JP2019057691A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2019057691A
JP2019057691A JP2017182631A JP2017182631A JP2019057691A JP 2019057691 A JP2019057691 A JP 2019057691A JP 2017182631 A JP2017182631 A JP 2017182631A JP 2017182631 A JP2017182631 A JP 2017182631A JP 2019057691 A JP2019057691 A JP 2019057691A
Authority
JP
Japan
Prior art keywords
semiconductor element
copper particles
acid
mass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017182631A
Other languages
Japanese (ja)
Other versions
JP7067002B2 (en
Inventor
千絵 須鎌
Chie Sugama
千絵 須鎌
芳則 江尻
Yoshinori Ejiri
芳則 江尻
偉夫 中子
Takeo Nakako
偉夫 中子
石川 大
Masaru Ishikawa
大 石川
祐貴 川名
Yuki Kawana
祐貴 川名
征央 根岸
Motohiro Negishi
征央 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017182631A priority Critical patent/JP7067002B2/en
Publication of JP2019057691A publication Critical patent/JP2019057691A/en
Application granted granted Critical
Publication of JP7067002B2 publication Critical patent/JP7067002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

To provide a manufacturing method of a semiconductor device, with an excellent connection reliability.SOLUTION: A manufacturing method of a semiconductor device, comprises: a mounting step of mounting a semiconductor element onto a support member for mounting the semiconductor element through a sinterability joint material including a metal particle and a disperse medium, and in which an outer peripheral edge of the sinterability joint material is larger than that of the semiconductor element in a plan view; a drying step of removing at least one part of the disperse medium from the sinterability joint material existed exceeding the outer peripheral edge of the semiconductor element; a joint step of heating the sinterability joint material, and jointing the support member for mounting the semiconductor element and the semiconductor element through a sinter material of the sinterability joint material; and a removing step of removing the sinter material of the sinterability joint material, which is existed exceeding the outer peripheral edge of the semiconductor element.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置の製造方法に関し、特に半導体素子と半導体素子搭載用支持部材とを、金属粒子及び分散媒を含む焼結性接合材料を用いて接合する、半導体装置の製造方法に関する。   The present invention relates to a semiconductor device manufacturing method, and more particularly to a semiconductor device manufacturing method in which a semiconductor element and a semiconductor element mounting support member are bonded using a sinterable bonding material containing metal particles and a dispersion medium.

近年、半導体パッケージ材料には、耐熱性(高温・高湿下での安定性や信頼性に優れること)が求められている。例えば、ハイブリッド自動車や電気自動車、電鉄、分散電源では、インバーターにパワー半導体が多く使われているが、パワー密度の向上が著しく、パッケージ材料は高温に晒される。また、カーエレクトロニクス分野で用いられる通常の半導体チップを使用するエレクトロニクスコントロールユニット(ECU)も、これまで車室内に搭載されていたが、より環境の厳しいエンジンルーム内へ搭載される方向にあり、より高い耐熱性が要求されている。さらに、ワイドバンドギャップ半導体(SiC等)も適用されてきており、200℃以上で高温動作させる用途も予想されている。   In recent years, semiconductor package materials are required to have heat resistance (excellent stability and reliability under high temperature and high humidity). For example, in hybrid vehicles, electric vehicles, electric railways, and distributed power supplies, power semiconductors are often used in inverters, but the power density is remarkably improved, and the package material is exposed to high temperatures. In addition, electronics control units (ECUs) that use ordinary semiconductor chips used in the car electronics field have also been installed in the vehicle compartment until now, but they are in the direction of being installed in more severe engine rooms. High heat resistance is required. Further, wide band gap semiconductors (SiC and the like) have been applied, and applications for operating at a high temperature at 200 ° C. or higher are also expected.

このような高温条件下では、半導体素子の接合材としてこれまで用いられてきたはんだでは対応が困難である。そのため、金属微粒子を含むペーストを焼結して得られる焼結金属による接合が、高温対応の接合技術として提案されている(例えば、特許文献1参照)。しかしながら、ペーストを用いて接合をする場合、接合時に半導体素子の外周部からはみ出したペーストが半導体素子端面に這い上がり、半導体素子が短絡する虞がある。このような這い上がりは、支持部材との接着性を高めようと、半導体素子を加圧しながら加熱した場合において特に顕著に現れる。   Under such a high temperature condition, it has been difficult to cope with solder that has been used as a bonding material for semiconductor elements. Therefore, joining with a sintered metal obtained by sintering a paste containing metal fine particles has been proposed as a joining technique for high temperatures (see, for example, Patent Document 1). However, when bonding is performed using a paste, the paste that protrudes from the outer peripheral portion of the semiconductor element at the time of bonding may crawl up to the end surface of the semiconductor element, and the semiconductor element may be short-circuited. Such creeping is particularly noticeable when the semiconductor element is heated while being pressurized in order to improve the adhesion to the support member.

そこで、ペーストの塗布面積を予め小さくしておき、接合時にペーストが半導体素子の外周縁からはみ出ないようにする方法が提案されている(例えば、特許文献2参照)。   Therefore, a method has been proposed in which the paste application area is reduced in advance so that the paste does not protrude from the outer periphery of the semiconductor element during bonding (see, for example, Patent Document 2).

特開2007−214340号公報JP 2007-214340 A 特開2015−153966号公報Japanese Patent Laying-Open No. 2015-153966

ところで、半導体素子は、動作時に通電による発熱と冷却を繰り返す。このとき、半導体素子及び半導体素子近傍の部材は、各々の線膨張係数に従った伸縮動作を繰り返すため、半導体素子の周縁部には一定の負荷がかかる。この点につき、特許文献2の方法では、半導体素子の面積よりもペーストの焼結物である焼結金属層の面積が小さく、同文献の図1に示されるように半導体素子の周縁部には焼結金属層が形成されない。半導体素子の周縁部に焼結金属層が形成されない場合、半導体動作時に接合界面において界面剥離が生じる虞がある。この界面剥離は、半導体装置の接続信頼性を低下させる原因となる。   By the way, the semiconductor element repeats heat generation and cooling due to energization during operation. At this time, since the semiconductor element and the members in the vicinity of the semiconductor element repeat the expansion and contraction operations according to the respective linear expansion coefficients, a certain load is applied to the peripheral edge of the semiconductor element. In this regard, in the method of Patent Document 2, the area of the sintered metal layer, which is a paste sintered product, is smaller than the area of the semiconductor element, and as shown in FIG. A sintered metal layer is not formed. When the sintered metal layer is not formed on the peripheral edge of the semiconductor element, there is a risk that interface peeling occurs at the bonding interface during semiconductor operation. This interfacial peeling causes a decrease in connection reliability of the semiconductor device.

本発明は、上記課題を解決するためになされたものであり、接続信頼性に優れる半導体装置の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device having excellent connection reliability.

本発明は、半導体素子搭載用支持部材上に、金属粒子及び分散媒を含む焼結性接合材料を介して半導体素子を載置する工程であり、平面視において、焼結性接合材料の外周縁が半導体素子の外周縁よりも大きい、載置工程と、半導体素子の外周縁を超えて存在する焼結性接合材料から、分散媒の少なくとも一部を除去する乾燥工程と、焼結性接合材料を加熱して、半導体素子搭載用支持部材と半導体素子とを、焼結性接合材料の焼結物を介して接合する接合工程と、半導体素子の外周縁を超えて存在する、焼結性接合材料の焼結物を除去する除去工程と、を備える、半導体装置の製造方法を提供する。   The present invention is a step of placing a semiconductor element on a semiconductor element mounting support member via a sinterable bonding material containing metal particles and a dispersion medium. Is larger than the outer peripheral edge of the semiconductor element, a placing process, a drying process for removing at least a part of the dispersion medium from the sinterable bonding material existing beyond the outer peripheral edge of the semiconductor element, and a sinterable bonding material A bonding step for bonding the semiconductor element mounting support member and the semiconductor element via a sintered product of a sinterable bonding material, and a sinterable bonding that exists beyond the outer periphery of the semiconductor element. And a removing step of removing a sintered product of the material.

本発明では、焼結性接合材料の焼結を進行させる前に、乾燥工程を必須とする。これにより、特に半導体素子の外周縁を超えて存在する焼結性接合材料において、当該材料に含まれる分散媒の揮発が進む。分散媒が揮発した金属粒子の堆積層を焼結したとしても充分な可撓性も密着性も得られない。すなわち、当該堆積層は、室温から焼成温度である数百度に昇温した際に、熱膨張率差で生じる変位により半導体素子搭載用支持部材上に定着することができず、金属焼結片となる。金属焼結片は、除去工程により好適に除去することができる。得られた半導体装置においては、半導体素子端部への焼結性接合材料の這い上がりもなく、また、半導体素子と半導体素子搭載用支持部材とが、半導体素子の接合面と略同面積の焼結物により接合されることとなる。いずれも従来の課題を解決するものであり、本発明は、接続信頼性に優れる半導体装置の製造方法を提供することができると言える。   In the present invention, a drying step is essential before the sintering of the sinterable bonding material proceeds. Thereby, volatilization of the dispersion medium contained in the material progresses particularly in the sinterable bonding material existing beyond the outer peripheral edge of the semiconductor element. Even if the deposited layer of metal particles from which the dispersion medium has volatilized is sintered, sufficient flexibility and adhesion cannot be obtained. That is, the deposited layer cannot be fixed on the semiconductor element mounting support member due to the displacement caused by the difference in thermal expansion coefficient when the temperature is raised from room temperature to several hundred degrees which is the firing temperature. Become. The sintered metal piece can be suitably removed by the removing step. In the obtained semiconductor device, there is no sinter of the sinterable bonding material to the edge of the semiconductor element, and the semiconductor element and the support member for mounting the semiconductor element are baked with the same area as the bonding surface of the semiconductor element. It will be joined by the joint. Any of them solves the conventional problems, and it can be said that the present invention can provide a method for manufacturing a semiconductor device excellent in connection reliability.

本発明において、金属粒子が銅粒子を含み、銅粒子の含有量が、焼結性接合材料の全質量を基準として80質量%以上であることが好ましい。   In this invention, it is preferable that a metal particle contains a copper particle and content of a copper particle is 80 mass% or more on the basis of the total mass of a sinterable joining material.

本発明において、銅粒子がサブマイクロ銅粒子及びフレーク状マイクロ銅粒子を含み、サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計が、金属粒子の全質量を基準として80質量%以上であってもよい。   In the present invention, the copper particles include sub-micro copper particles and flaky micro-copper particles, and the total content of the sub-micro copper particles and the flaky micro-copper particles is 80 masses based on the total mass of the metal particles. % Or more.

本発明において、半導体素子はワイドバンドギャップ半導体であってもよい。   In the present invention, the semiconductor element may be a wide band gap semiconductor.

本発明によれば、接続信頼性に優れる半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor device which is excellent in connection reliability can be provided.

本実施形態に係る半導体装置の製造方法により得られる半導体装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the semiconductor device obtained by the manufacturing method of the semiconductor device which concerns on this embodiment. 本実施形態に係る半導体装置の製造方法により得られる半導体装置の他の例を示す模式断面図である。It is a schematic cross section which shows the other example of the semiconductor device obtained by the manufacturing method of the semiconductor device which concerns on this embodiment. 実施例の封止サンプルについての断面SEM像である。It is a cross-sectional SEM image about the sealing sample of an Example.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではない。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments.

以下、図面を参照しながら好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

(焼結性接合材料)
本実施形態に係る半導体装置の製造方法で用いられる焼結性接合材料の一例を以下に示す。
(Sintering bonding material)
An example of a sinterable bonding material used in the method for manufacturing a semiconductor device according to this embodiment is shown below.

本実施形態に係る焼結性接合材料は、金属粒子及び分散媒を含んでおり、接合用の金属ペーストということができる。特に、焼結性接合材料が金属粒子として銅粒子を含む場合は、接合用銅ペーストということができる。   The sinterable bonding material according to the present embodiment includes metal particles and a dispersion medium, and can be referred to as a bonding metal paste. In particular, when the sinterable bonding material contains copper particles as metal particles, it can be referred to as a bonding copper paste.

(金属粒子)
本実施形態に係る金属粒子としては、サブマイクロ銅粒子、フレーク状マイクロ銅粒子、これら以外の銅粒子、その他の金属粒子等が挙げられる。
(Metal particles)
Examples of the metal particles according to this embodiment include sub-micro copper particles, flaky micro-copper particles, copper particles other than these, and other metal particles.

(サブマイクロ銅粒子)
サブマイクロ銅粒子としては、粒径が0.12μm以上0.8μm以下の銅粒子を含むものが挙げられ、例えば、体積平均粒径が0.12μm以上0.8μm以下の銅粒子を用いることができる。サブマイクロ銅粒子の体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られ易くなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られ易くなる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。
(Sub-micro copper particles)
Examples of the sub-micro copper particles include those containing copper particles having a particle size of 0.12 μm or more and 0.8 μm or less. For example, copper particles having a volume average particle size of 0.12 μm or more and 0.8 μm or less are used. it can. If the volume average particle diameter of the sub-micro copper particles is 0.12 μm or more, effects such as suppression of the synthesis cost of the sub-micro copper particles, good dispersibility, and suppression of the use amount of the surface treatment agent are easily obtained. If the volume average particle diameter of the sub-micro copper particles is 0.8 μm or less, the effect that the sinterability of the sub-micro copper particles is excellent is easily obtained. From the viewpoint of further exerting the above effects, the volume average particle diameter of the sub-micro copper particles may be 0.15 μm or more and 0.8 μm or less, 0.15 μm or more and 0.6 μm or less, and 0 It may be not less than 2 μm and not more than 0.5 μm, and may be not less than 0.3 μm and not more than 0.45 μm.

なお、本願明細書において体積平均粒径とは、50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は金属ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD−7500nano,株式会社島津製作所製))で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α−テルピネオール等を用いることができる。   In the present specification, the volume average particle diameter means 50% volume average particle diameter. When determining the volume average particle size of the copper particles, the copper particles used as a raw material, or dry copper particles from which volatile components have been removed from a metal paste, dispersed in a dispersion medium using a dispersant are subjected to light scattering particle size distribution measurement. It can be determined by a method of measuring with an apparatus (for example, a Shimadzu nanoparticle size distribution measuring apparatus (SALD-7500 nano, manufactured by Shimadzu Corporation)). When using a light scattering particle size distribution analyzer, hexane, toluene, α-terpineol, or the like can be used as the dispersion medium.

サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を10質量%以上含むことができる。金属ペーストの焼結性の観点から、サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を20質量%以上含むことができ、30質量%以上含むことができ、100質量%含むことができる。サブマイクロ銅粒子における粒径が0.12μm以上0.8μm以下の銅粒子の含有割合が20質量%以上であると、銅粒子の分散性がより向上し、粘度の上昇、ペースト濃度の低下をより抑制することができる。   The sub-micro copper particles can contain 10% by mass or more of copper particles having a particle size of 0.12 μm or more and 0.8 μm or less. From the viewpoint of the sinterability of the metal paste, the sub-micro copper particles can contain 20% by mass or more, 30% by mass or more of copper particles having a particle size of 0.12 μm or more and 0.8 μm or less, It can be contained by mass%. When the content ratio of the copper particles having a particle size of 0.12 μm or more and 0.8 μm or less in the sub-micro copper particles is 20% by mass or more, the dispersibility of the copper particles is further improved, the viscosity is increased, and the paste concentration is decreased. It can be suppressed more.

銅粒子の粒径は、例えば、走査型電子顕微鏡(SEM)像から算出することができる。銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像の銅粒子に外接する四角形を画像処理ソフトにより作図し、その一辺をその粒子の粒径とする。   The particle size of the copper particles can be calculated from, for example, a scanning electron microscope (SEM) image. The copper particle powder is placed on a carbon tape for SEM with a spatula to obtain a sample for SEM. The sample for SEM is observed with a SEM apparatus at a magnification of 5000 times. A quadrilateral circumscribing the copper particles of this SEM image is drawn by image processing software, and one side thereof is set as the particle size of the particles.

サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、20質量%以上90質量%以下であってもよく、30質量%以上90質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であることで接合性に優れる焼結物(焼結金属層)を形成することが容易となる。   The content of the sub-micro copper particles may be 20% by mass or more and 90% by mass or less, 30% by mass or more and 90% by mass or less, or 35% by mass or more based on the total mass of the metal particles. 85 mass% or less may be sufficient, and 40 mass% or more and 80 mass% or less may be sufficient. When the content of the sub-micro copper particles is within the above range, it becomes easy to form a sintered product (sintered metal layer) excellent in bondability.

サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であってもよい。サブマイクロ銅粒子の上記含有量が20質量%以上であれば、フレーク状マイクロ銅粒子の間を充分に充填することができ、接合性に優れる焼結物を形成することが容易となる。サブマイクロ銅粒子の上記含有量が90質量%以下であれば、金属ペーストを焼結した時の体積収縮を充分に抑制できるため、接合性に優れる焼結物を形成することが容易となる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。   The content of the sub-micro copper particles may be 20% by mass or more and 90% by mass or less based on the total mass of the sub-micro copper particles and the mass of the flaky micro-copper particles. When the content of the sub-micro copper particles is 20% by mass or more, the space between the flaky micro-copper particles can be sufficiently filled, and it becomes easy to form a sintered product excellent in bondability. If the content of the sub-micro copper particles is 90% by mass or less, volume shrinkage when the metal paste is sintered can be sufficiently suppressed, so that it becomes easy to form a sintered product having excellent bondability. From the viewpoint of further exerting the above effect, the content of the sub-micro copper particles is 30% by mass or more and 85% by mass or less based on the total mass of the sub-micro copper particles and the mass of the flaky micro-copper particles. It may be 35 mass% or more and 85 mass% or less, and may be 40 mass% or more and 80 mass% or less.

サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状、フレーク状であってもよく、燃焼性、分散性、フレーク状マイクロ粒子との混合性等の観点から、球状又は略球状であってもよい。   The shape of the sub-micro copper particles is not particularly limited. Examples of the shape of the sub-micro copper particles include a spherical shape, a lump shape, a needle shape, a flake shape, a substantially spherical shape, and an aggregate thereof. From the viewpoints of dispersibility and filling properties, the shape of the sub-micro copper particles may be spherical, substantially spherical, or flaky. From the viewpoint of combustibility, dispersibility, miscibility with flaky microparticles, etc., Alternatively, it may be approximately spherical.

サブマイクロ銅粒子は、分散性、充填性、及びフレーク状マイクロ粒子との混合性の観点から、アスペクト比が5以下であってもよく、3以下であってもよい。本明細書において、「アスペクト比」とは、粒子の長辺/厚みを示す。粒子の長辺及び厚みの測定は、例えば、粒子のSEM像から求めることができる。   The sub-micro copper particles may have an aspect ratio of 5 or less or 3 or less from the viewpoints of dispersibility, filling properties, and miscibility with the flaky micro particles. In this specification, “aspect ratio” indicates the long side / thickness of a particle. The measurement of the long side and thickness of the particle can be obtained, for example, from the SEM image of the particle.

サブマイクロ銅粒子は、特定の表面処理剤で処理されていてもよい。特定の表面処理剤としては、例えば、炭素数8〜16の有機酸が挙げられる。炭素数8〜16の有機酸としては、例えば、カプリル酸、メチルヘプタン酸、エチルヘキサン酸、プロピルペンタン酸、ペラルゴン酸、メチルオクタン酸、エチルヘプタン酸、プロピルヘキサン酸、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、メチルシクロヘキサンカルボン酸、エチルシクロヘキサンカルボン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;オクテン酸、ノネン酸、メチルノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o−フェノキシ安息香酸、メチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性を両立できる傾向にある。   The sub-micro copper particles may be treated with a specific surface treatment agent. Examples of the specific surface treatment agent include organic acids having 8 to 16 carbon atoms. Examples of the organic acid having 8 to 16 carbon atoms include caprylic acid, methylheptanoic acid, ethylhexanoic acid, propylpentanoic acid, pelargonic acid, methyloctanoic acid, ethylheptanoic acid, propylhexanoic acid, capric acid, methylnonanoic acid, and ethyl. Octanoic acid, propylheptanoic acid, butylhexanoic acid, undecanoic acid, methyldecanoic acid, ethylnonanoic acid, propyloctanoic acid, butylheptanoic acid, lauric acid, methylundecanoic acid, ethyldecanoic acid, propylnonanoic acid, butyloctanoic acid, pentylheptanoic acid, Tridecanoic acid, methyldodecanoic acid, ethylundecanoic acid, propyldecanoic acid, butylnonanoic acid, pentyloctanoic acid, myristic acid, methyltridecanoic acid, ethyldodecanoic acid, propylundecanoic acid, butyldecanoic acid, pentylnonanoic acid, Siloctanoic acid, pentadecanoic acid, methyltetradecanoic acid, ethyltridecanoic acid, propyldodecanoic acid, butylundecanoic acid, pentyldecanoic acid, hexylnonanoic acid, palmitic acid, methylpentadecanoic acid, ethyltetradecanoic acid, propyltridecanoic acid, butyldodecanoic acid, Pentylundecanoic acid, hexyldecanoic acid, heptylnonanoic acid, methylcyclohexanecarboxylic acid, ethylcyclohexanecarboxylic acid, propylcyclohexanecarboxylic acid, butylcyclohexanecarboxylic acid, pentylcyclohexanecarboxylic acid, hexylcyclohexanecarboxylic acid, heptylcyclohexanecarboxylic acid, octylcyclohexanecarboxylic acid, Saturated fatty acids such as nonylcyclohexanecarboxylic acid; octenoic acid, nonenoic acid, methylnonenoic acid, decenoic acid Unsaturated fatty acids such as undecenoic acid, dodecenoic acid, tridecenoic acid, tetradecenoic acid, myristoleic acid, pentadecenoic acid, hexadecenoic acid, palmitoleic acid, sabienoic acid; terephthalic acid, pyromellitic acid, o-phenoxybenzoic acid, methylbenzoic acid, Examples include aromatic carboxylic acids such as ethyl benzoic acid, propyl benzoic acid, butyl benzoic acid, pentyl benzoic acid, hexyl benzoic acid, heptyl benzoic acid, octyl benzoic acid, and nonyl benzoic acid. An organic acid may be used individually by 1 type, and may be used in combination of 2 or more type. By combining such an organic acid and the sub-micro copper particles, the dispersibility of the sub-micro copper particles and the detachability of the organic acid during sintering tend to be compatible.

表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層〜三分子層付着する量であってもよい。この量は、サブマイクロ銅粒子の表面に付着した分子層数(n)、サブマイクロ銅粒子の比表面積(A)(単位m/g)と、表面処理剤の分子量(M)(単位g/mol)と、表面処理剤の最小被覆面積(S)(単位m/個)と、アボガドロ数(N)(6.02×1023個)から算出できる。具体的には、表面処理剤の処理量は、表面処理剤の処理量(質量%)={(n・A・M)/(S・N+n・A・M)}×100%の式に従って算出される。 The treatment amount of the surface treatment agent may be an amount that adheres to a monomolecular layer to a trimolecular layer on the surface of the sub-micro copper particles. This amount includes the number of molecular layers (n) attached to the surface of the sub-micro copper particles, the specific surface area (A p ) (unit m 2 / g) of the sub-micro copper particles, and the molecular weight (M s ) of the surface treatment agent (M s ) It can be calculated from the unit g / mol), the minimum covering area (S S ) (unit m 2 / piece) of the surface treatment agent, and the Avogadro number (N A ) (6.02 × 10 23 pieces). Specifically, the treatment amount of the surface treatment agent is the treatment amount of the surface treatment agent (% by mass) = {(n · A p · M s ) / (S S · N A + n · A p · M s )} * Calculated according to the equation of 100%.

サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。表面処理剤の最小被覆面積は、表面処理剤が直鎖飽和脂肪酸の場合、2.05×10−19/1分子である。それ以外の表面処理剤の場合には、例えば、分子モデルからの計算、又は「化学と教育」(上江田捷博、稲福純夫、森巌、40(2),1992,p114−117)に記載の方法で測定できる。表面処理剤の定量方法の一例を示す。表面処理剤は、金属ペーストから分散媒を除去した乾燥粉の熱脱離ガス・ガスクロマトグラフ質量分析計により同定でき、これにより表面処理剤の炭素数及び分子量を決定できる。表面処理剤の炭素分割合は、炭素分分析により分析できる。炭素分分析法としては、例えば、高周波誘導加熱炉燃焼/赤外線吸収法が挙げられる。同定された表面処理剤の炭素数、分子量及び炭素分割合から上記式により表面処理剤量を算出できる。 The specific surface area of the sub-micro copper particles can be calculated by measuring the dried sub-micro copper particles by the BET specific surface area measurement method. Minimum coverage of the surface treatment agent, if the surface treatment agent is a straight-chain saturated fatty acids, is 2.05 × 10 -19 m 2/1 molecule. In the case of other surface treatment agents, for example, calculation from a molecular model, or “Chemistry and Education” (Akihiro Ueda, Juno Inafuku, Mori Kaoru, 40 (2), 1992, p114-117) It can be measured by the method described. An example of the method for quantifying the surface treatment agent is shown. The surface treatment agent can be identified by a thermal desorption gas / gas chromatograph mass spectrometer of a dry powder obtained by removing the dispersion medium from the metal paste, whereby the carbon number and molecular weight of the surface treatment agent can be determined. The carbon content of the surface treatment agent can be analyzed by carbon content analysis. Examples of the carbon analysis method include a high frequency induction furnace combustion / infrared absorption method. The amount of the surface treatment agent can be calculated by the above formula from the carbon number, molecular weight, and carbon content ratio of the identified surface treatment agent.

表面処理剤の上記処理量は、0.07質量%以上2.1質量%以下であってもよく、0.10質量%以上1.6質量%以下であってもよく、0.2質量%以上1.1質量%以下であってもよい。   The treatment amount of the surface treatment agent may be 0.07% by mass or more and 2.1% by mass or less, may be 0.10% by mass or more and 1.6% by mass or less, and may be 0.2% by mass. It may be 1.1% by mass or less.

サブマイクロ銅粒子としては、市販されているものを用いることができる。市販されているサブマイクロ銅粒子としては、例えば、CH−0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、HT−14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT−500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、Tn−Cu100(大陽日酸株式会社製、体積平均粒径0.12μm)が挙げられる。   As the sub-micro copper particles, commercially available ones can be used. Commercially available sub-micro copper particles include, for example, CH-0200 (Mitsui Metal Mining Co., Ltd., volume average particle size 0.36 μm), HT-14 (Mitsui Metal Mining Co., Ltd., volume average particle size 0. 41 μm), CT-500 (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0.72 μm), and Tn—Cu100 (manufactured by Taiyo Nippon Sanso Corporation, volume average particle size 0.12 μm).

(フレーク状マイクロ銅粒子)
フレーク状マイクロ銅粒子としては、最大径が1μm以上20μm以下であり、アスペクト比が4以上の銅粒子を含むものが挙げられ、例えば、平均最大径が1μ以上20μm以下であり、アスペクト比が4以上の銅粒子を用いることができる。フレーク状マイクロ銅粒子の平均最大径及びアスペクト比が上記範囲内であれば、金属ペーストを焼結した際の体積収縮を充分に低減でき、接合性に優れる焼結物を形成することが容易となる。より一層上記効果を奏するという観点から、フレーク状マイクロ銅粒子の平均最大径は、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。フレーク状マイクロ銅粒子の最大径及び平均最大径の測定は、例えば、粒子のSEM像から求めることができ、後述するフレーク状構造の長径X及び長径の平均値Xavとして求められる。
(Flake micro copper particles)
Examples of the flaky micro copper particles include those containing copper particles having a maximum diameter of 1 μm or more and 20 μm or less and an aspect ratio of 4 or more. For example, the average maximum diameter is 1 μm or more and 20 μm or less, and the aspect ratio is 4 The above copper particles can be used. If the average maximum diameter and aspect ratio of the flaky micro-copper particles are within the above ranges, the volume shrinkage when the metal paste is sintered can be sufficiently reduced, and it is easy to form a sintered product excellent in bondability. Become. From the standpoint of further achieving the above effects, the average maximum diameter of the flaky micro copper particles may be 1 μm or more and 10 μm or less, or 3 μm or more and 10 μm or less. The measurement of the maximum diameter and the average maximum diameter of the flaky micro-copper particles can be obtained from, for example, an SEM image of the particles, and is obtained as a major axis X and an average value Xav of the major axis described later.

フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を50質量%以上含むことができる。焼結物内での配向、補強効果、接合ペーストの充填性の観点から、フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を70質量%以上含むことができ、80質量%以上含むことができ、100質量%含むことができる。接合不良を抑制する観点から、フレーク状マイクロ銅粒子は、例えば、最大径が20μmを超える粒子等の接合厚みを超えるサイズの粒子を含まないことが好ましい。   The flaky micro copper particles can contain 50% by mass or more of copper particles having a maximum diameter of 1 μm or more and 20 μm or less. From the viewpoint of orientation in the sintered product, reinforcing effect, and filling property of the bonding paste, the flaky micro copper particles can contain 70% by mass or more of copper particles having a maximum diameter of 1 μm or more and 20 μm or less, and 80% by mass. It can contain above, and it can contain 100 mass%. From the viewpoint of suppressing poor bonding, the flaky micro-copper particles preferably do not contain particles having a size exceeding the bonding thickness, such as particles having a maximum diameter exceeding 20 μm.

フレーク状マイクロ銅粒子の長径XをSEM像から算出する方法を例示する。フレーク状マイクロ銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。SEM像のフレーク状マイクロ銅粒子に外接する長方形を画像処理ソフトにより作図し、長方形の長辺をその粒子の長径Xとする。複数のSEM像を用いて、この測定を50個以上のフレーク状マイクロ銅粒子に対して行い、長径の平均値Xavを算出する。   A method of calculating the major axis X of the flaky micro copper particles from the SEM image is illustrated. The powder of flaky micro copper particles is placed on a carbon tape for SEM with a spatula to obtain a sample for SEM. The sample for SEM is observed with a SEM apparatus at a magnification of 5000 times. A rectangle circumscribing the flaky micro copper particles of the SEM image is drawn by image processing software, and the long side of the rectangle is defined as the major axis X of the particles. This measurement is performed on 50 or more flaky micro copper particles using a plurality of SEM images, and the average value Xav of the major axis is calculated.

フレーク状マイクロ銅粒子は、アスペクト比が4以上であってもよく、6以上であってもよい。アスペクト比が上記範囲内であれば、金属ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向することにより、金属ペーストを焼結させたときの体積収縮を抑制でき、接合性に優れる焼結物を形成することが容易となる。   The aspect ratio of the flaky micro copper particles may be 4 or more, or 6 or more. If the aspect ratio is within the above range, the flaky micro copper particles in the metal paste are oriented substantially parallel to the bonding surface, so that volume shrinkage when the metal paste is sintered can be suppressed. It becomes easy to form a sintered product having excellent properties.

フレーク状マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、1質量%以上90質量%以下であってもよく、10質量%以上70質量%以下であってもよく、20質量%以上50質量%以下であってもよい。フレーク状マイクロ銅粒子の含有量が、上記範囲内であれば、接合性に優れる焼結物を形成することが容易となる。   The content of the flaky micro copper particles may be 1% by mass or more and 90% by mass or less, 10% by mass or more and 70% by mass or less, and 20% by mass based on the total mass of the metal particles. It may be 50% by mass or more. When the content of the flaky micro copper particles is within the above range, it becomes easy to form a sintered product having excellent bondability.

サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、80質量%以上であってもよい。サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計が上記範囲内であれば、接合性に優れる焼結物を形成することが容易となる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。   The total content of the sub-micro copper particles and the content of the flaky micro-copper particles may be 80% by mass or more based on the total mass of the metal particles. When the sum of the content of the sub-micro copper particles and the content of the flaky micro-copper particles is within the above range, it becomes easy to form a sintered product having excellent bondability. From the viewpoint of further exerting the above effects, the total content of the sub-micro copper particles and the content of the flaky micro-copper particles may be 90% by mass or more based on the total mass of the metal particles. The mass may be 100% by mass or more.

フレーク状マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではない。分散安定性及び耐酸化性の観点から、フレーク状マイクロ銅粒子は表面処理剤で処理されていてもよい。表面処理剤は、接合時に除去されるものであってもよい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、オレイン酸等の脂肪族カルボン酸;テレフタル酸、ピロメリット酸、o−フェノキシ安息香酸等の芳香族カルボン酸;セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール;p−フェニルフェノール等の芳香族アルコール;オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン;ステアロニトリル、デカニトリル等の脂肪族ニトリル;アルキルアルコキシシラン等のシランカップリング剤;ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理材等が挙げられる。表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。   In the flaky micro copper particles, the presence or absence of the treatment with the surface treatment agent is not particularly limited. From the viewpoint of dispersion stability and oxidation resistance, the flaky micro copper particles may be treated with a surface treatment agent. The surface treatment agent may be removed at the time of joining. Examples of such a surface treatment agent include aliphatic carboxylic acids such as palmitic acid, stearic acid, arachidic acid, and oleic acid; aromatic carboxylic acids such as terephthalic acid, pyromellitic acid, and o-phenoxybenzoic acid; cetyl alcohol Aliphatic alcohols such as stearyl alcohol, isobornylcyclohexanol and tetraethylene glycol; aromatic alcohols such as p-phenylphenol; alkylamines such as octylamine, dodecylamine and stearylamine; fats such as stearonitrile and deconitrile Group nitriles; Silane coupling agents such as alkyl alkoxysilanes; Polymer treatment materials such as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, and silicone oligomers. A surface treating agent may be used individually by 1 type, and may be used in combination of 2 or more type.

表面処理剤の処理量は、粒子表面に一分子層以上の量であってもよい。このような表面処理剤の処理量は、フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、通常0.001質量%以上である。フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述した方法により算出することができる。   The treatment amount of the surface treatment agent may be a monomolecular layer or more on the particle surface. The treatment amount of such a surface treatment agent varies depending on the specific surface area of the flaky micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent. The treatment amount of the surface treatment agent is usually 0.001% by mass or more. The specific surface area of the flaky micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent can be calculated by the method described above.

上記サブマイクロ銅粒子のみから金属ペーストを調製する場合、分散媒の揮発に伴う体積収縮及び焼結収縮が大きいため、金属ペーストの焼結時に被着面より剥離し易くなり、半導体素子等の接合においては充分なダイシェア強度及び接続信頼性が得られにくい。サブマイクロ銅粒子とフレーク状マイクロ銅粒子とを併用することで、金属ペーストを焼結させたときの体積収縮が抑制され、接合性に優れる焼結物を形成することが容易となる。   When preparing a metal paste only from the above-mentioned sub-micro copper particles, volume shrinkage and sintering shrinkage accompanying the volatilization of the dispersion medium are large, so that the metal paste is easily peeled off from the adherend surface during the sintering of the metal paste, so In this case, it is difficult to obtain sufficient die shear strength and connection reliability. By using the sub-micro copper particles and the flaky micro-copper particles in combination, volume shrinkage when the metal paste is sintered is suppressed, and it becomes easy to form a sintered product having excellent bondability.

本実施形態に係るフレーク状マイクロ銅粒子としては、市販されているものを用いることができる。市販されているフレーク状マイクロ銅粒子としては、例えば、MA−C025(三井金属鉱業株式会社製、平均最大径4.1μm)、3L3(福田金属箔粉工業株式会社製、平均最大径7.3μm)、1110F(三井金属鉱業株式会社製、平均最大径5.8μm)、2L3(福田金属箔粉工業株式会社製、平均最大径9μm)が挙げられる。   As the flaky micro copper particles according to this embodiment, commercially available ones can be used. Examples of commercially available flaky micro copper particles include MA-C025 (Mitsui Metal Mining Co., Ltd., average maximum diameter 4.1 μm), 3L3 (Fukuda Metal Foil Powder Co., Ltd., average maximum diameter 7.3 μm). ) 1110F (Mitsui Metal Mining Co., Ltd., average maximum diameter 5.8 μm), 2L3 (Fukuda Metal Foil Powder Co., Ltd., average maximum diameter 9 μm).

銅粒子の含有量は、焼結性接合材料の全質量を基準として80質量%以上であることが好ましく、90質量%以上であることがより好ましい。これにより、接合性に優れる焼結物を形成することが容易となる。   The content of the copper particles is preferably 80% by mass or more, more preferably 90% by mass or more based on the total mass of the sinterable bonding material. Thereby, it becomes easy to form a sintered product having excellent bondability.

(銅粒子以外のその他の金属粒子)
金属粒子としては、上述したサブマイクロ銅粒子及びマイクロ銅粒子以外のその他の金属粒子を含んでいてもよく、例えば、ニッケル、銀、金、パラジウム、白金等の粒子を含んでいてもよい。その他の金属粒子は、体積平均粒径が0.01μm以上10μm以下であってもよく、0.01μm以上5μm以下であってもよく、0.05μm以上3μm以下であってもよい。その他の金属粒子を含んでいる場合、その含有量は、充分な接合性を得るという観点から、金属粒子の全質量を基準として、20質量%未満であってもよく、10質量%以下であってもよい。その他の金属粒子は、含まれなくてもよい。その他の金属粒子の形状は、特に限定されるものではない。
(Other metal particles other than copper particles)
As a metal particle, other metal particles other than the sub micro copper particle and micro copper particle which were mentioned above may be included, for example, particles, such as nickel, silver, gold | metal | money, palladium, platinum, may be included. The other metal particles may have a volume average particle size of 0.01 μm or more and 10 μm or less, 0.01 μm or more and 5 μm or less, or 0.05 μm or more and 3 μm or less. When other metal particles are contained, the content thereof may be less than 20% by mass or less than 10% by mass based on the total mass of the metal particles from the viewpoint of obtaining sufficient bondability. May be. Other metal particles may not be included. The shape of other metal particles is not particularly limited.

銅粒子以外の金属粒子を含むことで、複数種の金属が固溶又は分散した焼結物を得ることができるため、焼結物の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上し易い。また、複数種の金属粒子を添加することで、形成される焼結物は、特定の被着体に対して、接合強度及び接続信頼性が向上し易い。   By including metal particles other than copper particles, it is possible to obtain a sintered product in which a plurality of types of metals are dissolved or dispersed, and thus mechanical properties such as yield stress and fatigue strength of the sintered product are improved, Connection reliability is easy to improve. Further, by adding a plurality of types of metal particles, the formed sintered product is likely to improve the bonding strength and connection reliability with respect to a specific adherend.

(分散媒)
分散媒は揮発性のものであることが好ましい。揮発性の分散媒としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α−テルピネオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ−ブチロラクトン、炭酸プロピレン等のエステル類;N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の酸アミド;シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1〜18のアルキル基を有するメルカプタン類;炭素数5〜7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1〜18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n−プロピルメルカプタン、i−プロピルメルカプタン、n−ブチルメルカプタン、i−ブチルメルカプタン、t−ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5〜7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
(Dispersion medium)
The dispersion medium is preferably volatile. Examples of the volatile dispersion medium include monovalent and polyvalent pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, α-terpineol, isobornylcyclohexanol (MTPH), and the like. Dihydric alcohols: ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Butyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol Ethers such as butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether, tripropylene glycol dimethyl ether; ethylene glycol ethyl ether acetate, ethylene glycol butyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol Esters such as coal butyl ether acetate, dipropylene glycol methyl ether acetate (DPMA), ethyl lactate, butyl lactate, γ-butyrolactone, propylene carbonate; N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N- Acid amides such as dimethylformamide; Aliphatic hydrocarbons such as cyclohexanone, octane, nonane, decane and undecane; Aromatic hydrocarbons such as benzene, toluene and xylene; Mercaptans having an alkyl group having 1 to 18 carbon atoms; Examples include mercaptans having 5 to 7 cycloalkyl groups. Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, hexyl mercaptan. And dodecyl mercaptan. Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan.

分散媒の含有量は、金属粒子の全質量を100質量部として、5〜50質量部であってもよい。分散媒の含有量が上記範囲内であれば、金属ペーストをより適切な粘度に調整でき、また、銅粒子の焼結を阻害しにくい。   The content of the dispersion medium may be 5 to 50 parts by mass with 100 parts by mass of the total mass of the metal particles. If the content of the dispersion medium is within the above range, the metal paste can be adjusted to a more appropriate viscosity, and it is difficult to inhibit the sintering of the copper particles.

(添加剤)
金属ペーストには、必要に応じて、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤等を適宜添加してもよい。
(Additive)
Where necessary, wetting additives such as nonionic surfactants and fluorosurfactants; antifoaming agents such as silicone oils; ion trapping agents such as inorganic ion exchangers and the like are appropriately added to the metal paste. Also good.

(金属ペーストの調製)
金属ペーストは、上述のサブマイクロ銅粒子、マイクロ銅粒子、その他の金属粒子及び任意の添加剤を分散媒に混合して調製してもよい。各成分の混合後に、撹拌処理を行ってもよい。金属ペーストは、分級操作により分散液の最大粒径を調整してもよい。
(Preparation of metal paste)
The metal paste may be prepared by mixing the above-mentioned sub-micro copper particles, micro-copper particles, other metal particles and any additive in a dispersion medium. You may perform a stirring process after mixing of each component. The metal paste may adjust the maximum particle size of the dispersion by classification operation.

金属ペーストは、サブマイクロ銅粒子、表面処理剤、分散媒をあらかじめ混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更にマイクロ銅粒子、その他の金属粒子及び任意の添加剤を混合して調製してもよい。このような手順とすることで、サブマイクロ銅粒子の分散性が向上してマイクロ銅粒子との混合性が良くなり、金属ペーストの性能がより向上する。サブマイクロ銅粒子の分散液に対し分級操作を行って、凝集物を除去してもよい。   For metal paste, sub-micro copper particles, surface treatment agent and dispersion medium are mixed in advance, and dispersion treatment is performed to prepare a dispersion of sub-micro copper particles. Further, micro-copper particles, other metal particles, and optional additions You may mix and prepare an agent. By setting it as such a procedure, the dispersibility of a sub micro copper particle improves, a miscibility with a micro copper particle improves, and the performance of a metal paste improves more. Classification may be performed on the sub-micro copper particle dispersion to remove aggregates.

<半導体装置の製造方法>
本実施形態に係る、半導体装置の製造方法は、半導体素子搭載用支持部材上に、金属粒子及び分散媒を含む焼結性接合材料を介して半導体素子を載置する載置工程と、半導体素子の外周縁を超えて存在する焼結性接合材料から、分散媒の少なくとも一部を除去する乾燥工程と、焼結性接合材料を加熱して、半導体素子搭載用支持部材と半導体素子とを、焼結性接合材料の焼結物を介して接合する接合工程と、半導体素子の外周縁を超えて存在する、焼結性接合材料の焼結物を除去する除去工程と、を備える。
<Method for Manufacturing Semiconductor Device>
The manufacturing method of a semiconductor device according to the present embodiment includes a mounting step of mounting a semiconductor element on a semiconductor element mounting support member via a sinterable bonding material containing metal particles and a dispersion medium, and a semiconductor element A drying step for removing at least a part of the dispersion medium from the sinterable bonding material existing beyond the outer peripheral edge of the substrate, heating the sinterable bonding material, and the semiconductor element mounting support member and the semiconductor element, A joining step of joining through a sintered product of the sinterable bonding material; and a removing step of removing the sintered product of the sinterable joining material that exists beyond the outer peripheral edge of the semiconductor element.

(載置工程)
焼結性接合材料を半導体素子搭載用支持部材上に設ける方法としては、焼結性接合材料を堆積させられる方法であれば特に限定されない。このような方法としては、例えば、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等を用いることができる。焼結性接合材料の厚みは、1μm以上1000μm以下であってもよく、10μm以上500μm以下であってもよく、50μm以上200μm以下であってもよく、10μm以上3000μm以下であってもよく、15μm以上500μm以下であってもよく、20μm以上300μm以下であってもよく、5μm以上500μm以下であってもよく、10μm以上250μm以下であってもよく、15μm以上150μm以下であってもよい。
(Installation process)
The method for providing the sinterable bonding material on the semiconductor element mounting support member is not particularly limited as long as it is a method capable of depositing the sinterable bonding material. Examples of such methods include screen printing, transfer printing, offset printing, jet printing, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing. Printing, stencil printing, soft lithography, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater, electrodeposition coating, and the like can be used. The thickness of the sinterable bonding material may be 1 μm or more and 1000 μm or less, 10 μm or more and 500 μm or less, 50 μm or more and 200 μm or less, 10 μm or more and 3000 μm or less, or 15 μm. It may be 500 μm or less, 20 μm or more and 300 μm or less, 5 μm or more and 500 μm or less, 10 μm or more and 250 μm or less, or 15 μm or more and 150 μm or less.

焼結性接合材料は、平面視において、焼結性接合材料の外周縁が半導体素子の外周縁よりも大きくなるように設けられる。これにより、焼結性接合材料の一部が、半導体素子の接合面から「はみ出る」状態となる。半導体素子搭載用支持部材と半導体素子との接合界面が、全体にわたって焼結性接合材料の焼結物により充分に接合されるよう、焼結性接合材料は、平面視において、半導体素子の外周縁から好ましくは少なくとも1mm、より好ましくは少なくとも5mmはみ出すように設けることができる。なお、一般的な半導体素子及び半導体素子搭載用支持部材のサイズに鑑み、当該はみ出し幅の上限は20mm程度とすることができる。   The sinterable bonding material is provided so that the outer peripheral edge of the sinterable bonding material is larger than the outer peripheral edge of the semiconductor element in plan view. As a result, a part of the sinterable bonding material is in a state of “extinguishing” from the bonding surface of the semiconductor element. The sinterable bonding material has a peripheral edge of the semiconductor element in plan view so that the bonding interface between the semiconductor element mounting support member and the semiconductor element is sufficiently bonded by the sintered product of the sinterable bonding material throughout. To at least 1 mm, more preferably at least 5 mm. In view of the size of a general semiconductor element and a semiconductor element mounting support member, the upper limit of the protrusion width can be about 20 mm.

焼結性接合材料上に半導体素子を載置する方法としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具が挙げられる。   Examples of the method for placing the semiconductor element on the sinterable bonding material include a chip mounter, a flip chip bonder, a carbon or ceramic positioning jig.

本工程により、半導体素子、半導体素子の自重が働く方向側に、半導体素子の接合面積を超える面積を有する焼結性接合材料、及び半導体素子搭載用支持部材がこの順に積層された前駆積層体を得ることができる。   By this step, a semiconductor element, a precursor laminated body in which a sinterable bonding material having an area exceeding the bonding area of the semiconductor element and a semiconductor element mounting support member are laminated in this order on the direction in which the self-weight of the semiconductor element works. Can be obtained.

(乾燥工程)
本工程では、載置工程により得られた前駆積層体に乾燥処理を施す。これにより、特に、半導体素子の外周縁を超えて存在する焼結性接合材料から、分散媒の少なくとも一部を除去する。
(Drying process)
In this step, the precursor laminate obtained by the placing step is subjected to a drying process. Thereby, in particular, at least a part of the dispersion medium is removed from the sinterable bonding material existing beyond the outer peripheral edge of the semiconductor element.

乾燥工程のガス雰囲気は大気中であってもよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥処理としては、常温乾燥であってもよく、加温乾燥であってもよく、減圧乾燥であってもよく、常温又は加温乾燥と減圧乾燥との組合せによる乾燥であってもよい。加温乾燥及び減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。   The gas atmosphere in the drying step may be in the air, in an oxygen-free atmosphere such as nitrogen or a rare gas, or in a reducing atmosphere such as hydrogen or formic acid. The drying treatment may be room temperature drying, warm drying, reduced pressure drying, or drying at room temperature or a combination of warm drying and reduced pressure drying. For heating drying and reduced pressure drying, for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, An electromagnetic heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.

なお、乾燥処理として例えば加温乾燥を行う場合は、加温温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整すればよい。加温温度及び時間としては、それぞれ50℃以上230℃以下、1分間以上120分間以下とすることができる。   For example, when performing warming drying as the drying process, the heating temperature and time may be appropriately adjusted according to the type and amount of the used dispersion medium. The heating temperature and time can be 50 ° C. or higher and 230 ° C. or lower and 1 minute or longer and 120 minutes or shorter, respectively.

(接合工程)
本工程では、乾燥工程を経た前駆積層体に加熱処理を施すことで、焼結性接合材料の焼結を行う。加熱処理には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
(Joining process)
In this step, the sinterable bonding material is sintered by subjecting the precursor laminate that has undergone the drying step to heat treatment. For the heat treatment, for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, A heater heating device, a steam heating furnace, or the like can be used.

接合工程のガス雰囲気は、焼結体、半導体素子、及び半導体素子搭載用支持部材の酸化抑制の観点から、無酸素雰囲気であってもよい。接合工程のガス雰囲気は、焼結性接合材料に含まれる金属粒子表面の酸化物を除去するという観点から、還元雰囲気であってもよい。無酸素雰囲気としては、例えば、窒素、希ガス等の無酸素ガス雰囲気、又は真空雰囲気が挙げられる。還元雰囲気としては、例えば、純水素ガス雰囲気、フォーミングガスに代表される水素及び窒素の混合ガス雰囲気、ギ酸ガスを含む窒素雰囲気、水素及び希ガスの混合ガス雰囲気、ギ酸ガスを含む希ガス雰囲気等が挙げられる。   The gas atmosphere in the bonding step may be an oxygen-free atmosphere from the viewpoint of suppressing oxidation of the sintered body, the semiconductor element, and the semiconductor element mounting support member. The gas atmosphere in the joining process may be a reducing atmosphere from the viewpoint of removing oxides on the surface of the metal particles contained in the sinterable joining material. Examples of the oxygen-free atmosphere include an oxygen-free gas atmosphere such as nitrogen or a rare gas, or a vacuum atmosphere. Examples of the reducing atmosphere include pure hydrogen gas atmosphere, mixed gas atmosphere of hydrogen and nitrogen typified by forming gas, nitrogen atmosphere containing formic acid gas, mixed gas atmosphere of hydrogen and rare gas, rare gas atmosphere containing formic acid gas, etc. Is mentioned.

加熱処理時の到達最高温度は、半導体素子及び半導体素子搭載用支持部材への熱ダメージの低減及び歩留まりを向上させるという観点から、250℃以上450℃以下であってもよく、250℃以上400℃以下であってもよく、250℃以上350℃以下であってもよい。到達最高温度が、250℃以上であれば、到達最高温度保持時間が60分以下において焼結が充分に進行する傾向にある。   The maximum temperature reached during the heat treatment may be 250 ° C. or higher and 450 ° C. or lower, and may be 250 ° C. or higher and 400 ° C. or lower, from the viewpoint of reducing thermal damage to the semiconductor element and the semiconductor element mounting support member and improving the yield. Or 250 ° C. or more and 350 ° C. or less. If the ultimate temperature is 250 ° C. or higher, the sintering tends to proceed sufficiently when the ultimate temperature holding time is 60 minutes or less.

到達最高温度保持時間は、分散媒を充分に(好ましくは全て)揮発させ、また、歩留まりを向上させるという観点から、1分以上60分以下であってもよく、1分以上40分未満であってもよく、1分以上30分未満であってもよい。   The maximum temperature holding time may be 1 minute or more and 60 minutes or less, or 1 minute or more and less than 40 minutes from the viewpoint of sufficiently (preferably all) volatilizing the dispersion medium and improving the yield. It may be 1 minute or more and less than 30 minutes.

接合時の圧力は特に限定されないが、焼結物における銅の含有量(堆積割合)が、焼結物の全体積を基準として65体積%以上となる条件であると好ましい。例えば、上記に記載した、サブマイクロ銅粒子、フレーク状マイクロ銅粒子等を含有する所定の焼結性接合材料を用いることで、接合時に加圧をしなくても、接合性に優れる焼結物を形成することができる。この場合、焼結性接合材料上に存在する半導体素子による自重のみ、又は半導体素子の自重に0.01MPa以下、好ましくは0.005MPa以下の圧力をさらに加えた状態で、充分な接合強度を得ることができる。この場合、特別な加圧装置が不要なため、歩留まりを損なうこと無く、ボイドの低減、接合強度及び接続信頼性をより一層向上させることができる。焼結性接合材料が0.01MPa以下の圧力を受ける方法としては、例えば、半導体素子上に重りを載せる方法等が挙げられる。   The pressure at the time of joining is not particularly limited, but it is preferable that the copper content (deposition ratio) in the sintered product is 65% by volume or more based on the total volume of the sintered product. For example, by using a predetermined sinterable bonding material containing sub-micro copper particles, flaky micro-copper particles, etc., as described above, a sintered product excellent in bondability without applying pressure during bonding. Can be formed. In this case, sufficient bonding strength is obtained only by the self-weight of the semiconductor element existing on the sinterable bonding material, or by further applying a pressure of 0.01 MPa or less, preferably 0.005 MPa or less to the self-weight of the semiconductor element. be able to. In this case, since a special pressurizing device is not required, void reduction, bonding strength, and connection reliability can be further improved without impairing yield. Examples of a method in which the sinterable bonding material receives a pressure of 0.01 MPa or less include a method of placing a weight on a semiconductor element.

歩留まり向上、焼結物の緻密度向上の観点から、半導体素子を介して接合用ペーストに対し加圧を伴っても良い。加圧圧力は0.01MPa以上10MPa以下とすることができる。0.01MPa以上0.1MPa以下程度の低圧であれば、剥離等の接合欠陥を抑えて歩留まりの向上が見込まれる。一方、1MPa以上10MPa以下であれば焼結物の緻密度の向上により、接合強度のさらなる向上や、熱伝導率の向上が見込める。加圧方法としては、重り、バネ冶具、シリコーンゴム等を用いた加圧冶具、熱圧着装置、熱板プレス装置が挙げられる。   From the viewpoint of improving the yield and improving the density of the sintered product, pressurization may be applied to the bonding paste via the semiconductor element. The pressurizing pressure can be 0.01 MPa or more and 10 MPa or less. If it is a low pressure of about 0.01 MPa or more and 0.1 MPa or less, it is possible to suppress the bonding defects such as peeling and improve the yield. On the other hand, if the density is 1 MPa or more and 10 MPa or less, further improvement in bonding strength and improvement in thermal conductivity can be expected due to improvement in the density of the sintered product. Examples of the pressing method include a pressing jig using a weight, a spring jig, silicone rubber, etc., a thermocompression bonding apparatus, and a hot plate pressing apparatus.

(除去工程)
本工程では、接合工程により形成された焼結物のうち、平面視において、半導体素子の外周縁を超えて存在する焼結物(焼結金属片)を除去する。すなわち、焼結性接合材料の、半導体素子の接合面からはみ出た部分から形成される、接合に寄与しない焼結物を除去する。これにより、そのような焼結物の脱落による動作不良を防止する。本工程は、例えば、エアガン、粘着シート、粘着テープ等を用いて実施することができる。
(Removal process)
In this step, among the sintered products formed by the joining step, a sintered product (sintered metal piece) existing beyond the outer peripheral edge of the semiconductor element is removed in plan view. That is, the sintered material that does not contribute to the bonding formed from the portion of the sinterable bonding material that protrudes from the bonding surface of the semiconductor element is removed. Thereby, the malfunctioning by the fall of such a sintered compact is prevented. This process can be implemented using an air gun, an adhesive sheet, an adhesive tape etc., for example.

<半導体装置>
本実施形態に係る半導体装置の製造方法により、図1に示す半導体装置を得ることができる。図1において、半導体装置100は、半導体素子2と、半導体素子搭載用支持部材3と、半導体素子2及び半導体素子搭載用支持部材3を接合する、焼結性接合材料の焼結物(焼結金属層)1を備える。本実施形態に係る半導体装置の製造方法により得られる半導体装置100は、半導体素子2と半導体素子搭載用支持部材3とが、半導体素子2の接合面2aと略同面積の焼結物1により接合されている。
<Semiconductor device>
The semiconductor device shown in FIG. 1 can be obtained by the method for manufacturing a semiconductor device according to this embodiment. In FIG. 1, a semiconductor device 100 includes a semiconductor element 2, a semiconductor element mounting support member 3, a sintered body (sintered) of a sinterable bonding material that joins the semiconductor element 2 and the semiconductor element mounting support member 3. Metal layer) 1 is provided. In the semiconductor device 100 obtained by the semiconductor device manufacturing method according to the present embodiment, the semiconductor element 2 and the semiconductor element mounting support member 3 are joined by the sintered product 1 having substantially the same area as the joining surface 2 a of the semiconductor element 2. Has been.

なお、半導体素子2には、シリコン(Si)等の一般的な半導体材料の他、シリコンカーバイド(SiC)、ガリウムナイトライド(GaN)等のワイドバンドギャップ半導体材料などを特に制限なく用いることができる。半導体素子2としては、具体的には、IGBT、ダイオード、ショットキーバリヤダイオード、MOS−FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子などが挙げられる。また、半導体素子搭載用支持部材3としては、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、銅リボン及び金属フレーム等の金属配線、金属ブロック等のブロック体、端子等の給電用部材、放熱板、水冷板などが挙げられる。   For the semiconductor element 2, in addition to a general semiconductor material such as silicon (Si), a wide band gap semiconductor material such as silicon carbide (SiC) or gallium nitride (GaN) can be used without particular limitation. . Specific examples of the semiconductor element 2 include semiconductor elements such as IGBTs, diodes, Schottky barrier diodes, MOS-FETs, thyristors, logics, sensors, analog integrated circuits, LEDs, semiconductor lasers, and oscillators. The semiconductor element mounting support member 3 includes a lead frame, a ceramic substrate with a metal plate (for example, DBC), a substrate for mounting a semiconductor element such as an LED package, a metal wiring such as a copper ribbon and a metal frame, a metal block, etc. Examples include a power supply member such as a block body and a terminal, a heat radiating plate, and a water cooling plate.

図2は、半導体装置の他の例を示す模式断面図である。図2に示す半導体装置110は、半導体素子2と半導体素子搭載用支持部材3とを、焼結性接合材料の焼結物(焼結金属層)1により接合した後、半導体素子2上部の端子(図示せず)をワイヤ4でリードフレーム5に接続し、最後に全体を絶縁性の封止材6で覆うことで得られるものである。   FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor device. A semiconductor device 110 shown in FIG. 2 has a semiconductor element 2 and a semiconductor element mounting support member 3 joined together by a sintered product (sintered metal layer) 1 of a sinterable joining material, and then a terminal above the semiconductor element 2. (Not shown) is connected to the lead frame 5 with wires 4, and finally the whole is covered with an insulating sealing material 6.

以下、実施例により本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

<実施例1>
(金属ペーストの準備)
分散媒としてα−テルピネオール(和光純薬工業株式会社製)5.2g及びイソボルニルシクロヘキサノール(MTPH、日本テルペン化学株式会社製)6.8gと、サブマイクロ銅粒子としてCH−0200(三井金属鉱業株式会社製、0.12μm以上0.8μm以下の銅粒子の含有量95質量%)52.8gとをポリ瓶に混合し、超音波ホモジナイザー(US−600、日本精機株式会社製)により19.6kHz、600W、1分間処理し分散液を得た。この分散液に、フレーク状マイクロ銅粒子としてMA−C025(三井金属鉱業株式会社製、平均最大径4.1μmであり、アスペクト比が6.6の銅粒子の含有量100質量%)35.2gを添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。ポリ瓶を密栓し、自転公転型攪拌装置(Planetry Vacuum Mixer ARV−310、株式会社シンキー製)を用いて、2000rpmで2分間撹拌し、減圧下、2000rpmで2分間撹拌して金属ペースト(焼結用銅ペースト)を得た。
<Example 1>
(Preparation of metal paste)
Α-Terpineol (manufactured by Wako Pure Chemical Industries, Ltd.) 5.2 g and isobornylcyclohexanol (MTPH, manufactured by Nippon Terpene Chemical Co., Ltd.) 6.8 g as dispersion media, and CH-0200 (Mitsui Metals) as sub-micro copper particles 52.8 g of 0.12 μm or more and 0.8 μm or less of copper particles manufactured by Mining Co., Ltd.) was mixed in a plastic bottle and 19 by an ultrasonic homogenizer (US-600, manufactured by Nippon Seiki Co., Ltd.). A dispersion was obtained by treatment at 6 kHz, 600 W for 1 minute. In this dispersion, 35.2 g of MA-C025 (manufactured by Mitsui Mining & Smelting Co., Ltd., average maximum diameter 4.1 μm, content of copper particles having an aspect ratio of 6.6, 100 mass%) as flaky micro copper particles Was added and stirred with a spatula until there was no dry powder. Seal the plastic bottle and stir at 2000 rpm for 2 minutes using a rotating and rotating stirrer (Planetary Vacuum Mixer ARV-310, manufactured by Sinky Co., Ltd.). Copper paste).

(載置工程)
サイズ19mm×25mm×3mm(厚さ)の銅基板と、サイズ5mm×5mm×150μm(厚さ)であり、接合面全面にスパッタリングによりチタン層/ニッケル層がこの順で設けられたSiチップと、を準備した。銅基板上に、10mm×10mmの正方形の開口を有する厚さ100μmのステンレスマスクとスキージを用いて、金属ペーストをステンシル印刷した。金属ペーストの印刷物上に、Siチップを、ニッケル層が金属ペーストに接するように置いた。Siチップをピンセットで軽く押さえてSiチップと金属ペーストとを密着させた。これにより前駆積層体を得た。
(Installation process)
A copper substrate having a size of 19 mm × 25 mm × 3 mm (thickness), a Si chip having a size of 5 mm × 5 mm × 150 μm (thickness), and a titanium layer / nickel layer provided in this order by sputtering on the entire bonding surface; Prepared. A metal paste was stencil-printed on a copper substrate using a 100 μm-thick stainless steel mask having a 10 mm × 10 mm square opening and a squeegee. An Si chip was placed on the printed metal paste so that the nickel layer was in contact with the metal paste. The Si chip was lightly pressed with tweezers to adhere the Si chip and the metal paste. This obtained the precursor laminated body.

(乾燥工程)
載置工程で得られた前駆積層体を、温風乾燥機(エスペック製)を用いて、大気中、160℃で5分間加温した。その後温風乾燥機を停止し、温風乾燥機内が100℃以下となってから前駆積層体を出した。これにより、特にSiチップの接合面からはみ出た金属ペーストから分散媒の少なくとも一部を除去した。
(Drying process)
The precursor laminate obtained in the placing step was heated at 160 ° C. for 5 minutes in the air using a warm air dryer (manufactured by ESPEC). Thereafter, the hot air dryer was stopped, and the precursor laminate was taken out after the temperature of the hot air dryer reached 100 ° C. or lower. Thereby, at least a part of the dispersion medium was removed from the metal paste that protruded from the joint surface of the Si chip.

(接合工程)
乾燥工程を経た前駆積層体をチューブ炉(株式会社エイブイシー製)にセットし、アルゴンガスを1L/minで流して空気をアルゴンガスに置換した。その後、水素ガスを300mL/minで流しながら350℃まで10分間かけて昇温、350℃で10分間保持の条件で加熱処理して、金属ペーストを焼結した。これにより、銅基板とSiチップとが、金属ペーストの焼結物である焼結金属層を介して接合された積層体を得た。その後、アルゴンガスを0.3L/minで流しながら冷却し、50℃以下で積層体を空気中に取り出した。
(Joining process)
The precursor laminated body which passed through the drying process was set in a tube furnace (manufactured by Ave Sea Co., Ltd.), and argon gas was flowed at 1 L / min to replace the air with argon gas. Thereafter, the metal paste was sintered by heating at 350 mL for 10 minutes and flowing at 350 ° C. for 10 minutes while flowing hydrogen gas at 300 mL / min. Thereby, the laminated body with which the copper substrate and Si chip | tip were joined via the sintered metal layer which is a sintered compact of a metal paste was obtained. Then, it cooled, flowing argon gas at 0.3 L / min, and took out the laminated body in the air at 50 degrees C or less.

(除去工程)
接合工程により形成された焼結物のうち、Siチップの外周縁を超えて存在する焼結物(焼結金属片)を除去した。除去は、エアガン(アズワン製)を用いた窒素ブローを10〜120秒間実施して行った。
(Removal process)
Of the sintered product formed by the joining process, the sintered product (sintered metal piece) existing beyond the outer periphery of the Si chip was removed. The removal was performed by performing nitrogen blowing for 10 to 120 seconds using an air gun (manufactured by ASONE).

<実施例2〜8及び比較例1>
乾燥工程における雰囲気、加温温度及び加温時間を表1のように変更したこと以外は、実施例1と同様にして載置工程〜除去工程を実施した。
<Examples 2 to 8 and Comparative Example 1>
Except that the atmosphere, heating temperature, and heating time in the drying process were changed as shown in Table 1, the mounting process to the removing process were performed in the same manner as in Example 1.

<比較例2>
10mm×10mmの正方形の開口を有する厚さ100μmのステンレスマスクに代えて、3mm×3mmの正方形の開口を有する厚さ100μmのステンレスマスクを用いたこと以外は、比較例1と同様にして載置工程〜接合工程を実施した。
<Comparative example 2>
Placed in the same manner as in Comparative Example 1 except that a 100 μm thick stainless steel mask having a 3 mm × 3 mm square opening was used instead of the 100 μm thick stainless steel mask having a 10 mm × 10 mm square opening. Process to joining process were performed.

<各種評価>
(焼結金属片の除去性評価)
除去工程後、除去されずに残存した焼結金属片の面積が、金属ペーストを塗布した面積(チップ面積分を除く)の何割程度であるかを、デジタルマイクロスコープ(株式会社キーエンス製)を用いて観察及び評価した。そして、下記基準に基づいて焼結金属片の除去性を評価した。得られた結果を表1に示す。なお、下記A又はBの基準を満たした場合に合格とした。
A:1割未満
B:1割以上2割未満
C:2割以上9割未満
D:9割以上
<Various evaluations>
(Removability evaluation of sintered metal pieces)
After the removal process, the digital microscope (manufactured by Keyence Corporation) is used to determine what percentage of the area (excluding the chip area) where the metal paste has been applied. Observed and evaluated. And the removability of the sintered metal piece was evaluated based on the following criteria. The obtained results are shown in Table 1. In addition, it was set as the pass when the following A or B criteria were satisfied.
A: Less than 10% B: 10% or more and less than 20% C: 20% or more and less than 90% D: 90% or more

(接続信頼性評価)
実施例及び比較例2について、銅基板の放熱面を除いた部分を封止材(封止樹脂)によって封止した。封止材には日立化成株式会社製固形封止材(CEL−400ZHF16、ガラス転移温度204℃、無機充填剤含有エポキシ系樹脂、弾性率17.1GPa、線膨張係数10.2×10−6/℃)を用いた。封止は、トンラスファーモールド装置を用いて、金型温度180℃、成形圧力6.9MPa、硬化加熱時間90秒間の条件にて行った。その後、封止後のサンプルを175℃のオーブンにて6時間加熱することで封止材を硬化した。これにより、各例の封止サンプルを作製した。
(Connection reliability evaluation)
About Example and the comparative example 2, the part except the heat sinking surface of the copper substrate was sealed with the sealing material (sealing resin). As the sealing material, a solid sealing material manufactured by Hitachi Chemical Co., Ltd. (CEL-400ZHF16, glass transition temperature 204 ° C., inorganic filler-containing epoxy resin, elastic modulus 17.1 GPa, linear expansion coefficient 10.2 × 10 −6 / ° C) was used. Sealing was performed using a tonlas fur mold apparatus under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing heating time of 90 seconds. Then, the sealing material was hardened by heating the sample after sealing in 175 degreeC oven for 6 hours. Thereby, the sealing sample of each example was produced.

得られた封止サンプルに対し温度サイクル試験を実施した。試験槽内にて封止サンプル(パッケージ)には温風と冷風によって温度サイクルが与えられた。まず、試験槽内が200℃±5℃で5分間以上保持されるように、温風を15分間送風した。次に、試験槽内が−40℃±5℃で5分間以上保持されるように、冷風を15分間送風した。これを温度サイクル1回とし、1000回まで温度サイクル試験を実施した。温度サイクル400回の時点と、1000回の時点において、SAM観察(Scanning Acoustic Microscope)により焼結金属層の密着面積率を算出し、接続信頼性を評価した。具体的な評価手法は以下のとおりである。   The temperature cycle test was implemented with respect to the obtained sealing sample. The sealed sample (package) was subjected to a temperature cycle by hot air and cold air in the test tank. First, warm air was blown for 15 minutes so that the inside of the test tank was maintained at 200 ° C. ± 5 ° C. for 5 minutes or more. Next, cold air was blown for 15 minutes so that the inside of the test tank was held at −40 ° C. ± 5 ° C. for 5 minutes or more. This was regarded as one temperature cycle, and the temperature cycle test was conducted up to 1000 times. The adhesion area ratio of the sintered metal layer was calculated by SAM observation (Scanning Acoustic Microscope) at the time points of 400 and 1000 times of the temperature cycle, and the connection reliability was evaluated. The specific evaluation method is as follows.

まず、温度サイクル試験前に、封止サンプルの銅基板側から35MHzの超音波を照射し、焼結金属層で反射された超音波を測定することにより、基準となるSAM画像(焼結金属層の密着面積SDBを示す)を撮像した。次に温度サイクル400回後に、同様に焼結金属層のSAM画像を撮像した。温度サイクル試験前のSAM画像よりもコントラストが明るくなった箇所の面積SAを評価した。SDBからSAを減算した後、SDBで除算し、焼結金属層の密着面積率S400(%)を算出した。次に温度サイクル1000回後に同様に焼結金属層のSAM画像を撮像した。温度サイクル試験前のSAM画像よりもコントラストが明るくなった箇所の面積SAを評価した。SDBからSAを引算した後、SDBで除算し、焼結金属層の密着面積率S1000(%)を算出した。そして、下記基準に基づいて接続信頼性を評価した。得られた結果を表2に示す。なお、下記A又はBの基準を満たした場合に合格とした。
A:密着面積率が90%以上
B:密着面積率が70%以上90%未満
C:密着面積率が30%以上70%未満
D:密着面積率が30%未満
First, before the temperature cycle test, an ultrasonic wave of 35 MHz is irradiated from the copper substrate side of the sealing sample, and the ultrasonic wave reflected by the sintered metal layer is measured, so that a reference SAM image (sintered metal layer) The adhesion area SDB is shown). Next, after 400 temperature cycles, a SAM image of the sintered metal layer was similarly taken. The area SA where the contrast became brighter than the SAM image before the temperature cycle test was evaluated. After subtracting SA from SDB, it was divided by SDB to calculate the adhesion area ratio S400 (%) of the sintered metal layer. Next, a SAM image of the sintered metal layer was similarly taken after 1000 temperature cycles. The area SA where the contrast became brighter than the SAM image before the temperature cycle test was evaluated. After subtracting SA from SDB, it was divided by SDB to calculate the adhesion area ratio S1000 (%) of the sintered metal layer. And connection reliability was evaluated based on the following reference | standard. The obtained results are shown in Table 2. In addition, it was set as the pass when the following A or B criteria were satisfied.
A: Adherence area ratio is 90% or more B: Adhesion area ratio is 70% or more and less than 90% C: Adhesion area ratio is 30% or more and less than 70% D: Adhesion area ratio is less than 30%

(断面観察)
接続信頼性評価にて準備した実施例の封止サンプルについて、断面観察を行った。まず、レジノイド切断ホイールをつけたリファインソー・エクセル(リファインテック株式会社製)を用い、当該封止サンプル(ここでは実施例7)の観察したい断面付近で切断した。耐水研磨紙(カーボマックペーパー、リファインテック株式会社製)をつけた研磨装置(Refine Polisher HV、リファインテック株式会社製)で断面を削り、Siチップの断面を出した。余分な封止材を同様にして削り落とした。その後、バフ研磨剤を染み込ませたバフ研磨布をセットした研磨装置で断面を平滑にし,SEM用サンプルとした。このSEM用サンプルを、SEM装置(ESEM XL30、Philips社製)により、印加電圧10kVの条件で観察し、撮像した。図3は、実施例の封止サンプルについての断面SEM像である。図3に示すように、実施例の封止サンプルにおいては、半導体素子(Siチップ)2と、半導体素子搭載用支持部材(銅基板)3とが、半導体素子2の接合面と略同面積の焼結物(焼結金属層)1により接合され、それらが封止材6により封止されていることが分かった。
(Cross section observation)
The cross-sectional observation was performed about the sealing sample of the Example prepared by connection reliability evaluation. First, using Refine So Excel (Refine Tech Co., Ltd.) equipped with a resinoid cutting wheel, the sealed sample (here, Example 7) was cut near the cross section to be observed. The cross section was shaved with a polishing apparatus (Refine Polisher HV, manufactured by Refinetech Co., Ltd.) equipped with water-resistant abrasive paper (Carbo Mac paper, manufactured by Refinetech Co., Ltd.), and a cross section of the Si chip was obtained. Excess sealing material was scraped off in the same manner. Thereafter, the cross-section was smoothed with a polishing apparatus in which a buffing cloth soaked with a buffing abrasive was set to obtain a sample for SEM. This SEM sample was observed and imaged with an SEM device (ESEM XL30, manufactured by Philips) under the condition of an applied voltage of 10 kV. FIG. 3 is a cross-sectional SEM image of the sealed sample of the example. As shown in FIG. 3, in the sealing sample of the example, the semiconductor element (Si chip) 2 and the semiconductor element mounting support member (copper substrate) 3 have substantially the same area as the bonding surface of the semiconductor element 2. It was found that they were joined by the sintered product (sintered metal layer) 1 and sealed by the sealing material 6.

実施例に示されるように、焼結接合前に適切な乾燥工程を実施することによって、焼結接合後に、金属焼結層周囲の(余分な)残存焼結金属片を好適に除去できた。これにより、半導体素子と略同面積の金属焼結層を形成することができ、半導体装置の接続信頼性が向上した。一方、比較例1に示したように、乾燥工程を実施しない場合には、残存焼結金属片を充分に除去できなかった。また、比較例2では、焼結金属層周囲に焼結金属片こそ観察されなかったが、接続信頼性が低かった。   As shown in the examples, by carrying out an appropriate drying step before sintering joining, (excess) residual sintered metal pieces around the sintered metal layer could be suitably removed after sintering joining. Thereby, a sintered metal layer having substantially the same area as the semiconductor element can be formed, and the connection reliability of the semiconductor device is improved. On the other hand, as shown in Comparative Example 1, when the drying step was not performed, the remaining sintered metal piece could not be sufficiently removed. In Comparative Example 2, no sintered metal piece was observed around the sintered metal layer, but the connection reliability was low.

1…焼結性接合材料の焼結物(焼結金属層)、2…半導体素子、3…半導体素子搭載用支持部材、2a…半導体素子の接合面、4…ワイヤ、5…リードフレーム、6…封止材、100,110…半導体装置。   DESCRIPTION OF SYMBOLS 1 ... Sintered material (sintered metal layer) of sinterable joining material, 2 ... Semiconductor element, 3 ... Support member for mounting semiconductor element, 2a ... Joining surface of semiconductor element, 4 ... Wire, 5 ... Lead frame, 6 ... Sealant, 100, 110 ... Semiconductor device.

Claims (4)

半導体素子搭載用支持部材上に、金属粒子及び分散媒を含む焼結性接合材料を介して半導体素子を載置する工程であり、平面視において、前記焼結性接合材料の外周縁が前記半導体素子の外周縁よりも大きい、載置工程と、
前記半導体素子の外周縁を超えて存在する前記焼結性接合材料から、前記分散媒の少なくとも一部を除去する乾燥工程と、
前記焼結性接合材料を加熱して、前記半導体素子搭載用支持部材と前記半導体素子とを、前記焼結性接合材料の焼結物を介して接合する接合工程と、
前記半導体素子の外周縁を超えて存在する、前記焼結性接合材料の焼結物を除去する除去工程と、
を備える、半導体装置の製造方法。
It is a step of placing a semiconductor element on a semiconductor element mounting support member via a sinterable bonding material containing metal particles and a dispersion medium, and the outer periphery of the sinterable bonding material is the semiconductor in plan view A mounting step larger than the outer periphery of the element;
A drying step of removing at least a part of the dispersion medium from the sinterable bonding material existing beyond the outer periphery of the semiconductor element;
Heating the sinterable bonding material, and bonding the semiconductor element mounting support member and the semiconductor element via a sintered product of the sinterable bonding material;
A removal step of removing the sintered product of the sinterable bonding material, which exists beyond the outer peripheral edge of the semiconductor element;
A method for manufacturing a semiconductor device.
前記金属粒子が銅粒子を含み、前記銅粒子の含有量が、前記焼結性接合材料の全質量を基準として80質量%以上である、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the metal particles include copper particles, and the content of the copper particles is 80% by mass or more based on the total mass of the sinterable bonding material. 前記銅粒子がサブマイクロ銅粒子及びフレーク状マイクロ銅粒子を含み、前記サブマイクロ銅粒子の含有量及び前記フレーク状マイクロ銅粒子の含有量の合計が、前記金属粒子の全質量を基準として80質量%以上である、請求項2に記載の製造方法。   The copper particles include sub-micro copper particles and flaky micro-copper particles, and the total content of the sub-micro copper particles and the content of the flaky micro-copper particles is 80 mass based on the total mass of the metal particles. The manufacturing method of Claim 2 which is% or more. 前記半導体素子がワイドバンドギャップ半導体である、請求項1〜3のいずれか一項に記載の製造方法。
The manufacturing method according to claim 1, wherein the semiconductor element is a wide band gap semiconductor.
JP2017182631A 2017-09-22 2017-09-22 Manufacturing method of semiconductor device Active JP7067002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182631A JP7067002B2 (en) 2017-09-22 2017-09-22 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182631A JP7067002B2 (en) 2017-09-22 2017-09-22 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2019057691A true JP2019057691A (en) 2019-04-11
JP7067002B2 JP7067002B2 (en) 2022-05-16

Family

ID=66107905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182631A Active JP7067002B2 (en) 2017-09-22 2017-09-22 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP7067002B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066026A1 (en) * 2019-09-30 2021-04-08 昭和電工マテリアルズ株式会社 Copper paste for joining, method for manufacturing joined body, and joined body
CN114502301A (en) * 2019-09-30 2022-05-13 昭和电工材料株式会社 Copper paste for bonding, method for producing bonded body, and bonded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018843A (en) * 2013-07-09 2015-01-29 三菱電機株式会社 Method of manufacturing power semiconductor device and power semiconductor device
JP2016115865A (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Power semiconductor device
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
WO2017043545A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018843A (en) * 2013-07-09 2015-01-29 三菱電機株式会社 Method of manufacturing power semiconductor device and power semiconductor device
JP2016115865A (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Power semiconductor device
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
WO2017043545A1 (en) * 2015-09-07 2017-03-16 日立化成株式会社 Copper paste for joining, method for producing joined body, and method for producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066026A1 (en) * 2019-09-30 2021-04-08 昭和電工マテリアルズ株式会社 Copper paste for joining, method for manufacturing joined body, and joined body
CN114502301A (en) * 2019-09-30 2022-05-13 昭和电工材料株式会社 Copper paste for bonding, method for producing bonded body, and bonded body

Also Published As

Publication number Publication date
JP7067002B2 (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP7359267B2 (en) Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
JP7056724B2 (en) Bonds and semiconductor devices
JP7396398B2 (en) Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
JP6866893B2 (en) Copper paste for bonding, manufacturing method of bonded body and manufacturing method of semiconductor device
JP6988831B2 (en) Copper paste for non-pressurized bonding, junctions, and semiconductor devices
JP6782416B2 (en) Copper paste for bonding, bonded body and its manufacturing method, and semiconductor device and its manufacturing method
JP6907540B2 (en) Copper paste for bonding, sintered body, bonded body, semiconductor device and their manufacturing method
JP7067002B2 (en) Manufacturing method of semiconductor device
JP2021127505A (en) Metal paste for joining, joint body, semiconductor device, and method for producing joint body
WO2021064826A1 (en) Copper paste for joining, method for manufacturing joined body, and joined body
JP6984146B2 (en) Resin-containing copper sintered body and its manufacturing method, bonded body, and semiconductor device
JP2021172858A (en) Manufacturing method of semiconductor device, support member set for mounting semiconductor element and semiconductor element set
JP7468358B2 (en) Method for manufacturing bonded body and semiconductor device, and copper paste for bonding
JP7484097B2 (en) Semiconductor Device
JP7375295B2 (en) Electronic components and electronic component manufacturing methods
JP2021127506A (en) Metal paste for joining, joint body, semiconductor device, and method for producing joint body
JP2020015950A (en) Metal paste for joining, assembly, and method of manufacturing assembly
JP2021097072A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350