JP2019053954A - Fibrous carbon material and method for manufacturing the same - Google Patents

Fibrous carbon material and method for manufacturing the same Download PDF

Info

Publication number
JP2019053954A
JP2019053954A JP2017178935A JP2017178935A JP2019053954A JP 2019053954 A JP2019053954 A JP 2019053954A JP 2017178935 A JP2017178935 A JP 2017178935A JP 2017178935 A JP2017178935 A JP 2017178935A JP 2019053954 A JP2019053954 A JP 2019053954A
Authority
JP
Japan
Prior art keywords
carbon material
fibrous carbon
fluorine
treatment
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017178935A
Other languages
Japanese (ja)
Inventor
章史 八尾
Akifumi Yao
章史 八尾
啓之 大森
Noriyuki Omori
啓之 大森
聖唯 鈴木
Shoi Suzuki
聖唯 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2017178935A priority Critical patent/JP2019053954A/en
Priority to PCT/JP2018/033565 priority patent/WO2019059036A1/en
Publication of JP2019053954A publication Critical patent/JP2019053954A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

To provide: a method for manufacturing fibrous carbon material for a conductive assistant of an electrode of a nonaqueous electrolyte secondary battery, which can enhance the cycle characteristics of a nonaqueous electrolyte secondary battery by performing a surface modification treatment on fibrous carbon material in comparison to the cycle characteristics achieved without performing such a surface modification treatment; and fibrous carbon material obtained by the method.SOLUTION: A fibrous carbon material to be used as a conductive assistant of a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode and an electrolyte, of which the ratio of fluorine atoms to carbon atoms, namely F/C ratio is no less than 0.001 and less than 0.025, and the ratio of oxygen atoms to the carbon atoms, namely O/C ratio is no less than 0.05 and less than 0.2, where those are measured by XPS analysis.SELECTED DRAWING: None

Description

本発明はリチウムイオン二次電池に代表される非水電解質二次電池の電極に導電助剤として用いられる繊維状炭素材料及びその製造方法、前記繊維状炭素材料を含む非水電解質二次電池用電極及びその製造方法、前記電極を含む非水電解質二次電池に関する。   The present invention relates to a fibrous carbon material used as a conductive additive for an electrode of a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery including the fibrous carbon material. The present invention relates to an electrode, a manufacturing method thereof, and a nonaqueous electrolyte secondary battery including the electrode.

リチウムイオン二次電池などの非水電解質二次電池の正極及び負極には、活物質として正極には主に金属の複合酸化物が、負極には主に黒鉛などの炭素系材料が使用され、それぞれ導電助剤としてのカーボンブラックや黒鉛微粉末、および結着材を含むペーストを集電体である金属箔に塗布し、集電体上に電極層を形成するペースト型電極が用いられている。   For the positive electrode and negative electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a metal composite oxide is mainly used for the positive electrode as an active material, and a carbon-based material such as graphite is mainly used for the negative electrode. A paste type electrode is used in which a paste containing carbon black or graphite fine powder as a conductive additive and a binder is applied to a metal foil as a current collector to form an electrode layer on the current collector. .

近年、リチウムイオン二次電池を採用した電気自動車が増えている。自動車用非水電解質二次電池の特性として重要なものの一つに、単位時間あたりに流せる電流量の大きさを示す出力特性と、充放電を繰り返しても放電容量を維持できるサイクル特性がある。   In recent years, the number of electric vehicles that employ lithium ion secondary batteries has increased. One of the important characteristics of non-aqueous electrolyte secondary batteries for automobiles is output characteristics indicating the amount of current that can flow per unit time, and cycle characteristics that can maintain discharge capacity even after repeated charge and discharge.

非水電解質二次電池の出力特性を改善するためには、電池の内部抵抗をできるだけ低減させることが重要であり、そのために電極中の導電ネットワークを形成する導電助剤を電極材料全体に均一かつ高濃度に分散させることで電極抵抗を低下させる技術がある。カーボンブラックはストラクチャーと呼ばれる一次粒子が鎖状に繋がった構造を有しているので、ストラクチャーの凝集や切断を防いで電極材料中に適度に分散させるために分散剤を使用する必要がある。特許文献1は、分散剤として窒素系界面活性剤を用いることで正極活物質と導電助剤である炭素材料とを均一に分散させる方法を開示している。また、特許文献2は、トリアジン誘導体等を分散剤として用いることで、正極活物質とバインダーと導電助剤である炭素材料を安定に分散させる方法を開示している。   In order to improve the output characteristics of the non-aqueous electrolyte secondary battery, it is important to reduce the internal resistance of the battery as much as possible. For this reason, the conductive auxiliary agent that forms the conductive network in the electrode is uniformly distributed throughout the electrode material. There is a technique for reducing electrode resistance by dispersing it at a high concentration. Since carbon black has a structure in which primary particles called a structure are connected in a chain form, it is necessary to use a dispersing agent in order to prevent the structure from agglomerating and cutting and to appropriately disperse it in the electrode material. Patent Document 1 discloses a method of uniformly dispersing a positive electrode active material and a carbon material that is a conductive additive by using a nitrogen-based surfactant as a dispersant. Patent Document 2 discloses a method of stably dispersing a positive electrode active material, a binder, and a carbon material as a conductive auxiliary agent by using a triazine derivative or the like as a dispersant.

また、特許文献3は、分散剤を用いることなく導電助剤の分散性を向上させたリチウムイオン電池用電極スラリーの製造方法として、活物質(A)、導電助剤(B)、結着剤(C)および溶剤(D)を超臨界流体または亜臨界流体(F)中で混合させたものから、(F)を除去する工程を含むスラリー(G)の製造方法を開示している。   Patent Document 3 discloses an active material (A), a conductive assistant (B), and a binder as a method for producing an electrode slurry for a lithium ion battery in which the dispersibility of the conductive assistant is improved without using a dispersant. The manufacturing method of the slurry (G) including the process of removing (F) from what mixed (C) and the solvent (D) in the supercritical fluid or the subcritical fluid (F) is disclosed.

また、正極や負極の導電助剤として繊維状炭素材料を用いると、充放電に伴い電極構造の変化を抑制でき、サイクル特性が向上することが知られている。例えば、特許文献4、特許文献5では、正極に導電助剤として繊維状炭素材料を含む非水電解液二次電池が開示されており、特許文献6、特許文献7、特許文献8では、負極に導電助剤として炭素繊維を含むリチウム二次電池が開示されている。また、特許文献9、特許文献10、には、正極又は負極に導電剤としてカーボンナノチューブを含有する電極の製造法が開示されている。   Further, it is known that when a fibrous carbon material is used as a conductive aid for the positive electrode or the negative electrode, the change in the electrode structure can be suppressed with charge / discharge, and the cycle characteristics are improved. For example, Patent Document 4 and Patent Document 5 disclose non-aqueous electrolyte secondary batteries that include a fibrous carbon material as a conductive additive in the positive electrode, and Patent Document 6, Patent Document 7, and Patent Document 8 disclose a negative electrode. Discloses a lithium secondary battery containing carbon fiber as a conductive additive. Patent Documents 9 and 10 disclose a method for producing an electrode containing carbon nanotubes as a conductive agent in the positive electrode or the negative electrode.

また、特許文献11には、フッ化炭素を正極とした非水電解液二次電池において、繊維状炭素材料をフッ化処理した材料とカ−ボンナノチュ−ブ、カ−ボンナノファイバ−、気相成長炭素繊維などの繊維状の導電剤、及び結着剤を含む電極が記載されている。さらに、特許文献12には、正極活物質粒子の表面上に粒子状又は繊維状の含フッ素炭素材料を有する正極材料を用いたリチウムイオン二次電池が開示されているが、導電材としては、カーボンブラック、カーボンファイバー、黒鉛などを用いるとされている。   Patent Document 11 discloses a non-aqueous electrolyte secondary battery using carbon fluoride as a positive electrode, a material obtained by fluorinating a fibrous carbon material, a carbon nanotube, a carbon nanofiber, and a gas phase. An electrode including a fibrous conductive agent such as grown carbon fiber and a binder is described. Further, Patent Document 12 discloses a lithium ion secondary battery using a positive electrode material having a particulate or fibrous fluorine-containing carbon material on the surface of the positive electrode active material particles. Carbon black, carbon fiber, graphite, etc. are used.

また、特許文献13によれば、好ましくは酸素で希釈したフッ素ガスで親水化処理されたカーボンブラックやカーボン繊維などの炭素系導電材と電極活物質の混合物をフッ素樹脂存在下において上記フッ素樹脂が溶融する温度以上、上記電極活物質が熱分解しない温度以下で焼成することによって複合化した電極材料を用いることにより、高出力かつ高エネルギー密度のリチウム電池を作製する方法を開示している。   According to Patent Document 13, a mixture of a carbon-based conductive material such as carbon black or carbon fiber and an electrode active material, which is preferably hydrophilized with a fluorine gas diluted with oxygen, is mixed with the fluororesin in the presence of the fluororesin. A method for producing a high output and high energy density lithium battery by using a composite electrode material by firing at a temperature not lower than the melting temperature and not higher than the temperature at which the electrode active material is not thermally decomposed is disclosed.

特開2011−14457号公報JP 2011-14457 A 特開2013−73724号公報JP 2013-73724 A 特開2016−9564号公報JP-A-2006-9564 特開平9−27344号公報JP-A-9-27344 特開2006−86116号公報JP 2006-86116 A 特開2007−42620号公報JP 2007-42620 A 特開2004−103435号公報JP 2004-103435 A 特開2008−16456号公報JP 2008-16456 A 特開2004−273433号公報JP 2004-273433 A 特開2005−340152号公報JP-A-2005-340152 特開2008−112652号公報JP 2008-111262 A WO2014/181778WO2014 / 181778 特開2015−228290号公報Japanese Patent Laying-Open No. 2015-228290

導電助剤として用いられるカーボンブラックや繊維状炭素材料はペーストへの分散性が悪いことが知られている。そのため、分散剤が用いられる。しかし、特許文献3によれば、特許文献1に記載の界面活性剤は、一般的な正極活物質として用いられるコバルト酸リチウムを用いると電池反応時に分解が起こるためサイクル特性に劣るという問題点があることが指摘されている。また特許文献2に記載の化合物も分散性が不十分であり、決して酸化安定性に優れるわけでもないのでサイクル特性に問題が残ることが指摘されている。また、分散剤は電池にとっては不純物となる。   It is known that carbon black and fibrous carbon materials used as conductive aids have poor dispersibility in pastes. Therefore, a dispersant is used. However, according to Patent Document 3, the surfactant described in Patent Document 1 has a problem that when lithium cobaltate used as a general positive electrode active material is used, decomposition occurs during battery reaction, resulting in poor cycle characteristics. It has been pointed out that there is. In addition, it has been pointed out that the compound described in Patent Document 2 also has a problem in cycle characteristics because the dispersibility is insufficient and the oxidation stability is not always excellent. Further, the dispersant becomes an impurity for the battery.

特許文献4、6、7、11、13等には、繊維状炭素材料を導電助剤として用いることが記載されており、繊維状炭素材料はカーボンブラックよりも高次元の導電ネットワークが得られることが期待されるが、繊維状炭素材料は非常に凝集しやすく、電極に均一に分散することが困難である。したがって、本発明は、繊維状炭素材料に表面改質処理を行うことでペーストへの分散性を向上させて、未処理の場合に比べて非水電解質二次電池のサイクル特性を向上させることができる非水電解質二次電池の電極の導電助剤用の繊維状炭素材料の製造方法及び、その方法で得られた繊維状炭素材料を提供することを目的とする。   Patent Documents 4, 6, 7, 11, 13 and the like describe that a fibrous carbon material is used as a conductive additive, and that the fibrous carbon material can provide a higher-dimensional conductive network than carbon black. However, the fibrous carbon material is very easy to aggregate and difficult to uniformly disperse in the electrode. Therefore, the present invention improves the dispersibility in the paste by performing a surface modification treatment on the fibrous carbon material, and improves the cycle characteristics of the nonaqueous electrolyte secondary battery as compared with the case of no treatment. An object of the present invention is to provide a method for producing a fibrous carbon material for use as a conductive additive for an electrode of a nonaqueous electrolyte secondary battery, and a fibrous carbon material obtained by the method.

本発明者等は、上記目的を達成すべく種々検討した結果、リチウムイオン二次電池等の非水電解質二次電池用電極の導電助剤として適した繊維状炭素材料を得るためには、フッ素により表面改質処理した繊維状炭素材料の表面のフッ素および酸素と炭素との元素比を適切な範囲に管理する必要があることが分かった。フッ素濃度を特定範囲に設定し、残部を不活性ガスとした処理ガスを使用する、特定温度におけるフッ素による表面改質処理(以下「フッ素処理」という)後に、気体の水と接触させる後処理を行うことで、この元素比を制御することができ、フッ素処理後の繊維状炭素材料を用いた電極を用いると、電池の内部抵抗を低くし、かつ電池のサイクル特性を向上させることができることを見出した。   As a result of various studies to achieve the above object, the present inventors have found that a fibrous carbon material suitable as a conductive aid for an electrode for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery can be obtained by using fluorine. It was found that the elemental ratio of fluorine and oxygen to carbon on the surface of the fibrous carbon material subjected to surface modification treatment must be controlled within an appropriate range. After a surface modification treatment with fluorine at a specific temperature (hereinafter referred to as “fluorine treatment”) using a treatment gas in which the fluorine concentration is set to a specific range and the balance is an inert gas, a post-treatment that makes contact with gaseous water By doing this, it is possible to control this element ratio, and using an electrode using a fibrous carbon material after fluorine treatment can lower the internal resistance of the battery and improve the cycle characteristics of the battery. I found it.

すなわち、本発明は、正極、負極、および電解質を有する非水電解質二次電池の導電助剤として用いられる繊維状炭素材料であって、XPS分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比が0.001以上であって0.025未満であり、かつ、酸素原子の炭素原子に対する割合、即ちO/C比が0.05以上であって0.2未満である繊維状炭素材料を提供する。   That is, the present invention is a fibrous carbon material used as a conductive aid for a non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and an electrolyte, the ratio of fluorine atoms to carbon atoms measured by XPS analysis, A fibrous form having an F / C ratio of 0.001 or more and less than 0.025 and a ratio of oxygen atoms to carbon atoms, that is, an O / C ratio of 0.05 or more and less than 0.2. Provide carbon materials.

また、本発明は、繊維状炭素材料を、10℃から50℃において、フッ素ガス及び不活性ガスからなる処理ガスと接触させるフッ素処理工程と、ここで、前記処理ガス中のフッ素ガスの濃度が0.01〜5体積%であり、
フッ素処理後の繊維状炭素材料を気体の水と接触させる後処理工程と、
を含む、繊維状炭素材料の製造方法も提供する。
The present invention also provides a fluorine treatment step in which the fibrous carbon material is brought into contact with a treatment gas comprising a fluorine gas and an inert gas at 10 ° C. to 50 ° C., wherein the concentration of the fluorine gas in the treatment gas is 0.01 to 5% by volume,
A post-treatment step of bringing the fibrous carbon material after fluorine treatment into contact with gaseous water;
A method for producing a fibrous carbon material is also provided.

本発明により、繊維状炭素材料に表面改質処理を行うことで、未処理の場合に比べて非水電解質二次電池のサイクル特性を向上させることができる非水電解質二次電池の電極の導電助剤用の繊維状炭素材料の製造方法及び、その方法で得られた繊維状炭素材料を提供することができる。   According to the present invention, by conducting a surface modification treatment on the fibrous carbon material, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved as compared with the case of non-treatment. The manufacturing method of the fibrous carbon material for adjuvants, and the fibrous carbon material obtained by the method can be provided.

以下、本発明の実施態様について以下に説明する。なお、本発明の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, embodiments of the present invention will be described. It should be noted that the scope of the present invention is not limited by these descriptions, and can be changed and implemented as appropriate without departing from the spirit of the present invention other than the following examples.

本発明では、繊維状炭素材料に対して、フッ素処理工程を行い、さらに後処理工程を行う。本発明で使用する繊維状炭素材料の平均繊維径が1nm以上1μm以下であることが好ましく、10nm以上500nm以下であることがより好ましく、アスペクト比(平均繊維長さ/平均繊維径)が10以上であることが好ましく、50以上であることがより好ましく、100以上であることがさらに好ましい。平均繊維径や平均繊維長さは、透過型電子顕微鏡又は走査型電子顕微鏡で視野内の複数本の繊維状炭素材料を観察し、本数で算術平均して算出することができる。このような繊維状炭素材料として、気相成長炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどが挙げられる。例えば、昭和電工株式会社からVGCF(登録商標)として市販されている気相成長炭素繊維を繊維状炭素材料として使用することができる。なお、フッ素処理を行う前の繊維状炭素材料を未処理繊維状炭素材料と呼ぶことがあり、フッ素処理と後処理後の繊維状炭素材料を処理後繊維状炭素材料又は表面改質繊維状炭素材料と呼ぶことがある。   In the present invention, a fluorine treatment process is performed on the fibrous carbon material, and a post-treatment process is further performed. The average fiber diameter of the fibrous carbon material used in the present invention is preferably 1 nm or more and 1 μm or less, more preferably 10 nm or more and 500 nm or less, and the aspect ratio (average fiber length / average fiber diameter) is 10 or more. Preferably, it is 50 or more, more preferably 100 or more. The average fiber diameter and the average fiber length can be calculated by observing a plurality of fibrous carbon materials in the field of view with a transmission electron microscope or a scanning electron microscope, and arithmetically averaging the numbers. Examples of such a fibrous carbon material include vapor grown carbon fiber, carbon nanotube, and carbon nanofiber. For example, vapor grown carbon fiber commercially available as VGCF (registered trademark) from Showa Denko KK can be used as the fibrous carbon material. In addition, the fibrous carbon material before performing the fluorine treatment may be referred to as an untreated fibrous carbon material, and the fibrous carbon material after the fluorine treatment and the post-treatment is treated with the fibrous carbon material or the surface-modified fibrous carbon. Sometimes called material.

まず、本発明では、フッ素処理を行う前に、未処理繊維状炭素材料に吸着している水分を加熱や真空脱気により除去するのが好ましい。これは、水分が残存していると、フッ素と反応してフッ化水素を発生し、製造装置等に悪影響を与えかねないためである。   First, in the present invention, it is preferable to remove moisture adsorbed on the untreated fibrous carbon material by heating or vacuum degassing before performing the fluorine treatment. This is because if moisture remains, it reacts with fluorine to generate hydrogen fluoride, which may adversely affect the production apparatus and the like.

本発明のフッ素処理法では、繊維状炭素材料を、通常、円筒形の容器の中に仕込む。ここに、フッ素濃度が所定の範囲になるように調整した処理ガスを流通させることにより、フッ素化、即ち繊維状炭素材料の表面にフッ素原子を化学結合させてC−F結合を形成させる。容器材質は、金属材料であれば安全に処理が可能であるが、連続的な処理を行う上では、耐腐食性の観点からSUS304やSUS316といったステンレス鋼材料やニッケルが望ましい。   In the fluorine treatment method of the present invention, the fibrous carbon material is usually charged into a cylindrical container. Here, a treatment gas adjusted so that the fluorine concentration falls within a predetermined range is circulated, whereby fluorine atoms are chemically bonded to the surface of the fibrous carbon material to form C—F bonds. The container material can be safely processed as long as it is a metal material. However, from the viewpoint of corrosion resistance, stainless steel materials such as SUS304 and SUS316 and nickel are desirable for continuous processing.

フッ素処理における処理ガスは、フッ素ガスと不活性ガスからなる。処理ガス中のフッ素ガスの濃度は0.01〜5体積%であり、0.05〜4体積%であることが好ましい。フッ素ガス濃度がこの範囲にあると、後処理後のF/C比及びO/C比を所望の範囲にある繊維状炭素材料を得ることができ、内部抵抗値を増加させることなく、良好なサイクル特性を持つ非水電解質二次電池が得られる。処理ガス中にはフッ素と不活性ガス以外のガス、例えば酸素、が混入しないことが好ましく、もし混入したとしても、混入したガスの濃度が1体積%以下であることが好ましい。例えば、処理ガス中に酸素が混入すると、後処理後のO/C比を所望のO/C比に制御することが困難となるうえ、繊維状炭素材料との反応が急激に進行し、場合によっては粉塵爆発の可能性がある。   The treatment gas in the fluorine treatment is composed of fluorine gas and inert gas. The concentration of the fluorine gas in the processing gas is 0.01 to 5% by volume, and preferably 0.05 to 4% by volume. When the fluorine gas concentration is within this range, a fibrous carbon material having a desired F / C ratio and O / C ratio after the post-treatment can be obtained, and the internal resistance value is increased without increasing. A non-aqueous electrolyte secondary battery having cycle characteristics can be obtained. It is preferable that a gas other than fluorine and an inert gas, such as oxygen, is not mixed in the processing gas, and even if mixed, the concentration of the mixed gas is preferably 1% by volume or less. For example, when oxygen is mixed in the processing gas, it becomes difficult to control the post-treatment O / C ratio to a desired O / C ratio, and the reaction with the fibrous carbon material proceeds rapidly. There is a possibility of dust explosion.

処理温度が50℃を超える高温では、想定以上のフッ素化の進行により爆発の危険性が伴ったり、10℃未満の低温では、冷却状態を作り出すために冷却のための装置やエネルギーが必要になったりとコスト面が課題となるため、室温付近での処理が望ましい。ただし、繊維状炭素材料とフッ素との接触時に発熱がある場合には、反応の制御のため、冷却水等を用いて、装置を冷却してもよい。   When the processing temperature is higher than 50 ° C, there is a risk of explosion due to the progress of fluorination more than expected, and when the processing temperature is lower than 10 ° C, cooling equipment and energy are required to create a cooling state. Since the cost is a problem, it is desirable to perform the treatment at around room temperature. However, in the case where heat is generated at the time of contact between the fibrous carbon material and fluorine, the apparatus may be cooled using cooling water or the like for controlling the reaction.

処理時間に関しては、繊維状炭素材料とフッ素が満遍なく接触するために十分な時間が必要で、10分以上を確保することが望ましく、30分以上であることがさらに望ましい。長すぎる場合には、導電助剤としての性能に影響はないが、生産効率が低下するため、2時間以内であることが望ましい。また、フッ素処理後、繊維状炭素材料に物理吸着したフッ素、つまり表面改質に寄与していないフッ素を可能な限り除去するため、真空状態にし、脱気することが好ましい。   Regarding the treatment time, a sufficient time is required for the fibrous carbon material and fluorine to uniformly contact, and it is desirable to ensure 10 minutes or more, and more desirably 30 minutes or more. If it is too long, there is no effect on the performance as a conductive additive, but the production efficiency is lowered, so that it is preferably within 2 hours. In addition, after the fluorine treatment, it is preferable to deaerate in a vacuum state in order to remove as much as possible the fluorine physically adsorbed on the fibrous carbon material, that is, fluorine not contributing to the surface modification.

処理圧力は特に制限されないが、安全性の観点からは700Torr(93.3kPa)以下であるのが好ましく、500Torr(66.7kPa)以下であるのがより好ましい。また十分な反応速度を得るために、10Torr(1.3kPa)以上であることが好ましく、50Torr(6.7kPa)以上であるのがより好ましい。好ましい処理ガスの流量は反応装置の大きさや構造によって異なるため、適宜調整すればよい。   The processing pressure is not particularly limited, but is preferably 700 Torr (93.3 kPa) or less, more preferably 500 Torr (66.7 kPa) or less from the viewpoint of safety. In order to obtain a sufficient reaction rate, it is preferably 10 Torr (1.3 kPa) or more, and more preferably 50 Torr (6.7 kPa) or more. Since the preferable flow rate of the processing gas varies depending on the size and structure of the reaction apparatus, it may be appropriately adjusted.

フッ素処理後、繊維状炭素材料を、気体の水、例えば所定の湿度を含む大気や、水蒸気に暴露することで、後処理工程を行う。後処理工程は10〜30℃で行うことができるが、加熱せずに、周囲温度や常温で処理することができる。また、相対湿度で30〜80%の大気に暴露する場合は、2時間以上48時間以内の処理を行えば良く、相対湿度100%の水蒸気に暴露する場合には、30分以上2時間以内の処理を行えば良い。   After the fluorine treatment, the post-treatment step is performed by exposing the fibrous carbon material to gaseous water, for example, air containing a predetermined humidity or water vapor. The post-treatment step can be performed at 10 to 30 ° C., but can be performed at ambient temperature or normal temperature without heating. In addition, when exposed to the atmosphere of 30 to 80% relative humidity, the treatment may be performed for 2 hours or more and 48 hours or less, and when exposed to water vapor of 100% relative humidity, 30 minutes or more and 2 hours or less. What is necessary is just to process.

繊維状炭素材料の表面には、フッ素処理により、C−F基等が生成する。後処理工程では、HOの作用により、表面にあるC−F基が、C−OF基、C−OH基、又はCOOH基などに変換され、表面が改質される。表面のC−OF基、C−OH基、又はCOOH基の有無は、XPSなどで確認することができる。表面が改質された繊維状炭素材料は、電極作製用のペーストへの分散性が、改質前に比べて向上すると考えられる。この変換は、後処理工程終了後1時間程度で完了すると推測される。但し、繊維状炭素材料中の一部のC−F基は、フッ素原子が結合する炭素原子の他の炭素原子との結合状況の違いなどにより、FがCに強固に結合しており、HOと反応せずに残存する。なお、同時に生成するHFは、その後、真空脱気して、除去することが好ましい。 A C—F group or the like is generated on the surface of the fibrous carbon material by fluorine treatment. In the post-treatment process, the C—F group on the surface is converted into a C—OF group, a C—OH group, a COOH group, or the like by the action of H 2 O, and the surface is modified. The presence or absence of C-OF groups, C-OH groups, or COOH groups on the surface can be confirmed by XPS or the like. It is considered that the fibrous carbon material having a modified surface has improved dispersibility in the paste for electrode preparation as compared with that before the modification. This conversion is estimated to be completed in about one hour after the end of the post-processing step. However, some of the C—F groups in the fibrous carbon material are such that F is firmly bonded to C due to the difference in bonding status between the carbon atom to which the fluorine atom is bonded and other carbon atoms, etc. It remains without reacting with 2 O. In addition, it is preferable to remove HF produced | generated simultaneously by vacuum deaeration after that.

このとき、後処理工程後の処理後繊維状炭素材料の表面のXPS(X線光電子分光)分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比は0.001以上0.025未満であり、0.015以上0.022以下が望ましい。また、酸素原子の炭素原子に対する割合、即ちO/C比は0.05以上0.2未満であり、0.10以上0.19未満であることが望ましい。F/C比とO/C比が上記の範囲内であれば、フッ素や炭素に由来する抵抗の上昇を抑制しつつ、電極作製用のペーストへの分散性が向上して、繊維状炭素材料がネットワークを形成しやすくなる。   At this time, the ratio of fluorine atoms to carbon atoms, that is, the F / C ratio, measured by XPS (X-ray photoelectron spectroscopy) analysis of the surface of the post-treatment fibrous carbon material after the post-treatment step is 0.001 or more and 0.025. It is less than 0.015 and 0.022 or less. The ratio of oxygen atoms to carbon atoms, that is, the O / C ratio is 0.05 or more and less than 0.2, and preferably 0.10 or more and less than 0.19. If the F / C ratio and the O / C ratio are within the above ranges, the dispersibility in the paste for electrode production is improved while suppressing an increase in resistance derived from fluorine and carbon, and a fibrous carbon material Makes it easier to form a network.

後処理工程後の処理後繊維状炭素材料のF/C比とO/C比が高く、繊維状炭素材料の表面にフッ素原子や酸素原子が多すぎる場合、電池の内部抵抗が上昇し、電池のサイクル特性が悪化する。その原因は明らかではないが、本発明者らは、以下のように推測する。例えば、繊維状炭素材料の表面のフッ素原子や酸素原子が、不純物となり、繊維状炭素材料の形成するネットワークにおいて、繊維状炭素材料と繊維状炭素材料の間の接触抵抗が高くなることが考えられる。また、フッ素原子や酸素原子が多すぎる場合、過度のフッ素化反応により、繊維状炭素材料の縮合ベンゼン環が破壊された結果、繊維状炭素材料上のπ電子の移動が阻害され、繊維状炭素材料自体の導電性が悪化することが考えられる。   When the F / C ratio and O / C ratio of the post-treatment fibrous carbon material after the post-treatment process are high and the surface of the fibrous carbon material has too many fluorine atoms or oxygen atoms, the internal resistance of the battery increases, and the battery The cycle characteristics of the deteriorated. Although the cause is not clear, the present inventors presume as follows. For example, fluorine atoms and oxygen atoms on the surface of the fibrous carbon material become impurities, and in the network formed by the fibrous carbon material, the contact resistance between the fibrous carbon material and the fibrous carbon material may be increased. . If there are too many fluorine atoms or oxygen atoms, the condensed benzene ring of the fibrous carbon material is destroyed by an excessive fluorination reaction. As a result, the movement of π electrons on the fibrous carbon material is inhibited, and the fibrous carbon material It is conceivable that the conductivity of the material itself deteriorates.

つぎに、本発明の処理後繊維状炭素材料を用いた非水電解質二次電池について述べる。非水電解質二次電池用電解液と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な負極材料と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な正極材料を用いる電気化学ディバイスを非水電解質二次電池と呼ぶ。   Next, a non-aqueous electrolyte secondary battery using the treated fibrous carbon material of the present invention will be described. Non-aqueous electrolyte secondary battery electrolyte solution, negative electrode material capable of reversibly inserting and removing alkali metal ions such as lithium ions and sodium ions, or alkaline earth metal ions, lithium ions and sodium ions An electrochemical device using a positive electrode material into which alkali metal ions or alkaline earth metal ions can be reversibly inserted and removed is called a non-aqueous electrolyte secondary battery.

本発明の非水電解質二次電池は、本発明の処理後繊維状炭素材料を用いることが特徴であり、その他の構成部材には一般の非水電解質二次電池に使用されているものが用いられる。即ち、リチウムイオンなどの吸蔵及び放出が可能な正極及び負極、金属箔からなる集電体、セパレータ、容器等から成る。   The nonaqueous electrolyte secondary battery of the present invention is characterized by using the post-treatment fibrous carbon material of the present invention, and the other components used are those used in general nonaqueous electrolyte secondary batteries. It is done. That is, it comprises a positive electrode and a negative electrode capable of inserting and extracting lithium ions, a current collector made of metal foil, a separator, a container, and the like.

負極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられ、正極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられる。   The negative electrode is not particularly limited, but a material capable of reversibly inserting and desorbing alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions is used, and the positive electrode is not particularly limited. However, materials in which alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions can be reversibly inserted and removed are used.

本発明の処理後繊維状炭素材料を負極の導電助剤として用いる場合、リチウムイオンなどを吸蔵および放出することが可能な負極活物質、結着材、処理後繊維状炭素材料および分散媒を混合し、スラリー化したのち、集電体である金属箔へと塗布し乾燥、加圧し、負極層を形成する。なお、導電助剤として、繊維状炭素材料だけでなく、カーボンブラックなどの粒子状炭素材料を併用してもよい。リチウムイオンなどを吸蔵および放出することが可能な種々の材料としては、例えば、カチオンがリチウムの場合、負極材料としてリチウム金属、リチウムと他の金属との合金及び金属間化合物や、人造黒鉛や天然黒鉛、活性炭などの炭素材料、金属酸化物、金属窒化物等が用いられる。   When the treated fibrous carbon material of the present invention is used as a negative electrode conductive additive, a negative electrode active material capable of occluding and releasing lithium ions, a binder, a treated fibrous carbon material, and a dispersion medium are mixed. Then, after forming a slurry, it is applied to a metal foil as a current collector, dried and pressed to form a negative electrode layer. In addition, not only fibrous carbon materials but also particulate carbon materials such as carbon black may be used in combination as the conductive assistant. Examples of various materials capable of inserting and extracting lithium ions include, for example, when the cation is lithium, lithium metal as an anode material, alloys and intermetallic compounds of lithium with other metals, artificial graphite and natural materials. Carbon materials such as graphite and activated carbon, metal oxides, metal nitrides and the like are used.

本発明の処理後繊維状炭素材料を正極の導電助剤として用いる場合、リチウムイオンなどを吸蔵および放出することが可能な正極活物質、結着材、処理後繊維状炭素材料および分散媒を混合し、スラリー化したのち、集電体である金属箔へと塗布し乾燥、加圧し、正極層を形成する。なお、導電助剤として、本発明の処理後繊維状炭素材料だけでなく、カーボンブラックなどの粒子状炭素材料を併用してもよい。また、スラリー化の前に、正極活物質と処理後繊維状炭素材料、導電助剤などを、ボールミルなどで乾式混合してもよい。リチウムイオン二次電池の場合、活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiMn等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO、LiCoPO、LiMnPO等の遷移金属のリン酸化合物、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物等を用いられる。あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。 When the treated fibrous carbon material of the present invention is used as a conductive additive for the positive electrode, a positive electrode active material capable of occluding and releasing lithium ions, a binder, a treated fibrous carbon material and a dispersion medium are mixed. Then, after forming a slurry, it is applied to a metal foil as a current collector, dried and pressurized to form a positive electrode layer. In addition, you may use together particulate carbon materials, such as carbon black, not only the post-process fibrous carbon material of this invention as a conductive support agent. Further, before the slurrying, the positive electrode active material, the post-treatment fibrous carbon material, the conductive auxiliary agent and the like may be dry-mixed with a ball mill or the like. In the case of a lithium ion secondary battery, as the active material, for example, lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Co of these lithium-containing transition metal composite oxides, A mixture of a plurality of transition metals such as Mn and Ni, a transition metal of the lithium-containing transition metal composite oxide partially substituted with a metal other than the transition metal, LiFePO 4 and LiCoPO 4 called olivine , Transition metal phosphate compounds such as LiMnPO 4 , oxides such as TiO 2 , V 2 O 5 and MoO 3 , sulfides such as TiS 2 and FeS, and the like are used. Alternatively, conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, carbon materials, and the like are used.

正極層又は負極層の電極層中に含まれる導電助剤の量、すなわち、スラリー中の固体成分に占める導電助剤の量は、0.1〜20質量%であることが好ましく、0.5〜10質量%含むことがより好ましく、1〜8質量%含むことがさらに好ましい。   The amount of the conductive additive contained in the electrode layer of the positive electrode layer or the negative electrode layer, that is, the amount of the conductive additive in the solid component in the slurry is preferably 0.1 to 20% by mass, It is more preferable to contain 10 mass%, and it is more preferable to contain 1-8 mass%.

正極や負極材料に用いられる結着材としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が用いられる。また、スラリーの分散媒としてはN−メチル−2−ピロリドン(以降「NMP」)などの有機溶媒、水などの水系溶媒などが用いられる。   As a binder used for the positive electrode or the negative electrode material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, or the like is used. Further, as a dispersion medium for the slurry, an organic solvent such as N-methyl-2-pyrrolidone (hereinafter “NMP”), an aqueous solvent such as water, or the like is used.

以下に本発明の実施例を比較例とともに挙げるが、本発明は以下の実施例に制限されるものではない。   Examples of the present invention are listed below together with comparative examples, but the present invention is not limited to the following examples.

[実施例1−1]
<フッ素処理及び後処理後(以下、「処理後」という)繊維状炭素材料の作製>
未処理繊維状炭素材料として、繊維径150nmの気相成長炭素繊維(VGCF(登録商標)−H,昭和電工株式会社製)を用い、容積5LのSUS304製容器に封入し、内部を真空引きし、繊維状炭素材料に吸着している水分を除去した。ここに、窒素で0.05体積%に希釈したフッ素を200Torr(26.7kPa)封入し、その後30分間にわたって総流量0.5SLMで流通させた。なお、上記の反応は室温(25℃)で行った。流通終了後、容器内を窒素にて十分に置換した。その後、容器内を再び真空状態まで減圧し、一晩脱気することにより、繊維状炭素材料に吸着したフッ素を可能な限り除去した。続いて、容器内を大気圧まで復圧し、24時間、大気(気温25℃、相対湿度45〜50%)に曝した。これらの操作により得られた、処理後繊維状炭素材料はXPS(「PHI VersaProbe II」、アルバックファイ社製、X線源:Al、X線:AlKα線(1486.6eV)、出力:23.8W、ビーム径:100μm)にてその表面組成を測定した。
[Example 1-1]
<Production of fibrous carbon material after fluorine treatment and after treatment (hereinafter referred to as "after treatment")>
As an untreated fibrous carbon material, vapor-grown carbon fiber with a fiber diameter of 150 nm (VGCF (registered trademark) -H, manufactured by Showa Denko KK) is enclosed in a 5 L SUS304 container, and the inside is evacuated. The water adsorbed on the fibrous carbon material was removed. Here, 200 Torr (26.7 kPa) of fluorine diluted to 0.05% by volume with nitrogen was sealed, and then allowed to flow at a total flow rate of 0.5 SLM for 30 minutes. In addition, said reaction was performed at room temperature (25 degreeC). After the end of distribution, the inside of the container was sufficiently replaced with nitrogen. Thereafter, the inside of the container was again depressurized to a vacuum state and deaerated overnight to remove as much as possible the fluorine adsorbed on the fibrous carbon material. Subsequently, the inside of the container was restored to atmospheric pressure and exposed to the atmosphere (temperature 25 ° C., relative humidity 45-50%) for 24 hours. The treated fibrous carbon material obtained by these operations is XPS (“PHI VersaProbe II”, manufactured by ULVAC-PHI, X-ray source: Al, X-ray: AlKα ray (1486.6 eV), output: 23.8 W. The surface composition was measured at a beam diameter of 100 μm).

<正極の作製>
正極活物質として、LiNi1/3Co1/3Mn1/3(NCM)粉末及び実施例1−1で製造した処理後繊維状炭素材料を、ボールミルを用いて30分間乾式混合し、結着材であるポリフッ化ビニリデン(以降「PVDF」)を予め溶解させたNMP中に分散させ、混合し、さらに粘度調整用NMPを加え、NCM合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、100℃、1hで乾燥し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用NMC正極を得た。正極中の固形分比率は、NCM:処理後繊維状炭素材料:PVDF=85:5:10(質量比)とした。
<Preparation of positive electrode>
As the positive electrode active material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) powder and the treated fibrous carbon material produced in Example 1-1 were dry mixed using a ball mill for 30 minutes, The binder, polyvinylidene fluoride (hereinafter referred to as “PVDF”), was dispersed in NMP previously dissolved and mixed, and NMP for viscosity adjustment was further added to prepare an NCM mixture paste. This paste is applied on an aluminum foil (current collector), dried at 100 ° C. for 1 h, pressurized with a roller at 4 kN / m 2 , and then a test NMC positive electrode processed to a predetermined size is obtained. It was. The solid content ratio in the positive electrode was NCM: fibrous carbon material after treatment: PVDF = 85: 5: 10 (mass ratio).

<黒鉛負極の作製>
負極活物質として、黒鉛粉末を、結着材であるPVDFを予め溶解させたNMP中に均一に分散させ、混練機を用いて2000rpmで20分間混合し、さらに粘度調整用NMPを加え、黒鉛合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、50℃で1時間乾燥し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用黒鉛負極を得た。負極中の固形分比率は、黒鉛粉末:PVDF=90:10(質量比)とした。
<Preparation of graphite negative electrode>
As a negative electrode active material, graphite powder was uniformly dispersed in NMP in which PVDF as a binder was previously dissolved, mixed at 2000 rpm for 20 minutes using a kneader, and further NMP for viscosity adjustment was added. An agent paste was prepared. This paste was applied onto a copper foil (current collector), dried at 50 ° C. for 1 hour, pressurized with a roller at 4 kN / m 2 , and then a test graphite negative electrode processed into a predetermined size was obtained. It was. The solid content ratio in the negative electrode was graphite powder: PVDF = 90: 10 (mass ratio).

<非水電解質二次電池の作製>
上記の試験用NCM正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、非水溶媒を含浸させ、非水電解質二次電池を得た。なお、非水溶媒としてエチレンカーボネート(以降「EC」)、プロピレンカーボネート(以降「PC」)、ジメチルカーボネート(以降「DMC」)、エチルメチルカーボネート(以降「EMC」)の体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてヘキサフルオロリン酸リチウム(以降「LiPF」)を1.0mol/Lの濃度となるように溶解し、電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
<Preparation of nonaqueous electrolyte secondary battery>
An aluminum laminate outer cell (capacity 30 mAh) comprising the above test NCM positive electrode, test graphite negative electrode, and cellulose separator was impregnated with a nonaqueous solvent to obtain a nonaqueous electrolyte secondary battery. The volume ratio of ethylene carbonate (hereinafter “EC”), propylene carbonate (hereinafter “PC”), dimethyl carbonate (hereinafter “DMC”), and ethyl methyl carbonate (hereinafter “EMC”) as the non-aqueous solvent is 2: 1: 3. : 4 was used, and lithium hexafluorophosphate (hereinafter referred to as “LiPF 6 ”) was dissolved as a solute in the solvent to a concentration of 1.0 mol / L to prepare an electrolytic solution. In addition, said preparation was performed maintaining a liquid temperature at 25 degreeC.

<電池評価>
<評価1:電池の内部抵抗の測定>
実施例・比較例に係る非水電解質二次電池のそれぞれについて、以下の評価を実施した。
まず、作製したセルを用いて、25℃の環境温度で、以下の条件でコンディショニングを実施した。すなわち、初回充放電として、充電上限電圧4.3V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧4.3V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。その後電池の内部抵抗を測定した。表1には、各実施例および比較例における内部抵抗の測定結果を記載した。なお、表1に記載の内部抵抗の数値は、比較例1の内部抵抗を100とした場合の相対値である。
<Battery evaluation>
<Evaluation 1: Measurement of battery internal resistance>
The following evaluation was implemented about each of the nonaqueous electrolyte secondary battery which concerns on an Example and a comparative example.
First, conditioning was performed using the fabricated cell at an environmental temperature of 25 ° C. under the following conditions. That is, as the first charge / discharge, the battery is charged at a constant current and constant voltage at a charging upper limit voltage of 4.3 V and a 0.1 C rate (3 mA), and discharged at a 0.2 C rate (6 mA) constant current up to a discharge end voltage of 3.0 V. Thereafter, charging / discharging cycle is performed three times by charging at a constant current / constant voltage at a charging upper limit voltage of 4.3V and a 0.2C rate (6 mA) and discharging at a constant current of 0.2C (6 mA) to a discharge end voltage of 3.0V. Repeated. Thereafter, the internal resistance of the battery was measured. Table 1 shows the measurement results of the internal resistance in each example and comparative example. In addition, the numerical value of the internal resistance described in Table 1 is a relative value when the internal resistance of Comparative Example 1 is 100.

<評価2:高温サイクル特性の測定>
上記コンディショニングを実施後、55℃の環境温度で充電上限電圧4.3V、3Cレート(90mA)で定電流定電圧充電した後、放電終止電圧3.0Vまで3Cレート(90mA)定電流で放電し、この充放電を100サイクル繰り返した。100サイクル目の放電容量の、初期(1サイクル目)の放電容量に対する割合をサイクル容量維持率とし、セルの高温サイクル特性を評価した。なお、表1に記載の100サイクル後のサイクル特性の数値は、比較例1の100サイクル後の放電容量維持率を100とした場合の相対値である。
<Evaluation 2: Measurement of high-temperature cycle characteristics>
After performing the above conditioning, after charging at a constant current and constant voltage at an upper limit voltage of 4.3 V and a 3 C rate (90 mA) at an environmental temperature of 55 ° C., the battery is discharged at a constant current of 3 C (90 mA) to a discharge end voltage of 3.0 V. This charging / discharging was repeated 100 cycles. The ratio of the discharge capacity at the 100th cycle to the initial (first cycle) discharge capacity was defined as the cycle capacity retention rate, and the high temperature cycle characteristics of the cell were evaluated. In addition, the numerical value of the cycle characteristic after 100 cycles described in Table 1 is a relative value when the discharge capacity retention rate after 100 cycles of Comparative Example 1 is 100.

[実施例1−2]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を2体積%にし、フッ素との接触時間を10分にした以外は、実施例1−1と同様の試験を行った。
[実施例1−3]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を0.5体積%にした以外は、実施例1−1と同様の試験を行った。
[実施例1−4]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を2体積%にした以外は、実施例1−1と同様の試験を行った。
[実施例1−5]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を4体積%にした以外は、実施例1−1と同様の試験を行った。
[Example 1-2]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the concentration of diluted fluorine used was 2% by volume and the contact time with fluorine was 10 minutes.
[Example 1-3]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the concentration of the diluted fluorine used was changed to 0.5% by volume.
[Example 1-4]
The same test as in Example 1-1 was performed except that the concentration of diluted fluorine used was changed to 2% by volume in the production of the fibrous carbon material after the treatment.
[Example 1-5]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the concentration of the diluted fluorine used was changed to 4% by volume.

[実施例1−6]
処理後繊維状炭素材料の作製に際し、希釈フッ素と接触させる際の圧力を50Torr(6.7kPa)にした以外は、実施例1−1と同様の試験を行った。
[実施例1−7]
処理後繊維状炭素材料の作製に際し、希釈フッ素と接触させる際の圧力を500Torr(66.7kPa)にした以外は、実施例1−1と同様の試験を行った。
[実施例1−8]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を4体積%にし、希釈フッ素と接触させる際の圧力を500Torr(66.7kPa)にした以外は、実施例1−4と同様の試験を行った。
[Example 1-6]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed, except that the pressure when contacting with diluted fluorine was 50 Torr (6.7 kPa).
[Example 1-7]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed, except that the pressure when contacting with diluted fluorine was 500 Torr (66.7 kPa).
[Example 1-8]
In producing the fibrous carbon material after the treatment, the concentration of the diluted fluorine used was 4% by volume, and the pressure at the time of contacting with the diluted fluorine was 500 Torr (66.7 kPa). A test was conducted.

[実施例1−9]
処理後繊維状炭素材料の作製に際し、未処理繊維状炭素材料として平均繊維径11nmのカーボンナノチューブ(AMC(登録商標),宇部興産株式会社製)を用いた以外は、実施例1−1と同様の試験を行った。
[実施例1−10]
処理後繊維状炭素材料の作製に際し、希釈フッ素と接触させる際の処理時間を90分にした以外は、実施例1−9と同様の試験を行った。
[実施例1−11]
処理後繊維状炭素材料の作製に際し、処理温度を40℃にし、処理時間を10分にした以外は、実施例1−1と同様の試験を行った。
[実施例1−12]
処理後繊維状炭素材料の作製に際し、処理温度を40℃にし、処理時間を10分にし、後処理工程にて気体の水として、常温の水蒸気(相対湿度100%の窒素ガス)を1時間供給した以外は、実施例1−1と同様の試験を行った。
[Example 1-9]
The same as Example 1-1, except that carbon nanotubes having an average fiber diameter of 11 nm (AMC (registered trademark), manufactured by Ube Industries Co., Ltd.) were used as the untreated fibrous carbon material in the production of the treated fibrous carbon material. The test was conducted.
[Example 1-10]
The same test as in Example 1-9 was performed except that the treatment time for bringing into contact with diluted fluorine was 90 minutes in the production of the fibrous carbon material after treatment.
[Example 1-11]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the treatment temperature was 40 ° C. and the treatment time was 10 minutes.
[Example 1-12]
When producing the fibrous carbon material after treatment, the treatment temperature is set to 40 ° C., the treatment time is set to 10 minutes, and water vapor at normal temperature (nitrogen gas with a relative humidity of 100%) is supplied for 1 hour as gaseous water in the post-treatment process. A test similar to that of Example 1-1 was performed except that.

[比較例1−1]
フッ素処理工程に代えて、フッ素を含まない窒素ガスを流通させた以外は、実施例1−1と同様の試験を行った。
[比較例1−2]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を0.005体積%にした以外は、実施例1−1と同様の試験を行った。
[比較例1−3]
処理後繊維状炭素材料の作製に際し、使用した希釈フッ素の濃度を7体積%にした以外は、実施例1−1と同様の試験を行った。
[比較例1−4]
処理後繊維状炭素材料の作製に際し、フッ素の濃度を4体積%にし、酸素の濃度を10体積%とし窒素で希釈したガスを流通させる以外は、実施例1−1と同様の試験を行った。
[Comparative Example 1-1]
Instead of the fluorine treatment step, the same test as in Example 1-1 was performed except that nitrogen gas not containing fluorine was circulated.
[Comparative Example 1-2]
In the production of the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the concentration of the diluted fluorine used was 0.005% by volume.
[Comparative Example 1-3]
In producing the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the concentration of diluted fluorine used was changed to 7% by volume.
[Comparative Example 1-4]
In producing the fibrous carbon material after the treatment, the same test as in Example 1-1 was performed except that the fluorine concentration was 4% by volume, the oxygen concentration was 10% by volume, and the gas diluted with nitrogen was circulated. .

[比較例1−5]
処理後繊維状炭素材料の作製に際し、希釈フッ素と接触させる際の処理温度を80℃とした以外は、実施例1−1と同様の試験を行った。
[比較例1−6]
処理後繊維状炭素材料の作製に際し、後処理工程にて酸素ガスを供給した以外は、実施例1−1と同様の試験を行った。
[比較例1−7]
処理後繊維状炭素材料の作製に際し、後処理工程にて窒素ガスを供給した以外は、実施例1−1と同様の試験を行った。
[比較例1−8]
処理後繊維状炭素材料の作製に際し、未処理繊維状炭素材料として実施例1−9で使用したカーボンナノチューブを用い、フッ素処理工程において、フッ素を含まない窒素ガスを流通させた以外は、実施例1−1と同様の試験を行った。
[Comparative Example 1-5]
In producing the fibrous carbon material after treatment, the same test as in Example 1-1 was performed except that the treatment temperature at the time of contacting with diluted fluorine was 80 ° C.
[Comparative Example 1-6]
In producing the post-treatment fibrous carbon material, the same test as in Example 1-1 was performed except that oxygen gas was supplied in the post-treatment process.
[Comparative Example 1-7]
In producing the fibrous carbon material after treatment, the same test as in Example 1-1 was performed except that nitrogen gas was supplied in the post-treatment process.
[Comparative Example 1-8]
In producing the post-treatment fibrous carbon material, the carbon nanotube used in Example 1-9 was used as the untreated fibrous carbon material, and in the fluorine treatment step, nitrogen gas not containing fluorine was circulated. The same test as 1-1 was performed.

実施例1−1〜1−12の結果と比較例1−1〜1−8の結果より、フッ素濃度0.05〜5体積%の範囲の希釈フッ素ガスと繊維状炭素材料とを接触させ、気体の水と接触させる後処理工程を行うことにより、XPS分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比が0.001以上0.025未満であり、かつ、酸素原子の炭素原子に対する割合、即ちO/C比が0.1以上0.2未満であることを特徴とする処理後繊維状炭素材料を得られることがわかる。また、これらの範囲にある処理後繊維状炭素材料を用いて作製した非水電解質二次電池は、フッ素濃度が上記範囲外であるか又は酸素ガスを含む希釈フッ素による処理を施した繊維状炭素材料に比べて、内部抵抗値が低下しており、かつ高い放電容量維持率を維持していることがわかる。なお、XPS分析により、実施例1−1〜1−12の処理後繊維状炭素材料の表面には、C−OF基、C−OH基、又はCOOH基の少なくとも一つの官能基が存在していたことが分かった。   From the results of Examples 1-1 to 1-12 and the results of Comparative Examples 1-1 to 1-8, the diluted fluorine gas having a fluorine concentration in the range of 0.05 to 5% by volume is brought into contact with the fibrous carbon material, By performing a post-treatment step in contact with gaseous water, the ratio of fluorine atoms to carbon atoms, as measured by XPS analysis, that is, the F / C ratio is 0.001 or more and less than 0.025, and oxygen atoms It can be seen that a post-treatment fibrous carbon material can be obtained which is characterized in that the ratio to carbon atoms, that is, the O / C ratio is 0.1 or more and less than 0.2. In addition, the non-aqueous electrolyte secondary battery produced using the treated fibrous carbon material in these ranges is a fibrous carbon whose fluorine concentration is outside the above range or which has been treated with diluted fluorine containing oxygen gas. It can be seen that the internal resistance value is lower than that of the material, and a high discharge capacity retention rate is maintained. In addition, by XPS analysis, at least one functional group of a C—OF group, a C—OH group, or a COOH group exists on the surface of the treated fibrous carbon material of Examples 1-1 to 1-12. I found out.

一方、比較例1−2の結果より、フッ素濃度0.005体積%では、表面改質がほとんど進行しておらず、F/C比およびO/C値にもほとんど変化が見られず、内部抵抗値およびサイクル特性にも変化が見られなかった。また、比較例1−3の結果より、フッ素濃度7体積%では、F/C比およびO/C値が大きく上昇していたものの、内部抵抗値が増大し、サイクル特性が低下した。これは、フッ素濃度が高すぎ、繊維状炭素材料の表面の荒れが著しく、電荷の輸送を阻害したためと考えられる。   On the other hand, from the result of Comparative Example 1-2, at the fluorine concentration of 0.005% by volume, the surface modification hardly progressed, and the F / C ratio and the O / C value hardly changed. There was no change in resistance and cycle characteristics. Further, from the result of Comparative Example 1-3, when the fluorine concentration was 7% by volume, the F / C ratio and the O / C value increased significantly, but the internal resistance value increased and the cycle characteristics deteriorated. This is presumably because the fluorine concentration was too high and the surface of the fibrous carbon material was so rough that it inhibited charge transport.

比較例1−4では、フッ素と酸素を窒素で希釈したガスで繊維状炭素材料を処理したため、処理後繊維状炭素材料のO/C値が高くなり、内部抵抗値が増大し、サイクル特性が低下した。これは、フッ素と酸素によるフッ素処理により、繊維状炭素材料の架橋構造が変化し、炭素−炭素間の導電パスが阻害されたため、内部抵抗値が増大したものと思われる。   In Comparative Example 1-4, since the fibrous carbon material was treated with a gas obtained by diluting fluorine and oxygen with nitrogen, the O / C value of the treated fibrous carbon material was increased, the internal resistance value was increased, and the cycle characteristics were increased. Declined. This is presumably because the cross-linking structure of the fibrous carbon material was changed by the fluorine treatment with fluorine and oxygen, and the conductive path between carbon and carbon was hindered, so that the internal resistance value was increased.

比較例1−5では、処理温度が80℃であるため、フッ素処理が強力に進行し、処理後繊維状炭素材料のF/C比が大きく上昇した。フッ素処理の際に、繊維状炭素材料の表面に荒れが生じたと考えられ、内部抵抗値が増大し、サイクル特性が低下した。   In Comparative Example 1-5, since the treatment temperature was 80 ° C., the fluorine treatment proceeded strongly, and the F / C ratio of the treated fibrous carbon material was greatly increased. It was considered that the surface of the fibrous carbon material was roughened during the fluorine treatment, the internal resistance value increased, and the cycle characteristics deteriorated.

比較例1−6では、フッ素処理後の後処理工程にて、酸素ガスにて暴露したが、比較例1−7と同等の高いF/C比を持ち、さらに、CF基がCOF基などに変わったり、不安定な結合状態であった末端置換基が酸化されたりしたと見られるO/C比の上昇が見られた。比較例1−6では、内部抵抗値が高く、サイクル特性は低下した。   In Comparative Example 1-6, it was exposed with oxygen gas in the post-treatment step after the fluorine treatment, but it had a high F / C ratio equivalent to that of Comparative Example 1-7, and the CF group was changed to a COF group or the like. There was an increase in the O / C ratio, which seems to have changed or the terminal substituents that were in an unstable bond state were oxidized. In Comparative Example 1-6, the internal resistance value was high, and the cycle characteristics deteriorated.

比較例1−7では、繊維状炭素材料をフッ素処理後に不活性ガスにて後処理工程を行ったため、処理後繊維状炭素材料にフッ素成分が多量に残った上に、処理前繊維状炭素材料と比較してO/C比がほとんど増えていないことから、COH基やCOOH基の生成もなかったと考えられ、内部抵抗値が高く、サイクル特性も低かった。   In Comparative Example 1-7, since the fibrous carbon material was subjected to a post-treatment process with an inert gas after the fluorine treatment, a large amount of fluorine components remained in the treated fibrous carbon material, and the fibrous carbon material before treatment Since the O / C ratio hardly increased as compared with the above, it was considered that no COH group or COOH group was generated, and the internal resistance value was high and the cycle characteristics were low.

Figure 2019053954
Figure 2019053954

[実施例2−1]
実施例1−1で得られた処理後繊維状炭素材料を、以下の通り、負極の導電助剤として用いた。
[Example 2-1]
The post-treatment fibrous carbon material obtained in Example 1-1 was used as a conductive additive for the negative electrode as follows.

<正極の作製>
正極活物質として、LiNi1/3Co1/3Mn1/3(NCM)粉末及び、導電助剤としてアセチレンブラック(以降「AB」)を、ボールミルを用いて30分間乾式混合し、結着材であるポリフッ化ビニリデン(以降「PVDF」)を予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCM合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、100℃、1hで乾燥、し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用NMC正極を得た。正極中の固形分比率は、NCM:AB:PVDF=85:5:10(質量比)とした。
<Preparation of positive electrode>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) powder as a positive electrode active material and acetylene black (hereinafter referred to as “AB”) as a conductive auxiliary agent were dry-mixed for 30 minutes using a ball mill. An NCM mixture paste was prepared by uniformly dispersing and mixing the polyvinylidene fluoride (hereinafter referred to as “PVDF”), which is a dressing material, in NMP in which the material was previously dissolved, mixing, and adding NMP for viscosity adjustment. This paste is applied on an aluminum foil (current collector), dried at 100 ° C. for 1 h, pressurized with a roller at 4 kN / m 2 , and then processed into a predetermined size for a test NMC positive electrode. Obtained. The solid content ratio in the positive electrode was NCM: AB: PVDF = 85: 5: 10 (mass ratio).

<黒鉛負極の作製>
負極活物質として黒鉛粉末と、導電助剤として実施例1−1で製造した処理後繊維状炭素材料とを、結着材であるPVDFを予め溶解させたNMP中に分散させ、混練機を用いて2000rpmで20分間混合し、さらに粘度調整用NMPを加え、黒鉛合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、50℃で12時間乾燥し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用黒鉛負極を得た。負極中の固形分比率は、黒鉛粉末:処理後繊維状炭素材料:PVDF=85:5:10(質量比)とした。
<Preparation of graphite negative electrode>
A graphite powder as a negative electrode active material and a post-treatment fibrous carbon material produced in Example 1-1 as a conductive auxiliary agent are dispersed in NMP in which PVDF as a binder is previously dissolved, and a kneader is used. Were mixed for 20 minutes at 2000 rpm, and NMP for viscosity adjustment was further added to prepare a graphite mixture paste. This paste was applied on a copper foil (current collector), dried at 50 ° C. for 12 hours, pressurized with a roller at 4 kN / m 2 , and then a test graphite negative electrode processed into a predetermined size was obtained. It was. The solid content ratio in the negative electrode was graphite powder: post-treatment fibrous carbon material: PVDF = 85: 5: 10 (mass ratio).

非水電解質二次電池の作製と、電池評価は、実施例1−1と同様に行った。 The production of the nonaqueous electrolyte secondary battery and the battery evaluation were performed in the same manner as in Example 1-1.

[実施例2−2〜2−12、比較例2−1〜2−8]
実施例1−2〜1−12、比較例1−1〜1−8で得られた処理後繊維状炭素材料を用いて、実施例2−1と同様の試験を行った。
実施例1と同様に、実施例2においても比較例2と対比して内部抵抗値が低下しており、かつ高い放電容量維持率を維持していることがわかる。
[Examples 2-2 to 2-12, Comparative Examples 2-1 to 2-8]
Using the post-treatment fibrous carbon materials obtained in Examples 1-2 to 1-12 and Comparative Examples 1-1 to 1-8, tests similar to those in Example 2-1 were performed.
Similar to Example 1, it can be seen that Example 2 also has a lower internal resistance value than that of Comparative Example 2, and maintains a high discharge capacity retention rate.

Figure 2019053954
Figure 2019053954

Claims (15)

正極、負極、および電解質を有する非水電解質二次電池の電極の導電助剤として用いられる繊維状炭素材料であって、
XPS分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比が0.001以上であって0.025未満であり、かつ、酸素原子の炭素原子に対する割合、即ちO/C比が0.05以上であって0.2未満である繊維状炭素材料。
A fibrous carbon material used as a conductive aid for an electrode of a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, and an electrolyte,
The ratio of fluorine atoms to carbon atoms, that is, the F / C ratio is 0.001 or more and less than 0.025, and the ratio of oxygen atoms to carbon atoms, that is, the O / C ratio, is measured by XPS analysis. A fibrous carbon material that is 0.05 or more and less than 0.2.
前記繊維状炭素材料の表面には、C−OF基、C−OH基、及びCOOH基からなる群から選ばれる少なくとも一つの官能基が存在することを特徴とする請求項1に記載の繊維状炭素材料。   2. The fibrous form according to claim 1, wherein at least one functional group selected from the group consisting of a C—OF group, a C—OH group, and a COOH group exists on the surface of the fibrous carbon material. Carbon material. F/C比が0.015以上であって0.022未満であり、かつ、O/C比が0.10以上であって0.19未満である請求項1又は2に記載の繊維状炭素材料。   The fibrous carbon according to claim 1 or 2, wherein the F / C ratio is 0.015 or more and less than 0.022, and the O / C ratio is 0.10 or more and less than 0.19. material. 前記繊維状炭素材料の平均繊維径が1nm以上1μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の繊維状炭素材料。   The fibrous carbon material according to any one of claims 1 to 3, wherein an average fiber diameter of the fibrous carbon material is 1 nm or more and 1 µm or less. 前記繊維状炭素材料の、アスペクト比(平均繊維長さ/平均繊維径)が10以上であることを特徴とする請求項1〜4のいずれか1項に記載の繊維状炭素材料。   The fibrous carbon material according to any one of claims 1 to 4, wherein the fibrous carbon material has an aspect ratio (average fiber length / average fiber diameter) of 10 or more. 前記繊維状炭素材料が、気相成長炭素繊維、カーボンナノチューブ、カーボンナノファイバーからなる群から選ばれる少なくとも1種であることを特徴とする請求項1〜5のいずれか1項に記載の繊維状炭素材料。   The fibrous carbon material according to any one of claims 1 to 5, wherein the fibrous carbon material is at least one selected from the group consisting of vapor-grown carbon fibers, carbon nanotubes, and carbon nanofibers. Carbon material. 金属箔である集電体と、
前記集電体上に形成され、請求項1〜6のいずれか1項に記載の繊維状炭素材料と、電極活物質とを含む電極層と、
からなる非水電解質二次電池用電極。
A current collector made of metal foil;
An electrode layer formed on the current collector and comprising the fibrous carbon material according to any one of claims 1 to 6 and an electrode active material,
An electrode for a non-aqueous electrolyte secondary battery.
正極、負極、及び電解質を有し、
前記正極及び前記負極の何れか又は両方が請求項7に記載の非水電解質二次電池用電極である非水電解質二次電池。
Having a positive electrode, a negative electrode, and an electrolyte;
The nonaqueous electrolyte secondary battery in which any one or both of the said positive electrode and the said negative electrode are the electrodes for nonaqueous electrolyte secondary batteries of Claim 7.
請求項1に記載の繊維状炭素材料の製造方法であって、
繊維状炭素材料を、10℃から50℃において、フッ素ガス及び不活性ガスからなる処理ガスと接触させるフッ素処理工程と、ここで、前記処理ガス中のフッ素ガスの濃度が0.01〜5体積%であり、
フッ素処理後の繊維状炭素材料を気体の水と接触させる後処理工程と、
を含む、繊維状炭素材料の製造方法。
It is a manufacturing method of the fibrous carbon material of Claim 1,
A fluorine treatment step in which the fibrous carbon material is brought into contact with a treatment gas comprising a fluorine gas and an inert gas at 10 ° C. to 50 ° C., wherein the concentration of the fluorine gas in the treatment gas is 0.01 to 5 volumes; %
A post-treatment step of bringing the fibrous carbon material after fluorine treatment into contact with gaseous water;
A method for producing a fibrous carbon material, comprising:
前記後処理工程において、フッ素処理後の繊維状炭素材料を、相対湿度で30〜80%の大気に2時間以上48時間以内暴露することを特徴とする請求項9に記載の繊維状炭素材料の製造方法。   10. The fibrous carbon material according to claim 9, wherein in the post-treatment step, the fibrous carbon material after fluorine treatment is exposed to the atmosphere of 30 to 80% in relative humidity within 2 hours to 48 hours. Production method. 前記後処理工程において、フッ素処理後の繊維状炭素材料を、水蒸気に30分以上2時間以内暴露することを特徴とする請求項9に記載の繊維状炭素材料の製造方法。   The method for producing a fibrous carbon material according to claim 9, wherein in the post-treatment step, the fibrous carbon material after the fluorine treatment is exposed to water vapor within 30 minutes to 2 hours. フッ素処理工程の後であって後処理工程の前に、繊維状炭素材料を減圧環境下におくことにより脱気工程を行う工程を含む、請求項9〜11のいずれか1項に記載の繊維状炭素材料の製造方法。   The fiber according to any one of claims 9 to 11, comprising a step of performing a deaeration step by placing the fibrous carbon material in a reduced pressure environment after the fluorine treatment step and before the post-treatment step. For producing a carbonaceous material. 前記後処理工程の後に、繊維状炭素材料を減圧環境下におくことにより脱気工程を行う工程を含む、請求項9〜12のいずれか1項に記載の繊維状炭素材料の製造方法。   The manufacturing method of the fibrous carbon material of any one of Claims 9-12 including the process of performing a deaeration process by putting a fibrous carbon material in a pressure-reduced environment after the said post-processing process. 請求項1に記載の繊維状炭素材料と電極活物質を分散媒に分散させてペーストを作成する工程と、
前記ペーストを集電体に塗布し、乾燥する工程と、
を含む非水電解質二次電池用電極の製造方法。
A step of creating a paste by dispersing the fibrous carbon material according to claim 1 and an electrode active material in a dispersion medium;
Applying the paste to a current collector and drying;
The manufacturing method of the electrode for nonaqueous electrolyte secondary batteries containing.
前記ペーストに、さらに、結着剤と粘度調整剤とを含ませる請求項14に記載の非水電解質二次電池用電極の製造方法。
The method for producing a nonaqueous electrolyte secondary battery electrode according to claim 14, further comprising a binder and a viscosity modifier in the paste.
JP2017178935A 2017-09-19 2017-09-19 Fibrous carbon material and method for manufacturing the same Pending JP2019053954A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017178935A JP2019053954A (en) 2017-09-19 2017-09-19 Fibrous carbon material and method for manufacturing the same
PCT/JP2018/033565 WO2019059036A1 (en) 2017-09-19 2018-09-11 Fibrous carbon material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178935A JP2019053954A (en) 2017-09-19 2017-09-19 Fibrous carbon material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2019053954A true JP2019053954A (en) 2019-04-04

Family

ID=65809711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178935A Pending JP2019053954A (en) 2017-09-19 2017-09-19 Fibrous carbon material and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2019053954A (en)
WO (1) WO2019059036A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002245845A (en) * 2001-02-16 2002-08-30 Kansai Electric Power Co Inc:The Carbon complex with high conductivity and manufacturing method of the same
JP2005113361A (en) * 2003-08-26 2005-04-28 Nikon Corp Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system
JP2005317447A (en) * 2004-04-30 2005-11-10 Sony Corp Battery
JP5971279B2 (en) * 2014-05-30 2016-08-17 エス・イー・アイ株式会社 Method for producing electrode material

Also Published As

Publication number Publication date
WO2019059036A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
JP5462445B2 (en) Lithium ion secondary battery
JP5856609B2 (en) Solid composite material used for positive electrode of lithium-sulfur current generation cell, method for producing the same, and lithium-sulfur current generation cell
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5389652B2 (en) Negative electrode for lithium secondary battery, method for producing carbon negative electrode active material, lithium secondary battery and use thereof
JP7028164B2 (en) Lithium ion secondary battery
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP5471591B2 (en) Conductive composition for electrode
US11152621B2 (en) Negative electrode active material and method of preparing the same
KR102271632B1 (en) Manufacturing Method of Carbon-Silicon Composite Powder, Carbon-Silicon Composite Powder Manufactured Thereby and Lithium Secondary Battery Comprising the Same
JP5900054B2 (en) Compound slurry, production method thereof, electrode and battery using the same
JP2010049873A (en) Composition for battery
KR20170041994A (en) Silicon composite active material for lithium secondary battery and manufacturing method therof
JP2008282550A (en) Anode for lithium secondary battery and lithium secondary cell using the same
JP2018095517A (en) Graphite material, method for producing graphite material, and secondary battery
CN112088453A (en) Sulfur-carbon composite, method for producing same, positive electrode for lithium secondary battery comprising sulfur-carbon composite, and lithium secondary battery
JP2011181387A (en) Manufacturing method of electrode mixture for electrochemical element
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2010049872A (en) Composition for battery
JP2010049874A (en) Composition for battery
JP2019053954A (en) Fibrous carbon material and method for manufacturing the same
CN115152048A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021177291A1 (en) Secondary battery electrode additive
JP2019053960A (en) Carbon black and method for manufacturing the same
JP2019053953A (en) Carbon black and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190709