JP2019060635A - Deterioration diagnosis method of control oil for hydraulic control device of power generation facility - Google Patents
Deterioration diagnosis method of control oil for hydraulic control device of power generation facility Download PDFInfo
- Publication number
- JP2019060635A JP2019060635A JP2017183449A JP2017183449A JP2019060635A JP 2019060635 A JP2019060635 A JP 2019060635A JP 2017183449 A JP2017183449 A JP 2017183449A JP 2017183449 A JP2017183449 A JP 2017183449A JP 2019060635 A JP2019060635 A JP 2019060635A
- Authority
- JP
- Japan
- Prior art keywords
- control oil
- power generation
- oil
- generation facility
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本発明は、発電設備の油圧制御装置用の制御油の劣化診断方法に関する。 The present invention relates to a method of diagnosing deterioration of control oil for a hydraulic control device of a power generation facility.
火力発電所や原子力発電所などの発電設備では、安定的な発電を行えるよう発電設備の各部を油圧制御している。 In power generation facilities such as thermal power plants and nuclear power plants, each part of the power generation facilities is hydraulically controlled so that stable power generation can be performed.
例えば、これらの発電所用のタービンとしては、蒸気タービン、ガスタービン等がある。蒸気タービンの上流側には蒸気加減弁が設置され、この蒸気加減弁は、油圧制御装置により弁の開度が制御されている。そして、蒸気加減弁により蒸気タービンに達する蒸気流量を制御することにより、蒸気タービンの速度・負荷が制御される。 For example, as a turbine for these power stations, there are a steam turbine, a gas turbine and the like. A steam control valve is installed on the upstream side of the steam turbine, and the steam control valve has an opening degree controlled by a hydraulic control device. And the speed and load of a steam turbine are controlled by controlling the steam flow which reaches a steam turbine by steam control valve.
ガスタービンの上流側には燃料流量制御弁が設置され、この燃料流量制御弁は油圧制御装置により弁の開度が制御されている。そして、燃料流量制御弁によりガスタービンに達するガス燃料の流量を制御することにより、ガスタービンの速度・負荷が制御される。 A fuel flow control valve is installed on the upstream side of the gas turbine, and the fuel flow control valve has its valve opening controlled by a hydraulic control device. Then, the speed and load of the gas turbine are controlled by controlling the flow rate of the gas fuel reaching the gas turbine by the fuel flow control valve.
また、上記の弁以外にも、起動時・過渡時等制御用、緊急遮断用或いはその他各運転モードで要求される制御用等の弁も種々の油圧制御が行われている。 In addition to the above-described valves, various hydraulic pressure controls are also performed for start-up / transition control, emergency shutoff, and other control valves required in each operation mode.
上記のような油圧制御には、制御油が用いられる。発電設備の油圧制御装置中の制御油は、一定の油圧性能を有するように、酸性物質量(酸価)、水分量、粘度、固形分質量等の項目が一定範囲内となるようモニタリングされており、発電設備の動作不良の原因となることがあった。 Control oil is used for the above-mentioned hydraulic control. The control oil in the hydraulic control device of the power generation facility is monitored so that items such as acid substance mass (acid value), water content, viscosity, solid content mass, etc. fall within a certain range so as to have constant hydraulic performance. May cause the malfunction of the power generation equipment.
この中で、従来から、制御油中の微粒子の評価方法として、NAS等級(National Aerospace Standard 1638:2001)が用いられている。NAS等級では制御油中の微粒子の粒径分布に基づいて00〜12までの等級により制御油の劣化度を判定するものである。 Among them, conventionally, NAS grade (National Aerospace Standard 1638: 2001) is used as a method of evaluating fine particles in control oil. In the NAS grade, the degree of deterioration of the control oil is determined by a grade of 00 to 12 based on the particle size distribution of the fine particles in the control oil.
また、上記NAS等級とは別の手法で制御油の劣化度を判定する方法が提案されている。特許文献1(特許第5190660号公報)は、油をフィルタによってろ過した後、油中の汚染物を捕捉したフィルタから油分を除去し、更にフィルタに光を投射しフィルタを透過した透過光の色成分を検出する、油の劣化度の診断方法(以下、「福井大学式」と記載する場合がある)を開示する。 In addition, a method has been proposed in which the degree of deterioration of control oil is determined by a method different from the above-mentioned NAS grade. Patent Document 1 (Japanese Patent No. 5190660) filters oil by a filter, removes oil from a filter that has captured contaminants in the oil, projects light onto the filter, and transmits light through the filter. Disclosed is a method for diagnosing the degree of deterioration of oil (hereinafter sometimes referred to as "Fukui University formula") for detecting components.
しかし、NAS等級で測定する微粒子の粒径は5μm以上から100μm未満であり、これらの粒径範囲の微粒子の測定だけでは制御油の劣化を十分に評価できない場合があった。例えば、優れたNAS等級を有し、未劣化と判断される制御油を用いた場合であっても、弁を閉塞させたり、制御油供給部に設けられたラインフィルタを閉塞させるなど、発電設備に不具合が発生する場合があった。また、福井大学式の油劣化診断方法では、フィルタで捕捉できない微粒子の測定を行うことができず、制御油劣化度の測定精度に限界があった。 However, the particle size of the particles measured by NAS grade is 5 μm or more and less than 100 μm, and it may not be possible to sufficiently evaluate the deterioration of the control oil only by measuring the particles of these particle size ranges. For example, even when using a control oil that has excellent NAS grade and is determined to be undegraded, a power generation facility such as closing a valve or closing a line filter provided in a control oil supply unit May have a problem with In addition, in the case of the Fukui University type oil deterioration diagnosis method, it is not possible to measure fine particles that can not be captured by a filter, and there is a limit to the measurement accuracy of the degree of control oil deterioration.
本発明は上記課題に鑑みてなされたものである。すなわち、本発明者は従来の方法では着目されず、測定されていなかった粒径の微粒子が制御油の劣化診断に重要であることを発見し、本発明を完成するに至ったものである。すなわち、本発明は、高精度で制御油の劣化を診断することが可能な、発電設備の油圧制御装置用の制御油の劣化診断方法を提供することを目的とする。 The present invention has been made in view of the above problems. That is, the inventors of the present invention have found that fine particles having a particle diameter which has not been measured by the conventional method and which have not been measured are important for diagnosis of deterioration of control oil, and the present invention has been accomplished. That is, an object of the present invention is to provide a method of diagnosing deterioration of control oil for a hydraulic control device of a power generation facility, which can diagnose deterioration of control oil with high accuracy.
上記課題を解決するため、本発明は以下の各実施態様を有する。 In order to solve the above-mentioned subject, the present invention has the following each mode.
[1]発電設備の油圧制御装置用の制御油中に存在する、粒径が1μm〜5μmの微粒子の個数が、所定の閾値を超えた時に制御油が劣化したものと判断する、発電設備の油圧制御装置用の制御油の劣化診断方法。 [1] A power generation facility that determines that the control oil has deteriorated when the number of fine particles with a particle diameter of 1 μm to 5 μm present in control oil for a hydraulic control device of the power generation facility exceeds a predetermined threshold A method for diagnosing deterioration of control oil for a hydraulic control device.
[2]前記制御油は、高圧制御油である、上記[1]に記載の発電設備の油圧制御装置用の制御油の劣化診断方法。 [2] The method for diagnosing deterioration of control oil for a hydraulic control device of a power generation facility according to [1], wherein the control oil is a high pressure control oil.
[3]油圧制御装置は、蒸気加減弁及び燃料流量制御弁からなる群から選択される少なくとも一つの弁の開度を制御する、上記[1]又は[2]に記載の発電設備の油圧制御装置用の制御油の劣化診断方法。 [3] The hydraulic control of the power generation facility according to the above [1] or [2], wherein the hydraulic control device controls the opening degree of at least one valve selected from the group consisting of a steam control valve and a fuel flow control valve. Method for diagnosing deterioration of control oil for equipment.
[4]予め前記閾値を決定する工程を有する、上記[1]から[3]までの何れか1項に記載の発電設備の油圧制御装置用の制御油の劣化診断方法。 [4] The method for diagnosing deterioration of control oil for a hydraulic control device of a power generation facility according to any one of [1] to [3], including the step of determining the threshold value in advance.
[5]前記微粒子は、前記制御油に由来する劣化物である、上記[1]から[4]までの何れか1項に記載の発電設備の油圧制御装置用の制御油の劣化診断方法。 [5] The method for diagnosing deterioration of a control oil for a hydraulic control device for a power generation facility according to any one of [1] to [4], wherein the fine particles are degraded substances derived from the control oil.
高精度で制御油の劣化を診断することが可能な、発電設備の油圧制御装置用の制御油の劣化診断方法を提供することができる。 It is possible to provide a control oil degradation diagnosis method for a hydraulic control device of a power generation facility that can diagnose degradation of control oil with high accuracy.
一実施形態の発電設備の油圧制御装置用の制御油の劣化診断方法では、発電設備の油圧制御装置用の制御油中に存在する、粒径が1μm〜5μmの微粒子の個数が、所定の閾値を超えた時に制御油が劣化したものと判断する。発電設備内の油圧制御装置、制御油供給部、及び、その他の装置内には数μm程度の小さな間隙部が存在する。このため、制御油中に1μm〜5μmの粒径の微粒子の劣化物が存在すると、該微粒子は粘着性を有するため、該間隙部に微粒子が付着・閉塞することで発電設備の不具合の原因となる。そこで、一実施形態では、発電設備の油圧制御装置用の制御油中に存在する、1μm〜5μmの粒径の微粒子数を測定(カウント)する。そして、制御油中の1μm〜5μmの粒径の微粒子数が所定の閾値以下であると制御油は未劣化であると判断し、制御油中の1μm〜5μmの粒径の微粒子数が所定の閾値を超えると制御油は劣化したと判断する。このように一実施形態では、1μm〜5μmの粒径の微粒子数を監視することで、制御油の劣化を高精度で判断し、油圧制御装置を含む発電設備の不具合を早期に防止することができる。なお、この微粒子の劣化物は一般的にワニス、スラッジ等とも呼ばれる。劣化物は、制御油の成分であるリン酸エステルやタービン油の基油成分である鉱物油が水分や酸素と反応してできた分解生成物が凝集することにより1μm〜5μmの粒径の微粒子となったものである。このため、劣化物は制御油に由来するものであり、制御油の使用と共に発生し得るものである。 In the control oil deterioration diagnosis method for a hydraulic control device of a power generation facility according to one embodiment, the number of particles having a particle diameter of 1 μm to 5 μm present in the control oil for a hydraulic control device of a power generation facility is a predetermined threshold When it exceeds, it is judged that control oil has deteriorated. A small gap of about several μm exists in the hydraulic control device in the power generation facility, the control oil supply unit, and other devices. For this reason, when a deterioration product of fine particles with a particle diameter of 1 μm to 5 μm is present in the control oil, the fine particles have adhesiveness, and the fine particles adhere to the gap portion and cause clogging of the power generation facility. Become. Therefore, in one embodiment, the number of fine particles having a particle diameter of 1 μm to 5 μm present in control oil for a hydraulic control device of a power generation facility is measured (counted). Then, it is judged that the control oil is not deteriorated if the number of fine particles of 1 μm to 5 μm in control oil is equal to or less than a predetermined threshold, and the number of fine particles of 1 μm to 5 μm in control oil is predetermined. When the threshold is exceeded, it is determined that the control oil has deteriorated. Thus, in one embodiment, by monitoring the number of fine particles with a particle diameter of 1 μm to 5 μm, it is possible to determine the deterioration of the control oil with high accuracy and to prevent the failure of the power generation facility including the hydraulic control device at an early stage. it can. In addition, the degraded product of the fine particles is generally called varnish, sludge or the like. Degraded matter is fine particles with a particle size of 1 μm to 5 μm due to aggregation of decomposition products formed by reaction of phosphate ester, which is a component of control oil, and mineral oil, which is a base oil component of turbine oil, with moisture and oxygen. It is For this reason, the deterioration products are derived from the control oil and may be generated along with the use of the control oil.
なお、「閾値」の値は、発電設備及び油圧制御装置の種類、構造、大きさ、数等に応じて適宜、所定の値に設定することができる。この「閾値」は、発電設備を予め運転し不具合が起こった時の、制御油中の1μm〜5μmの粒径の微粒子数をカウントすることで決定しても良い。上記のように「閾値」の値は発電設備及び油圧制御装置などに応じて変わり得る。 In addition, the value of "the threshold value" can be appropriately set to a predetermined value according to the type, the structure, the size, the number, and the like of the power generation facility and the hydraulic control device. The “threshold” may be determined by counting the number of fine particles having a particle diameter of 1 μm to 5 μm in the control oil when the power generation facility is operated in advance and a failure occurs. As described above, the value of the "threshold" may vary depending on the power generation facility and the hydraulic control device.
(制御油中の微粒子の粒径測定方法)
制御油中の微粒子の粒径測定には、注入型画像解析粒度分布計(ジャスコインタナショナル社製;(商品名)IF−3300)を用いる。まず、10〜100mlの制御油を、注入型画像解析粒度分布計のセルに注入する。次に、セル中の制御油内に分散した微粒子を撮影して画像を得る。得られた画像について画像解析を行い、画像中に存在する微粒子の円相当径とその数をカウントする。次いで、1μm〜5μmの粒径を有する微粒子の総数を算出する。
(Method for measuring particle size of control oil)
In order to measure the particle size of the fine particles in the control oil, an injection-type image analysis particle size distribution analyzer (manufactured by JASCO International, (trade name) IF-3300) is used. First, 10 to 100 ml of control oil is injected into the cell of the injection image analysis particle size distribution analyzer. Next, the particles dispersed in the control oil in the cell are photographed to obtain an image. The image analysis is performed on the obtained image, and the equivalent circle diameter and the number of the particles present in the image are counted. Next, the total number of particles having a particle diameter of 1 μm to 5 μm is calculated.
(発電設備)
発電設備としては特に限定されるわけではないが、ガス火力発電所、石炭火力発電所、石油火力発電所等の火力発電所や、原子力発電所等の発電設備を挙げることができる。
(Power generation equipment)
The power generation facility is not particularly limited, but may be a thermal power plant such as a gas thermal power plant, a coal thermal power plant, an oil thermal power plant, or a power plant such as a nuclear power plant.
図1は、発電設備(火力発電所)の一例であるコンバインドサイクルシステムを説明する図である。図1のコンバインドサイクルシステムは、ガスタービン10、ガスタービン10から排気される燃焼ガスの排熱により蒸気を発生させるボイラー20、ボイラー20からの蒸気で駆動する高圧蒸気タービン11、中圧蒸気タービン12、低圧蒸気タービン13、各タービン10、11、12,13の駆動で発電する発電機14、及び低圧蒸気タービン13から排気された蒸気を水に戻す復水器16を備えている。 FIG. 1 is a diagram for explaining a combined cycle system which is an example of a power generation facility (thermal power plant). The combined cycle system of FIG. 1 includes a gas turbine 10, a boiler 20 generating steam by exhaust heat of combustion gas exhausted from the gas turbine 10, a high pressure steam turbine 11 driven by steam from the boiler 20, and an intermediate pressure steam turbine 12 , A low-pressure steam turbine 13, a generator 14 that generates electric power by driving each of the turbines 10, 11, 12, and 13, and a condenser 16 that returns the steam exhausted from the low-pressure steam turbine 13 to water.
圧縮機31の圧縮ロータ、ガスタービン10のタービンロータ、高圧蒸気タービン11のタービンロータ、中圧蒸気タービン12のタービンロータ、低圧蒸気タービン13のタービンロータ、及び発電機14の発電ロータは同一軸線上に位置し互いに連結されて、一体的に回転するようになっている。 The compression rotor of the compressor 31, the turbine rotor of the gas turbine 10, the turbine rotor of the high pressure steam turbine 11, the turbine rotor of the medium pressure steam turbine 12, the turbine rotor of the low pressure steam turbine 13, and the power generation rotors of the generator 14 are coaxial. Are connected to each other and integrally rotate.
圧縮機31には入口可変翼を介して外気が流入し、この外気を圧縮することにより圧縮空気を発生させる。入口可変翼は、可変翼制御装置32によってその開度が調節され、圧縮機31に流入する外気の流量が制御される。 Outside air flows into the compressor 31 through the inlet variable vane, and compressed air is generated by compressing the outside air. The degree of opening of the inlet variable vanes is adjusted by the variable vane control device 32, and the flow rate of the outside air flowing into the compressor 31 is controlled.
圧縮機31で発生した圧縮空気は燃料ガスと混合されて燃焼し、高温の燃焼ガスを生成する。発生した燃焼ガスによりガスタービン10のタービンロータが回転するようになっている。燃料ガスの流量は、燃料流量制御弁26によって制御される。また、燃料流量制御弁26にはサーボ弁26aが設けられ、サーボ弁26aを介して供給される高圧制御油によって燃料流量制御弁26の開度を調節し、供給する燃料の流量を調節する。ガスタービン10の排気口は、ボイラー20と接続されている。 The compressed air generated by the compressor 31 is mixed with the fuel gas and burned to generate a high temperature combustion gas. The generated combustion gas causes the turbine rotor of the gas turbine 10 to rotate. The flow rate of the fuel gas is controlled by the fuel flow control valve 26. Further, the fuel flow control valve 26 is provided with a servo valve 26a, and the high pressure control oil supplied via the servo valve 26a adjusts the opening degree of the fuel flow control valve 26 to adjust the flow rate of the supplied fuel. An exhaust port of the gas turbine 10 is connected to a boiler 20.
ボイラー20は、ガスタービン10から排気された高温の排ガスによって蒸気を発生させる。発生した蒸気は、蒸気加減弁21、22及び23を介してそれぞれ、高圧蒸気タービン11、中圧蒸気タービン12、及び低圧蒸気タービン13に供給される。供給された蒸気により高圧蒸気タービン11、中圧蒸気タービン12、及び低圧蒸気タービン13のタービンロータが回転するようになっている。各々の蒸気加減弁21、22及び23にはそれぞれ、サーボ弁21a、22a及び23aが設けられ、該サーボ弁21a、22a及び23aを介して供給される高圧制御油によってそれぞれ、蒸気加減弁21、22及び23の開度を調節し、供給する蒸気の流量を調節している。 The boiler 20 generates steam by the high temperature exhaust gas exhausted from the gas turbine 10. The generated steam is supplied to the high pressure steam turbine 11, the medium pressure steam turbine 12, and the low pressure steam turbine 13 through the steam control valves 21, 22 and 23, respectively. The high pressure steam turbine 11, the medium pressure steam turbine 12, and the turbine rotors of the low pressure steam turbine 13 are rotated by the supplied steam. Each of the steam control valves 21, 22 and 23 is provided with a servo valve 21a, 22a and 23a, respectively, and the steam control valve 21 is provided with high pressure control oil supplied via the servo valves 21a, 22a and 23a, respectively. The openings 22 and 23 are adjusted to adjust the flow rate of the supplied steam.
低圧蒸気タービン13の蒸気出口は復水器16に接続されており、低圧蒸気タービン13から復水器16に蒸気が導かれるようになっている。この復水器16には、復水をボイラー20に導く給水ライン24が接続されている。 The steam outlet of the low pressure steam turbine 13 is connected to a condenser 16 so that the steam is led from the low pressure steam turbine 13 to the condenser 16. A water supply line 24 leading the condensed water to the boiler 20 is connected to the condenser 16.
可変翼制御装置32、サーボ弁21a、22a、23a及び26aには、制御油供給部33から高圧制御油が供給され、図示しないラインを介して高圧制御油は、可変翼制御装置32、サーボ弁21a、22a、23a及び26aから制御油供給部33に戻るようになっている。このように高圧制御油は、可変翼制御装置32、サーボ弁21a、22a、23a及び26aと、制御油供給部33との間を循環している。 The high pressure control oil is supplied from the control oil supply unit 33 to the variable wing control device 32 and the servo valves 21a, 22a, 23a and 26a, and the high pressure control oil is supplied to the variable wing control device 32 via the line not shown. It returns to the control oil supply part 33 from 21a, 22a, 23a and 26a. Thus, the high pressure control oil circulates between the variable blade control device 32, the servo valves 21a, 22a, 23a and 26a, and the control oil supply unit 33.
燃料流量制御弁26、蒸気加減弁21、22及び23は、図示しない弁棒と直結した油筒に高圧制御油が供給され、油圧により駆動されるようになっている。油筒内の高圧制御油の油量の制御は、サーボ弁21a、22a、23a及び26aにより行われる。すなわち、サーボ弁から油筒への高圧制御油の供給、油筒からの高圧制御油の排出により、弁の開度が制御される。このサーボ弁から油筒までの部分が、油圧制御装置に相当する。 In the fuel flow control valve 26 and the steam control valves 21, 22 and 23, high-pressure control oil is supplied to an oil cylinder directly connected to a valve rod (not shown) and driven by oil pressure. Control of the amount of high-pressure control oil in the oil cylinder is performed by servo valves 21a, 22a, 23a and 26a. That is, the degree of opening of the valve is controlled by the supply of high pressure control oil from the servo valve to the oil cylinder and the discharge of high pressure control oil from the oil cylinder. The portion from the servo valve to the oil cylinder corresponds to a hydraulic control device.
図2は、制御油供給部33の一例を表す概略図である。制御油供給部33のタンク35内に高圧制御油36が貯留されており、図示しないポンプによりラインフィルタ37を通ってラインDから高圧制御油が供給される。また、ラインEから制御油供給部33に高圧制御油が戻ってくる。 FIG. 2 is a schematic view showing an example of the control oil supply unit 33. As shown in FIG. The high pressure control oil 36 is stored in the tank 35 of the control oil supply unit 33, and the high pressure control oil is supplied from the line D through the line filter 37 by a pump (not shown). Further, the high pressure control oil returns from the line E to the control oil supply unit 33.
上記のような可変翼制御装置32、サーボ弁21a、22a、23a及び26a、ラインフィルタ37には数μmの間隙部が存在する。このため、制御油中に1μm〜5μmの粒径の微粒子の個数が、所定の閾値を超えて存在すると、可変翼制御装置32、サーボ弁21a、22a、23a及び26a、ラインフィルタ37の不具合の原因となる傾向がある。例えば、このような不具合としては、可変翼制御装置32からの入口可変翼開度指令信号に対して実開度の追従が遅れ、サーボ弁21a、22a、23a及び26aの偏差拡大、及びラインフィルタ37の差圧上昇となって現れる。そこで、一実施形態では、制御油中の1μm〜5μmの粒径の微粒子数が所定の閾値以下であると制御油は未劣化であると判断し、制御油中の1μm〜5μmの粒径の微粒子数が所定の閾値を超えると制御油は劣化したと判断する。これにより、制御油の劣化を高精度で判断し、上記のような不具合の発生を早期に防止することができる。 A gap of several μm exists in the variable blade control device 32, the servo valves 21a, 22a, 23a and 26a, and the line filter 37 as described above. For this reason, if the number of fine particles with a particle diameter of 1 μm to 5 μm exceeds the predetermined threshold value in the control oil, the variable wing control device 32, the servo valves 21a, 22a, 23a and 26a, and the line filter 37 It tends to be the cause. For example, as such a defect, the follow-up of the actual opening degree is delayed with respect to the inlet variable blade opening degree command signal from the variable wing control device 32, the deviation enlargement of the servo valves 21a, 22a, 23a and 26a, and the line filter It appears as 37 differential pressure rise. Therefore, in one embodiment, it is determined that the control oil is undeteriorated if the number of fine particles with a particle diameter of 1 μm to 5 μm in the control oil is equal to or less than a predetermined threshold, and 1 μm to 5 μm in the control oil It is determined that the control oil has deteriorated when the number of particles exceeds a predetermined threshold. As a result, the deterioration of the control oil can be determined with high accuracy, and the occurrence of the above-mentioned failure can be prevented at an early stage.
制御油の種類は油圧制御が行えるものであれば特に限定されないが例えば、高圧の油圧制御に適した高圧制御油(EHC;Electro−Hydraulic Controller)を用いることができる。特に、発電設備などの大規模で高精度な制御が要求される設備では、高圧制御油を用いて油圧制御が行われる。 The type of control oil is not particularly limited as long as hydraulic control can be performed. For example, a high pressure control oil (EHC; Electro-Hydraulic Controller) suitable for high pressure hydraulic control can be used. In particular, in facilities requiring large-scale and high-precision control such as power generation facilities, hydraulic control is performed using high-pressure control oil.
また、制御油中に存在する微粒子は、制御油の使用に伴い発生したものであり、いわゆるワニス、スラッジなどと呼ばれ、制御油に由来する劣化物である。このような劣化物としては例えば、高圧制御油の成分であるリン酸トリフェニルの分解生成物(リン酸塩等)、タービン油の基油である鉱物油の分解生成物等を挙げることができる。 The fine particles present in the control oil are generated with the use of the control oil, and are so-called varnish, sludge, etc., and are deterioration products derived from the control oil. Examples of such deterioration products include decomposition products of triphenyl phosphate (phosphate etc.) which is a component of high-pressure control oil, decomposition products of mineral oil which is a base oil of turbine oil, etc. .
(実施例1)
図1のコンバインドサイクルシステムを用いて連続的に発電を行った。また、期間ごとに高圧制御油を採取し、注入型画像解析粒度分布計(ジャスコインタナショナル社製;(商品名)IF−3300)を用いて高圧制御油中の微粒子の粒径(円相当径)とその個数を計測した。制御油中の1μm〜5μmの粒径の微粒子数が、閾値と想定される10000個/1ml以下である場合は、運転してもコンバインドサイクルシステムの何れの部分にも不具合が発生せず、安定的に運転を行うことができた。一方で、サーボ弁21a、22a、23a及び26aの偏差拡大、及びラインフィルタ37の差圧上昇などの不具合が発生した時の制御油を採取し、上記と同様に注入型画像解析粒度分布計を用いて、該制御油中の1μm〜5μmの粒径の微粒子数を計測すると約70000個/1mlであった。
Example 1
Power generation was continuously performed using the combined cycle system of FIG. In addition, high-pressure control oil is collected for each period, and the particle size (equivalent circle diameter) of the particles in the high-pressure control oil is measured using an injection type image analysis particle size distribution analyzer (manufactured by JASCO International Ltd .; (trade name) IF-3300). ) And its number were measured. If the number of fine particles with a particle diameter of 1 μm to 5 μm in the control oil is 10000/1 ml or less, which is assumed to be the threshold value, no problem occurs in any part of the combined cycle system even if it is operated. Was able to drive. On the other hand, control oil is collected when problems such as deviation expansion of servo valves 21a, 22a, 23a and 26a and differential pressure increase of line filter 37 occur, and the injection type image analysis particle size distribution analyzer is The number of fine particles with a particle diameter of 1 μm to 5 μm in the control oil was about 70,000 per 1 ml using the above.
(比較例1)
実施例1と同様に、不具合が発生していない時に制御油を定期的に採取すると共に、不具合が発生した時の制御油を採取した。次いで、実施例1と同様の方法により、各制御油中の5μmを超える粒径の微粒子数を計測した。この結果、不具合が発生していない時と、不具合が発生した時とを比較すると、御油中の5μmを超える粒径の微粒子数は大きく変化しなかった。
(Comparative example 1)
As in Example 1, the control oil was periodically collected when no failure occurred, and the control oil was collected when the failure occurred. Then, in the same manner as in Example 1, the number of fine particles having a particle size exceeding 5 μm in each control oil was measured. As a result, comparing the time when the failure did not occur with the time when the failure occurred, the number of fine particles having a particle size exceeding 5 μm in the oil did not change significantly.
10 ガスタービン
11 高圧蒸気タービン
12 中圧蒸気タービン
13 低圧蒸気タービン
14 発電機
16 復水器
20 ボイラー
21、22、23 蒸気加減弁
21a、22a、23a、26a サーボ弁
24 給水ライン
26 燃料流量制御弁
31 圧縮機
32 可変翼制御装置
33 制御油供給部
35 タンク
36 高圧制御油
37 ラインフィルタ
DESCRIPTION OF SYMBOLS 10 Gas turbine 11 High pressure steam turbine 12 Medium pressure steam turbine 13 Low pressure steam turbine 14 Generator 16 Condenser 20 Boilers 21, 22, 23 Steam control valves 21a, 22a, 23a, 26a Servo valve 24 Water supply line 26 Fuel flow control valve Reference Signs List 31 compressor 32 variable wing control device 33 control oil supply unit 35 tank 36 high pressure control oil 37 line filter
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017183449A JP6933945B2 (en) | 2017-09-25 | 2017-09-25 | Deterioration diagnosis method of control oil for hydraulic control device of power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017183449A JP6933945B2 (en) | 2017-09-25 | 2017-09-25 | Deterioration diagnosis method of control oil for hydraulic control device of power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019060635A true JP2019060635A (en) | 2019-04-18 |
JP6933945B2 JP6933945B2 (en) | 2021-09-08 |
Family
ID=66178408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017183449A Active JP6933945B2 (en) | 2017-09-25 | 2017-09-25 | Deterioration diagnosis method of control oil for hydraulic control device of power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6933945B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4556326A (en) * | 1984-10-09 | 1985-12-03 | Kitchen Iii George H | Method for testing and treating stored fuel |
JPH11271300A (en) * | 1998-03-25 | 1999-10-05 | Cosmo Sogo Kenkyusho Kk | Method for evaluating sludge of lubricating oil |
JP2002214223A (en) * | 2001-01-12 | 2002-07-31 | Toribo Tex Kk | System and method for diagnosing lubricating target part |
JP2006064694A (en) * | 2004-07-27 | 2006-03-09 | Dkk Toa Corp | Method and apparatus for measuring fine particles |
WO2010150526A1 (en) * | 2009-06-23 | 2010-12-29 | 国立大学法人福井大学 | Oil state monitoring method and oil state monitoring device |
JP2017062215A (en) * | 2015-09-25 | 2017-03-30 | 一般財団法人電力中央研究所 | Property evaluating method of industrial oil, property evaluation device of industrial oil, and circulation device of industrial oil |
JP2017166853A (en) * | 2016-03-14 | 2017-09-21 | 東京電力ホールディングス株式会社 | Method for evaluating deterioration phosphate eater oil |
-
2017
- 2017-09-25 JP JP2017183449A patent/JP6933945B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4556326A (en) * | 1984-10-09 | 1985-12-03 | Kitchen Iii George H | Method for testing and treating stored fuel |
JPH11271300A (en) * | 1998-03-25 | 1999-10-05 | Cosmo Sogo Kenkyusho Kk | Method for evaluating sludge of lubricating oil |
JP2002214223A (en) * | 2001-01-12 | 2002-07-31 | Toribo Tex Kk | System and method for diagnosing lubricating target part |
JP2006064694A (en) * | 2004-07-27 | 2006-03-09 | Dkk Toa Corp | Method and apparatus for measuring fine particles |
WO2010150526A1 (en) * | 2009-06-23 | 2010-12-29 | 国立大学法人福井大学 | Oil state monitoring method and oil state monitoring device |
JP2017062215A (en) * | 2015-09-25 | 2017-03-30 | 一般財団法人電力中央研究所 | Property evaluating method of industrial oil, property evaluation device of industrial oil, and circulation device of industrial oil |
JP2017166853A (en) * | 2016-03-14 | 2017-09-21 | 東京電力ホールディングス株式会社 | Method for evaluating deterioration phosphate eater oil |
Also Published As
Publication number | Publication date |
---|---|
JP6933945B2 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5905119B2 (en) | Gas component control in gas turbine generators using flue gas recirculation. | |
US10508597B2 (en) | Systems and methods for icing detection of compressors | |
EP3460438B1 (en) | Gas turbomachine leak detection system and method | |
EP2905666A1 (en) | Estimation of health parameters in industrial gas turbines | |
US9115647B2 (en) | Method for monitoring a pressure relief valve of a fuel injection circuit for a turbomachine | |
CN102539162A (en) | Method and system for compressor health monitoring | |
EP2876263A1 (en) | Automated water wash system for a gas turbine engine and method of operation | |
EP3321475B1 (en) | Oil debris monitoring using active valve configuration control | |
JP2011196385A (en) | Method for determining when executing test of overspeed protection system of power plant machine | |
JP2012523545A (en) | How to detect a frozen state or maintenance need in a turbomachine fuel circuit | |
CN106525442A (en) | Method and device for monitoring gas path performance of gas turbine | |
Neumayer et al. | Operational behavior of a complex transonic test turbine facility | |
JP2019060635A (en) | Deterioration diagnosis method of control oil for hydraulic control device of power generation facility | |
Blinov et al. | Technical condition estimation of the gas turbine axial compressor | |
JPH11182263A (en) | Gas turbine power plant | |
EP2458179B1 (en) | Method of monitoring an electronic engine control (EEC) to detect fuel screen clogging | |
JP5302264B2 (en) | High temperature component life diagnosis method and diagnostic device | |
CN208765975U (en) | Expanding machine experimental rig | |
EP3475537B1 (en) | Turbine control device prognostics | |
US20210324757A1 (en) | System and Method for Regulating Velocity of Gases in a Turbomachine | |
CN113090394B (en) | Method for monitoring abnormity of intake air filtering efficiency of gas turbine | |
RU2403548C1 (en) | Method to control gas turbine plant state | |
RU2387854C2 (en) | Method to control gas turbine engine fuel system | |
JP4523826B2 (en) | Gas turbine monitoring device and gas turbine monitoring system | |
Dzida et al. | Operation of two-shaft gas turbine in the range of open anti-surge valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6933945 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |