JP2019060812A - Step measurement device, step measurement method, step measurement program, and equipment - Google Patents

Step measurement device, step measurement method, step measurement program, and equipment Download PDF

Info

Publication number
JP2019060812A
JP2019060812A JP2017187541A JP2017187541A JP2019060812A JP 2019060812 A JP2019060812 A JP 2019060812A JP 2017187541 A JP2017187541 A JP 2017187541A JP 2017187541 A JP2017187541 A JP 2017187541A JP 2019060812 A JP2019060812 A JP 2019060812A
Authority
JP
Japan
Prior art keywords
measurement
height
plane
point
shape data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187541A
Other languages
Japanese (ja)
Inventor
順裕 伊藤
Nobuhiro Ito
順裕 伊藤
陸人 内田
Rikuto Uchida
陸人 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2017187541A priority Critical patent/JP2019060812A/en
Publication of JP2019060812A publication Critical patent/JP2019060812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a step measurement device, a step measurement method, a step measurement program, and equipment capable of accurately measuring a step height without increasing a load of arithmetic processing.SOLUTION: A step measurement device for measuring a height of a step positioned on a surface of an object to be measured comprises: a light projection part 11; a light reception part 12; a measurement control part; and an arithmetic part. The measurement control part acquires shape data including at least a reference point positioned on a plane part as a reference of step measurement, a measurement point as a measurement position of a step height from the reference point and three reference points positioned on the plane part on the surface of the object W to be measured. The arithmetic part specifies a plane of the plane part by a plane equation including the three reference points, and calculates a deviation amount in a height direction between the plane position of the measurement point on the specified plane and the reference point in the shape data, and calculates a value calculated by correcting a difference in height between the reference point and the measurement point in the shape data by the deviation amount as the step height.SELECTED DRAWING: Figure 1

Description

本発明は、段差測定装置、段差測定方法、段差測定プログラム、機器に関する。   The present invention relates to a step measurement apparatus, a step measurement method, a step measurement program, and a device.

従来、測定対象物の表面に光を照射して反射光を計測することにより、測定対象物の各種寸法を計測する光学式変位計が知られる(例えば特許文献1参照)。   Conventionally, an optical displacement meter is known that measures various dimensions of a measurement object by irradiating the surface of the measurement object with light and measuring the reflected light (see, for example, Patent Document 1).

特開2013−170838号公報JP, 2013-170838, A

特許文献1記載の変位計では、測定対象物の位置ずれを補正するために、全体の基準となるプロファイル(マスタプロファイル)を用いていた。この場合、測定毎に測定されたプロファイルとマスタプロファイルとの差分を演算する必要があり、多数の測定対象物を次々と測定するインライン測定には不向きであった。   The displacement gauge described in Patent Document 1 uses a profile (master profile) as a whole reference in order to correct the displacement of the measurement object. In this case, it is necessary to calculate the difference between the profile measured and the master profile for each measurement, which is unsuitable for in-line measurement in which a large number of measurement objects are measured one after another.

本発明の一態様は、演算処理の負荷を高めることなく段差高さを正確に計測可能な段差測定装置、段差測定方法、段差測定プログラムおよび機器を提供することを目的の一つとする。   An object of one embodiment of the present invention is to provide a step measurement apparatus, a step measurement method, a step measurement program, and an apparatus capable of accurately measuring the step height without increasing the load of arithmetic processing.

本発明の第1の態様によれば、測定対象物の表面に位置する段差の高さを測定する段差測定装置であって、前記測定対象物に測定光を照射する投光部と、前記測定対象物からの反射光を受光する受光部と、前記投光部および前記受光部による測定を実行し前記測定対象物の表面形状を示す形状データを取得する測定制御部と、前記測定制御部で測定された形状データに基づいて前記段差の高さを算出する演算部と、を備え、前記測定制御部は、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定位置である測定点と、前記平面部上に位置する3箇所の参照点と、を少なくとも含む前記形状データを取得し、前記演算部は、前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する、段差測定装置が提供される。   According to a first aspect of the present invention, there is provided a step measuring device for measuring the height of a step located on the surface of a measurement object, the projection unit irradiating measurement light to the measurement object, and the measurement A light receiving unit receiving light reflected from the object; a measurement control unit performing measurement by the light emitting unit and the light receiving unit; and acquiring shape data indicating a surface shape of the measurement object; And a calculation unit that calculates the height of the step on the basis of the measured shape data, and the measurement control unit is positioned on a flat portion which is a reference of the step measurement among the surfaces of the measurement object. The shape data including at least a reference point, a measurement point which is a measurement position of a step height from the reference point, and three reference points located on the flat portion is acquired, and the operation unit The plane equation according to a plane equation including the three reference points Define the plane of the plane, calculate the amount of deviation in the height direction between the plane position of the measurement point in the plane and the reference point in the shape data, and calculate the reference point and the measurement point in the shape data A level difference measuring apparatus is provided, which calculates, as a level difference height, a value obtained by correcting the difference in height with the amount of deviation.

本発明の第2の態様によれば、測定対象物の表面に位置する段差の高さを測定する段差測定方法であって、前記測定対象物に投光部から測定光を照射する工程と、前記測定対象物からの反射光を受光部で受光する工程と、前記受光部から出力される測定データに基づいて、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定位置である測定点と、前記平面部上に位置する3箇所の参照点と、を少なくとも含む前記測定対象物の形状データを取得する工程と、前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する工程と、を有する、段差測定方法が提供される。   According to a second aspect of the present invention, there is provided a step measurement method for measuring the height of a step located on the surface of a measurement object, wherein the step of irradiating the measurement object with measurement light from a light projection unit; The step of receiving the reflected light from the object to be measured by the light receiving portion, and the position on the flat portion serving as the reference of the step measurement among the surfaces of the object to be measured based on the measurement data output from the light receiving portion Acquiring shape data of the measurement object including at least a reference point to be measured, a measurement point which is a measurement position of the step height from the reference point, and three reference points located on the flat portion And the plane equation including the three reference points to define the plane of the plane portion, and the amount of deviation in the height direction between the plane position of the measurement point on the plane defined and the reference point in the shape data Calculation of the shape data A value obtained by correcting the difference in height between the measuring point and the reference point by the shift amount, and a step of calculating a step height, the level difference measuring method is provided.

本発明の第3の態様によれば、測定対象物の表面に位置する段差の高さを測定する段差測定プログラムであって、前記測定対象物に投光部から測定光を照射する機能と、前記測定対象物からの反射光を受光部で受光する機能と、前記受光部から出力される測定データに基づいて、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定値である測定点と、前記平面部上に位置する3箇所以上の参照点と、を少なくとも含む形状データを取得する機能と、前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する機能と、をコンピュータに実現させる、段差測定プログラムが提供される。   According to a third aspect of the present invention, there is provided a step measurement program for measuring the height of a step located on the surface of a measurement object, the function of irradiating the measurement object with measurement light from the light projection unit, Based on the function of receiving the reflected light from the measurement object by the light receiving unit and the measurement data output from the light receiving unit, the surface of the measurement object is positioned on a flat surface serving as a reference for measuring the step. A function of acquiring shape data including at least a reference point to be measured, a measurement point which is a measurement value of the step height from the reference point, and three or more reference points located on the flat portion; The plane of the plane portion is defined by a plane equation including reference points of places, and the amount of deviation in the height direction between the plane position of the measurement point in the plane and the reference point in the shape data is calculated. The group in the shape data A value obtained by correcting the difference in height between the point and the measurement point by the shift amount, thereby realizing a function of calculating a step height, to the computer, step measurement program is provided.

本発明の態様によれば、演算処理の負荷を高めることなく段差高さを正確に計測可能な段差測定装置、段差測定方法、段差測定プログラムおよび機器が提供される。   According to an aspect of the present invention, there is provided a step measurement apparatus, a step measurement method, a step measurement program, and an apparatus capable of accurately measuring the step height without increasing the load of arithmetic processing.

図1は、実施形態の段差測定装置を示す斜視図である。FIG. 1 is a perspective view showing a step measurement apparatus according to an embodiment. 図2は、実施形態の段差測定装置の機能ブロック図である。FIG. 2 is a functional block diagram of the step measurement apparatus according to the embodiment. 図3は、実施形態の段差測定方法のフロー図である。FIG. 3 is a flowchart of the step measurement method of the embodiment. 図4は、レーザ測定器による形状測定工程の説明図である。FIG. 4 is an explanatory view of a shape measuring process using a laser measuring device. 図5は、測定対象物の一例を示す平面図および部分断面図である。FIG. 5 is a plan view and a partial cross-sectional view showing an example of the measurement object. 図6は、段差測定装置により得られる三次元測定イメージを示す図である。FIG. 6 is a view showing a three-dimensional measurement image obtained by the step measurement device. 図7は、測定対象物WがパレットP上で傾いている状態を示す概略図である。FIG. 7 is a schematic view showing a state in which the measurement object W is inclined on the pallet P. As shown in FIG.

以下、図面を用いて本発明の実施の形態について説明する。
また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向とする。X軸方向は、Z軸方向と直交する方向であって図1の左右方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。
Hereinafter, embodiments of the present invention will be described using the drawings.
In the drawings, an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the Z-axis direction is the vertical direction. The X-axis direction is a direction orthogonal to the Z-axis direction, which is the left-right direction in FIG. The Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.

図1は、本実施形態の段差測定装置を示す斜視図である。図2は、本実施形態の段差測定装置の機能ブロック図である。
本実施形態の段差測定装置100は、図1に示すように、レーザ測定器10と、レーザ測定器10および測定対象物Wを支持し、レーザ測定器10と測定対象物Wとを相対移動させるステージ装置20と、タッチパネル付きの表示部30と、を備える。レーザ測定器10は、測定対象物Wに測定光を照射する投光部11と、測定対象物Wからの反射光を受光する受光部12とを有する。本実施形態の場合、投光部11は、光切断法により形状データを取得するためのライン状のレーザ光を測定対象物Wに照射する。
FIG. 1 is a perspective view showing a level difference measuring apparatus according to the present embodiment. FIG. 2 is a functional block diagram of the level difference measuring apparatus of the present embodiment.
As shown in FIG. 1, the step measuring apparatus 100 according to the present embodiment supports the laser measuring instrument 10, the laser measuring instrument 10 and the measurement object W, and moves the laser measuring instrument 10 relative to the measurement object W. A stage device 20 and a display unit 30 with a touch panel are provided. The laser measurement device 10 has a light projecting unit 11 that irradiates the measurement object W with the measurement light, and a light receiving unit 12 that receives the reflected light from the measurement object W. In the case of the present embodiment, the light projecting unit 11 irradiates the measurement object W with a line-shaped laser beam for acquiring shape data by a light cutting method.

ステージ装置20は、ワークステージ部21と、ヘッドステージ部22とを有する。ワークステージ部21は、ステージ装置20の下部に位置し、複数の測定対象物Wを保持するパレットPを支持する。ワークステージ部21は、パレットPを水平方向に移動させる。ヘッドステージ部22は、ステージ装置20の上部に位置し、レーザ測定器10を支持する。ヘッドステージ部22は、レーザ測定器10を水平方向および鉛直方向に移動させる。上記の構成により、段差測定装置100は、パレットP上の複数の測定対象物Wの段差を順次測定可能であり、インライン検査に好適に使用できる。   The stage device 20 has a work stage unit 21 and a head stage unit 22. The work stage unit 21 is located below the stage device 20 and supports a pallet P that holds a plurality of measurement objects W. The work stage unit 21 moves the pallet P in the horizontal direction. The head stage unit 22 is located above the stage unit 20 and supports the laser measuring instrument 10. The head stage unit 22 moves the laser measuring instrument 10 in the horizontal direction and the vertical direction. According to the above configuration, the level difference measuring apparatus 100 can sequentially measure the level differences of the plurality of measurement objects W on the pallet P, and can be suitably used for in-line inspection.

図2に示すように、段差測定装置100は、装置制御部50を備える。装置制御部50は、レーザ測定器10、ステージ装置20、および表示部30と接続され、これらを総合的に制御する。本実施形態の場合、装置制御部50は、外部サーバ200と通信可能である。装置制御部50は、主制御部、記憶部、作業記憶部、通信部等のハードウェアを含むコンピュータである。   As shown in FIG. 2, the level difference measuring apparatus 100 includes an apparatus control unit 50. The device control unit 50 is connected to the laser measuring device 10, the stage device 20, and the display unit 30, and controls them comprehensively. In the case of this embodiment, the device control unit 50 can communicate with the external server 200. The device control unit 50 is a computer including hardware such as a main control unit, a storage unit, a work storage unit, and a communication unit.

装置制御部50は、レーザ測定器10およびステージ装置20を制御する測定制御部51と、レーザ測定器10により取得される形状データを処理する演算部52と、タッチパネル付き表示部30に画像を表示する表示制御部53と、タッチパネル付き表示部30のタッチパネルからの操作入力を受け付ける操作入力部54と、を有する。   The apparatus control unit 50 displays an image on a display unit 30 with a touch panel, a measurement control unit 51 that controls the laser measuring unit 10 and the stage unit 20, an operation unit 52 that processes shape data acquired by the laser measuring unit 10, And an operation input unit 54 for receiving an operation input from the touch panel of the display unit 30 with a touch panel.

測定制御部51は、レーザ測定器10の通信部13と通信可能に接続される。測定制御部51は、通信部13に対して、投光部11および受光部12を動作させる制御信号を出力する。測定制御部51は、通信部13を介して、受光部12により取得された測定データを取得する。測定制御部51は、ステージ装置20に、測定対象物Wおよびレーザ測定器10の位置制御情報に基づく制御信号を出力する。   The measurement control unit 51 is communicably connected to the communication unit 13 of the laser measuring instrument 10. The measurement control unit 51 outputs a control signal for operating the light emitting unit 11 and the light receiving unit 12 to the communication unit 13. The measurement control unit 51 acquires measurement data acquired by the light receiving unit 12 via the communication unit 13. The measurement control unit 51 outputs, to the stage device 20, a control signal based on position control information of the measurement object W and the laser measurement device 10.

演算部52は、測定制御部で測定された形状データに基づいて、測定対象物Wの段差の高さを算出する。
タッチパネル付き表示部30は、測定対象物Wを測定して得られた形状データに基づく画像、および上記画像データを用いた段差計測処理の結果を表示する。タッチパネル付き表示部30には、装置制御部50の動作状態が表示され、使用者は、タッチパネル付き表示部30のタッチパネルを操作することにより、メニュー選択操作、表示画像の操作等の操作入力が可能である。段差測定装置100は、タッチパネルと表示パネルとを別々の機器として備えていてもよい。
The calculation unit 52 calculates the height of the step of the measurement object W based on the shape data measured by the measurement control unit.
The display unit 30 with a touch panel displays an image based on shape data obtained by measuring the measurement object W, and the result of the step measurement process using the image data. The operation state of the device control unit 50 is displayed on the display unit 30 with a touch panel, and the user can operate the touch panel of the display unit 30 with a touch panel to perform operation input such as menu selection operation and display image operation. It is. The level | step difference measuring apparatus 100 may be equipped with a touch panel and a display panel as a separate apparatus.

図3は、本実施形態の段差測定方法のフロー図である。図4は、レーザ測定器による形状測定工程の説明図である。図5は、測定対象物の一例を示す平面図および部分断面図である。図6は、段差測定装置により得られる三次元測定イメージを示す図である。   FIG. 3 is a flowchart of the step measurement method of the present embodiment. FIG. 4 is an explanatory view of a shape measuring process using a laser measuring device. FIG. 5 is a plan view and a partial cross-sectional view showing an example of the measurement object. FIG. 6 is a view showing a three-dimensional measurement image obtained by the step measurement device.

段差測定装置100を用いる段差測定方法は、図3に示す工程S1〜S4を含む。
工程S1は、測定対象物Wの形状を測定する工程である。
工程S1において、段差測定装置100は、図4に示すように、レーザ測定器10により測定対象物Wの表面形状を測定する。
The level | step difference measurement method using the level | step difference measurement apparatus 100 contains process S1-S4 shown in FIG.
Step S1 is a step of measuring the shape of the measurement object W.
In step S <b> 1, as shown in FIG. 4, the level difference measuring apparatus 100 measures the surface shape of the measurement object W with the laser measuring device 10.

具体的に、装置制御部50は、測定制御部51から通信部13に制御信号を出力し、レーザ測定器10の投光部11から測定対象物Wに測定光Lを照射する工程と、測定対象物Wからの反射光を受光部12で受光する工程と、を実行する。このとき、測定制御部51は、ステージ装置20に制御信号を出力し、ワークステージ部21により測定対象物Wを−X方向に移動させる。これにより、投光部11から照射される測定光Lは、測定対象物Wの表面をX方向に走査され、受光部12は一定間隔で反射光をサンプリングし、測定対象物Wの表面形状の測定データを生成する。通信部13は、受光部12で得られた測定データを測定制御部51に送信する。   Specifically, the device control unit 50 outputs a control signal from the measurement control unit 51 to the communication unit 13 and applies the measuring light L to the object to be measured W from the light projecting unit 11 of the laser measuring instrument 10, and measurement. And a step of receiving the reflected light from the object W by the light receiving unit 12. At this time, the measurement control unit 51 outputs a control signal to the stage device 20 and causes the work stage unit 21 to move the measurement object W in the −X direction. As a result, the measurement light L emitted from the light projection unit 11 is scanned in the X direction on the surface of the measurement object W, and the light receiving unit 12 samples the reflected light at constant intervals. Generate measurement data. The communication unit 13 transmits the measurement data obtained by the light receiving unit 12 to the measurement control unit 51.

段差測定装置100における測定対象物Wは、小型アクチュエータなどの長さ数mm〜数cmの電子部品である。測定対象物Wは、例えば図5に示すように、直方体状の筐体71と、筐体71内に収容された本体部72とを有する。測定対象物Wは、筐体71の上面に、段差測定の基準となる平面部71sを有する。測定対象物Wは、平面部71sの中央部に、筐体71の長手方向に並んだ2箇所の凹部T1、T2を有する。   The measurement object W in the step measuring device 100 is an electronic component of several mm to several cm in length, such as a small actuator. For example, as shown in FIG. 5, the measurement object W has a rectangular parallelepiped casing 71 and a main body 72 accommodated in the casing 71. The object to be measured W has a flat portion 71s on the top surface of the housing 71, which serves as a reference for measuring the level difference. The measuring object W has two concave portions T1 and T2 aligned in the longitudinal direction of the housing 71 at the central portion of the flat portion 71s.

凹部T1および凹部T2は、図5右側の部分断面図に示すように、筐体71を上下方向に貫通する貫通孔73を有する。貫通孔73の内部に本体部72の上面が露出する。本実施形態では、凹部T1、T2は、貫通孔73を側面の一部とし、貫通孔73の内部に露出する本体部72の上面を底面とする凹部である。
段差測定装置100は、凹部T1、T2の段差高さとして、筐体71の平面部71sの中央に設定した基準点P0から、凹部T1、T2の底面の測定点Tpまでの上下方向の距離を測定する。
The concave portion T1 and the concave portion T2 have through holes 73 vertically penetrating through the housing 71, as shown in the partial cross-sectional view on the right side of FIG. The upper surface of the main body 72 is exposed to the inside of the through hole 73. In the present embodiment, the concave portions T1 and T2 are concave portions in which the through hole 73 is a part of the side surface and the upper surface of the main body portion 72 exposed to the inside of the through hole 73 is the bottom surface.
The level difference measuring apparatus 100 sets the distance in the vertical direction from the reference point P0 set at the center of the flat portion 71s of the housing 71 to the measurement point Tp on the bottom surface of the concave portions T1 and T2 as the stepped height of the concave portions T1 and T2. taking measurement.

工程S1において、測定制御部51は、図5に示す基準点P0と、測定点Tpを含む凹部T1、T2と、平面部71sに含まれる3箇所の参照点P1、P2、P3を含む測定対象物Wの表面領域を、レーザ測定器10により測定する。レーザ測定器10は、基準点P0、測定点Tp、参照点P1〜P3の位置情報を含む測定データを、測定制御部51に送信する。装置制御部50は、測定制御部51において取得された測定データを、測定対象物Wの形状データとして装置制御部50の記憶部に記憶する。本実施形態の場合、図5に示す測定対象物Wを測定することにより、図6に示す三次元測定イメージを構成可能な形状データが得られる。   In step S1, the measurement control unit 51 is a measurement target including the reference point P0 shown in FIG. 5, concave portions T1 and T2 including the measurement point Tp, and three reference points P1, P2 and P3 included in the flat portion 71s. The surface area of the object W is measured by the laser measuring device 10. The laser measuring instrument 10 transmits measurement data including position information of the reference point P0, the measurement point Tp, and the reference points P1 to P3 to the measurement control unit 51. The device control unit 50 stores the measurement data acquired by the measurement control unit 51 in the storage unit of the device control unit 50 as shape data of the measurement object W. In the case of the present embodiment, by measuring the measurement object W shown in FIG. 5, shape data capable of constructing a three-dimensional measurement image shown in FIG. 6 can be obtained.

図3に示す工程S2では、測定制御部51を介して取得された形状データに基づき、平面部71sが特定される。演算部52は、記憶部から測定対象物Wの形状データを取得し、形状データに含まれる3箇所の参照点P1、P2、P3の位置情報を用いた平面方程式により、測定対象物W上の平面部71sを特定する。   In step S2 illustrated in FIG. 3, the flat surface portion 71s is identified based on the shape data acquired via the measurement control unit 51. Arithmetic unit 52 acquires shape data of measurement object W from the storage unit, and a plane equation using position information of three reference points P1, P2, and P3 included in the shape data on measurement object W. The flat portion 71s is identified.

本実施形態では、図5に示すように、3箇所の参照点P1〜P3を、平面視で測定点Tp(凹部T1、T2)を囲む位置に設定する。これにより、平面部71sのうちでも、凹部T1、T2とその近傍の領域における平面を、3箇所の参照点P1〜P3に基づいて特定できるため、平面部71sの傾きに基づく段差高さの補正をより精度よく行える。   In the present embodiment, as shown in FIG. 5, three reference points P1 to P3 are set at positions surrounding the measurement point Tp (concave portions T1 and T2) in plan view. Thereby, even in the flat portion 71s, the flat surface in the concave portions T1 and T2 and the region in the vicinity thereof can be specified based on the three reference points P1 to P3. Therefore, the step height correction based on the inclination of the flat portion 71s Can be done more accurately.

工程S3では、工程S2で演算部52により特定された平面部71sと、形状データにおける基準点P0との高さ方向のズレ量を算出する。
ここで図7は、測定対象物WがパレットP上で傾いている状態を示す概略図である。測定対象物Wが水平方向に対して傾いている場合、形状データから直接得られる凹部T1の深さ(段差高さ)は、基準点P0と測定点Tpとの高さ位置の差である。したがって、図7に示すように、基準点P0から凹部T1に向かうに従って上側へ傾斜する方向に測定対象物Wが傾いている場合、形状データにおける高さ位置の差として得られる凹部T1の深さhは、実際の凹部T1の深さよりも大きくなる。
In step S3, the amount of deviation in the height direction between the flat portion 71s specified by the calculation unit 52 in step S2 and the reference point P0 in the shape data is calculated.
Here, FIG. 7 is a schematic view showing a state in which the measuring object W is inclined on the pallet P. As shown in FIG. When the measurement object W is inclined with respect to the horizontal direction, the depth (step height) of the recess T1 directly obtained from the shape data is the difference in height position between the reference point P0 and the measurement point Tp. Therefore, as shown in FIG. 7, when the object to be measured W is inclined in a direction inclined upward from the reference point P0 toward the recess T1, the depth of the recess T1 obtained as the difference in height position in shape data h is larger than the actual depth of the recess T1.

上記の凹部T1の深さの値の相違は、測定対象物Wが傾いていることにより、平面部71sと、基準点P0を通る水平面H0がずれることに起因する。工程S3では、測定点Tpの高さ方向の基準点を、水平面H0内の基準位置Tp0から、平面部71sの平面内の基準位置Tp1に補正するためのズレ量Δhを算出する。   The difference in the depth value of the recess T1 is caused by the flat surface 71s and the horizontal plane H0 passing through the reference point P0 being shifted due to the inclination of the measurement object W. In step S3, a shift amount Δh is calculated to correct the reference point in the height direction of the measurement point Tp from the reference position Tp0 in the horizontal plane H0 to the reference position Tp1 in the plane of the flat portion 71s.

演算部52は、工程S2で特定された平面部71sにおいて、測定点Tpの平面位置(XY座標)における基準位置Tp1の高さ位置(Z座標)を取得する。演算部は、基準位置Tp1の高さ位置と、基準点P0の高さ位置との差を、基準点P0の高さ方向のズレ量Δhとして算出する。   The computing unit 52 acquires the height position (Z coordinate) of the reference position Tp1 at the plane position (XY coordinate) of the measurement point Tp in the plane portion 71s specified in the process S2. The computing unit calculates the difference between the height position of the reference position Tp1 and the height position of the reference point P0 as the deviation amount Δh of the reference point P0 in the height direction.

工程S4では、凹部T1の深さを、工程S3で得られたズレ量Δhにより補正する。具体的に、演算部52は、形状データから算出される凹部T1の深さ(測定点Tpと基準点P0の高さ位置の差)を、ズレ量Δhにより補正する。本実施形態の場合、形状データから得られる凹部T1の深さhは、実際の深さよりも大きい値になっているため、凹部T1の深さhからズレ量Δhを減算する。これにより、凹部T1の実際の深さ(h−Δh)が得られる。   In step S4, the depth of the recess T1 is corrected by the amount of deviation Δh obtained in step S3. Specifically, the calculation unit 52 corrects the depth of the recess T1 calculated from the shape data (difference between the measurement point Tp and the height position of the reference point P0) by the deviation amount Δh. In the case of this embodiment, since the depth h of the recess T1 obtained from the shape data is a value larger than the actual depth, the shift amount Δh is subtracted from the depth h of the recess T1. Thereby, the actual depth (h-Δh) of the recess T1 is obtained.

本実施形態では、基準点P0の他に、3箇所の参照点P1〜P3を設定することとしたが、3箇所の参照点P1〜P3のうちのいずれか1つを、段差高さの基準点としてもよい。この場合、基準点を必ず含む平面を平面方程式により特定できるため、基準点のズレ量Δhに基づく凹部T1、T2の深さの補正をより精度よく行える。したがって、凹部T1、T2の深さに相当する段差高さを精度よく測定できる。   In the present embodiment, three reference points P1 to P3 are set in addition to the reference point P0, but any one of the three reference points P1 to P3 is used as a reference of the step height. It may be a point. In this case, since the plane including the reference point can be specified by the plane equation, it is possible to more accurately correct the depths of the recesses T1 and T2 based on the deviation amount Δh of the reference point. Therefore, the step height corresponding to the depth of the concave portions T1 and T2 can be measured with high accuracy.

以上に説明した本実施形態の段差測定装置100によれば、凹部T1、T2の深さ測定、すなわち段差高さの測定において、測定対象物Wが傾いている場合にも、平面方程式を用いて特定した平面に基づいて、測定対象物Wの傾きに起因する測定点Tpと基準点P0との高さ方向のズレ量Δhを取得し、凹部T1、T2の深さを補正するので、測定対象物Wの傾きによる測定値のずれを小さくでき、高精度の段差高さ測定が可能である。本実施形態において、段差測定と傾き補正には、最低4点の位置情報を含む形状データがあればよいため、演算負荷が低く、インライン測定に好適である。   According to the step measurement apparatus 100 of the present embodiment described above, the plane equation is used even when the measurement object W is inclined in the depth measurement of the concave portions T1 and T2, ie, the measurement of the step height. Since the shift amount Δh in the height direction between the measurement point Tp and the reference point P0 due to the inclination of the measurement object W is acquired based on the specified plane, and the depths of the recesses T1 and T2 are corrected, the measurement object Deviation of the measurement value due to the inclination of the object W can be reduced, and high-precision step height measurement is possible. In the present embodiment, it is only necessary to have shape data including position information of at least four points for step measurement and inclination correction, so the calculation load is low and it is suitable for in-line measurement.

本実施形態の段差測定装置100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませて実行することにより処理を行なってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含む。
また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含む。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持する態様を含む。
A program for realizing the function of the step measurement apparatus 100 according to the present embodiment is recorded in a computer readable recording medium, and the program recorded in the recording medium is read by the computer system and executed. May be The "computer system" mentioned here includes an OS and hardware such as peripheral devices.
The "computer system" also includes a WWW system provided with a homepage providing environment (or display environment). The term "computer-readable recording medium" refers to a storage medium such as a flexible disk, a magneto-optical disk, a ROM, a portable medium such as a ROM or a CD-ROM, or a hard disk built in a computer system. Furthermore, the "computer-readable recording medium" is a volatile memory (RAM) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, the aspect which holds a program for a fixed time is included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現する構成であってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できる構成、いわゆる差分ファイル(差分プログラム)であってもよい。   The program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium. Here, the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. Further, the program may be configured to realize part of the functions described above. Furthermore, it may be a configuration that can realize the functions described above in combination with a program already recorded in the computer system, a so-called difference file (difference program).

11…投光部、12…受光部、20…ステージ装置、51…測定制御部、52…演算部、71s…平面部、100…段差測定装置、h…深さ、L…測定光、P…パレット、P0…基準点、P1…参照点、S1,S2,S3,S4…工程、T1,T2…凹部、Tp…測定点、W…測定対象物   11 light emitting unit 12 light receiving unit 20 stage device 51 measurement control unit 52 arithmetic unit 71s flat portion 100 step measuring device h depth L measuring light P Pallet, P0 ... reference point, P1 ... reference point, S1, S2, S3, S4 ... process, T1, T2 ... recess, Tp ... measurement point, W ... measurement object

Claims (9)

測定対象物の表面に位置する段差の高さを測定する段差測定装置であって、
前記測定対象物に測定光を照射する投光部と、
前記測定対象物からの反射光を受光する受光部と、
前記投光部および前記受光部による測定を実行し前記測定対象物の表面形状を示す形状データを取得する測定制御部と、
前記測定制御部で測定された形状データに基づいて前記段差の高さを算出する演算部と、
を備え、
前記測定制御部は、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定位置である測定点と、前記平面部上に位置する3箇所の参照点と、を少なくとも含む前記形状データを取得し、
前記演算部は、
前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、
規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、
前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する、
段差測定装置。
A step measuring device for measuring the height of a step located on the surface of a measurement object, comprising:
A light projecting unit that irradiates measurement light to the measurement object;
A light receiving unit that receives light reflected from the object to be measured;
A measurement control unit that performs measurement by the light emitting unit and the light receiving unit and acquires shape data indicating a surface shape of the measurement object;
An operation unit that calculates the height of the step based on the shape data measured by the measurement control unit;
Equipped with
The measurement control unit is configured to measure, on the surface of the measurement object, a reference point located on a flat portion serving as a reference for measuring the level difference, a measurement point which is a measurement position of the height of the level difference from the reference point, and the plane Obtaining the shape data including at least three reference points located on the part;
The arithmetic unit is
Define a plane of the flat portion by a plane equation including the three reference points,
Calculating a shift amount in a height direction between a planar position of the measurement point on the defined plane and the reference point in the shape data;
A value obtained by correcting the difference in height between the reference point and the measurement point in the shape data using the amount of deviation is calculated as a step height.
Step measurement device.
前記3箇所の参照点のうちのいずれか1つを前記基準点とする、請求項1に記載の段差測定装置。   The level | step difference measurement apparatus of Claim 1 which makes any one of the said three reference points the said reference point. 前記3箇所の参照点を、平面視で前記測定点を囲む位置に設定する、請求項1または2に記載の段差測定装置。   The level difference measuring apparatus according to claim 1, wherein the three reference points are set at positions surrounding the measurement point in plan view. 前記測定対象物の段差は、前記測定対象物の前記平面部に隣接し下側へ凹む凹部の深さである、請求項1から3のいずれか1項に記載の段差測定装置。   The level | step difference measuring apparatus of any one of Claim 1 to 3 whose level | step difference of the said measurement object is the depth of the recessed part adjacent to the said plane part of the said measurement object and dented below. 前記測定対象物を前記投光部および前記受光部に対して相対移動させるステージ装置を有する、請求項1から4のいずれか1項に記載の段差測定装置。   The level | step-difference measuring device of any one of Claim 1 to 4 which has a stage apparatus which makes the said measurement object relatively move with respect to the said light projection part and the said light reception part. 前記ステージ装置は、複数の前記測定対象物を保持するパレットを支持可能であり、
前記パレット上の前記測定対象物の表面の段差を順次測定可能である、
請求項5に記載の段差測定装置。
The stage device can support a pallet that holds a plurality of the measurement objects.
The steps on the surface of the measurement object on the pallet can be sequentially measured.
The level | step difference measuring apparatus of Claim 5.
測定対象物の表面に位置する段差の高さを測定する段差測定方法であって、
前記測定対象物に投光部から測定光を照射する工程と、
前記測定対象物からの反射光を受光部で受光する工程と、
前記受光部から出力される測定データに基づいて、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定位置である測定点と、前記平面部上に位置する3箇所の参照点と、を少なくとも含む前記測定対象物の形状データを取得する工程と、
前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する工程と、
を有する、段差測定方法。
A step measuring method for measuring the height of a step located on the surface of a measurement object, comprising:
Irradiating the measurement object with measurement light from a light emitter;
Receiving light reflected from the object to be measured by a light receiving unit;
At the measurement position of the step height from the reference point and the reference point located on the flat portion which becomes the reference of the step measurement among the surfaces of the measurement object based on the measurement data output from the light receiving unit Acquiring shape data of the measurement object including at least a measurement point and three reference points located on the flat portion;
The plane of the plane portion is defined by a plane equation including the three reference points, and the amount of deviation in the height direction between the plane position of the measurement point in the plane and the reference point in the shape data is calculated. Calculating as a step height a value obtained by correcting the difference in height between the reference point and the measurement point in the shape data using the amount of deviation;
Step measurement method.
測定対象物の表面に位置する段差の高さを測定する段差測定プログラムであって、
前記測定対象物に投光部から測定光を照射する機能と、
前記測定対象物からの反射光を受光部で受光する機能と、
前記受光部から出力される測定データに基づいて、前記測定対象物の表面のうち、段差測定の基準となる平面部上に位置する基準点と、前記基準点からの段差高さの測定値である測定点と、前記平面部上に位置する3箇所以上の参照点と、を少なくとも含む形状データを取得する機能と、
前記3箇所の参照点を含む平面方程式により前記平面部の平面を規定し、規定された前記平面における前記測定点の平面位置と前記形状データにおける前記基準点との高さ方向のズレ量を算出し、前記形状データにおける前記基準点と前記測定点との高さの差を前記ズレ量により補正した値を、段差高さとして算出する機能と、
をコンピュータに実現させる、段差測定プログラム。
A step measurement program for measuring the height of a step located on the surface of a measurement object, comprising:
A function of irradiating the measuring object with measuring light from a light emitting unit;
A function of receiving reflected light from the object to be measured by a light receiving unit;
Based on the measurement data output from the light receiving unit, among the surface of the measurement object, a reference point located on a flat portion serving as a reference for measuring a step, and a measurement value of the step height from the reference point A function of acquiring shape data including at least a measurement point and three or more reference points located on the flat portion;
The plane of the plane portion is defined by a plane equation including the three reference points, and the amount of deviation in the height direction between the plane position of the measurement point in the plane and the reference point in the shape data is calculated. A function of calculating, as a step height, a value obtained by correcting the difference in height between the reference point and the measurement point in the shape data using the amount of deviation;
A step measurement program that realizes a computer.
請求項8に記載のプログラムを格納したコンピュータで読み取り可能な記録媒体または記録した機器。   A computer-readable recording medium or an apparatus on which the program according to claim 8 is stored.
JP2017187541A 2017-09-28 2017-09-28 Step measurement device, step measurement method, step measurement program, and equipment Pending JP2019060812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187541A JP2019060812A (en) 2017-09-28 2017-09-28 Step measurement device, step measurement method, step measurement program, and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187541A JP2019060812A (en) 2017-09-28 2017-09-28 Step measurement device, step measurement method, step measurement program, and equipment

Publications (1)

Publication Number Publication Date
JP2019060812A true JP2019060812A (en) 2019-04-18

Family

ID=66176596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187541A Pending JP2019060812A (en) 2017-09-28 2017-09-28 Step measurement device, step measurement method, step measurement program, and equipment

Country Status (1)

Country Link
JP (1) JP2019060812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928778A (en) * 2020-08-28 2020-11-13 苏州天准科技股份有限公司 Detection device and electronic product part detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928778A (en) * 2020-08-28 2020-11-13 苏州天准科技股份有限公司 Detection device and electronic product part detection system
CN111928778B (en) * 2020-08-28 2022-02-15 苏州天准科技股份有限公司 Detection device and electronic product part detection system

Similar Documents

Publication Publication Date Title
JP6253368B2 (en) Three-dimensional shape measuring apparatus and control method thereof
EP1315056A2 (en) Simulation apparatus for working machine
CN106959075B (en) Method and system for accurate measurement using a depth camera
JP2005134394A (en) Method for calibrating 3d measurement device
US11593960B2 (en) Determining the relative position between a point cloud generating camera and another camera
CN107907055B (en) Pattern projection module, three-dimensional information acquisition system, processing device and measuring method
US11580696B2 (en) Surveying data processing device, surveying data processing method, and surveying data processing program
US7474414B2 (en) System and method of guiding real-time inspection using 3D scanners
TW201514441A (en) System and method for adjusting line laser probes of measurement machine
CN111551132A (en) Plane object deflection angle measuring method based on laser ranging
JP2019060812A (en) Step measurement device, step measurement method, step measurement program, and equipment
KR102377626B1 (en) System of processing X-ray image and method of using the same
US20210041543A1 (en) Laser calibration device, calibration method therefor, and image input device including laser calibration device
KR101403377B1 (en) Method for calculating 6 dof motion of object by using 2d laser scanner
KR101266394B1 (en) Calibration method to minimize the effect of incidence angle in measuring distance
RU2015102094A (en) SYSTEM AND METHOD OF THREE-DIMENSIONAL ULTRASONIC MEASUREMENTS OF VOLUME AREAS
WO2021051439A1 (en) Calibration method, apparatus, storage medium and multi-channel lidar
JP7024405B2 (en) Information processing equipment, programs and information processing methods
JP2019178886A (en) Distance measurement device
CN101113891A (en) Optical measuring machine
JP2015203675A (en) Image processing apparatus, image processing system, three-dimensional measuring instrument, image processing method, and image processing program
WO2017002831A1 (en) Measuring system and measuring method
TW201518677A (en) System and method for processing data tested by double line laser probes
JP2017116452A (en) Jig for laser displacement meter and measurement method
JP2019090758A (en) Shape measurement system for floor, and measurement method