JP2019057578A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2019057578A
JP2019057578A JP2017180402A JP2017180402A JP2019057578A JP 2019057578 A JP2019057578 A JP 2019057578A JP 2017180402 A JP2017180402 A JP 2017180402A JP 2017180402 A JP2017180402 A JP 2017180402A JP 2019057578 A JP2019057578 A JP 2019057578A
Authority
JP
Japan
Prior art keywords
light
axis direction
sealing member
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017180402A
Other languages
Japanese (ja)
Other versions
JP7096473B2 (en
Inventor
秀彰 任介
Hideaki Ninkai
秀彰 任介
林 英樹
Hideki Hayashi
英樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2017180402A priority Critical patent/JP7096473B2/en
Publication of JP2019057578A publication Critical patent/JP2019057578A/en
Application granted granted Critical
Publication of JP7096473B2 publication Critical patent/JP7096473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

To provide a light-emitting device having a light emission property, specifically narrow light distribution.SOLUTION: The light-emitting device comprises: a package which comprises a recess having a first bottom face 21 and side faces each of which has a length in an X-axis direction longer than a length in a Y-axis direction that is orthogonal to the X-axis direction, in which the recess is opened in a Z-axis direction that is orthogonal to the X-axis direction and the Y-axis direction and which reflects light on the side face of the recess; a light-emitting element 1 which is provided on the first bottom face 21; and a sealing member 3 which is provided in the recess and covers the light-emitting element 1. The side face of the recess includes a first side face 22a, a second bottom face 22c and a second side face 22b continuously from the side of the first bottom face 21 in the Z-axis direction. The sealing member 3 is in contact with the first side face 22a, the second bottom face 22c and the second side face 22b, and a top face of the sealing member 3 is recessed. A deepest part of the top face of the sealing member 3 is 0.7 times or more as deep as the second bottom face 22c with reference to a top face of the package.SELECTED DRAWING: Figure 2

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

近年、各種のディスプレイ用のバックライト用光源として、側面発光型(サイドビュー型)の発光装置が用いられている。例えば、特許文献1には、側面発光型の発光装置に用いられる発光ダイオードパッケージ、及びそれを用いた発光装置が開示されている。   In recent years, a side-emitting type (side-view type) light-emitting device has been used as a backlight light source for various displays. For example, Patent Document 1 discloses a light-emitting diode package used in a side-emitting light-emitting device and a light-emitting device using the same.

特開2008−53726号公報JP 2008-53726 A

しかしながら、最近では狭い配光特性を有する発光装置が求められている。
そこで、本発明は、狭配光の発光特性を有する発光装置を提供することを目的とする。
However, recently, a light emitting device having a narrow light distribution characteristic has been demanded.
In view of the above, an object of the present invention is to provide a light emitting device having light emission characteristics of narrow light distribution.

以上の目的を達成するために、本発明に係る一実施形態の発光装置は、
X軸方向における長さが前記X軸方向に直交するY軸方向の長さより長い第1底面と、側面と、を有する凹部を備え、前記凹部は、前記X軸方向及び前記Y軸方向に直交するZ軸方向に開口し、前記凹部の側面で光を反射するパッケージと、
前記第1底面に設けられた発光素子と、
前記凹部に設けられ、前記発光素子を覆う封止部材と、
を有し、
前記凹部の側面は、前記第1底面側から前記Z軸方向に第1側面と、第2底面と、第2側面と、を連続して有し、かつ、前記封止部材は、前記第1側面、第2底面及び第2側面と接し、前記封止部材の上面は窪んでおり、前記パッケージの上面を基準にし、前記封止部材の上面の最深部の深さは、前記第2底面の深さの0.7倍以上であることを特徴とする。
In order to achieve the above object, a light emitting device according to an embodiment of the present invention includes:
A concave portion having a first bottom surface and a side surface having a length in the X-axis direction that is longer than a length in the Y-axis direction orthogonal to the X-axis direction, wherein the concave portion is orthogonal to the X-axis direction and the Y-axis direction. A package that opens in the Z-axis direction and reflects light on the side surface of the recess;
A light emitting device provided on the first bottom surface;
A sealing member provided in the recess and covering the light emitting element;
Have
The side surface of the recess continuously includes a first side surface, a second bottom surface, and a second side surface in the Z-axis direction from the first bottom surface side, and the sealing member includes the first side surface The top surface of the sealing member is in contact with the side surface, the second bottom surface, and the second side surface, and the depth of the deepest portion of the top surface of the sealing member is determined based on the top surface of the package. It is characterized by being not less than 0.7 times the depth.

以上のように構成された本発明に係る一実施形態の発光装置によれば、狭配光の発光特性を有する発光装置を提供することができる。   According to the light emitting device according to the embodiment of the present invention configured as described above, it is possible to provide a light emitting device having light emission characteristics of narrow light distribution.

本発明に係る実施形態の発光装置のパッケージの斜視図である。It is a perspective view of the package of the light-emitting device of embodiment which concerns on this invention. 本発明に係る実施形態の発光装置の断面図であり、図1のA−A線についての断面である。It is sectional drawing of the light-emitting device of embodiment which concerns on this invention, and is a cross section about the AA of FIG. 本発明に係る実施形態の発光装置の断面図であり、図1のB−B線についての断面である。It is sectional drawing of the light-emitting device of embodiment which concerns on this invention, and is a cross section about the BB line of FIG. 本発明に係る実施形態におけるより好ましい発光装置の断面図であり、図1のB−B線についての断面である。It is sectional drawing of the more preferable light-emitting device in embodiment which concerns on this invention, and is a cross section about the BB line of FIG.

以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一の実施の形態において説明する内容は、他の実施の形態にも適用可能である。また、図面が示す部材の大きさや位置関係等は、理解しやすいように誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. In addition, the contents described in one embodiment can be applied to other embodiments. Moreover, the size and positional relationship of the members shown in the drawings may be exaggerated for easy understanding.

<実施形態>
図1は、実施形態に係る発光装置100のパッケージ10の斜視図である。図2は、実施形態に係る発光装置100の断面図であり、図1のA−A線についての断面を示している。図3は、実施形態に係る発光装置100の断面図であり、図1のB−B線についての断面を示している。
<Embodiment>
FIG. 1 is a perspective view of a package 10 of a light emitting device 100 according to an embodiment. FIG. 2 is a cross-sectional view of the light emitting device 100 according to the embodiment, and shows a cross section taken along the line AA of FIG. FIG. 3 is a cross-sectional view of the light emitting device 100 according to the embodiment, and shows a cross section taken along the line BB of FIG.

明細書において、X軸方向とY軸方向とは直交し、X軸方向とY軸方向とを含む平面に対して直交する方向をZ軸方向とをする。
実施形態に係る発光装置100は、X軸方向における長さがX軸方向に直交するY軸方向の長さより長い第1底面と、側面と、を有する凹部20を備え、凹部20は、X軸方向及びY軸方向に直交するZ軸方向に開口し、凹部20の側面で光を反射するパッケージ10と、第1底面に設けられた発光素子1と、凹部20に設けられ、発光素子1を覆う封止部材3と、を有する。
凹部20の側面は、第1底面側からZ軸方向に第1側面と、第2底面と、第2側面と、を連続して有している。
封止部材3は、第1側面、第2底面及び第2側面と接し、封止部材3の上面は窪んでおり、パッケージ10の上面を基準にし、封止部材3の上面の最深部の深さは、第2底面の深さの0.7倍以上である。
発光装置100は、Y軸方向の長さに比較してX軸方向の長さが長い横長の略直方体形状であり、発光素子1と、発光素子1を収容するパッケージ10とを備えている。例えば、パッケージ10のX軸方向の長さは、Y軸方向の長さの5倍〜7倍である。
In the specification, the X-axis direction and the Y-axis direction are orthogonal to each other, and the direction orthogonal to the plane including the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
The light-emitting device 100 according to the embodiment includes a recess 20 having a first bottom surface and a side surface whose length in the X-axis direction is longer than the length in the Y-axis direction orthogonal to the X-axis direction. Package 10 that opens in the Z-axis direction orthogonal to the direction and the Y-axis direction and reflects light on the side surface of the recess 20, the light-emitting element 1 provided on the first bottom surface, and the light-emitting element 1 provided in the recess 20. And a sealing member 3 to be covered.
The side surface of the recess 20 continuously has a first side surface, a second bottom surface, and a second side surface in the Z-axis direction from the first bottom surface side.
The sealing member 3 is in contact with the first side surface, the second bottom surface, and the second side surface, and the upper surface of the sealing member 3 is recessed, and the depth of the deepest portion of the upper surface of the sealing member 3 is based on the upper surface of the package 10. The height is 0.7 times or more the depth of the second bottom surface.
The light emitting device 100 has a substantially rectangular parallelepiped shape that is longer in the X axis direction than the length in the Y axis direction, and includes a light emitting element 1 and a package 10 that houses the light emitting element 1. For example, the length of the package 10 in the X-axis direction is 5 to 7 times the length in the Y-axis direction.

発光装置100は、例えば、サイドビュー型と呼ばれる薄型の発光装置として用いられ、パッケージ10のY軸方向の長さは、例えば、0.8mm以下、好ましくは、0.6mm以下、より好ましくは0.5mm以下である。また、パッケージ10のY軸方向の長さの下限値は、例えば、0.2mm以上である。パッケージ10は、第1リード11と、第2リード12と、第1及び第2リード11,12を支持する成形体15と、を含み、Z軸方向に開口し、底面21と内周側面22とを有する凹部20が設けられている。また、成形体15は、例えば、白色顔料を含む樹脂からなり、凹部20の内周側面22は光反射性を有している。また、第1リードの一部と第2リードの一部とが底面21から露出されている。   The light emitting device 100 is used as, for example, a thin light emitting device called a side view type, and the length of the package 10 in the Y-axis direction is, for example, 0.8 mm or less, preferably 0.6 mm or less, more preferably 0. .5 mm or less. Further, the lower limit value of the length of the package 10 in the Y-axis direction is, for example, 0.2 mm or more. The package 10 includes a first lead 11, a second lead 12, and a molded body 15 that supports the first and second leads 11 and 12. The package 10 opens in the Z-axis direction, and has a bottom surface 21 and an inner peripheral side surface 22. A recess 20 is provided. Moreover, the molded object 15 consists of resin containing a white pigment, for example, and the internal peripheral side surface 22 of the recessed part 20 has light reflectivity. A part of the first lead and a part of the second lead are exposed from the bottom surface 21.

凹部20の底面21は、Y軸方向の長さに比較してX軸方向の長さが長い横長の形状であり、その外周は、X軸方向に平行な2つの長辺とその2つの長辺の端と端とをそれぞれ結ぶ半円形状の短辺とを有している。換言すると、凹部20の底面21は、X軸方向に平行でかつ互いに対向する長辺と、それぞれ長辺の端部間に位置する円弧形状の短辺を有している。また、凹部20の開口部は、凹部20の底面21と同様に、X軸方向に平行でかつ互いに対向する長辺と、それぞれ長辺の端部間に位置する円弧形状の短辺を有している。凹部20の底面21及び/又は凹部20の開口部がX軸方向に平行でかつ互いに対向する長辺を備えていることで、X軸方向に広い発光面を備えた発光装置とすることができる。凹部20の底面21及び/又は凹部20の開口部がそれぞれ長辺の端部間に位置する円弧形状の短辺を有していることで、長辺と短辺の接続部が滑らかに繋がることができる。これにより、凹部内に位置する封止部材をポッティング等で形成する場合において、長辺と短辺の接続部まで封止部材を充填しやすくなる。また、凹部20の内周側面22は、底面21側から、第1側面22aと第2底面22cと第2側面22bとを連続して有している。ここで、連続して有しているとは、底面21の外周に第1側面22aの下端が繋がっており、第1側面22aの上端と第2底面22cの内周が繋がっており、第2底面22cの外周と第2側面22bの下端とが繋がっていることをいう。また、第2側面22bの上端は、凹部20の開口部の外周である。   The bottom surface 21 of the recess 20 has a horizontally long shape having a length in the X-axis direction that is longer than the length in the Y-axis direction, and the outer periphery thereof has two long sides parallel to the X-axis direction and the two lengths thereof. It has a semicircular short side connecting the ends of the sides. In other words, the bottom surface 21 of the recess 20 has a long side that is parallel to the X-axis direction and that faces each other, and an arc-shaped short side that is positioned between the ends of the long sides. Moreover, the opening part of the recessed part 20 has the long side parallel to a X-axis direction and mutually opposing similarly to the bottom face 21 of the recessed part 20, and the short side of the circular arc shape located between the edge parts of each long side, respectively. ing. Since the bottom surface 21 of the recess 20 and / or the opening of the recess 20 have long sides parallel to the X-axis direction and facing each other, a light-emitting device having a wide light-emitting surface in the X-axis direction can be obtained. . Since the bottom surface 21 of the recess 20 and / or the opening of the recess 20 has an arc-shaped short side located between the end portions of the long side, the connecting portion of the long side and the short side is smoothly connected. Can do. Thereby, when forming the sealing member located in a recessed part by potting etc., it becomes easy to fill a sealing member to the connection part of a long side and a short side. Moreover, the inner peripheral side surface 22 of the recessed part 20 has the 1st side surface 22a, the 2nd bottom surface 22c, and the 2nd side surface 22b from the bottom surface 21 side continuously. Here, having continuously means that the lower end of the first side surface 22a is connected to the outer periphery of the bottom surface 21, the upper end of the first side surface 22a and the inner periphery of the second bottom surface 22c are connected, and the second It means that the outer periphery of the bottom face 22c and the lower end of the second side face 22b are connected. Further, the upper end of the second side surface 22 b is the outer periphery of the opening of the recess 20.

パッケージ10の凹部20が第1側面と、第2底面と、第2側面と、を有することで凹部の内周側面の表面積を大きくできる。このため、封止部材3が、第1側面、第2底面及び第2側面と接することで、パッケージと封止部材の接触する面積を大きくすることができる。これにより、パッケージと封止部材とが剥離することを抑制することができる。   Since the concave portion 20 of the package 10 has the first side surface, the second bottom surface, and the second side surface, the surface area of the inner peripheral side surface of the concave portion can be increased. For this reason, when the sealing member 3 is in contact with the first side surface, the second bottom surface, and the second side surface, the contact area between the package and the sealing member can be increased. Thereby, it can suppress that a package and a sealing member peel.

発光装置100において、第1側面22aは底面21にほぼ垂直な面であることが好ましい。尚、本明細書において、ほぼ垂直な面とは垂直から3°程度広口となる変動が許容されることを意味する。第1側面22aが底面21にほぼ垂直な面であることで、第1側面22aが底面21に傾斜している場合よりも凹部20の周りのパッケージの側壁部の厚み(X軸方向及び/又はY軸方向における側壁部の厚み)を厚くすることができる。X軸方向及び/又はY軸方向における側壁部の厚みを厚くすることで発光素子1からの光が側壁部を透過することを抑制することができるので、発光装置100の光取り出し効率を向上させることができる。また、Z軸方向において、発光素子1の上面は、第2底面22cよりも下側に位置していることが好ましい。X軸方向及び/又はY軸方向における側壁部の厚みは、第2側面22b側よりも第1側面22a側が厚い。このため、発光素子1の上面が、第2底面よりも下側に位置することで、発光素子1の側面をX軸方向及び/又はY軸方向における側壁部の厚みの厚い第1側面22a側が囲むことができるので、発光素子1からの光が側壁部を透過することを抑制することができる。第2側面22bの底面21に対する傾斜角は、第1側面22aの底面21に対する傾斜角より小さいことが好ましい。第2側面22bの底面21に対する傾斜角が、第1側面22aの底面21に対する傾斜角よりも小さいことで、第2側面22bによって反射された発光素子1からの光が封止部材3の上面に進みやすくなる。これにより発光装置100の光取り出し効率を向上させることができる。第2側面22bの底面21に対する傾斜角は、例えば、70°〜80°であることが好ましい。   In the light emitting device 100, the first side surface 22 a is preferably a surface substantially perpendicular to the bottom surface 21. In the present specification, a substantially vertical surface means that a variation of a wide opening of about 3 ° from the vertical is allowed. Since the first side surface 22a is a surface substantially perpendicular to the bottom surface 21, the thickness of the side wall portion of the package around the recess 20 (in the X-axis direction and / or than the case where the first side surface 22a is inclined to the bottom surface 21). The thickness of the side wall portion in the Y-axis direction) can be increased. By increasing the thickness of the side wall portion in the X-axis direction and / or the Y-axis direction, it is possible to suppress the light from the light emitting element 1 from passing through the side wall portion, so that the light extraction efficiency of the light-emitting device 100 is improved. be able to. In addition, in the Z-axis direction, the upper surface of the light emitting element 1 is preferably positioned below the second bottom surface 22c. As for the thickness of the side wall in the X-axis direction and / or the Y-axis direction, the first side surface 22a side is thicker than the second side surface 22b side. For this reason, since the upper surface of the light emitting element 1 is positioned below the second bottom surface, the side surface of the light emitting element 1 is on the side of the first side surface 22a where the side wall portion is thicker in the X-axis direction and / or the Y-axis direction. Since it can surround, it can suppress that the light from the light emitting element 1 permeate | transmits a side wall part. The inclination angle of the second side surface 22b with respect to the bottom surface 21 is preferably smaller than the inclination angle of the first side surface 22a with respect to the bottom surface 21. The light from the light emitting element 1 reflected by the second side surface 22b is reflected on the upper surface of the sealing member 3 because the inclination angle of the second side surface 22b with respect to the bottom surface 21 is smaller than the inclination angle with respect to the bottom surface 21 of the first side surface 22a. It becomes easy to proceed. Thereby, the light extraction efficiency of the light emitting device 100 can be improved. The inclination angle of the second side surface 22b with respect to the bottom surface 21 is preferably, for example, 70 ° to 80 °.

第1側面22aが底面21に対してほぼ垂直な面である場合、例えば、第2底面22cの内周と底面21の外周とはほぼ同一形状であり、第2底面22cの外周及び凹部20の開口部の外周は、底面21の外周と相似形であり、底面21の外周より大きくなっている。第2側面22bは、開口部側が大きくなるようにZ軸方向に対して傾斜しており、第2底面22cの外周に比べて凹部20の開口部の外周は、大きくなっている。凹部20において、底面21の外周、第2底面22cの内周及び外周、凹部20の開口部の外周の中心軸は一致していることが好ましい。   When the first side surface 22a is a surface substantially perpendicular to the bottom surface 21, for example, the inner periphery of the second bottom surface 22c and the outer periphery of the bottom surface 21 are substantially the same shape, and the outer periphery of the second bottom surface 22c and the recess 20 The outer periphery of the opening is similar to the outer periphery of the bottom surface 21 and is larger than the outer periphery of the bottom surface 21. The second side surface 22b is inclined with respect to the Z-axis direction so that the opening side is larger, and the outer periphery of the opening of the recess 20 is larger than the outer periphery of the second bottom surface 22c. In the recess 20, it is preferable that the outer axes of the bottom surface 21, the inner periphery and the outer periphery of the second bottom surface 22 c, and the center axes of the outer periphery of the opening of the recess 20 coincide.

パッケージ10において、凹部20の底面21は、例えば、XY平面に平行で、第1リード11の表面11sと、第2リード12の表面12sと、成形体15の表面とを含む。すなわち、パッケージ10において、第1リード11と第2リード12とは、一部の表面がそれぞれ凹部20の底面21に露出されるように埋設されている。また、第1リード11と第2リード12とはそれぞれ、凹部20の一端(底面21に露出された表面から離れた側の端)から所定の長さの部分(一端部)が成形体15の外表面から引き出されて、それぞれ成形体15の外表面に沿って折り曲げられて外部接続端子11e,12eが構成される。   In the package 10, the bottom surface 21 of the recess 20 is, for example, parallel to the XY plane and includes the surface 11 s of the first lead 11, the surface 12 s of the second lead 12, and the surface of the molded body 15. That is, in the package 10, the first lead 11 and the second lead 12 are embedded such that a part of the surface is exposed to the bottom surface 21 of the recess 20. Each of the first lead 11 and the second lead 12 has a portion (one end portion) of a predetermined length from one end of the recess 20 (the end on the side away from the surface exposed on the bottom surface 21). The external connection terminals 11e and 12e are formed by being pulled out from the outer surface and bent along the outer surface of the molded body 15, respectively.

凹部20の底面21に露出された第1リード11の表面11sの面積は、凹部20の底面21に露出された第2リード12の表面12sの面積に比較して大きくなっている。そしてその第1リード11の凹部20の底面に露出された表面11sに、発光素子1が載置される。例えば、発光素子1は、上面に正負の電極が設けられており、下面が凹部20の底面に露出された第1リード11の表面に接合され、正電極及び負電極がそれぞれワイヤ30により凹部20の底面に露出された第1リード11の表面及び第2リード12の表面に電気的に接続される。以上のようにして、発光素子1が凹部20内に実装される。   The area of the surface 11 s of the first lead 11 exposed at the bottom surface 21 of the recess 20 is larger than the area of the surface 12 s of the second lead 12 exposed at the bottom surface 21 of the recess 20. Then, the light emitting element 1 is placed on the surface 11 s exposed on the bottom surface of the recess 20 of the first lead 11. For example, the light emitting element 1 is provided with positive and negative electrodes on the upper surface, the lower surface is bonded to the surface of the first lead 11 exposed on the bottom surface of the recess 20, and the positive electrode and the negative electrode are respectively connected to the recess 20 by the wire 30. Are electrically connected to the surface of the first lead 11 and the surface of the second lead 12 exposed on the bottom surface of the first lead 11. As described above, the light emitting element 1 is mounted in the recess 20.

発光装置100において、実装された発光素子1を覆う封止樹脂3が凹部20内に設けられている。封止部材3は、内周側面22の第1側面22a、第2底面22c及び第2側面22bと接し、封止部材3の上面は窪んでいる。   In the light emitting device 100, a sealing resin 3 that covers the mounted light emitting element 1 is provided in the recess 20. The sealing member 3 is in contact with the first side surface 22a, the second bottom surface 22c, and the second side surface 22b of the inner peripheral side surface 22, and the upper surface of the sealing member 3 is recessed.

以上のように構成された発光装置100は、封止部材3の上面が窪んでいることから封止部材3の上面から出射される光の配光特性を狭配光にできる。すなわち、封止部材3の上面が窪んでいると、封止部材3の中を進む光は、封止部材3の上面に大きい入射角で入射されるようになり、封止部材3の内から封止部材3の上面、特に、封止部材3の上面のうちの開口端に近い部分に入射される光は全反射されるようになる。これにより、封止部材3の上面から大きな出射角で出射される光の光量が少なくなり狭配光にできる。また、パッケージ10の上面を基準にしたときの封止部材3の上面の最深部の深さd1は、例えば、第2底面22cの深さd2の0.7倍以上である。0.7倍以上とすることで、封止部材3の上面の窪みが大きくなるので、封止部材3の上面のうちの開口端に近い部分に入射される光の入射角が大きくなる。これにより、発光素子からの光が封止部材3の上面のうちの開口端に近い部分で全反射されやすくなるので、発光装置を狭配光にすることができる。また、封止部材3の上面の最深部の深さd1は、第2底面22cの深さd2の0.75倍以上が好ましく。0.8倍以上がより好ましい。このようにすることで、封止部材3の上面のうち開口端に近い部分に入射される光の入射角を更に大きくすることができる。これにより、発光装置を更に狭配光にすることができる。また、封止部材3の上面は窪んだ曲面であることが好ましい。封止部材3の上面の傾斜は、X軸とZ軸とを通る面に平行な断面よりY軸とZ軸とを通る面に平行な断面の方が大きいので、Y軸とZ軸とを通る面に平行な断面における配光特性をより狭配光にできる。実施形態の発光装置100において、より配光特性を狭配光にするために、図4に示すように、封止部材3の上面の最深部の深さd1は、第2底面22cの深さd2以上であることが好ましい。このようにすることで更に狭配光にすることができる。   The light emitting device 100 configured as described above can narrow the light distribution characteristics of light emitted from the upper surface of the sealing member 3 because the upper surface of the sealing member 3 is recessed. That is, when the upper surface of the sealing member 3 is depressed, the light traveling through the sealing member 3 is incident on the upper surface of the sealing member 3 at a large incident angle. Light incident on the upper surface of the sealing member 3, in particular, the portion near the opening end of the upper surface of the sealing member 3 is totally reflected. As a result, the amount of light emitted from the upper surface of the sealing member 3 at a large emission angle is reduced, and narrow light distribution can be achieved. Further, the depth d1 of the deepest portion of the upper surface of the sealing member 3 with respect to the upper surface of the package 10 is, for example, 0.7 times or more the depth d2 of the second bottom surface 22c. By setting it as 0.7 times or more, the depression on the upper surface of the sealing member 3 becomes larger, so that the incident angle of light incident on the portion near the opening end on the upper surface of the sealing member 3 becomes larger. Thereby, since the light from the light emitting element is easily totally reflected at the portion of the upper surface of the sealing member 3 near the opening end, the light emitting device can have a narrow light distribution. Moreover, the depth d1 of the deepest part of the upper surface of the sealing member 3 is preferably 0.75 times or more the depth d2 of the second bottom surface 22c. 0.8 times or more is more preferable. By doing in this way, the incident angle of the light which injects into the part close | similar to an opening end among the upper surfaces of the sealing member 3 can be enlarged further. Thereby, a light-emitting device can be made further narrow light distribution. The upper surface of the sealing member 3 is preferably a concave curved surface. The inclination of the upper surface of the sealing member 3 is larger in the cross section parallel to the plane passing through the Y axis and the Z axis than in the cross section parallel to the plane passing through the X axis and the Z axis. The light distribution characteristic in the cross section parallel to the passing surface can be made narrower. In the light emitting device 100 of the embodiment, in order to make the light distribution characteristics narrower, the depth d1 of the deepest portion of the top surface of the sealing member 3 is the depth of the second bottom surface 22c as shown in FIG. It is preferable that it is d2 or more. By doing so, the light distribution can be further narrowed.

加えて、実施形態の発光装置100は、成形体15の表面により形成される凹部20の内周側面22は光反射性を有しているので、封止部材3の上面で全反射された光は凹部20の内周側面22で反射されて封止部材3の上面で全反射されないような入射角で封止部材3の上面に入射したときに出射される。これにより、封止部材3の上面で全反射することにより減少する光量は抑制される。   In addition, in the light emitting device 100 of the embodiment, the inner peripheral side surface 22 of the recess 20 formed by the surface of the molded body 15 has light reflectivity, and thus the light totally reflected on the upper surface of the sealing member 3. Is emitted when it is incident on the upper surface of the sealing member 3 at an incident angle such that it is reflected by the inner peripheral side surface 22 of the recess 20 and not totally reflected by the upper surface of the sealing member 3. Thereby, the light quantity which reduces by carrying out total reflection on the upper surface of the sealing member 3 is suppressed.

発光装置100において、上面が窪んだ封止部材3は、例えば、パッケージ10の凹部20に封止部材3を形成する際、例えば、封止部材形成用樹脂の粘度及び充填量を適宜調整することにより所望の上面形状を有する封止部材3を形成することができる。特に、発光装置100において、凹部20の内周側面22は、底面21側から、第1側面22aと第2底面22cと第2側面22bとを連続して有しているので、封止部材3を形成する際の封止部材形成用樹脂の粘度及び充填量を適宜調整することにより、形状のバラツキの少ない上面形状を有する封止部材3を容易に形成することが可能になる。   In the light emitting device 100, the sealing member 3 whose upper surface is recessed, for example, appropriately adjusts the viscosity and the filling amount of the sealing member forming resin when the sealing member 3 is formed in the recess 20 of the package 10. Thus, the sealing member 3 having a desired upper surface shape can be formed. In particular, in the light emitting device 100, the inner peripheral side surface 22 of the recess 20 includes the first side surface 22a, the second bottom surface 22c, and the second side surface 22b continuously from the bottom surface 21 side. By appropriately adjusting the viscosity and the filling amount of the sealing member forming resin when forming the sealing member, it becomes possible to easily form the sealing member 3 having a top surface shape with less variation in shape.

実施形態の発光装置100において、封止部材3は、蛍光体等の波長変換部材5を含むことができる。封止部材3が波長変換部材5を含む場合、Z軸方向において、波長変換部材5の第1底面21側の分布密度は、パッケージ10の上面側の分布密度よりも高いことが好ましい。例えば、第2底面22cより上に位置する封止部材上部3bにおける波長変換部材5の分布密度が第2底面22cより下に位置する封止部材下部3aにおける波長変換部材5の分布密度より小さいことが好ましい。より好ましくは、第2底面22cより下に位置する封止部材下部3aに波長変換部材5を含有させ、第2底面22cより上に位置する封止部材上部3bは波長変換部材5を実質的に含まないようにする。「波長変換部材を実質的に含まない」とは、不可避的に混入する波長変換部材を排除しないことを意味し、波長変換部材の含有率が0.05重量%以下であることが好ましい。このように、Z軸方向において、波長変換部材5の第1底面21側の分布密度をパッケージ10の上面側の分布密度よりも高くすると、色むら及びイエローリングの発生を抑制することができる。波長変換部材5が第1底面21側に多く分布する封止部材3は、例えば、封止部材3を形成する際、樹脂を硬化させる前に自然沈降又は遠心沈降により波長変換部材5を第1底面21側に沈降させた後、硬化させるようにすればよい。   In the light emitting device 100 of the embodiment, the sealing member 3 can include a wavelength conversion member 5 such as a phosphor. When the sealing member 3 includes the wavelength conversion member 5, the distribution density on the first bottom surface 21 side of the wavelength conversion member 5 is preferably higher than the distribution density on the upper surface side of the package 10 in the Z-axis direction. For example, the distribution density of the wavelength conversion member 5 in the sealing member upper part 3b located above the second bottom surface 22c is smaller than the distribution density of the wavelength conversion member 5 in the sealing member lower part 3a located below the second bottom surface 22c. Is preferred. More preferably, the wavelength converting member 5 is contained in the sealing member lower part 3a positioned below the second bottom surface 22c, and the sealing member upper part 3b positioned above the second bottom surface 22c substantially attaches the wavelength converting member 5 to the wavelength converting member 5. Do not include. “Substantially free of wavelength conversion member” means that the wavelength conversion member inevitably mixed is not excluded, and the content of the wavelength conversion member is preferably 0.05% by weight or less. Thus, in the Z-axis direction, when the distribution density on the first bottom surface 21 side of the wavelength conversion member 5 is made higher than the distribution density on the top surface side of the package 10, the occurrence of color unevenness and yellow ring can be suppressed. For example, when forming the sealing member 3, the sealing member 3 in which the wavelength conversion member 5 is largely distributed on the first bottom surface 21 side is the first wavelength conversion member 5 by natural sedimentation or centrifugal sedimentation before the resin is cured. What is necessary is just to make it harden | cure after settling to the bottom face 21 side.

以下、実施形態の発光装置の構成部材について説明する。   Hereinafter, the structural member of the light-emitting device of embodiment is demonstrated.

(第1リード11,第2リード12)
第1リード11,第2リード12(以下、リード電極という)は、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル、コバルト、モリブデン、又はこれらの合金の平板に、プレス(打ち抜き含む)、エッチング、圧延など各種の加工を施したものが母体となる。リード電極は、これらの金属又は合金の積層体で構成されてもよい。特に、銅を主成分とする銅合金(燐青銅、鉄入り銅など)が好ましい。また、その表面に、銀、アルミニウム、ロジウム又はこれらの合金などの光反射膜が設けられていてもよく、なかでも光反射性に優れる銀又は銀合金が好ましい。特に、硫黄系光沢剤を用いた銀又は銀合金の膜(例えばめっき膜)は、膜の表面が平滑で、極めて高い光反射性が得られる。なお、この光沢剤中の硫黄及び/又は硫黄化合物は、銀又は銀合金の結晶粒中及び/又は結晶粒界に散在することになる。硫黄の含有量としては例えば50ppm以上300ppm以下が好ましい。光反射膜の光沢度は、特に限定されないが、1.5以上であることが好ましく、1.8以上であることがより好ましい。なお、この光沢度は、GAM(Graphic Arts Manufacturing)社製のdigital densitometer Model 144を用いて測定される値とする。リード電極の厚さは、特に限定されないが、例えば0.05mm以上1mm以下が挙げられ、0.07mm以上0.3mm以下が好ましく、0.1mm以上0.2mm以下がより好ましい。リード電極は、例えばリードフレームの小片であってもよい。
(First lead 11 and second lead 12)
The first lead 11 and the second lead 12 (hereinafter referred to as lead electrodes) are pressed (including stamped) on a flat plate of copper, aluminum, gold, silver, tungsten, iron, nickel, cobalt, molybdenum, or an alloy thereof. The base material is subjected to various processes such as etching and rolling. The lead electrode may be composed of a laminate of these metals or alloys. In particular, copper alloys (phosphor bronze, iron-containing copper, etc.) mainly composed of copper are preferable. Further, a light reflecting film such as silver, aluminum, rhodium or an alloy thereof may be provided on the surface, and silver or a silver alloy excellent in light reflectivity is particularly preferable. In particular, a silver or silver alloy film (for example, a plating film) using a sulfur-based brightener has a smooth film surface and extremely high light reflectivity. The sulfur and / or sulfur compound in the brightener is scattered in the crystal grains of silver or silver alloy and / or in the crystal grain boundaries. As content of sulfur, 50 ppm or more and 300 ppm or less are preferable, for example. The glossiness of the light reflecting film is not particularly limited, but is preferably 1.5 or more, and more preferably 1.8 or more. The glossiness is a value measured using a digital densitometer Model 144 manufactured by GAM (Graphic Arts Manufacturing). Although the thickness of a lead electrode is not specifically limited, For example, 0.05 mm or more and 1 mm or less are mentioned, 0.07 mm or more and 0.3 mm or less are preferable, and 0.1 mm or more and 0.2 mm or less are more preferable. The lead electrode may be a small piece of a lead frame, for example.

(成形体15)
成形体15は、パッケージにおける容器の母体をなす。成形体15は、パッケージの主要部を構成している。成形体15は、光反射性の観点から、発光素子1の発光ピーク波長における光反射率が、75%以上であることが好ましく、90%以上であることがより好ましい。さらに、成形体は、白色であることが好ましい。成形体は、硬化前には流動性を有する状態つまり液状(ゾル状又はスラリー状を含む)を経る。成形体15は、射出成形法、トランスファ成形法などにより成形することができる。
(Molded body 15)
The molded body 15 forms a matrix of a container in the package. The molded body 15 constitutes the main part of the package. From the viewpoint of light reflectivity, the molded body 15 has a light reflectance at the emission peak wavelength of the light-emitting element 1 of preferably 75% or more, and more preferably 90% or more. Furthermore, it is preferable that a molded object is white. The molded body is in a fluid state, that is, in a liquid state (including sol or slurry) before curing. The molded body 15 can be molded by an injection molding method, a transfer molding method, or the like.

成形体15の母材は、熱硬化性樹脂又は熱可塑性樹脂を用いることができる。なお、以下に示す樹脂は、その変性樹脂、及びハイブリッド樹脂も含むものする。熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、ポリビスマレイミドトリアジン樹脂、ポリイミド樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂などが挙げられる。なかでも、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステル樹脂のうちのいずれか1つが好ましい。特に、不飽和ポリエステル系樹脂は、熱硬化性樹脂の優れた耐熱性及び耐光性を有しながら、射出成形法により成形可能であり量産性にも優れている。不飽和ポリエステル系樹脂は、不飽和ポリエステル樹脂、並びにその変性樹脂及びハイブリッド樹脂のうちの少なくとも1つを用いることができる。また、成形体の母材としては、熱可塑性樹脂も好ましい。一般的に、熱可塑性樹脂は、熱硬化性樹脂に比べ、安価である。熱可塑性樹脂としては、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂、芳香族ポリフタルアミド樹脂、ポリシクロへキシレンジメチレンテレフタレート、ポリエチレンテレフタレート、ポリシクロヘキサンテレフタレート、液晶ポリマー、ポリカーボネート樹脂、シンジオタクチックポリスチレン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリアリレート樹脂などが挙げられる。なかでも、芳香族ポリフタルアミド樹脂、脂肪族ポリアミド樹脂、ポリシクロヘキサンテレフタレート、ポリシクロへキシレンジメチレンテレフタレートのうちのいずれか1つが好ましい。成形体は、光反射性、機械的強度、熱伸縮性などの観点から、母材中に、以下のような白色顔料と充填剤を含有することが好ましいが、これに限定されない。   As the base material of the molded body 15, a thermosetting resin or a thermoplastic resin can be used. In addition, the resin shown below includes the modified resin and the hybrid resin. Examples of the thermosetting resin include epoxy resin, silicone resin, polybismaleimide triazine resin, polyimide resin, polyurethane resin, and unsaturated polyester resin. Especially, any one of an epoxy resin, a silicone resin, and an unsaturated polyester resin is preferable. In particular, the unsaturated polyester resin can be molded by an injection molding method and has excellent mass productivity while having the excellent heat resistance and light resistance of the thermosetting resin. As the unsaturated polyester resin, at least one of an unsaturated polyester resin, a modified resin thereof, and a hybrid resin can be used. Further, a thermoplastic resin is also preferable as the base material of the molded body. In general, a thermoplastic resin is less expensive than a thermosetting resin. Thermoplastic resins include aliphatic polyamide resin, semi-aromatic polyamide resin, aromatic polyphthalamide resin, polycyclohexylene dimethylene terephthalate, polyethylene terephthalate, polycyclohexane terephthalate, liquid crystal polymer, polycarbonate resin, syndiotactic polystyrene, polyphenylene Ether, polyphenylene sulfide, polyether sulfone resin, polyether ketone resin, polyarylate resin and the like can be mentioned. Among these, any one of aromatic polyphthalamide resin, aliphatic polyamide resin, polycyclohexane terephthalate, and polycyclohexylene dimethylene terephthalate is preferable. From the viewpoints of light reflectivity, mechanical strength, thermal stretchability, and the like, the molded body preferably contains the following white pigment and filler in the base material, but is not limited thereto.

白色顔料は、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、チタン酸バリウム、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、酸化ジルコニウムなどが挙げられる。白色顔料は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。なかでも、酸化チタンは、屈折率が比較的高く、光隠蔽性に優れるため、好ましい。白色顔料の形状は、特に限定されず、不定形(破砕状)でもよいが、流動性の観点では球状が好ましい。白色顔料の粒径(以下「粒径」は例えば平均粒径D50で定義される)は、特に限定されず、例えば0.01μm以上1μm以下であり、好ましくは0.1μm以上0.5μm以下である。成形体中の白色顔料の含有量は、特に限定されず、成形体の光反射性の観点では多いほうが良いが、流動性への影響を考慮して、20wt%以上70wt%以下が好ましく、30wt%以上60wt%以下がより好ましい。なお、「wt%」は、重量パーセントであり、全構成材料の総重量に対する各材料の重量の比率を表す。   White pigments include titanium oxide, zinc oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, magnesium silicate, barium titanate, barium sulfate, aluminum hydroxide, aluminum oxide, zirconium oxide, etc. Is mentioned. A white pigment can be used alone or in combination of two or more thereof. Among these, titanium oxide is preferable because it has a relatively high refractive index and is excellent in light shielding properties. The shape of the white pigment is not particularly limited and may be indefinite (crushed), but is preferably spherical from the viewpoint of fluidity. The particle size of the white pigment (hereinafter “particle size” is defined by, for example, the average particle size D50) is not particularly limited, and is, for example, 0.01 μm or more and 1 μm or less, preferably 0.1 μm or more and 0.5 μm or less. is there. The content of the white pigment in the molded body is not particularly limited, and it is better from the viewpoint of light reflectivity of the molded body, but considering the influence on fluidity, it is preferably 20 wt% or more and 70 wt% or less, 30 wt% % To 60 wt% is more preferable. Note that “wt%” is weight percent and represents the ratio of the weight of each material to the total weight of all constituent materials.

充填剤は、シリカ、酸化アルミニウム、ガラス、チタン酸カリウム、珪酸カルシウム(ワラストナイト)、マイカ、タルクなどが挙げられる。充填剤は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。但し、充填剤は、上記の白色顔料とは異なるものとする。特に、成形体の熱膨張係数の低減剤としては、シリカが好ましい。シリカの粒径は、例えば5μm以上100μm以下、好ましくは5μm以上30μm以下が好ましい。強化剤としては、ガラス、チタン酸カリウム、珪酸カルシウム(ワラストナイト)が好ましい。中でも、珪酸カルシウム、又はチタン酸カリウムは比較的径が小さく、薄型又は小型の成形体に好適である。具体的には、強化剤の平均繊維径は、特に限定されず、例えば0.05μm以上100μm以下であり、0.1μm以上50μm以下が好ましく、1μm以上30μm以下がより好ましく、2μm以上15μm以下がよりいっそう好ましい。強化剤の平均繊維長は、特に限定されず、例えば0.1μm以上1mm以下であり、1μm以上200μm以下が好ましく、3μm以上100μm以下がより好ましく、5μm以上50μm以下がよりいっそう好ましい。強化剤の平均アスペクト比(平均繊維長/平均繊維径)は、特に限定されず、例えば2以上300以下であり、2以上100以下が好ましく、3以上50以下がより好ましく、5以上30以下がよりいっそう好ましい。充填剤の形状は、特に限定されず、不定形(破砕状)でもよいが、強化剤としての機能の観点では繊維状(針状)又は板状(鱗片状)が好ましく、流動性の観点では球状が好ましい。成形体中の充填剤の含有量は、特に限定されず、成形体の熱膨張係数、機械的強度等を考慮して適宜決めればよいが、10wt%以上80wt%以下が好ましく、30wt%以上60wt%以下がより好ましい(うち強化剤は5wt%以上30wt%以下が好ましく、5wt%以上20wt%以下がより好ましい)。   Examples of the filler include silica, aluminum oxide, glass, potassium titanate, calcium silicate (wollastonite), mica, and talc. The filler can be used alone or in combination of two or more thereof. However, the filler is different from the above white pigment. In particular, silica is preferred as the reducing agent for the thermal expansion coefficient of the molded body. The particle size of silica is, for example, 5 μm or more and 100 μm or less, preferably 5 μm or more and 30 μm or less. As the reinforcing agent, glass, potassium titanate, and calcium silicate (wollastonite) are preferable. Among these, calcium silicate or potassium titanate has a relatively small diameter, and is suitable for a thin or small shaped body. Specifically, the average fiber diameter of the reinforcing agent is not particularly limited, and is, for example, 0.05 μm to 100 μm, preferably 0.1 μm to 50 μm, more preferably 1 μm to 30 μm, and more preferably 2 μm to 15 μm. Even more preferable. The average fiber length of the reinforcing agent is not particularly limited and is, for example, from 0.1 μm to 1 mm, preferably from 1 μm to 200 μm, more preferably from 3 μm to 100 μm, and even more preferably from 5 μm to 50 μm. The average aspect ratio (average fiber length / average fiber diameter) of the reinforcing agent is not particularly limited, and is, for example, 2 to 300, preferably 2 to 100, more preferably 3 to 50, and more preferably 5 to 30. Even more preferable. The shape of the filler is not particularly limited and may be indefinite (crushed), but is preferably fibrous (needle-like) or plate-like (scale-like) from the viewpoint of the function as a reinforcing agent, and from the viewpoint of fluidity. A spherical shape is preferred. The content of the filler in the molded body is not particularly limited and may be appropriately determined in consideration of the thermal expansion coefficient, mechanical strength, etc. of the molded body, but is preferably 10 wt% or more and 80 wt% or less, preferably 30 wt% or more and 60 wt%. % Is more preferable (of which the reinforcing agent is preferably 5 wt% or more and 30 wt% or less, more preferably 5 wt% or more and 20 wt% or less).

(発光素子1)
発光素子1は、LED素子などの半導体発光素子を用いることができる。発光素子1としては、特に、紫外〜可視域の発光が可能な窒化物半導体(InAlGa1−x−yN、0≦x、0≦y、x+y≦1)の発光素子が好ましい。発光素子1の発光ピーク波長は、発光効率、他の光源の光との混色関係、波長変換部材の励起効率などの観点から、445nm以上465nm以下の範囲が好ましい。このほか、緑色〜赤色発光のガリウム砒素系、ガリウム燐系半導体の発光素子を用いてもよい。正負一対の電極が同一面側に設けられている発光素子の場合、各電極をワイヤで一対のリード電極と接続される(フェイスアップ実装)。また、各電極を導電性接着剤で一対のリード電極と接続されてもよい(フリップチップ実装(フェイスダウン実装))。正負一対の電極が互いに反対の面に各々設けられている対向電極構造の発光素子の場合、下面電極が導電性接着剤で一方のリード電極に接着され、上面電極がワイヤで他方のリード電極と接続される。発光素子の電極をワイヤによりリード電極と接続する場合、封止部材3の上面の最深部下を除く位置にワイヤを配線することが好ましい。このようにすることで、封止部材からワイヤが露出することを抑制することができる。1つのパッケージに搭載される発光素子の個数は1つでも複数でもよい。複数の発光素子は、例えば、ワイヤにより直列又は並列に接続することができる。また、1つのパッケージに、例えば青色・緑色・赤色発光の3つの発光素子が搭載されてもよい。
(Light emitting element 1)
As the light emitting element 1, a semiconductor light emitting element such as an LED element can be used. The light emitting element 1 is particularly preferably a nitride semiconductor (In x Al y Ga 1-xy N, 0 ≦ x, 0 ≦ y, x + y ≦ 1) capable of emitting light in the ultraviolet to visible range. . The emission peak wavelength of the light emitting element 1 is preferably in the range of 445 nm to 465 nm from the viewpoints of luminous efficiency, color mixing relationship with light from other light sources, excitation efficiency of the wavelength conversion member, and the like. In addition, a gallium arsenide-based or gallium phosphorus-based semiconductor light emitting element emitting green to red light may be used. In the case of a light-emitting element in which a pair of positive and negative electrodes are provided on the same surface side, each electrode is connected to a pair of lead electrodes with a wire (face-up mounting). Further, each electrode may be connected to a pair of lead electrodes with a conductive adhesive (flip chip mounting (face-down mounting)). In the case of a light emitting device having a counter electrode structure in which a pair of positive and negative electrodes are provided on opposite surfaces, the lower electrode is bonded to one lead electrode with a conductive adhesive, the upper electrode is a wire and the other lead electrode Connected. When the electrode of the light emitting element is connected to the lead electrode by a wire, it is preferable to wire the wire at a position other than the deepest part on the upper surface of the sealing member 3. By doing in this way, it can control that a wire is exposed from a sealing member. The number of light emitting elements mounted on one package may be one or plural. The plurality of light emitting elements can be connected in series or in parallel by wires, for example. Further, for example, three light emitting elements of blue, green, and red light emission may be mounted on one package.

(封止部材3)
封止部材3は、発光素子を封止して、埃や水分、外力などから保護する部材である。封止部材は、電気的絶縁性を有し、発光素子から出射される光に対して透光性を有する部材であればよい。透光性は、好ましくは発光素子の発光ピーク波長における光透過率が70%以上、より好ましくは85%以上である。封止部材は、これらの母材中に、少なくとも波長変換部材を含有することが好ましいが、これに限定されない。
(Sealing member 3)
The sealing member 3 is a member that seals the light emitting element and protects it from dust, moisture, external force, and the like. The sealing member should just be a member which has electrical insulation and has translucency with respect to the light radiate | emitted from a light emitting element. The light transmittance is preferably such that the light transmittance at the emission peak wavelength of the light emitting element is 70% or more, more preferably 85% or more. The sealing member preferably contains at least a wavelength conversion member in these base materials, but is not limited thereto.

封止部材3の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン樹脂、又はこれらの変性樹脂若しくはハイブリッド樹脂が挙げられる。特に、フェニル基を含むシリコーン系樹脂は、メチル・フェニルシリコーン樹脂、ジフェニルシリコーン樹脂、並びにその変性樹脂及びハイブリッド樹脂のうちの少なくとも1つを用いることができる。封止部材3の母材は、フェニル基を含むシリコーン系樹脂であることが好ましい。シリコーン系樹脂は、熱硬化性樹脂であって優れた耐熱性及び耐光性を有し、フェニル基を含むことで耐熱性が更に強化されている。フェニル基を含むシリコーン系樹脂は、シリコーン系樹脂の中ではガスバリア性が比較的高いため、例えば、マンガンで賦活されたフッ化物蛍光体の水分による劣化を抑制することができる。加えて、一対の第1及び第2リード11,12及びワイヤ30の硫黄含有ガス等の腐食性ガスによる劣化も抑制しやすい。フェニル基を含むシリコーン系樹脂中のケイ素原子に結合した全有機基のうちフェニル基の含有率は、例えば5mol%以上80mol%以下であり、20mol%以上70mol%以下であることが好ましく、30mol%以上60mol%以下であることがより好ましい。   Examples of the base material of the sealing member 3 include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, TPX resin, polynorbornene resin, and modified resins or hybrid resins thereof. In particular, as the silicone-based resin containing a phenyl group, at least one of a methyl phenyl silicone resin, a diphenyl silicone resin, a modified resin thereof, and a hybrid resin can be used. The base material of the sealing member 3 is preferably a silicone resin containing a phenyl group. The silicone resin is a thermosetting resin and has excellent heat resistance and light resistance, and the heat resistance is further enhanced by including a phenyl group. Since the silicone resin containing a phenyl group has a relatively high gas barrier property among silicone resins, for example, it is possible to suppress deterioration due to moisture of a fluoride phosphor activated with manganese. In addition, deterioration of the pair of first and second leads 11 and 12 and the wire 30 due to corrosive gas such as sulfur-containing gas can be easily suppressed. Of all organic groups bonded to silicon atoms in the silicone resin containing a phenyl group, the phenyl group content is, for example, 5 mol% to 80 mol%, preferably 20 mol% to 70 mol%, preferably 30 mol%. More preferably, it is 60 mol% or less.

(波長変換部材5)
波長変換部材5は、発光素子1から出射される一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を出射する。これにより、可視波長の一次光及び二次光の混色光(例えば白色光)を出射する発光装置とすることができる。波長変換部材は、以下に示す具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。波長変換部材5は、緑色光乃至黄色光を発する第1蛍光体と、赤色光を発する第2蛍光体と、を含んでいることが好ましい。この第1蛍光体と第2蛍光体を蛍光体として用いて、青色光を発する発光素子1を組み合わせると、色再現性又は演色性に優れる発光が可能となる。
以下、2種類の蛍光体を用いる場合の第1蛍光体及び第2蛍光体について例示する。
(Wavelength conversion member 5)
The wavelength conversion member 5 absorbs at least a part of the primary light emitted from the light emitting element 1 and emits secondary light having a wavelength different from that of the primary light. Thereby, it can be set as the light-emitting device which radiate | emits the mixed color light (for example, white light) of the primary light of the visible wavelength, and secondary light. The wavelength conversion member can be used alone or in combination of two or more of the specific examples shown below. The wavelength conversion member 5 preferably includes a first phosphor that emits green light to yellow light and a second phosphor that emits red light. By using the first phosphor and the second phosphor as phosphors and combining the light emitting element 1 that emits blue light, it is possible to emit light with excellent color reproducibility or color rendering.
Hereinafter, the first phosphor and the second phosphor when using two kinds of phosphors will be exemplified.

第1蛍光体は、緑色光乃至黄色光を発する。第1蛍光体の発光ピーク波長は、発光効率、他の光源の光との混色関係などの観点から、緑色域(500nm以上560nm以下の範囲)が好ましく、520nm以上560nm以下の範囲がより好ましい。具体的には、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<Z<4.2))などが挙げられる。 The first phosphor emits green light or yellow light. The emission peak wavelength of the first phosphor is preferably in the green region (range of 500 nm or more and 560 nm or less), and more preferably in the range of 520 nm or more and 560 nm or less, from the viewpoints of light emission efficiency and color mixing relationship with light from other light sources. Specifically, an yttrium / aluminum / garnet phosphor (for example, Y 3 (Al, Ga) 5 O 12 : Ce), a lutetium / aluminum / garnet phosphor (for example, Lu 3 (Al, Ga) 5 O 12 : Ce), silicate phosphors (eg (Ba, Sr) 2 SiO 4 : Eu), chlorosilicate phosphors (eg Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu), β sialon phosphors (eg Si 6-z Al z O z N 8-z: Eu (0 <Z <4.2)) , and the like.

第2蛍光体は、赤色光を発する。第2蛍光体の発光ピーク波長は、発光効率、他の光源の光との混色関係などの観点から、620nm以上670nm以下の範囲が好ましい。具体的には、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。また、マンガンで賦活されたフッ化物蛍光体は、一般式A[M1−aMn]で表される蛍光体である(但し、上記一般式中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす)。このフッ化物蛍光体の代表例としては、フッ化珪酸カリウム系蛍光体(例えばKSiF:Mn)がある。なお、マンガンで賦活されたフッ化物蛍光体は、水分による劣化を抑制するため、封止部材3中において、第1底面側に多く存在していることが好ましい。 The second phosphor emits red light. The emission peak wavelength of the second phosphor is preferably in the range of 620 nm or more and 670 nm or less from the viewpoints of luminous efficiency, color mixing relationship with light from other light sources, and the like. Specific examples include nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphors (for example, (Sr, Ca) AlSiN 3 : Eu). Moreover, the fluoride fluorescent substance activated with manganese is a fluorescent substance represented by the general formula A 2 [M 1-a Mn a F 6 ] (in the above general formula, A represents K, Li, And at least one element selected from the group consisting of Na, Rb, Cs and NH 4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a is 0 < a <0.2). A typical example of the fluoride phosphor is a potassium fluorosilicate phosphor (for example, K 2 SiF 6 : Mn). In addition, in order that the fluoride fluorescent substance activated with manganese may suppress deterioration by a water | moisture content, it is preferable that many exist in the 1st bottom face side in the sealing member 3. FIG.

このほか、波長変換部材5は量子ドットを含んでもよい。量子ドットは、粒径1nm以上100nm以下程度の粒子であり、粒径によって発光波長を変えることができる。量子ドットは、例えば、セレン化カドミウム、テルル化カドミウム、硫化亜鉛、硫化カドミウム、硫化鉛、セレン化鉛、又はテルル化カドミウム・水銀などが挙げられる。   In addition, the wavelength conversion member 5 may include quantum dots. Quantum dots are particles having a particle size of about 1 nm to about 100 nm, and the emission wavelength can be changed depending on the particle size. Examples of the quantum dot include cadmium selenide, cadmium telluride, zinc sulfide, cadmium sulfide, lead sulfide, lead selenide, cadmium telluride / mercury, and the like.

封止部材3の充填剤は、シリカ、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などが挙げられる。封止部材3の充填剤は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。特に、封止部材3の熱膨張係数の低減剤としては、シリカが好ましい。封止部材3の充填剤の形状は、特に限定されず、不定形(破砕状)でもよいが、流動性の観点では球状が好ましい。封止部材3中の充填剤の含有量は、特に限定されず、封止部材の熱膨張係数、流動性等を考慮して適宜決めればよいが、0.1wt%以上50wt%以下が好ましく、1wt%以上30wt%以下がより好ましい。また、封止部材3の充填剤として、ナノ粒子(粒径が1nm以上100nm以下の粒子)を用いることで、発光素子の青色光など短波長の光の散乱(レイリー散乱を含む)を増大させ、波長変換部材の使用量を低減することもできる。このナノ粒子の充填剤としては、例えばシリカ又は酸化ジルコニウムが好ましい。   Examples of the filler for the sealing member 3 include silica, aluminum oxide, zirconium oxide, and zinc oxide. As the filler for the sealing member 3, one of these can be used alone, or two or more of these can be used in combination. In particular, as a reducing agent for the thermal expansion coefficient of the sealing member 3, silica is preferable. The shape of the filler of the sealing member 3 is not particularly limited and may be indefinite (crushed), but spherical is preferable from the viewpoint of fluidity. The content of the filler in the sealing member 3 is not particularly limited and may be appropriately determined in consideration of the thermal expansion coefficient, fluidity, etc. of the sealing member, but is preferably 0.1 wt% or more and 50 wt% or less, 1 wt% or more and 30 wt% or less is more preferable. In addition, by using nanoparticles (particles having a particle diameter of 1 nm to 100 nm) as a filler for the sealing member 3, the scattering of light having a short wavelength such as blue light (including Rayleigh scattering) of the light emitting element is increased. Moreover, the usage-amount of a wavelength conversion member can also be reduced. As the nanoparticle filler, for example, silica or zirconium oxide is preferable.

1 発光素子
3 封止部材
3a 封止部材下部
3b 封止部材上部
5 波長変換部材
10 パッケージ
11 第1リード
12 第2リード
15 成形体
20 凹部
21 底面(第1底面)
22 内周側面
22a 第1側面
22b 第2側面
22c 第2底面
30 ワイヤ
100 発光装置
DESCRIPTION OF SYMBOLS 1 Light emitting element 3 Sealing member 3a Sealing member lower part 3b Sealing member upper part 5 Wavelength conversion member 10 Package 11 1st lead 12 2nd lead 15 Molding body 20 Recessed part 21 Bottom face (1st bottom face)
22 inner peripheral side surface 22a first side surface 22b second side surface 22c second bottom surface 30 wire 100 light emitting device

Claims (9)

X軸方向における長さが前記X軸方向に直交するY軸方向の長さより長い第1底面と、側面と、を有する凹部を備え、前記凹部は、前記X軸方向及び前記Y軸方向に直交するZ軸方向に開口し、前記凹部の側面で光を反射するパッケージと、
前記第1底面に設けられた発光素子と、
前記凹部に設けられ、前記発光素子を覆う封止部材と、
を有し、
前記凹部の側面は、前記第1底面側から前記Z軸方向に第1側面と、第2底面と、第2側面と、を連続して有し、かつ、
前記封止部材は、前記第1側面、第2底面及び第2側面と接し、前記封止部材の上面は窪んでおり、前記パッケージの上面を基準にし、前記封止部材の上面の最深部の深さは、前記第2底面の深さの0.7倍以上である発光装置。
A concave portion having a first bottom surface and a side surface having a length in the X-axis direction that is longer than a length in the Y-axis direction orthogonal to the X-axis direction, wherein the concave portion is orthogonal to the X-axis direction and the Y-axis direction. A package that opens in the Z-axis direction and reflects light on the side surface of the recess;
A light emitting device provided on the first bottom surface;
A sealing member provided in the recess and covering the light emitting element;
Have
The side surface of the recess continuously has a first side surface, a second bottom surface, and a second side surface in the Z-axis direction from the first bottom surface side, and
The sealing member is in contact with the first side surface, the second bottom surface, and the second side surface, the top surface of the sealing member is recessed, and the deepest portion of the top surface of the sealing member is defined with reference to the top surface of the package. The depth is 0.7 or more times the depth of the second bottom surface.
前記凹部の開口部及び第1底面はそれぞれ、それぞれ前記X軸方向に平行でかつ互いに対向する長辺と、それぞれ前記長辺の端部間に位置する円弧形状の短辺を有する請求項1に記載の発光装置。   The opening and the first bottom surface of the recess each have a long side parallel to the X-axis direction and opposed to each other, and an arc-shaped short side located between end portions of the long side, respectively. The light-emitting device of description. 前記パッケージの上面を基準にし、前記封止部材の上面の最深部の深さが、前記第2底面の深さ以上である請求項1または2に記載の発光装置。   3. The light emitting device according to claim 1, wherein a depth of a deepest portion of the upper surface of the sealing member is greater than or equal to a depth of the second bottom surface with reference to the upper surface of the package. 前記封止部材は波長変換部材を含み、前記Z軸方向において、前記波長変換部材の前記第1底面側の分布密度は、前記波長変換部材の前記パッケージの上面側の分布密度よりも高い請求項1〜3のいずれか1つに記載の発光装置。   The sealing member includes a wavelength conversion member, and in the Z-axis direction, the distribution density on the first bottom surface side of the wavelength conversion member is higher than the distribution density on the upper surface side of the package of the wavelength conversion member. The light-emitting device as described in any one of 1-3. 前記Z軸方向において、前記第2底面より前記パッケージの上面側に位置する封止部材は、実質的に前記波長変換部材を含んでいない請求項4に記載の発光装置。   The light emitting device according to claim 4, wherein in the Z-axis direction, a sealing member positioned on the upper surface side of the package from the second bottom surface substantially does not include the wavelength conversion member. 前記封止部材の上面は曲面である請求項1〜5のいずれか1つに記載の発光装置。   The light emitting device according to claim 1, wherein an upper surface of the sealing member is a curved surface. 前記第2側面の前記第1底面に対する傾斜角は、前記第1側面の前記第1底面に対する傾斜角より小さい請求項1〜6のいずれか1つに記載の発光装置。   The light emitting device according to claim 1, wherein an inclination angle of the second side surface with respect to the first bottom surface is smaller than an inclination angle of the first side surface with respect to the first bottom surface. 前記パッケージは、第1リードと第2リードと成形体とを含み、前記第1底面に前記第1リードの一部と前記第2リードの一部とが露出されている請求項1〜7のいずれか1つに記載の発光装置。   8. The package according to claim 1, wherein the package includes a first lead, a second lead, and a molded body, and a part of the first lead and a part of the second lead are exposed on the first bottom surface. The light emitting device according to any one of the above. 前記成形体は、白色顔料を含む請求項8に記載の発光装置。   The light emitting device according to claim 8, wherein the molded body includes a white pigment.
JP2017180402A 2017-09-20 2017-09-20 Luminescent device Active JP7096473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180402A JP7096473B2 (en) 2017-09-20 2017-09-20 Luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180402A JP7096473B2 (en) 2017-09-20 2017-09-20 Luminescent device

Publications (2)

Publication Number Publication Date
JP2019057578A true JP2019057578A (en) 2019-04-11
JP7096473B2 JP7096473B2 (en) 2022-07-06

Family

ID=66107867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180402A Active JP7096473B2 (en) 2017-09-20 2017-09-20 Luminescent device

Country Status (1)

Country Link
JP (1) JP7096473B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030031043A (en) * 2003-03-10 2003-04-18 루미마이크로 주식회사 Light emitting device having light emitting surface of concave lens and method for manufacturing thereof
US20070139908A1 (en) * 2005-12-16 2007-06-21 Sharp Kabushiki Kaisha Light emitting apparatus, backlight apparatus, and electronic apparatus
JP2009043836A (en) * 2007-08-07 2009-02-26 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2009206228A (en) * 2008-02-27 2009-09-10 Toshiba Corp Side emission type light emitting device and manufacturing method thereof, and lighting device
US20120211789A1 (en) * 2011-02-22 2012-08-23 Samsung Led Co., Ltd. Light emitting device package
JP2015119011A (en) * 2013-12-17 2015-06-25 日亜化学工業株式会社 Resin package and light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030031043A (en) * 2003-03-10 2003-04-18 루미마이크로 주식회사 Light emitting device having light emitting surface of concave lens and method for manufacturing thereof
US20070139908A1 (en) * 2005-12-16 2007-06-21 Sharp Kabushiki Kaisha Light emitting apparatus, backlight apparatus, and electronic apparatus
JP2007165803A (en) * 2005-12-16 2007-06-28 Sharp Corp Light emitting device
JP2009043836A (en) * 2007-08-07 2009-02-26 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2009206228A (en) * 2008-02-27 2009-09-10 Toshiba Corp Side emission type light emitting device and manufacturing method thereof, and lighting device
US20120211789A1 (en) * 2011-02-22 2012-08-23 Samsung Led Co., Ltd. Light emitting device package
JP2015119011A (en) * 2013-12-17 2015-06-25 日亜化学工業株式会社 Resin package and light-emitting device

Also Published As

Publication number Publication date
JP7096473B2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US8164244B2 (en) Light emitting device
CN108417685B (en) Light emitting device
JP6374339B2 (en) Light emitting device
WO2010150754A1 (en) Light-emitting device
US10014449B1 (en) Light emitting device
KR20070098635A (en) Light-emitting device
JP6387787B2 (en) LIGHT EMITTING DEVICE, PACKAGE AND METHOD FOR MANUFACTURING THE SAME
CN107408610B (en) Light emitting device
JP6432639B2 (en) Light emitting device
JP6524624B2 (en) Light emitting device
US10141490B2 (en) Composite base and method of manufacturing light emitting device
JP6728764B2 (en) Light emitting device and lighting device using the same
JP6168096B2 (en) LIGHT EMITTING DEVICE, PACKAGE AND METHOD FOR MANUFACTURING THE SAME
US10964859B2 (en) Light-emitting device and method of manufacturing the same
US10424699B2 (en) Light emitting device
JP6308286B2 (en) Light emitting device
JP2022056834A (en) Light-emitting device
JP2014195046A (en) Light emitting device and lighting device including the same
JP6465160B2 (en) Composite substrate and light emitting device
JP7096473B2 (en) Luminescent device
JP6607036B2 (en) Light emitting device
JP7071652B2 (en) Light emitting device and its manufacturing method
JP6521017B2 (en) Light emitting device
US9997503B2 (en) Composite substrate and light emitting device
TW201941458A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7096473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150