JP2019058103A - Method of predicting incidence of white immature grains of rice, method of predicting whole grain rate of rice, maker gene, and method of cultivating rice - Google Patents

Method of predicting incidence of white immature grains of rice, method of predicting whole grain rate of rice, maker gene, and method of cultivating rice Download PDF

Info

Publication number
JP2019058103A
JP2019058103A JP2017185414A JP2017185414A JP2019058103A JP 2019058103 A JP2019058103 A JP 2019058103A JP 2017185414 A JP2017185414 A JP 2017185414A JP 2017185414 A JP2017185414 A JP 2017185414A JP 2019058103 A JP2019058103 A JP 2019058103A
Authority
JP
Japan
Prior art keywords
rice
grain
predicting
gene
incidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017185414A
Other languages
Japanese (ja)
Other versions
JP6933838B2 (en
Inventor
武士 白矢
Takeshi Shiraya
武士 白矢
佐藤 徹
Toru Sato
徹 佐藤
聡志 東
Satoshi Azuma
聡志 東
沙由理 土田
Sayuri Tsuchida
沙由理 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Prefecture
Original Assignee
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Prefecture filed Critical Niigata Prefecture
Priority to JP2017185414A priority Critical patent/JP6933838B2/en
Publication of JP2019058103A publication Critical patent/JP2019058103A/en
Application granted granted Critical
Publication of JP6933838B2 publication Critical patent/JP6933838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a method of predicting incidence of white immature grains of rice and a method of predicting whole grain rate of rice by which the predictive values with high reliability of the incidence of white immature grains of rice and whole grain rate of rice are obtained early in a ripening phase.SOLUTION: Measured is the expression level of at least one gene among Amy3A, Amy3E, L-APX1, L-APX2, L-APX4, α-glucosidase, Cellulose synthase, CRT/DRE1, Ras GTPase, XET, Cu/Zn SOD, Phosphoglucomutase, β-1,3-glucanase, NAM, Germin-like 8 in an unhulled rice harvested from a rice in a ripening phase.SELECTED DRAWING: Figure 1

Description

本発明は、稲の白未熟粒発生率予測方法、稲の整粒歩合予測方法、これらの予測方法に用いるマーカー遺伝子及びこれらの予測方法を用いて最適な栽培管理を行う稲の栽培方法に関するものである。   The present invention relates to a method for predicting the rate of white immature grain generation in rice, a method for predicting grain size regulation in rice, marker genes used in these prediction methods, and a method for cultivating rice that performs optimal cultivation management using these prediction methods It is.

近年、従来の気候パターンに合致しない異常気象が頻発し、それが地球温暖化の影響によるものであることが懸念されている。こうした夏期の異常高温や異常低温、豪雨や少雨といった異常気象は作物の生育に深刻な影響を与え、収量低下や品質の悪化をもたらす。   In recent years, abnormal weather that does not match the conventional climate pattern frequently occurs, and it is feared that it is due to the effects of global warming. Abnormal weather conditions such as summer extremely high temperature, extremely low temperature, heavy rain and light rain seriously affect the growth of crops, leading to a decrease in yield and quality.

例えば、水稲栽培においては、登熟期の異常高温により白未熟粒の発生が頻発しており、収穫した米の一等米比率が大きく低下する原因になっている。この一等米比率の低下は米価の下落をもたらし、米農家の収入を減少させるため、米生産に関わる人々にとっては大きな問題である。   For example, in rice cultivation, the generation of white immature grains frequently occurs due to the abnormal high temperature during the ripening period, which causes a large decrease in the ratio of the first grade of harvested rice. This decline in the ratio of first-class rice brings down the price of rice and reduces the income of rice farmers, which is a big problem for people involved in rice production.

また、白未熟粒の頻発化は米生産に関わる人だけでなく、その米を加工して製品化する様々な業種に対しても深刻な影響を及ぼす。   In addition, the frequent occurrence of white immature grains has serious impacts not only on people involved in rice production but also on various industries that process and commercialize the rice.

例えば、酒造業においては、高温登熟障害が生じた米は麹で発酵しにくくなるため、発酵具合の調整が難しくなるという問題が生じる。また、炊飯米を扱う業種では、炊飯後の状態が変化(冷えた際に硬くなり易い)するため、他品種をブレンドするなどして食味・食感を安定させるという事例も知られている。こうした原料米に起因する問題は、製造効率の低下とコスト上昇をもたらしている。   For example, in the sake brewing industry, it is difficult to ferment rice with a high temperature ripening problem with a broom, so there is a problem that adjustment of the degree of fermentation becomes difficult. Moreover, in the type | mold which handles cooked rice, since the state after rice cooking changes (it becomes easy to become hard when it cools), the example which blends taste etc. by blending other varieties etc. is also known. Problems caused by such raw material rice result in a decrease in production efficiency and an increase in cost.

以上のように、白未熟粒は米の品質低下に大きな影響を与えるため、その発生リスクを把握して適切な処置を早期に行うことが重要である。   As described above, since white immature grains have a great influence on the deterioration of rice quality, it is important to grasp the risk of occurrence and to take appropriate measures early.

また、白未熟粒はその症状(白濁発生状況)により乳白粒、心白粒、背白粒、腹白粒、基部未熟粒などに分類され、発生要因が異なることが知られている(非特許文献1)。例えば、背白粒や基部未熟粒は登熟期の高温によって、また乳白粒は主に日照不足によって発生する。従って、白未熟粒全体の発生率を予測することは対策の必要性を知るために、また、基部未熟粒などの特定の白未熟粒の発生を予測することは、効果的な(具体的な)対策法を立案するために、それぞれ極めて重要であるが、このような目的に合致するだけの高精度な早期予測方法は現状では確立されていない。   In addition, white immature grains are classified into milk white grains, heart white grains, back white grains, belly white grains, base immature grains, etc. depending on their symptoms (the occurrence of white turbidity), and it is known that the generation factors differ (non-patent Literature 1). For example, back white grains and base immature grains are generated by the high temperature during the ripening stage, and milk white grains are mainly generated by lack of sunlight. Therefore, it is effective to predict the occurrence rate of the whole white immature grains to know the necessity of measures, and to predict the occurrence of specific white immature grains such as the base immature grains (specific ) Although it is extremely important to formulate countermeasures, a highly accurate early prediction method to meet such purpose has not been established at present.

例えば、非特許文献1には、登熟期の気象予測情報(気温や日照量など)と稲の生育情報(草丈、葉色や茎数など)を入力して、白未熟粒発生を予測するモデルが記載されている。しかしながら、これらの手法は気象予測という不確実な情報に基づいている。従って、高温を予測して対策を講じたものの、予測ほど気温が高くならなかった場合には、講じた対策によって米の食味が逆に低下するなどの問題が生じることが知られており、信頼性に難がある。   For example, Non-Patent Document 1 is a model that predicts white immature grain generation by inputting weather forecast information (such as air temperature and sunshine amount) during ripening stage and growth information (such as plant height, leaf color and number of stems) of rice. Is described. However, these methods are based on the uncertain information of weather forecast. Therefore, although the high temperature was predicted and the countermeasure was taken, when the temperature did not become high as expected, it is known that the problem which the taste of rice falls by the countermeasure taken by the countermeasure taken will arise, and it is reliable. There is a problem with sex.

また、特許文献1や非特許文献1には、収穫前の玄米横断面の画像解析により収穫時の白未熟粒を予測する方法とその装置が記載されている。しかしながら、これらの画像解析に基づく方法にはある程度成熟が進んだ玄米が必要であるため、収穫時の品質予測には利用できるものの、正常な登熟を促すための栽培管理に利用する早期の段階での白未熟粒発生予測法としては不適である。   Further, Patent Document 1 and Non-patent Document 1 describe a method and apparatus for predicting white immature grains at harvest time by image analysis of a cross section of brown rice before harvest. However, since these methods based on image analysis require brown rice that has matured to a certain degree, although it can be used for quality prediction at harvest, it is an early stage used for cultivation management to promote normal ripening. Is not suitable as a white immature grain development prediction method in Japan.

このように、白未熟粒の発生を抑える栽培管理体系に組み込むための早期の段階での白未熟粒発生予測方法としては、登熟が進む前の早い段階で、不確実な環境予測データを利用することなく、稲の生理状態を直接モニタリングすることに基づく手法が適している。   Thus, as a method for predicting white immature grain development at an early stage for incorporating it into a cultivation management system that suppresses the generation of white immature grains, use of uncertain environmental forecast data at an early stage before ripening progresses. Instead, methods based on direct monitoring of the physiological condition of rice are suitable.

一方、環境変動に対する稲の生理応答に関しては、これまでにも様々な研究が行われている。例えば、非特許文献2は、低温ストレスや乾燥ストレスに対する稲の応答を、代謝産物、植物ホルモンと遺伝子発現産物を調べることで検討し、CYP735Aの転写調節がこれらのストレス応答に関係していることなどを報告している。また、非特許文献3は、稲の高温耐性系統と感受性系統について、登熟初期の夜間温度が遺伝子発現に与える変化をトランスクリプトーム解析で比較し、35遺伝子の転写に違いが認められたと報告している。また、登熟期間での高温応答遺伝子を同定するためにトランスクリプトーム解析(非特許文献4)や量的形質遺伝子座(QTL)解析(非特許文献5)を実施した研究が報告され、更には、高温耐性稲を作出する方法としてα‐アミラーゼ遺伝子(特許文献2)やホスホリパーゼD遺伝子(特許文献3)の発現を抑制する方法が発明されている。   On the other hand, various studies have been conducted on the physiological response of rice to environmental changes. For example, Non-Patent Document 2 examines rice responses to low temperature stress and drought stress by examining metabolites, plant hormones and gene expression products, and that transcriptional regulation of CYP735A is related to these stress responses. Etc. are reported. In addition, Non-Patent Document 3 reports that differences in transcription of 35 genes were observed in transcriptome analysis comparing the changes that generability of nighttime temperatures at the early stage of ripening gives to high temperature resistant and sensitive lines of rice. doing. In addition, studies were conducted in which transcriptome analysis (Non-patent document 4) and quantitative trait locus (QTL) analysis (Non-patent document 5) were performed to identify high-temperature response genes during the ripening period, and further As a method of producing high temperature resistant rice, a method of suppressing the expression of α-amylase gene (patent document 2) and phospholipase D gene (patent document 3) has been invented.

これらの先行研究は全て、環境変動時の稲の遺伝子発現変化を測定することでは共通するが、白未熟粒発生予測の観点からの研究は皆無である。また、環境変動により発現が変化するからといって、その遺伝子の発現量を測定すれば白未熟粒の発生を予測できると短絡し得ないのは言うまでもない。   All of these previous studies are common in measuring gene expression changes in rice during environmental changes, but there is no study from the viewpoint of white immature grain development prediction. Also, it is needless to say that even if expression of the gene is measured, the occurrence of white immature grains can not be shorted even if expression is changed due to environmental changes.

特許第5716234号公報Patent No. 5716234 gazette 特開2013−208076号公報JP, 2013-208076, A 特許第5812386号公報Patent No. 5812386 平成24年度農政課題解決研修テキスト 地球温暖化対策研修II「水稲の高温登熟障害対策技術」 平成24年7月3日 独立行政法人 農業・食品産業技術総合研究機構 九州沖縄農業研究センターFiscal 2012 agricultural administration problem solution training text Global warming countermeasure training II "high temperature ripening failure countermeasure technology of paddy rice" July 3, 2012 Independent administrative institution National Agriculture and Food Industry Research Organization Kyushu Okinawa Agricultural Research Center Plant Physiol. Vol. 164, pp. 1759-1771, 2014Plant Physiol. Vol. 164, pp. 1759-1771, 2014 BMC Genomics, 16:18, 2015, DOI 10.1186/s12864-015-1222-0BMC Genomics, 16:18, 2015, DOI 10.1186 / s12864-015-1222-0 Plant Cell Physiol. 51, pp. 795-809, 2010Plant Cell Physiol. 51, pp. 795-809, 2010 Breed. Sci. 58, pp. 337-343, 2008Breed. Sci. 58, pp. 337-343, 2008

本発明は、上述のような現状に鑑みなされたもので、リスクが少ない適切な対策(栽培管理)を実施することができるように、登熟期の早い段階で稲の白未熟粒の発生率及び整粒歩合を高精度に予測することができる稲の白未熟粒発生率予測方法及び稲の整粒歩合予測方法、並びにこれら予測方法を用いた稲の栽培方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned current situation, and the incidence of white immature grains of rice at an early stage of the ripening period so that appropriate measures (cultivation management) with less risk can be implemented. It is an object of the present invention to provide a method for predicting the white immature grain generation rate of rice capable of accurately predicting the grain size adjustment rate, a grain size adjustment rate prediction method for rice, and a method for cultivating rice using these prediction methods. .

添付図面を参照して本発明の要旨を説明する。   The subject matter of the present invention will be described with reference to the accompanying drawings.

稲の白未熟粒の発生率を収穫前に予測する方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の白未熟粒の発生率を予測することを特徴とする稲の白未熟粒発生率予測方法に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
It is a method for predicting the incidence of white immature grains of rice before harvest, which is an expression amount of at least one of the following genes (a) to (o) of a rice bran collected from rice during the ripening stage: The present invention relates to a method for predicting the white immature grain incidence of rice, which comprises measuring and predicting the incidence of white immature grains of the rice from the expression level of this gene.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

また、請求項1記載の稲の白未熟粒発生率予測方法において、前記遺伝子の発現量の測定は、稲の開花後初期に行うことを特徴とする稲の白未熟粒発生率予測方法に係るものである。   Further, in the method for predicting the white immature grain incidence of rice according to claim 1, the expression amount of the gene is measured in the early stage after flowering of the rice, according to the white immature grain incidence prediction method of rice It is a thing.

また、請求項1記載の稲の白未熟粒発生率予測方法において、前記遺伝子の発現量の測定は、稲の開花から10日以内に行うことを特徴とする稲の白未熟粒発生率予測方法に係るものである。   Further, in the method for predicting the white immature grain incidence of rice according to claim 1, the expression amount of the gene is measured within 10 days after the flowering of the rice, and the method for predicting the white immature grain incidence of rice is characterized. Pertaining to

また、請求項1〜3いずれか1項に記載の稲の白未熟粒発生率予測方法において、前記(a)〜(o)の遺伝子のうちの一つの遺伝子の発現量を説明変数とし、白未熟粒の発生率を目的変数とする単回帰分析から得られる白未熟粒発生率予測式を用いることを特徴する稲の白未熟粒発生率予測方法に係るものである。   In the method for predicting the incidence of white immature grains of rice according to any one of claims 1 to 3, the expression amount of one of the genes (a) to (o) is used as an explanatory variable, The present invention relates to a method for predicting white immature grain generation rate of rice, characterized by using a white immature grain generation rate prediction formula obtained by single regression analysis using the incidence rate of immature grains as an objective variable.

また、請求項1〜3いずれか1項に記載の稲の白未熟粒発生率予測方法において、前記(a)〜(o)の遺伝子を少なくとも一つ含む二つ以上の遺伝子の発現量を説明変数とし、白未熟粒の発生率を目的変数とする重回帰分析から得られる白未熟粒発生率予測式を用いることを特徴する稲の白未熟粒発生率予測方法に係るものである。   In the method for predicting the incidence of white immature grains of rice according to any one of claims 1 to 3, the expression amounts of two or more genes including at least one of the genes (a) to (o) are described. The present invention relates to a method for predicting the white immature grain generation rate of rice, which is characterized by using a white immature grain incidence rate prediction equation obtained by multiple regression analysis using the generation rate of white immature grains as a variable as a variable.

また、稲の整粒歩合を収穫前に予測する方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の整粒歩合を予測することを特徴とする稲の整粒歩合予測方法に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
In addition, it is a method for predicting grain size regulation rate of rice before harvest, and measuring the expression amount of at least one gene of the following (a) to (o) genes of rice bran collected from rice of ripening stage The method of the present invention relates to a method of predicting the grain size adjustment rate of rice, which comprises predicting the grain size adjustment rate of the rice from the expression amount of this gene.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

また、請求項6記載の稲の整粒歩合予測方法において、前記遺伝子の発現量の測定は、稲の開花後初期に行うことを特徴とする稲の整粒歩合予測方法に係るものである。   Further, in the method of predicting grain size regulation rate of rice according to claim 6, the expression amount of the gene is measured in the early stage after flowering of rice, which is related to the grain size regulation rate prediction method of rice.

また、請求項1記載の稲の整粒歩合予測方法において、前記遺伝子の発現量の測定は、稲の開花から10日以内に行うことを特徴とする稲の整粒歩合予測方法に係るものである。   In the method for predicting grain size regulation rate of rice according to claim 1, the expression amount of the gene is measured within 10 days from the flowering of rice, which relates to the grain size regulation rate predicting method of rice. is there.

また、請求項6〜8いずれか1項に記載の稲の整粒歩合予測方法において、前記(a)〜(o)の遺伝子のうちの一つの遺伝子の発現量を説明変数とし、整粒歩合を目的変数とする単回帰分析から得られる整粒歩合予測式を用いることを特徴する稲の整粒歩合予測方法に係るものである。   In the method for predicting grain size regulation rate of rice according to any one of claims 6 to 8, the expression amount of one of the genes (a) to (o) is used as an explanatory variable, and the grain size regulation rate is used. The present invention relates to a method of predicting grain size proportions for rice, which comprises using a grain size proportion prediction formula obtained from single regression analysis with the objective variable as the objective variable.

また、請求項6〜8いずれか1項に記載の稲の整粒歩合予測方法において、前記(a)〜(o)の遺伝子を少なくとも一つ含む二つ以上の遺伝子の発現量を説明変数とし、整粒歩合を目的変数とする重回帰分析から得られる整粒歩合予測式を用いることを特徴する稲の整粒歩合予測方法に係るものである。   In the method for predicting grain size regulation of rice according to any one of claims 6 to 8, the expression amount of two or more genes including at least one of the genes (a) to (o) is used as an explanatory variable. The present invention relates to a method for predicting the grain size proportion of rice which is characterized by using a grain size proportion prediction equation obtained from multiple regression analysis with the grain size classification as an objective variable.

また、稲の白未熟粒発生率を収穫前に予測する際に用いるマーカー遺伝子であって、下記(a)〜(o)の遺伝子から選択されることを特徴とするマーカー遺伝子に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
The present invention also relates to a marker gene which is used to predict the white immature grain development rate of rice before harvest, and is selected from the following genes (a) to (o): .
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

また、稲の整粒歩合を収穫前に予測する際に用いるマーカー遺伝子であって、下記(a)〜(o)の遺伝子から選択されることを特徴とするマーカー遺伝子に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
Further, the present invention relates to a marker gene which is used to predict the grain size regulation rate of rice before harvesting, and is selected from the following genes (a) to (o).
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

また、稲の栽培方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の白未熟粒発生率の予測値を取得し、この白未熟粒発生率の予測値に基づいて、当該稲の水管理、施肥管理、刈り取り時期などの栽培管理を決定することを特徴とする稲の栽培方法に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
Moreover, it is a cultivation method of rice, Comprising: The expression amount of at least one gene is measured among the following genes (a) to (o) of the rice bran collected from rice at the ripening stage, and the expression amount of this gene It is characterized in that the predicted value of the white immature grain incidence rate of the rice concerned is acquired, and the cultivation management such as water management, fertilization management, harvesting time etc of the rice concerned is determined based on the prediction value of the white imitation grain incidence rate. It relates to the cultivation method of rice.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

また、稲の栽培方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の整粒歩合の予測値を取得し、この整粒歩合の予測値に基づいて、当該稲の水管理、施肥管理、刈り取り時期などの栽培管理を決定することを特徴とする稲の栽培方法に係るものである。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
Moreover, it is a cultivation method of rice, Comprising: The expression amount of at least one gene is measured among the following genes (a) to (o) of the rice bran collected from rice at the ripening stage, and the expression amount of this gene The cultivation value of rice is characterized by acquiring the predicted value of the grain size regulation rate of the rice, and determining the cultivation management such as water management, fertilization management, harvesting time, etc. of the rice based on the predicted value of the grain size classification rate. It relates to the method.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

本発明においては、登熟期の段階、例えば、稲の開花初期の段階で、稲の白未熟粒の発生率を高精度に予測することができ、この予測値(予測発生率)に基づいて適宜な栽培管理対策を実施することが可能となり、これにより、白未熟粒の発生を低減することができる。   In the present invention, the incidence of white immature grains of rice can be predicted with high accuracy at the stage of the ripening stage, for example, the early stage of flowering of rice, and based on this predicted value (predicted incidence). Appropriate cultivation management measures can be implemented, and this can reduce the generation of white immature grains.

すなわち、これまで白未熟粒の発生を抑制するために対応策として行われてきた出穂後における施肥対策は、登熟期の高温による白未熟粒発生の抑制に有用であるものの、米の食味を低下させるタンパク質含有量を増加させることとなってしまうから、積極的にその対策を講じることが難しかったが、本発明により、白未熟粒の発生率の予測精度が格段に向上し、この精度の高い白未熟粒の発生率の予測値に基づいて栽培対策(栽培管理)を適切に行うことができることになる。   That is, although the fertilization measures after heading which have been performed as a countermeasure to suppress the generation of white immature grains until now are useful for suppressing the generation of white immature grains due to high temperature during the ripening period, the taste of rice is Although it was difficult to take measures positively because it would increase the protein content to be reduced, the present invention significantly improves the prediction accuracy of the incidence rate of white immature grains, and this accuracy Cultivation measures (cultivation management) can be appropriately performed based on the predicted value of the high incidence rate of white immature grains.

また、白未熟粒(特に基部未熟粒)の発生は、適正な時期よりも収穫が遅れることで、その発生率が急激に増加することが知られているが、本発明により得られた白未熟粒の発生率の予測値に基づいて適正な収穫時期(早めの刈り取り時期)を判断することができ、この早めの刈り取り(収穫)により白未熟粒、特に基部未熟粒の発生を可及的に抑制することが可能となる。   In addition, it is known that the incidence of white immature grains (in particular, immature base grains) increases rapidly as the harvest is delayed from the appropriate time, but the white immature grains obtained by the present invention The appropriate harvest time (early harvest time) can be determined based on the predicted value of the incidence rate of grains, and the early harvest (harvest) allows the generation of white immature grains, particularly the base immature grains as much as possible. It becomes possible to suppress.

また、本発明においては、登熟期の段階、例えば、稲の開花初期の段階で、稲の整粒歩合を高精度に予測することができ、この予測値に基づいて適宜な栽培管理対策を実施することが可能となり、これにより、例えば白未熟粒などの登熟障害の発生を低減することができる。   Further, in the present invention, it is possible to predict the grain grading ratio of rice with high precision at the stage of the ripening stage, for example, the early stage of flowering of rice, and appropriate cultivation management measures It is possible to implement, which can reduce the occurrence of ripening disorders such as white immature grains.

すなわち、一般的には、整粒歩合は、米粒全量から白未熟粒などの未熟粒を差し引いた米粒の割合としてほぼ算出することができるから、この整粒歩合を知得することで未熟粒(白未熟粒)の発生率の予測値を知得することができ、前述のとおり、精度の高い白未熟粒の発生率の予測値に基づいて適切な栽培対策を適宜に行うことができ、これにより、例えば白未熟粒の発生を可及的に抑制することが可能となる。   That is, in general, the grain size adjustment percentage can be calculated approximately as the ratio of rice grains obtained by subtracting immature grains such as white immature grains from the total amount of rice grains, so obtaining the grain size adjustment percentage can obtain immature grains (white grains The predicted value of the incidence rate of immature grains can be obtained, and as described above, appropriate cultivation measures can be appropriately taken based on the predicted value of the incidence rate of white immature grains with high accuracy. For example, it is possible to suppress the occurrence of white immature grains as much as possible.

実施例1の開花後5日目の稲の籾におけるAmy3A遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation of the Amy3A gene expression level ratio in the rice bran of the 5th day after flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後5日目の稲の籾におけるAmy3E遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the Amy3E gene expression level ratio in the rice straw of the 5th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後5日目の稲の籾におけるL-APX1遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a view showing the correlation between the L-APX1 gene expression ratio in the rice bran on the fifth day after flowering of Example 1, the white immature grain ratio, the base immature grain ratio, and the grain size adjustment ratio. 実施例1の開花後5日目の稲の籾におけるL-APX2遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a view showing the correlation between the L-APX2 gene expression ratio in the rice bran on the fifth day after flowering of Example 1, the white immature grain percentage, the base immature grain percentage, and the grain size adjustment percentage. 実施例1の開花後5日目の稲の籾におけるL-APX4遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a graph showing the correlation between the L-APX4 gene expression ratio and the base immature grain percentage, base immature grain percentage, and size adjustment percentage of rice bran on the fifth day after flowering of Example 1. 実施例1の開花後5日目の稲の籾におけるα-glucosidase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a view showing the correlation between the ratio of expression amount of α-glucosidase gene in the rice bran on the fifth day after flowering of Example 1 with the white immature grain ratio, the base immature grain ratio, and the grain size adjustment ratio. 実施例1の開花後5日目の稲の籾におけるCellulose synthase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with a cellulose synthe gene gene expression ratio and the white immature grain ratio, the base immature grain ratio, and the grain size adjustment ratio in the rice cake of the 5th day after the flowering of Example 1. 実施例1の開花後5日目の稲の籾におけるCRT/DRE1遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows correlation with a white immature grain ratio, a base immature grain ratio, and a grain adjustment ratio in CRT / DRE1 gene expression ratio in the rice bran of the 5th day after flowering of Example 1. FIG. 実施例1の開花後5日目の稲の籾におけるRas GTPase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with Ras GTPase gene expression ratio in the rice bran of the 5th day after flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain adjustment ratio. 実施例1の開花後5日目の稲の籾におけるXET遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the XET gene expression ratio in the rice straw of the 5th day after flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後5日目の稲の籾におけるCu/Zu SOD遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the ratio of Cu / Zu SOD gene expression in the rice bran of the 5th day after flowering of Example 1, white immature grain ratio, base immature grain ratio, and a grain adjustment ratio. 実施例1の開花後7日目の稲の籾におけるAmy3A遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation of the Amy3A gene expression level ratio in the rice bran of the 7th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後7日目の稲の籾におけるAmy3E遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows correlation with the Amy3E gene expression level ratio in the rice bran of the 7th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後7日目の稲の籾におけるL-APX1遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a graph showing the correlation between the L-APX1 gene expression ratio and the base immature grain percentage, base immature grain percentage, and size adjustment percentage in the rice bran on day 7 after flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるL-APX2遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 7 is a view showing the correlation between the L-APX2 gene expression ratio and the percentage of white immature grain, the base immature grain percentage, and the size adjustment percentage in the rice bran on day 7 after flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるL-APX4遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a view showing the correlation between L-APX4 gene expression ratio and white immature grain ratio, base immature grain ratio, and size adjustment ratio in the rice bran on day 7 after flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるα-glucosidase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 7 is a view showing the correlation between the ratio of expression amount of α-glucosidase gene and the percentage of white immature grains, the percentage of immature base grains, and the percentage of grains in the rice straw of the 7th day after flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるCellulose synthase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with a cellulose synthase gene expression ratio and the white immature grain ratio, the base immature grain ratio, and the grain adjustment ratio in the rice cake of the 7th day after the flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるCRT/DRE1遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows correlation with a white immature-grain ratio, a base immature-grain ratio, and a regular-grained ratio in CRT / DRE1 gene expression ratio in the rice cake of the 7th day after the flowering of Example 1. 実施例1の開花後7日目の稲の籾におけるRas GTPase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with Ras GTPase gene expression ratio in the rice bran of the 7th day after flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後7日目の稲の籾におけるXET遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the XET gene expression ratio in the rice straw of the 7th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後7日目の稲の籾におけるCu/Zu SOD遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the ratio of Cu / Zu SOD gene expression in the rice straw of the 7th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio. 実施例1の開花後10日目の稲の籾におけるα-glucosidase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 7 is a view showing the correlation between the ratio of expression amount of α-glucosidase gene and the percentage of white immature grains, the percentage of base immature grains, and the rate of regulation of grain size in the rice bran on day 10 after flowering in Example 1. 実施例1の開花後10日目の稲の籾におけるRas GTPase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with Ras GTPase gene expression ratio in the rice bran of the 10th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain adjustment ratio. 実施例1の開花後10日目の稲の籾におけるPhosphoglucomutase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows correlation with a white immature grain ratio, a base immature grain ratio, and a grain size adjustment ratio in the rice straw of the 10th day after the flowering of Example 1 flowering. 実施例1の開花後10日目の稲の籾におけるβ-1,3-glucanase遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。FIG. 6 is a graph showing the correlation between the β-1,3-glucanase gene expression ratio and the white immature grain percentage, the base immature grain percentage, and the grain size adjustment percentage in the rice bran on day 10 after flowering of Example 1. 実施例1の開花後10日目の稲の籾におけるNAM遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with the NAM gene expression level ratio in the rice straw of the 10th day after the flowering of Example 1, a white immature grain ratio, a base immature grain ratio, and a grain adjustment ratio. 実施例1の開花後10日目の稲の籾におけるGermin-like 8遺伝子発現量比と、白未熟粒歩合、基部未熟粒歩合及び整粒歩合との相関性を示す図である。It is a figure which shows the correlation with Germin-like 8 gene expression ratio and the white immature grain ratio, the base immature grain ratio, and the grain adjustment ratio in the rice cake of the 10th day after the flowering of Example 1.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   The preferred embodiments of the present invention will be briefly described by showing the operation of the present invention based on the drawings.

本発明者は、登熟期の稲の籾に発現しているデンプン生合成関連遺伝子、ストレス応答関連遺伝子や細胞壁合成関連遺伝子などの中に、発現量が白未熟粒の発生率と相関関係がある遺伝子が存在することを見い出した。この遺伝子の発現量は、米粒の成熟度が低い早期段階、例えば稲の開花初期であっても充分に測定可能なことから、これらの遺伝子の発現量を測定することで、白未熟粒の発生率を早期予測できるのではと考え、鋭意検討を重ねた結果、遺伝子の発現量から白未熟粒の発生率を高精度に予測することができる稲の白未熟粒発生率予測方法を確立した。   Among the starch biosynthesis related genes, stress response related genes, cell wall synthesis related genes, etc. expressed in the rice bran at the ripening stage, the present inventor has an expression amount correlated with the incidence of white immature grains. It was found that a certain gene was present. The expression level of this gene can be sufficiently measured even at the early stage when rice grain maturity is low, for example, in the early flowering stage of rice, so the expression level of these genes can be measured to generate white immature grains. We thought that it would be possible to predict the rate early, and as a result of intensive investigations, we have established a method for predicting the rate of white immature grain in rice, which can predict the rate of white immature grain with high accuracy from the gene expression level.

また、同様に、この遺伝子の発現量と稲の整粒歩合との間にも相関関係があることを見い出し、遺伝子の発現量から稲の整粒歩合を高精度に予測することができる稲の整粒歩合予測方法を確立した。   In addition, similarly, it is found that there is a correlation between the expression amount of this gene and the grain-adjusting percentage of rice, and it is possible to highly accurately predict the grain-adjusting percentage of rice from the gene expression amount. We established a method of grain size prediction.

また、併せて、この測定対象とする遺伝子も同定した。測定対象とする稲の遺伝子は、人工気象室や圃場で栽培した稲において、環境ストレスが遺伝子の発現量と白未熟粒発生に与える影響を包括的に解析し、遺伝子の発現量と白未熟粒の発生に相関関係を見い出した遺伝子であって、具体的には下記の(a)〜(o)に示す15の遺伝子である。   In addition, a gene to be measured was also identified. The genes of rice to be measured are comprehensively analyzed for the effects of environmental stress on gene expression level and white immature grain development in rice grown in an artificial climatic chamber or field, and gene expression level and white immature grain The gene which has been found to be correlated with the occurrence of the gene, specifically 15 genes shown in the following (a) to (o).


(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8

(a)Amy3A遺伝子は、α-amylase isozyme 3Aをコードし、イネゲノムデータベースにおいてアクセション番号AK063988で規定される。   (a) The Amy3A gene encodes α-amylase isozyme 3A, which is defined by accession number AK063988 in the rice genome database.

(b)Amy3E遺伝子は、α-amylase isozyme 3Eをコードし、イネゲノムデータベースにおいてアクセション番号AK064300で規定される。   (b) The Amy3E gene encodes α-amylase isozyme 3E, which is defined by accession number AK064300 in the rice genome database.

(c)L-APX1遺伝子は、L-ascorbate peroxidase 1をコードし、イネゲノムデータベースにおいてアクセション番号AK061841で規定される。   (c) The L-APX1 gene encodes L-ascorbate peroxidase 1, and is defined by accession number AK061841 in the rice genome database.

(d)L-APX2遺伝子は、L-ascorbate peroxidase 2をコードし、イネゲノムデータベースにおいてアクセション番号AK068430で規定される。   (d) The L-APX2 gene encodes L-ascorbate peroxidase 2 and is defined by accession number AK068430 in the rice genome database.

(e)L-APX4遺伝子は、L-ascorbate peroxidase 4をコードし、イネゲノムデータベースにおいてアクセション番号AK104490で規定される。   (e) The L-APX4 gene encodes L-ascorbate peroxidase 4 and is defined by accession number AK104490 in the rice genome database.

(f)α-glucosidase遺伝子は、α-glucosidaseをコードし、イネゲノムデータベースにおいてアクセション番号AK105449で規定される。   (f) The α-glucosidase gene encodes α-glucosidase and is defined by accession number AK105449 in the rice genome database.

(g)Cellulose synthase遺伝子は、Cellulose synthase family proteinをコードし、イネゲノムデータベースにおいてアクセション番号AK100523で規定される。   (g) Cellulose synthase gene encodes Cellulose synthase family protein, and is defined by accession number AK100523 in rice genome database.

(h)CRT/DRE1遺伝子は、CRT/DRE binding factor 1をコードし、イネゲノムデータベースにおいてアクセション番号AK060550で規定される。   (h) The CRT / DRE1 gene encodes CRT / DRE binding factor 1 and is defined by accession number AK060550 in the rice genome database.

(i)Ras GTPase遺伝子は、Ras GTPase family proteinをコードし、イネゲノムデータベースにおいてアクセション番号CI474676で規定される。   (i) The Ras GTPase gene encodes Ras GTPase family protein, and is defined in the rice genome database with accession number CI474676.

(j) XET遺伝子は、Xyloglcan endotransglucosylaseをコードし、イネゲノムデータベースにおいてアクセション番号AK070734で規定される。   (j) The XET gene encodes Xyloglcan endotransglucosylase, which is defined by accession number AK070734 in the rice genome database.

(k)Cu/Zn SOD遺伝子は、Cu/Zn Superoxide dismutaseをコードし、イネゲノムデータベースにおいてアクセション番号AK059841で規定される。   (k) The Cu / Zn SOD gene encodes Cu / Zn Superoxide dismutase, and is defined by accession number AK059841 in the rice genome database.

(l)Phosphoglucomutase遺伝子は、Phosphoglucomutase precursorをコードし、イネゲノムデータベースにおいてアクセション番号AK068502で規定される。   (l) The Phosphoglucomutase gene encodes a Phosphoglucomutase precursor, which is defined by accession number AK068502 in the rice genome database.

(m) β-1,3-glucanase遺伝子は、β-1,3-glucanase-like proteinをコードし、イネゲノムデータベースにおいてアクセション番号AK100683で規定される。   (m) The β-1,3-glucanase gene encodes β-1,3-glucanase-like protein and is defined by accession number AK100683 in the rice genome database.

(n) NAM遺伝子は、No apical meristem (NAM) protein domain containing proteinをコードし、イネゲノムデータベースにおいてアクセション番号AK063703で規定される。   (n) The NAM gene codes for No apical meristem (NAM) protein domain containing protein, and is defined in the rice genome database with accession number AK063703.

(o) Germin-like 8遺伝子は、Oxalate oxidase-like protein/germin-like protein 8をコードし、イネゲノムデータベースにおいてアクセション番号CI411375で規定される。   (o) The Germin-like 8 gene encodes Oxalate oxidase-like protein / germin-like protein 8 and is defined by accession number CI411375 in the rice genome database.

尚、評価対象とする稲の品種によっては、それぞれのアクセション番号で規定される遺伝子の配列に変異を持つ場合もあるが、配列相同性が90%以上であれば、各アクセション番号で定められる遺伝子とみなすことができるものとする。   Depending on the variety of rice to be evaluated, there may be a mutation in the sequence of the gene defined by each accession number, but if the sequence homology is 90% or more, it is determined by each accession number It can be regarded as a gene that

また、本発明において、籾における上記の遺伝子の発現量の測定は、登熟期のいずれの時点でも可能であるが、例えば、本発明を用いて効果的な栽培管理を行って白未熟粒の発生を低減するには、可能な限り早い段階、例えば稲の開花から10日目くらいまでの間に測定することが望ましい。   Moreover, in the present invention, the expression level of the above-mentioned gene in the persimmon can be measured at any time of the ripening stage, but, for example, effective cultivation control is performed using the present invention to In order to reduce the occurrence, it is desirable to measure as early as possible, for example, about 10 days after flowering of rice.

また、本発明における遺伝子の発現量を測定する方法については、遺伝子の発現量を得る目的であれば測定方法は特に限定されず、例えば、遺伝子発現を転写レベルで測定しても良いし、転写産物から翻訳されたタンパク質レベルで測定することも可能である。   The method of measuring the expression level of the gene in the present invention is not particularly limited as long as the purpose is to obtain the expression level of the gene. For example, the gene expression may be measured at the transcription level, or transcription It is also possible to measure at the protein level translated from the product.

例えば、転写レベルの測定では、PCR法に基づくリアルタイムPCR法やデジタルPCR法などが適用可能であるし、マイクロアレイ解析、LAMP法などの等温核酸増幅法やRNAドットブロット法などを用いても良い。一方、タンパク質レベルでの測定では、ELISAやウェスタンブロット法などの免疫学的検出法、発現産物が酵素であれば酵素活性測定や酵素反応生産物の定量などが適用できる。   For example, for measurement of transcription level, real-time PCR based on PCR, digital PCR, etc. can be applied, or microarray analysis, isothermal nucleic acid amplification such as LAMP, RNA dot blot, etc. may be used. On the other hand, in the measurement at the protein level, immunological detection methods such as ELISA and Western blotting can be applied, and if the expression product is an enzyme, measurement of enzyme activity, quantification of an enzyme reaction product, and the like can be applied.

本発明における遺伝子の発現量の測定は、このように様々な測定法を用いることができるが、高感度かつ高精度に遺伝子の発現量を測定するためには、リアルタイムPCR法やデジタルPCRなどのPCR法を利用するのが望ましい。   Although various measurement methods can be used to measure the expression level of the gene in the present invention, in order to measure the expression level of the gene with high sensitivity and high accuracy, real-time PCR, digital PCR, etc. can be used. It is desirable to use the PCR method.

また、本発明は、例えば、取得した遺伝子の発現量から白未熟粒或いはこの白未熟粒のうちの基部未熟粒だけの発生率、または整粒歩合を予測するための(予測値を得るための)予測式を予め作成し、これの予測式を利用することでより簡易に且つ高精度に発生割合(発生率)を予測する(予測値を得る)ことができ、この予測式は、例えば、上記(a)〜(o)に示した遺伝子から選択したひとつの遺伝子の発現量を説明変数とし、白未熟粒の発生率、或いは基部未熟粒の発生率、または整粒歩合を目的変数とする単回帰分析から作成することができ、また、二つ以上の遺伝子の発現量による単回帰分析から白未熟粒や基部未熟粒の発生率の平均値を算出することも、予測精度を高めるためには有効である。   Furthermore, the present invention can be used, for example, to predict the incidence of white immature grains or only the base immature grains of the white immature grains from the expression level of the obtained gene, or to predict grain size regulation (to obtain a predicted value ) The occurrence rate (occurrence rate) can be predicted more easily and precisely (predicted value is obtained) by creating a prediction equation in advance and using the prediction equation of this prediction equation. The expression rate of one gene selected from the genes shown in the above (a) to (o) is used as an explanatory variable, and the incidence of white immature grains, or the incidence of base immature grains, or the regulation rate is used as an objective variable It is possible to create from single regression analysis, and also to calculate the average value of the incidence of white immature grain and base immature grain from single regression analysis by the expression level of two or more genes, in order to improve prediction accuracy Is valid.

さらに、上記(a)〜(o)に示した遺伝子を少なくとも一つを含む二つ以上の遺伝子、例えば上記(a)〜(o)に示した遺伝子のうちの二つ以上の遺伝子の発現量を説明変数とし、白未熟粒或いは基部未熟粒の発生率、または整粒歩合を目的変数とする重回帰分析によっても作成可能である。これらの単回帰式あるいは重回帰式を用いることで、白未熟粒の発生率、基部未熟粒の発生率及び整粒歩合を高精度で予測することができる。   Furthermore, the expression amounts of two or more genes including at least one of the genes shown in (a) to (o) above, for example, two or more of the genes shown in (a) to (o) above It can also be created by multiple regression analysis with the incidence rate of white immature grains or base immature grains as the explanatory variable, or the grain size adjustment rate as the objective variable. By using these single regression equations or multiple regression equations, it is possible to predict the incidence rate of white immature grains, the incidence rate of base immature grains, and the grading ratio with high accuracy.

また、予測精度は劣るものの、上述のような予測式を用いず簡易評価により予測値を得ることも可能であり、例えば、遺伝子の発現量の基準値を予め設定し、基準値に対する遺伝子発現の変動量から、白未熟粒や基部未熟粒の発生率、或いは整粒歩合の傾向を知ることができる。   In addition, although prediction accuracy is inferior, it is possible to obtain a prediction value by simple evaluation without using the above prediction equation, for example, a reference value of expression level of gene is set in advance, and gene expression relative to the reference value From the fluctuation amount, it is possible to know the incidence of white immature grains and base immature grains, or the tendency of the grain size proportion.

本発明は、このような一連の方法により、白未熟粒の発生率、或いは白未熟粒のうち基部未熟粒だけの発生率、さらには整粒歩合を簡易に且つ高精度に予測することが可能なものとなる。   The present invention can predict the incidence of white immature grains, or the incidence of only immature base grains of white immature grains, and further, the grain size adjustment rate easily and with high accuracy by such a series of methods. It becomes a thing.

また、前述したように白未熟粒には、乳白粒、心白粒、背白粒、腹白粒、基部未熟粒などの種類があり、この種類によって発生原因が異なることから、本発明を用いることで、例えば、白未熟粒の多くが基部未熟粒であれば高温障害によるもの、基部未熟粒だけで白未熟粒全体の発生率を説明できなければ日照不足などのその他の要因によるものと判断でき、このような判断に基づいて、白未熟粒発生を抑制する対策としての適正な水管理または施肥管理、或いは、刈り取り時期を早めて白未熟粒発生数の増加を防止するなど、適宜なタイミングで適正な対策を実施することができ、白未熟粒の発生を未然に抑制することができることとなる。   In addition, as described above, white immature grains include types such as milk white grains, heart white grains, back white grains, belly white grains, and base immature grains, and the cause of generation varies depending on this type, so the present invention is used For example, if many of the white immature grains are base immature grains, it is determined that the cause is high temperature failure, or if the base immature grains alone can not explain the incidence rate of the whole white immature grains due to other factors such as lack of sunlight. Appropriate timing, such as appropriate water management or fertilization management as a measure to suppress white immature grain generation based on such a judgment, or early cutting time to prevent an increase in the white immature grain generation number, etc. Appropriate measures can be taken, and the generation of white immature grains can be suppressed in advance.

本発明の具体的な実施例1について図面に基づいて説明する。   Specific Example 1 of the present invention will be described based on the drawings.

本実施例は、収穫前の稲(Oryza sativa subsp. japonica)、具体的には、登熟期の稲、より具体的には、開花後初期の稲から採取した籾の(a) Amy3A、(b) Amy3E、(c) L-APX1、(d) L-APX2、(e) L-APX4、(f) α-glucosidase、(g) Cellulose synthase、(h) CRT/DRE1、(i) Ras GTPase、(j) XET、(k) Cu/Zn SOD、(l) Phosphoglucomutase、(m) β-1,3-glucanase、(n) NAM、(o) Germin-like 8の15の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の白未熟粒の発生率、または、この白未熟粒のうちの基部未熟粒の発生率、或いは、当該稲の整粒歩合の予測値を取得し、この白未熟粒発生率の予測値、または基部未熟粒発生率の予測値、或いは整粒歩合の予測値から、収穫前の早期の段階で当該稲の高温登熟障害による稲の品質低下リスクを診断する稲の診断方法である。   In this example, rice (Oryza sativa subsp. Japonica) prior to harvest, specifically, rice at the ripening stage, more specifically, rice (a) Amy3A, which is obtained from rice grown at the early stage after flowering (a) b) Amy3E, (c) L-APX1, (d) L-APX2, (e) L-APX4, (f) α-glucosidase, (g) Cellulose synthase, (h) CRT / DRE1, (i) Ras GTPase (J) XET, (k) Cu / Zn SOD, (l) Phosphoglucomutase, (m) β-1,3-gluconanase, (n) NAM, (o) at least 15 genes of Germin-like 8 The expression level of one gene is measured, and from the expression level of this gene, the incidence of white immature grains of the rice, or the incidence of base immature grains of this immature white grains, or the regulation rate of the rice concerned From the predicted value of the white immature grain incidence rate, or the predicted value of the base immature grain incidence rate, or the predicted value of the grain size percentage, the high temperature ripening failure of the rice concerned at the early stage before harvest It is a diagnostic method of rice that diagnoses the quality deterioration risk of rice caused by

具体的には、本実施例は、前記(a)〜(o)の遺伝子のうちの一つの遺伝子の発現量を説明変数とし、白未熟粒の発生率、基部未熟粒の発生率、若しくは整粒歩合を目的変数とする単回帰分析から得られる予測式を予め作成し、この予測式と、収穫前の早期の段階、具体的には、開花後初期(例えば開花後5〜10日目)の稲の籾から取得した前記遺伝子の発現量とにより、当該稲の白未熟粒の発生率、または、この白未熟粒のうちの基部未熟粒の発生率、或いは、当該稲の整粒歩合の予測値を取得し、この予測値から当該稲の高温登熟障害による稲の品質低下リスクを診断する稲の診断方法である。   Specifically, in this example, the expression amount of one of the genes (a) to (o) is used as an explanatory variable, and the incidence rate of white immature grains, the incidence rate of proximal immature grains, or adjustment The prediction equation obtained from single regression analysis with grain ratio as the objective variable is prepared in advance, and this prediction equation and the early stage before harvest, specifically, the early stage after flowering (for example, 5 to 10 days after flowering) The incidence of white immature grains of the rice, or the incidence of base immature grains of the immature white grains, or the regulation rate of the grain of the rice, according to the expression level of the gene obtained from the rice straw of It is a diagnostic method of rice which acquires a predicted value and diagnoses the quality deterioration risk of rice due to the high temperature ripening failure of the said rice from this predicted value.

以下、本実施例にについて詳述する。   Hereinafter, the present embodiment will be described in detail.

[予測式の作成]
白未熟粒及び基部未熟粒の発生率の予測値、ならびに整粒歩合の予測値を取得する際に用いる予測式を作成するにあたり、本実施例では、平成26〜28年に新潟県農業総合研究所作物研究センター(新潟県長岡市)の圃場において気温、水管理や施肥条件の異なる約60の試験区で栽培した品種「コシヒカリBL」を対象の稲とし、1試験区あたり10株の稲について、1株あたり10〜20粒の籾を開花後5日目、7日目、10日目でサンプリングし、これを液体窒素で凍結した後、−80℃で保存し、これを試供体とした。
[Create prediction formula]
In this example, in this example, the Niigata Prefectural Agricultural Comprehensive Research Project is used to create the prediction values used to obtain the predicted values of the incidence rate of white immature grains and base immature grains and the predicted value of grain adjustment percentage. Rice varieties "Koshihikari BL" grown in about 60 test districts with different temperature and water management conditions and fertilization conditions in the field of a crop research center (Nagaoka City, Niigata Prefecture) are considered as the target rice and about 10 strains of rice per test district 10 to 20 drops of persimmon were sampled on the 5th, 7th, 10th day after flowering, frozen with liquid nitrogen, then stored at -80 ° C, and used as a sample .

そして、この凍結保存した試供体を乳鉢で破砕した後、籾組織にセチルトリメチルアンモニウムブロミド(CTAB)、100mM Tris-HCl(pH8.0)、20mM EDTA、1.4M NaClを加えて懸濁し、RNeasy Plant Mini Kit(QIAGEN社)を利用して、常法に従いトータルRNAを精製した。5μgのトータルRNAから、RNA PCR kit Ver.3.0(タカラバイオ社)を用いてcDNAを合成した後、表1に示すプライマーセットにより定量的PCR解析を行った。   Then, this cryopreserved sample is crushed in a mortar, and the rat tissue is suspended by adding cetyltrimethylammonium bromide (CTAB), 100 mM Tris-HCl (pH 8.0), 20 mM EDTA, 1.4 M NaCl, and RNeasy Plant. Total RNA was purified according to a conventional method using Mini Kit (QIAGEN). After cDNA was synthesized from 5 μg of total RNA using RNA PCR kit Ver. 3.0 (Takara Bio Inc.), quantitative PCR analysis was performed using the primer set shown in Table 1.

Figure 2019058103
Figure 2019058103

尚、プライマーセットは、イネの遺伝子発現データベースRiceXPro(独立行政法人生物資源研究所;http://ricepro.dan.affrc.go.jp)から入手した遺伝子配列情報に基づいて設計した。また、定量的PCRにはSsoFast Eva Green Supermix(Bio-Rad社)を用い、表2に示す条件で反応させた。また、各遺伝子の発現量は18S rRNAに対する相対発現量として常用対数で示した。   The primer set was designed based on gene sequence information obtained from rice gene expression database RiceXPro (National Institute of Bioresources; http: // ricepro. Dan. Affrc. Go. Jp). In addition, SsoFast Eva Green Supermix (Bio-Rad) was used for quantitative PCR, and the reaction was performed under the conditions shown in Table 2. In addition, the expression level of each gene is shown as a common logarithm as a relative expression level to 18S rRNA.

Figure 2019058103
Figure 2019058103

また、一方で、遺伝子発現量を測定した各試験区から積算温度約1000℃の収穫期に収穫した玄米について、穀粒判別器(サタケ社製RGQI20A)での測定結果(外観品質調査結果)に基づいて、白未熟粒及び基部未熟粒の各発生率ならびに整粒歩合を算出し、この外観品質調査により算出した白未熟粒の発生率、基部未熟粒の発生率及び整粒歩合と遺伝子発現量の相関関係を求めた。図1〜図28は、各遺伝子の発現量(具体的には、18S rRNAに対する相対発現量)と白未熟粒及び基部未熟粒の発生率、ならびに整粒歩合と相関性を示すものである。   In addition, on the other hand, for brown rice harvested at a harvest period of an integrated temperature of about 1000 ° C. from each test section in which the gene expression level was measured, the measurement result (appearance quality survey result) with a grain classifier (RGQI 20A manufactured by Satake Co., Ltd.) Based on these, the incidences of white immature grains and base immature grains and grain size adjustment rates are calculated, and the incidence of white immature grains, incidence rate of base immature grains, grain size adjustment rate and gene expression amount calculated by this appearance quality survey Correlation was determined. FIGS. 1 to 28 show the correlation between the expression level of each gene (specifically, the relative expression level to 18S rRNA), the incidence of white immature grains and base immature grains, and the grain size adjustment rate.

本実施例では、この相関関係について、多項式近似による分析を行い、目的の遺伝子の発現量から白未熟粒の発生率、基部未熟粒の発生率及び整粒歩合の予測値を算出する予測式(単回帰式)を、表3〜11に示すよう作成した。表3〜5は、開花後5日目の遺伝子発現量を測定して白未熟粒発生率、基部未熟粒発生率及び整粒歩合の各予測値を算出する場合に用いる予測式であり、表6〜8は、開花後7日目の遺伝子発現量を測定して白未熟粒発生率、基部未熟粒発生率及び整粒歩合の各予測値を算出する場合に用いる予測式である。また、表9〜11は、開花後10日目の遺伝子発現量を測定して白未熟粒発生率、基部未熟粒発生率及び整粒歩合の各予測値を算出する場合に用いる予測式である。尚、表中に示す予測式において、yは遺伝子発現量を、xは白未熟粒発生率、基部未熟粒発生率及び整粒歩合の各予測値を示す。   In this embodiment, this correlation is analyzed by polynomial approximation, and a prediction formula for calculating the occurrence rate of white immature grains, the incidence rate of base immature grains, and the predicted grain size adjustment rate from the expression level of the target gene ( Single regression equation was created as shown in Tables 3-11. Tables 3 to 5 are prediction equations used when calculating gene expression levels on day 5 after flowering to calculate predicted values of white immature grain incidence, base immature grain incidence, and grain size regulation percentage. 6-8 are prediction equations used when calculating the prediction value of the white immature grain generation | occurrence | production rate, the base immature grain generation | occurrence | production rate, and the grain size adjustment percentage by measuring the gene expression level 7 days after flowering. Tables 9 to 11 are prediction formulas used when calculating the predicted values of white immature grain incidence, base immature grain incidence, and size regulation percentage by measuring the gene expression level on day 10 after flowering. . In the prediction formulas shown in the table, y represents the gene expression level, and x represents each predicted value of white immature grain generation rate, base immature grain generation rate, and grain size adjustment percentage.

また、本実施例では、開花後5日目及び7日目の説明変数として、α-glucosidase、Amy3A、Amy3E、Cellulose synthase、CRT/DRE1、Cu/Zn SOD、L-APX1、L-APX2、L-APX4、Ras GTPase、XETの遺伝子を採用し、開花後10日目の説明変数として、α-glucosidase、Ras GTPase、Phosphoglucomutase、β-1,3-glucanase、NAM、Germin-like 8の遺伝子を採用した。尚、説明変数として採用する遺伝子は、上記に限定されるものではない。   In this example, α-glucosidase, Amy3A, Amy3E, Cellulose synthetase, CRT / DRE1, Cu / Zn SOD, L-APX1, L-APX2, L as explanatory variables on day 5 and day 7 after flowering. -Adopt genes of APX4, Ras GTPase and XET, and adopt genes of α-glucosidase, Ras GTPase, Phosphoglucocomutase, β-1,3-Glucanase, NAM and Germin-like 8 as an explanatory variable on day 10 after flowering did. The genes employed as explanatory variables are not limited to the above.

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

[予測式の精度(信頼性)の検証]
前述のようにして作成した各予測式の精度(信頼性)について検証した。
[Verification of accuracy (reliability) of prediction formula]
The accuracy (reliability) of each prediction formula created as described above was verified.

具体的には、前述した予測式を作成する際にサンプリングした稲を栽培した圃場と異なる三箇所の圃場(圃場A、B、C)において、平成28年に品種「コシヒカリBL」を栽培し、予測式を作成した際と同様の手順で籾をサンプリングし試供体を作成し、A〜Cの各圃場の稲における遺伝子発現量を測定し、この測定した遺伝子発現量を、予測式に代入して、A〜Cの各圃場における稲の白未熟粒の発生率の予測値、基部未熟粒の発生率の予測値、及び整粒歩合の予測値を算出した。   Specifically, in 2016, the cultivar "Koshihikari BL" is cultivated in three fields (fields A, B, C) different from the fields where the rice sampled when creating the above-mentioned prediction formula is grown. The sample is sampled using the same procedure as for the prediction equation to make a sample, the gene expression amount in rice of each of the fields A to C is measured, and the measured gene expression amount is substituted into the prediction equation. Then, the predicted value of the incidence rate of white immature grains of rice, the predicted value of the incidence rate of base immature grains, and the prediction value of the grain size percentage in each of the fields A to C were calculated.

その後、A〜Cの各圃場の稲を収穫し、この収穫した稲の玄米の外観品質調査を行い、実際の白未熟粒の発生率、実際の基部未熟粒の発生率及び実際の整粒歩合を算出し、これらの値(実測値)と、予測式を用いて算出した予測値とを比較した。表12〜20は、その比較結果を示したものである。   After that, the rice in each of the fields A to C is harvested, and the appearance quality of the harvested brown rice is investigated, and the actual incidence rate of white immature grains, the actual incidence rate of immature base grains and the actual grain size adjustment ratio Were calculated, and these values (measured values) were compared with predicted values calculated using a prediction formula. Tables 12 to 20 show the comparison results.

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

各表が示すように、予測値においては、遺伝子発現量の測定時期と目的遺伝子によって多少の差はあるものの、概ね実測値に近い値を示す結果が得られた。また、白未熟粒(基部未熟粒)の実測値が10%を超えると、それ以下の場合よりも予測誤差が小さかったことから、白未熟粒(基部未熟粒)の発生率が高くなるほど予測値の精度が高くなると判断される結果が得られた。すなわち、これらの結果は、白未熟粒(基部未熟粒)の発生状況を予測するのに、登熟期の遺伝子診断(遺伝子発現量の測定)が有効であることを示している。   As shown in each table, in the predicted value, although there is a slight difference depending on the measurement time of the gene expression amount and the target gene, the result showing the value almost close to the actual value was obtained. In addition, when the measured value of white immature grains (base immature grains) exceeds 10%, the prediction error is smaller than the case of less than that, so the higher the incidence rate of white immature grains (base immature grains), the predicted value The result was obtained that it was judged that the accuracy of That is, these results indicate that gene diagnosis at the ripening stage (measurement of the gene expression level) is effective in predicting the occurrence of white immature grains (base immature grains).

以上より、本実施例は、白未熟粒、基部未熟粒及び整粒歩合と遺伝子発現量の相関関係から予測式(単回帰式)を作成し、この予測式を用いて、登熟期初期における遺伝子発現量から収穫後の稲の白未熟粒や基部未熟粒の発生率、及び整粒歩合を高精度に早期予測することができ、これにより、この予測結果に基づいて、適切な栽培管理(水管理、施肥管理や刈り取り時期などの管理)を適宜なタイミングで適切に行うことができ、白未熟粒の発生を抑制し、高い整粒歩合を実現することが可能となる。   As described above, in this example, a prediction equation (single regression equation) is created from the correlation between white immature grain, base immature grain, and grain size regulation rate and gene expression amount, and using this prediction equation, in the early stage of the ripening period Based on the gene expression level, the incidence of white immature grains and base immature grains of harvested rice, and the grain size adjustment rate can be predicted with high accuracy with high accuracy, and based on this prediction result, appropriate cultivation management ( Water management, fertilization management, management of harvesting time and the like can be appropriately performed at appropriate timing, and it becomes possible to suppress the generation of white immature grains and to realize a high grading ratio.

以下に、その具体例を示す。   Below, the example is shown.

[登熟期初期での稲の診断に基づいた稲の栽培管理(栽培対策)の有効性の検証]
二箇所の試験区を使用し、一つの試験区を施肥対応試験区、もう一つの試験区を早期収穫対応試験区とし、各試験区の稲における開花5日後の遺伝子発現量(本実施例では、Amy3A、Amy3E、L-APX1、L-APX4、α-glucosidase、XET、Cu/Zn SODの6つの遺伝子を採用した)を測定し、これを表4に示す予測式に代入して基部未熟粒発生率の予測値を取得した。尚、本実施例では、品種「コシヒカリBL」を用いて検証を行った。
[Verification of effectiveness of cultivation management (cultivation measures) of rice based on diagnosis of rice at the early stage of ripening period]
Using two test plots, one test plot is a fertilization-matched test plot, and another test plot is an early harvest-matched test plot, and the amount of gene expression after 5 days of flowering in rice of each test plot (in this example) , Amy3A, Amy3E, L-APX1, L-APX4, α-glucosidase, XET, and Cu / Zn SOD were adopted, and these were substituted into the prediction formula shown in Table 4 to obtain base immature grains Predicted incidence rate was obtained. In the present example, verification was performed using the variety "Koshihikari BL".

そして、施肥対応試験区においては、取得した基部未熟粒発生率の予測値に基づいて施肥対策を行う実肥対策区と、対策を行わない通常栽培区に区分し、実肥対策区には、窒素成分で1kg/10アールの実肥を穂揃期に施用し、その後、両区分ともに積算温度約1000℃の収穫期に収穫した玄米それぞれにおいて基部未熟粒の発生率を測定した。   And in fertilization correspondence examination ward, we divide into actual fertilization measures ward which performs fertilization measures based on prediction value of base immature grain incidence rate that we acquired, and normal cultivation ward which does not take measures in actual fertilization measures ward A nitrogen content of 1 kg / 10 air of real fertilizer was applied in the same period of earing, and thereafter, the incidence rate of base immature grains was measured in each of the brown rice harvested in the harvesting period of about 1000 ° C. in both categories.

また、早期収穫対応試験区においては、取得した基部未熟粒発生率の予測値に基づいて早期に稲を刈り取って収穫する早期収穫区と、対策を行わない通常収穫区に区分し、早期収穫区分では、収穫的期の目安となる日平均気温の全積算温度の約1000℃よりも50℃早い、約950℃で収穫し、通常収穫区は、通常通り約1000℃で収穫し、それぞれにおいて基部未熟粒の発生率を測定した。   In addition, in the early harvest response test zone, it is divided into an early harvest zone in which rice is harvested and harvested early based on the acquired predicted value of the base immature grain incidence rate, and a normal harvest zone in which no measures are taken. In harvest, harvest at about 950 ° C, about 50 ° C faster than about 1000 ° C of the total integrated temperature of the daily average temperature, which is a measure of harvest season, and harvest the harvest area at about 1000 ° C as usual, The incidence of immature grains was measured.

各試験区における遺伝子発現に基づいた基部未熟粒の発生率の予測値と、栽培対策の有無による実際の基部未熟粒の発生率の測定結果を表21に示す。   The predicted value of the incidence rate of the base immature grain based on the gene expression in each test section and the measurement result of the incidence rate of the actual base imitation grain according to the presence or absence of cultivation measures are shown in Table 21.

Figure 2019058103
Figure 2019058103

表21に示すように、施肥対応試験区においては、基部未熟粒の発生率の予測値が24.2%(7遺伝子から夫々求めた予測値の平均値)であり、これに対して、施肥対策を行わない通常栽培区の基部未熟粒の発生率(実測値)は、18.0%であったが、予測値に基づいて施肥対策を行った実肥対策区の実際の基部未熟粒の発生率は、4.3%であった。   As shown in Table 21, in the fertilization correspondence test area, the predicted value of the incidence rate of the base immature grain is 24.2% (the average value of the predicted values respectively obtained from the seven genes). The incidence rate (measured value) of the base immature grain of the normal cultivation area which does not take measures was 18.0%, but the actual base immature grain of the actual fertilization area of the fertilization measures area which applied the fertilization measures based on the predicted value The incidence was 4.3%.

また、早期収穫対応試験区においては、基部未熟粒の発生率の予測値が11.5%(7遺伝子から夫々求めた予測値の平均値)であり、これに対して、対策を行わない通常収穫区の基部未熟粒の実際の発生率(実測値)は、14.5%であったが、予測値に基づいて刈り取り時期を早めた早期収穫区の実際の基部未熟粒の発生率は、7.6%であった。   In addition, in the early harvest response test zone, the predicted value of the incidence rate of the base immature grain is 11.5% (average value of predicted values obtained from each of the 7 genes), and no countermeasure is taken against this. Although the actual incidence rate (measured value) of the base immature grain in the harvest area was 14.5%, the actual incidence rate of the immature base imitation grain in the early harvest area, in which the harvest time was advanced based on the predicted value, It was 7.6%.

以上の結果から、本実施例の稲の診断方法を用いて、収穫前の早期の段階(具体的には、稲の開花後初期(開花後5〜10日目くらい)の段階)で白未熟粒または基部未熟粒の発生率、或いは整粒歩合を予測し、この予測結果に基づいて適正な栽培対策(水管理、施肥管理、早期刈り取り(早期収穫))を行うことで、異常気象による白未熟粒の発生を未然に抑制し、整粒歩合の高い稲の栽培が実現可能となる。   From the above results, using the method for diagnosing rice of this example, white immature white at the early stage before harvesting (specifically, the stage after flowering of rice (about 5 to 10 days after flowering)) By predicting the incidence rate of grain or base immature grains or grain size regulation and performing appropriate cultivation measures (water management, fertilization management, early harvest (early harvest)) based on this prediction result, white due to abnormal weather By suppressing the generation of immature grains in advance, it becomes possible to realize the cultivation of rice with a high proportion of grain size regulation.

尚、本実施例では、試供体の作成及び予測式の検証を行うにあたり、品種「コシヒカリBL」を用いたが、従来の品種「コシヒカリ」でも同等の結果が得られることは確認済みである。   In the present example, the cultivar "Koshihikari BL" was used to prepare the sample and verify the prediction formula, but it has been confirmed that the same result can be obtained with the conventional cultivar "Koshihikari".

本発明の具体的な実施例2について図面に基づいて説明する。   A specific embodiment 2 of the present invention will be described based on the drawings.

本実施例は、実施例1と異なる方法で予測式を作成した場合であり、具体的には、実施例1では、遺伝子発現データと外観品質調査結果から得られた白未熟粒発生率、基部未熟粒発生率及び整粒歩合とを用いて単回帰分析を行い、各予測式を作成したが、本実施例は、重回帰分析を行って予測式を作成した場合である。   The present example is a case where a prediction formula was created by a method different from Example 1. Specifically, in Example 1, the white immature grain incidence obtained from the gene expression data and the appearance quality survey result, the base Single regression analysis was performed using the immature grain generation rate and the grain size adjustment ratio, and each prediction equation was created. In this example, multiple regression analysis is performed to create a prediction equation.

以下、本実施例にについて詳述する。   Hereinafter, the present embodiment will be described in detail.

[予測式の作成]
本実施例における重回帰分析は、実施例1で挙げた(a)〜(o)の遺伝子の開花後5日目、7日目、10日目の遺伝子発現量を説明変数とし、白未熟粒の発生率、基部未熟粒の発生率、若しくは整粒歩合を目的変数して、統計解析ソフト(エスミ社製EXCEL予測Ver.3.0)を用いて解析を行った。
[Create prediction formula]
In the multiple regression analysis in this example, white immature grains were obtained using the gene expression levels on days 5, 7, and 10 after flowering of the genes of (a) to (o) mentioned in Example 1 as an explanatory variable. The analysis was performed using statistical analysis software (EXCEL prediction Ver. 3.0 manufactured by Esumi Co., Ltd.) with the incidence rate of stem area, the incidence rate of base immature grains, or the regulation rate as an objective variable.

具体的には、本実施例では、開花後5日目においては、Amy3E、Cellulose synthase、CRT/DRE1、L-APX1、L-APX4、XETの遺伝子の組み合わせを白未熟粒の発生率、Amy3E、Cellulose synthase、CRT/DRE1、XETの組み合わせを基部未熟粒の発生率、Amy3E、Cellulose synthase、CRT/DRE1、L-APX4の組み合わせを整粒歩合のそれぞれ説明変数とし、また、開花後7日目においては、α-glucosidase、Cu/Zn SOD、L-APX2、Ras GTPaseの組み合わせを白未熟粒及び基部未熟粒の発生率、Amy3E、Cu/Zn SOD、Ras GTPase、XETの組み合わせを整粒歩合の説明変数とし、また、開花後10日目においては、α-glucosidase、β-1,3-glucanase、Ras GTPase、NAMの組み合わせを白未熟粒及び基部未熟粒の発生率、ならびに整粒歩合の説明変数とし、表22に示す各予測式を作成した。   Specifically, in the present example, the combination of Amy3E, Cellulose synthase, CRT / DRE1, L-APX1, L-APX4 and XET genes at the 5th day after flowering is the incidence of white immature grains, Amy3E, The combination of Cellulose synthetase, CRT / DRE1 and XET is the incidence rate of the base immature grain, and the combination of Amy3E, Cellulose synthase, CRT / DRE1 and L-APX4 is the explanatory variable of the grain size adjustment rate, and on day 7 after flowering Describes the combination ratio of α-glucosidase, Cu / Zn SOD, L-APX2, Ras GTPase and the proportion of white immature grain and base immature grain, Amy3E, Cu / Zn SOD, Ras GTPase, XET In addition, at 10 days after flowering, the combination of α-glucosidase, β-1,3-glucanase, Ras GTPase, and NAM is the incidence of white immature grain and base immature grain, and explanatory variable of grading frequency Then, each prediction formula shown in Table 22 was created.

Figure 2019058103
Figure 2019058103

[予測式の精度(信頼性)の検証]
前述のようにして作成した各予測式の精度(信頼性)について検証した。
[Verification of accuracy (reliability) of prediction formula]
The accuracy (reliability) of each prediction formula created as described above was verified.

具体的には、本実施例では、新潟県農業総合研究所作物研究センターの圃場において実施例1とは異なる三箇所の試験区(試験区X、Y、Z)において、平成28年に品種「コシヒカリBL」を栽培し、実施例1と同様の手順で籾をサンプリングし試供体を作成し、X〜Zの各試験区の稲における遺伝子発現量を測定し、この測定した遺伝子発現量を、上記の予測式に代入して、X〜Zの各試験区における稲の白未熟粒の発生率の予測値、基部未熟粒の発生率の予測値、及び整粒歩合の予測値を算出した。   Specifically, in the present example, in the field of the Niigata Prefectural Agricultural Research Institute Crop Research Center, in the three test zones (test zones X, Y, Z) different from the first embodiment, the varieties “2016” "Koshihikari BL" is grown, the sample is sampled by the same procedure as in Example 1 to prepare a sample, the gene expression amount in rice of each test zone of X to Z is measured, and the measured gene expression amount is The prediction value of the incidence rate of white immature grains of rice, the prediction value of the incidence rate of base immature grains, and the prediction value of grain size regulation percentage in each of the test sections X to Z were calculated by substituting the above prediction equation.

その後、X〜Zの各試験区の稲を収穫し、この収穫した稲の玄米の外観品質調査を行い、実際の白未熟粒の発生率、実際の基部未熟粒の発生率及び実際の整粒歩合を算出し、これらの値(実測値)と、予測式を用いて算出した予測値とを比較した。表23〜25は、その比較結果を示したものである。   After that, the rice in each of the test zones X to Z is harvested, and the appearance quality of the harvested brown rice is examined to determine the actual incidence rate of white immature grains, the actual incidence rate of immature base grains, and the actual grain size adjustment The commissions were calculated, and these values (measured values) were compared with predicted values calculated using a prediction formula. Tables 23 to 25 show the comparison results.

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

Figure 2019058103
Figure 2019058103

実施例1の表12〜20に示した単回帰分析を行って作成した予測式によって得られた予測値の予測精度と比べて、本実施例の重回帰分析を行って作成した予測式によって得られた予測値の予測精度のほうが、精度が高い傾向にあった。この結果から、複数の遺伝子の発現量を説明変数とする重回帰分析を行って作成した予測式を用いることで、予測精度が向上すること、また、単回帰分析に加えて重回帰分析も、白未熟粒や基部未熟粒の発生率ならびに整粒歩合の早期予測に有効であることが確認できた。   Compared with the prediction accuracy of the predicted value obtained by the prediction formula prepared by performing the single regression analysis shown in Tables 12 to 20 of Example 1, it is obtained by the prediction formula prepared by performing the multiple regression analysis of this example. The prediction accuracy of the predicted value tends to be higher. From this result, by using a prediction equation created by performing multiple regression analysis using the expression levels of a plurality of genes as explanatory variables, prediction accuracy is improved, and in addition to single regression analysis, multiple regression analysis is also available. It has been confirmed that this method is effective for the early prediction of the incidence of white immature grains and immature base grains and the adjustment ratio.

尚、本発明は、実施例1,2に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to the first and second embodiments, and the specific configuration of each component can be designed as appropriate.

Claims (14)

稲の白未熟粒の発生率を収穫前に予測する方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の白未熟粒の発生率を予測することを特徴とする稲の白未熟粒発生率予測方法。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
It is a method for predicting the incidence of white immature grains of rice before harvest, which is an expression amount of at least one of the following genes (a) to (o) of a rice bran collected from rice during the ripening stage: A method for predicting the white immature grain incidence of rice, which comprises measuring and predicting the incidence of white immature grains of said rice from the expression level of this gene.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
請求項1記載の稲の白未熟粒発生率予測方法において、前記遺伝子の発現量の測定は、稲の開花後初期に行うことを特徴とする稲の白未熟粒発生率予測方法。   The method for predicting the white immature grain incidence of rice according to claim 1, wherein the expression amount of the gene is measured at an early stage after flowering of the rice. 請求項1記載の稲の白未熟粒発生率予測方法において、前記遺伝子の発現量の測定は、稲の開花から10日以内に行うことを特徴とする稲の白未熟粒発生率予測方法。   The method for predicting the white immature grain incidence of rice according to claim 1, wherein the expression amount of the gene is measured within 10 days from the flowering of the rice. 請求項1〜3いずれか1項に記載の稲の白未熟粒発生率予測方法において、前記(a)〜(o)の遺伝子のうちの一つの遺伝子の発現量を説明変数とし、白未熟粒の発生率を目的変数とする単回帰分析から得られる白未熟粒発生率予測式を用いることを特徴する稲の白未熟粒発生率予測方法。   In the white immature grain incidence prediction method of rice according to any one of claims 1 to 3, the expression amount of one of the genes (a) to (o) is used as an explanatory variable, and the white immature grain A method for predicting the white immature grain incidence of rice, which comprises using the white immature grain incidence prediction equation obtained from single regression analysis with the incidence rate of the target variable as an objective variable. 請求項1〜3いずれか1項に記載の稲の白未熟粒発生率予測方法において、前記(a)〜(o)の遺伝子を少なくとも一つ含む二つ以上の遺伝子の発現量を説明変数とし、白未熟粒の発生率を目的変数とする重回帰分析から得られる白未熟粒発生率予測式を用いることを特徴する稲の白未熟粒発生率予測方法。   The method according to any one of claims 1 to 3, wherein the expression amount of two or more genes including at least one of the genes (a) to (o) is used as an explanatory variable. A method for predicting the white immature grain incidence rate of rice, which comprises using a white immature grain incidence rate prediction equation obtained from multiple regression analysis using the incidence rate of white immature grains as an objective variable. 稲の整粒歩合を収穫前に予測する方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の整粒歩合を予測することを特徴とする稲の整粒歩合予測方法。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
It is a method for predicting grain size regulation of rice before harvesting, and measuring the expression level of at least one gene among the following genes (a) to (o) of the rice bran collected from rice in the ripening stage, A method for predicting grain size regulation rate of rice, which comprises predicting the grain size regulation rate of said rice from the expression amount of this gene.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
請求項6記載の稲の整粒歩合予測方法において、前記遺伝子の発現量の測定は、稲の開花後初期に行うことを特徴とする稲の整粒歩合予測方法。   The method of predicting grain size regulation rate of rice according to claim 6, wherein the expression amount of the gene is measured at an early stage after flowering of rice. 請求項1記載の稲の整粒歩合予測方法において、前記遺伝子の発現量の測定は、稲の開花から10日以内に行うことを特徴とする稲の整粒歩合予測方法。   The method according to claim 1, wherein the expression level of the gene is measured within 10 days from the flowering of the rice. 請求項6〜8いずれか1項に記載の稲の整粒歩合予測方法において、前記(a)〜(o)の遺伝子のうちの一つの遺伝子の発現量を説明変数とし、整粒歩合を目的変数とする単回帰分析から得られる整粒歩合予測式を用いることを特徴する稲の整粒歩合予測方法。   The method for predicting grain size regulation rate in rice according to any one of claims 6 to 8, wherein the expression amount of one of the genes (a) to (o) is used as an explanatory variable and the grain size regulation is aimed. A method for predicting the grain size adjustment rate of rice, which comprises using a grain size adjustment rate prediction formula obtained from single regression analysis as a variable. 請求項6〜8いずれか1項に記載の稲の整粒歩合予測方法において、前記(a)〜(o)の遺伝子を少なくとも一つ含む二つ以上の遺伝子の発現量を説明変数とし、整粒歩合を目的変数とする重回帰分析から得られる整粒歩合予測式を用いることを特徴する稲の整粒歩合予測方法。   The method for predicting grain size regulation rate of rice according to any one of claims 6 to 8, wherein the expression amount of two or more genes including at least one of the genes (a) to (o) is used as an explanatory variable, A method for predicting the grain proportion of rice, which comprises using a grain size proportion prediction equation obtained by multiple regression analysis with grain proportion as an objective variable. 稲の白未熟粒発生率を収穫前に予測する際に用いるマーカー遺伝子であって、下記(a)〜(o)の遺伝子から選択されることを特徴とするマーカー遺伝子。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
A marker gene which is used when predicting the white immature grain development rate of rice before harvesting, and is selected from the following genes (a) to (o):
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
稲の整粒歩合を収穫前に予測する際に用いるマーカー遺伝子であって、下記(a)〜(o)の遺伝子から選択されることを特徴とするマーカー遺伝子。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
A marker gene, which is used to predict the grain size regulation rate of rice before harvesting, and is selected from the following genes (a) to (o):
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
稲の栽培方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の白未熟粒発生率の予測値を取得し、この白未熟粒発生率の予測値に基づいて、当該稲の水管理、施肥管理、刈り取り時期などの栽培管理を決定することを特徴とする稲の栽培方法。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
In the method of cultivating rice, the expression amount of at least one gene of the following (a) to (o) genes of the potato collected from rice at the ripening stage is measured, and the expression amount of this gene is measured from the said rice The rice is characterized by acquiring the predicted value of the white immature grain incidence rate of rice and determining the cultivation management such as water management, fertilization management, harvesting time, etc. of the rice based on the prediction value of the white immature grain incidence rate. How to grow.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
稲の栽培方法であって、登熟期の稲から採取した籾の下記(a)〜(o)の遺伝子のうち、少なくとも一つの遺伝子の発現量を測定し、この遺伝子の発現量から当該稲の整粒歩合の予測値を取得し、この整粒歩合の予測値に基づいて、当該稲の水管理、施肥管理、刈り取り時期などの栽培管理を決定することを特徴とする稲の栽培方法。

(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT/DRE1 (i) Ras GTPase
(j) XET (k) Cu/Zn SOD (l) Phosphoglucomutase
(m) β-1,3-glucanase (n) NAM (o) Germin-like 8
In the method of cultivating rice, the expression amount of at least one gene of the following (a) to (o) genes of the potato collected from rice at the ripening stage is measured, and the expression amount of this gene is measured from the said rice A method for cultivating rice, comprising acquiring a predicted value of a grain size regulation percentage and determining cultivation management such as water management, fertilization management, harvesting time, etc. of the rice based on the predicted value of the grain size classification percentage.
Record
(a) Amy3A (b) Amy3E (c) L-APX1
(d) L-APX2 (e) L-APX4 (f) α-glucosidase
(g) Cellulose synthase (h) CRT / DRE1 (i) Ras GTPase
(j) XET (k) Cu / Zn SOD (l) Phosphoglucomutase
(m) β-1,3-Glucanase (n) NAM (o) Germin-like 8
JP2017185414A 2017-09-26 2017-09-26 Rice white immature grain occurrence rate prediction method, rice sizing rate prediction method and rice cultivation method Active JP6933838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185414A JP6933838B2 (en) 2017-09-26 2017-09-26 Rice white immature grain occurrence rate prediction method, rice sizing rate prediction method and rice cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185414A JP6933838B2 (en) 2017-09-26 2017-09-26 Rice white immature grain occurrence rate prediction method, rice sizing rate prediction method and rice cultivation method

Publications (2)

Publication Number Publication Date
JP2019058103A true JP2019058103A (en) 2019-04-18
JP6933838B2 JP6933838B2 (en) 2021-09-08

Family

ID=66175611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185414A Active JP6933838B2 (en) 2017-09-26 2017-09-26 Rice white immature grain occurrence rate prediction method, rice sizing rate prediction method and rice cultivation method

Country Status (1)

Country Link
JP (1) JP6933838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199804A (en) * 2019-07-08 2019-09-06 湖南省水稻研究所 A kind of fragrant high yield cultivating method of the excellent guarantor of rice guarantor
CN113215296A (en) * 2021-04-28 2021-08-06 广西大学 Molecular marker of rice awn length gene gna1 and identification method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199804A (en) * 2019-07-08 2019-09-06 湖南省水稻研究所 A kind of fragrant high yield cultivating method of the excellent guarantor of rice guarantor
CN113215296A (en) * 2021-04-28 2021-08-06 广西大学 Molecular marker of rice awn length gene gna1 and identification method and application thereof
CN113215296B (en) * 2021-04-28 2022-08-09 广西大学 Rice awn length genegna1Molecular marker of (3), and identification method and application thereof

Also Published As

Publication number Publication date
JP6933838B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
Mares et al. Late-maturity α-amylase: low falling number in wheat in the absence of preharvest sprouting
Merah Potential importance of water status traits for durum wheat improvement under Mediterranean conditions
Shirdelmoghanloo et al. Truncation of grain filling in wheat (Triticum aestivum) triggered by brief heat stress during early grain filling: association with senescence responses and reductions in stem reserves
Kipp et al. Identification of stay-green and early senescence phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein concentration using high-throughput phenotyping techniques
Peltonen-Sainio et al. Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions
Corol et al. 1H‐NMR screening for the high‐throughput determination of genotype and environmental effects on the content of asparagine in wheat grain
Powell Seed vigour in the 21st century
Oelofse et al. Influencing factors of sodium dodecyl sulfate sedimentation in bread wheat
Ji et al. Pre-harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics
JP6933838B2 (en) Rice white immature grain occurrence rate prediction method, rice sizing rate prediction method and rice cultivation method
Tian et al. Characterization of culm morphology, anatomy and chemical composition of foxtail millet cultivars differing in lodging resistance
Ramya et al. Genotypic variation for normalized difference vegetation index and its relationship with grain yield in wheat under terminal heat stress
Al-Naggar et al. Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yield and quality traits
KR101248016B1 (en) A floury japonica rice line, Namil(SA)-flo1, suitable for dry milling process and the food compositions containing Namil(SA)-flo1 as an active ingredient
Evans et al. Improved prediction of malt fermentability by measurement of the diastatic power enzymes β-amylase, α-amylase, and limit dextrinase: II. Impact of barley genetics, growing environment, and gibberellin on levels of α-amylase and limit dextrinase in malt
Pushpa et al. Study of physicochemical, cooking and nutritional properties of promising rice varieties of Tamil Nadu
MATUŠINSKY et al. Spring barley stand structure as an indicator of lodging risk.
Suguna et al. Genetic analysis of semolina recovery and associated traits-A step towards breeding for specific end uses in sorghum (Sorghum bicolor (L.) Moench
Zhou et al. Combining ability of barley flour pasting properties
Pal et al. Estimation of genetic parameters in barley (Hordeum vulgare L)
Martina et al. Baking quality of genetics resources of hulled wheat species, grown in organic farming
Noga et al. Chlorophyll a fluorescence parameters in the evaluation of oat DH lines yield components
Dahal Assessment of pre-harvest sprouting resistance in spring wheat in Norway
Sharma et al. Effect of sowing dates on genetic components in six-rowed barley
RU2371912C2 (en) Method of estimating selection material of grains as to its resistance to unfavourable environmental conditions

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210811

R150 Certificate of patent or registration of utility model

Ref document number: 6933838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150