees or more and 50 degrees or less.
The coaxial cable according to any one of claims 6 to 9.
前記同軸ケーブルの長手方向に対する、前記外部導体の横巻きの方向は、前記内部導体を構成する素線の撚り方向と同じであることを特徴とする、
請求項6〜10のいずれか1項に記載の同軸ケーブル。
The transverse winding direction of the outer conductor with respect to the longitudinal direction of the coaxial cable is the same as the twisting direction of the strands constituting the inner conductor,
The coaxial cable according to any one of claims 6 to 10.
前記同軸ケーブルの長手方向に対する、前記外部導体の横巻きの方向は、前記外部導体を構成する素線の撚り方向と同じであることを特徴とする、
請求項6〜11のいずれか1項に記載の同軸ケーブル。
The lateral winding direction of the outer conductor with respect to the longitudinal direction of the coaxial cable is the same as the twisting direction of the strands of the outer conductor,
The coaxial cable according to any one of claims 6 to 11.
前記外部導体を構成する前記複合撚線は、前記集合撚線の束の本数が15本以下であることを特徴とする、
請求項8〜12のいずれか1項に記載の同軸ケーブル。
The composite stranded wire forming the outer conductor is characterized in that the number of bundles of the collective stranded wire is 15 or less.
The coaxial cable according to any one of claims 8 to 12.
前記外部導体を構成する前記集合撚線は、前記素線の本数が7本以上であることを特徴とする、
請求項6〜12のいずれか1項に記載の同軸ケーブル。
The collective stranded wire constituting the outer conductor is characterized in that the number of the strands is seven or more.
The coaxial cable according to any one of claims 6 to 12.
前記同軸ケーブルにおいて、前記外部導体の外周に、テープを巻きつけて配設された構造を有することを特徴とする、
請求項1〜14のいずれかに記載の同軸ケーブル。
The coaxial cable has a structure in which a tape is wound around and disposed around the outer conductor.
The coaxial cable according to any one of claims 1 to 14.
前記同軸ケーブルにおいて、前記テープの外周にジャケットを有し、前記テープと前記ジャケットとの間に空隙を有することを特徴とする、
請求項15に記載の同軸ケーブル。

In the coaxial cable, a jacket is provided on an outer periphery of the tape, and an air gap is provided between the tape and the jacket.
A coaxial cable according to claim 15.

JP2018178175A 2017-09-25 2018-09-24 coaxial cable Active JP6893496B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183417 2017-09-25
JP2017183417 2017-09-25

Publications (2)

Publication Number Publication Date
JP2019061957A true JP2019061957A (en) 2019-04-18
JP6893496B2 JP6893496B2 (en) 2021-06-23

Family

ID=66176731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178175A Active JP6893496B2 (en) 2017-09-25 2018-09-24 coaxial cable

Country Status (1)

Country Link
JP (1) JP6893496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335706A (en) * 2019-05-27 2019-10-15 大电机器人电缆(昆山)有限公司 A kind of high soft resistance to robot cable that circumnutates
CN111627606A (en) * 2020-05-25 2020-09-04 浙江德通科技有限公司 High-flame-retardancy coaxial radio frequency cable and preparation method thereof
JP7433053B2 (en) 2020-01-14 2024-02-19 日星電気株式会社 coaxial cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320362A (en) * 1996-05-27 1997-12-12 Hitachi Cable Ltd Low loss coaxial cable
JP2003257258A (en) * 2002-02-28 2003-09-12 Junkosha Co Ltd Coaxial cable
JP2010176961A (en) * 2009-01-28 2010-08-12 Autonetworks Technologies Ltd Shielded wire
JP2011100713A (en) * 2009-10-05 2011-05-19 Hitachi Cable Ltd Shielded cable
WO2013125447A1 (en) * 2012-02-20 2013-08-29 株式会社 潤工社 Coaxial multicore cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320362A (en) * 1996-05-27 1997-12-12 Hitachi Cable Ltd Low loss coaxial cable
JP2003257258A (en) * 2002-02-28 2003-09-12 Junkosha Co Ltd Coaxial cable
JP2010176961A (en) * 2009-01-28 2010-08-12 Autonetworks Technologies Ltd Shielded wire
JP2011100713A (en) * 2009-10-05 2011-05-19 Hitachi Cable Ltd Shielded cable
WO2013125447A1 (en) * 2012-02-20 2013-08-29 株式会社 潤工社 Coaxial multicore cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335706A (en) * 2019-05-27 2019-10-15 大电机器人电缆(昆山)有限公司 A kind of high soft resistance to robot cable that circumnutates
JP7433053B2 (en) 2020-01-14 2024-02-19 日星電気株式会社 coaxial cable
CN111627606A (en) * 2020-05-25 2020-09-04 浙江德通科技有限公司 High-flame-retardancy coaxial radio frequency cable and preparation method thereof

Also Published As

Publication number Publication date
JP6893496B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP3719163B2 (en) Twisted wire conductor for movable part wiring material and cable using the same
CN109841314B (en) Cable with braided shield
US10249412B2 (en) Composite cable
JP5836554B2 (en) Power cable
US20150083458A1 (en) Multi-core cable
JP6893496B2 (en) coaxial cable
CN102017018A (en) Electrical wire and method for producing same
JP2019061776A (en) Multicore cable
US10269468B1 (en) Cable with braided shield
JP5821892B2 (en) Multi-core cable and manufacturing method thereof
JP7265324B2 (en) insulated wire, cable
JP6098231B2 (en) Optical fiber composite power cable
WO2013161730A1 (en) Coiled cable
JP6987824B2 (en) Communication cable and wire harness
US9786417B2 (en) Multi-core cable and method of manufacturing the same
JP6713712B2 (en) Multi-core cable
JP6569923B2 (en) Braided shielded cable
JP7433053B2 (en) coaxial cable
US11955252B2 (en) Cable
JP7334629B2 (en) Twisted pair cable and multicore cable
JP2023007554A (en) multicore cable
JP6260732B2 (en) Optical fiber composite power cable
CN115910438A (en) Composite cable
JP2021082405A (en) cable
JP2024061310A (en) Communication cable and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6893496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250