JP2019052340A - Electrochemical cell, and photosynthesis apparatus - Google Patents

Electrochemical cell, and photosynthesis apparatus Download PDF

Info

Publication number
JP2019052340A
JP2019052340A JP2017176016A JP2017176016A JP2019052340A JP 2019052340 A JP2019052340 A JP 2019052340A JP 2017176016 A JP2017176016 A JP 2017176016A JP 2017176016 A JP2017176016 A JP 2017176016A JP 2019052340 A JP2019052340 A JP 2019052340A
Authority
JP
Japan
Prior art keywords
electrode
oxidation
reduction
reduction electrode
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176016A
Other languages
Japanese (ja)
Other versions
JP7069611B2 (en
Inventor
加藤 直彦
Naohiko Kato
直彦 加藤
竹田 康彦
Yasuhiko Takeda
康彦 竹田
真太郎 水野
Shintaro Mizuno
真太郎 水野
深野 達雄
Tatsuo Fukano
達雄 深野
杉本 憲昭
Noriaki Sugimoto
憲昭 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017176016A priority Critical patent/JP7069611B2/en
Publication of JP2019052340A publication Critical patent/JP2019052340A/en
Application granted granted Critical
Publication of JP7069611B2 publication Critical patent/JP7069611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide an electrochemical cell and a photosynthesis apparatus, provided with a translucent oxidation electrode or a translucent reduction electrode.SOLUTION: A photosynthesis apparatus 100 is provided with an oxidation electrode 104 comprising a member having a function of an oxidation catalyst and a reduction electrode 102 comprising a member having a function of a reduction catalyst disposed to face each other and an electrolytic solution 106 introduced between the oxidation electrode 104 and the reduction electrode 102, with at least one of the oxidation electrode 104 and the reduction electrode 102 being translucent.SELECTED DRAWING: Figure 1

Description

本発明は、電気化学セル及び光合成装置に関する。   The present invention relates to an electrochemical cell and a photosynthesis device.

半導体を光吸収体、金属錯体を二酸化炭素還元触媒として、半導体から金属錯体へ励起電子が移動することによって反応が進行する人工光合成デバイスが開示されている。太陽光エネルギーのみを用いて水(HO)から水素(H)を、水(HO)と二酸化炭素(CO)から一酸化炭素(CO),ギ酸(HCOOH),アルコール(CHOH)等を合成する人工光合成のためには、酸化/還元触媒間に約2Vの電位差を印加することが必要である。 There has been disclosed an artificial photosynthetic device in which a reaction proceeds by transferring excited electrons from a semiconductor to a metal complex using a semiconductor as a light absorber and a metal complex as a carbon dioxide reduction catalyst. Using only solar energy, water (H 2 O) to hydrogen (H 2 ), water (H 2 O) and carbon dioxide (CO 2 ) to carbon monoxide (CO), formic acid (HCOOH), alcohol (CH For the artificial photosynthesis that synthesizes (3OH) and the like, it is necessary to apply a potential difference of about 2 V between the oxidation / reduction catalysts.

これを実現するために、アモルファスシリコン系3接合太陽電池(a−Si 3J−SC)の両面に酸化/還元触媒が担持された光電極が用いられている(非特許文献1,2)。また、アモルファスシリコン系3接合太陽電池を用い、裏面(光入射面の反対側)に還元触媒を担持し、これと対向するように酸化触媒機能を持つ部材を含んだ酸化電極を配置して太陽電池の表面電極と接続した、いわば太陽電池と電気化学セルを一体化した人工光合成セルが用いられている(非特許文献3)。また、より高い効率を狙って、III−V族化合物2接合太陽電池(III−V 2J−SC)を用いた例もある(非特許文献4)。   In order to realize this, photoelectrodes in which an oxidation / reduction catalyst is supported on both surfaces of an amorphous silicon-based three-junction solar cell (a-Si 3J-SC) are used (Non-Patent Documents 1 and 2). Further, an amorphous silicon-based three-junction solar cell is used, and a reduction catalyst is supported on the back surface (opposite the light incident surface), and an oxidation electrode including a member having an oxidation catalyst function is disposed so as to face the solar cell. An artificial photosynthesis cell in which a solar cell and an electrochemical cell are integrated, which is connected to the surface electrode of the battery, is used (Non-patent Document 3). Moreover, there is also an example using a III-V group compound two-junction solar cell (III-V 2J-SC) aiming at higher efficiency (Non-patent Document 4).

S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, Science 334, 645 (2011)S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, Science 334, 645 (2011) T. Arai, S. Sato, and T. Morikawa, Energy Environ. Sci 8, 1998 (2015)T. Arai, S. Sato, and T. Morikawa, Energy Environ. Sci 8, 1998 (2015) J.-P. Becker, B. Turan, V. Smirnov, K. Welter, F. Urbain, J. Wolff, S. Haas and F. Finger, J. Mater. Chem. A 5, 4818 (2017)J.-P. Becker, B. Turan, V. Smirnov, K. Welter, F. Urbain, J. Wolff, S. Haas and F. Finger, J. Mater. Chem. A 5, 4818 (2017) G. Peharz, F. Dimroth, and U. Wittstadt, Int. J. Hydrogen Energy 32, 3248 (2007)G. Peharz, F. Dimroth, and U. Wittstadt, Int. J. Hydrogen Energy 32, 3248 (2007)

ところが、非特許文献1及び2では、3接合の太陽電池の両側に酸化触媒電極と還元電極を接合した構造が開示されている。還元電極には、ステンレススチールを用いており、還元電極側からは、酸化電極の水の酸化反応は目視で確認できない。したがって、還元電極側からは反応の不具合を確認することができない。一方、酸化電極側からは、透明導電膜付き(ITO)ガラス基板上にナノ粒子触媒が形成されているため、水の酸化反応を確認できる。しかしながら、水溶液電解液と酸化電極を通過した光が太陽電池に照射されるため、太陽電池に照射される光強度が低下するため、変換効率が低くなる。   However, Non-Patent Documents 1 and 2 disclose a structure in which an oxidation catalyst electrode and a reduction electrode are bonded to both sides of a three-junction solar cell. Stainless steel is used for the reduction electrode, and the oxidation reaction of the oxidation electrode with water cannot be visually confirmed from the reduction electrode side. Therefore, the reaction failure cannot be confirmed from the reduction electrode side. On the other hand, from the oxidation electrode side, since the nanoparticle catalyst is formed on the (ITO) glass substrate with a transparent conductive film, the oxidation reaction of water can be confirmed. However, since the light that has passed through the aqueous electrolyte and the oxidation electrode is irradiated to the solar cell, the light intensity irradiated to the solar cell is reduced, so that the conversion efficiency is lowered.

また、非特許文献3及び4では、太陽電池は酸化電極と還元電極の外側にあり、水を通過せずに、直接太陽光が太陽電池に照射されるため、変換効率の低下はない。しかしながら、酸化電極、還元電極に不透明な金属電極を用いているため、電極の裏面からは水の酸化及び還元反応の様子を目視で確認できない。したがって、反応の不具合があっても、早急に確認できない欠点があった。   Moreover, in nonpatent literatures 3 and 4, since a solar cell exists in the outer side of an oxidation electrode and a reduction | restoration electrode, and sunlight is directly irradiated to a solar cell, without passing water, there is no fall of conversion efficiency. However, since an opaque metal electrode is used for the oxidation electrode and the reduction electrode, the state of the oxidation and reduction reaction of water cannot be visually confirmed from the back surface of the electrode. Therefore, there is a defect that even if there is a reaction failure, it cannot be confirmed immediately.

本発明の1つの態様は、酸化触媒機能を持つ部材を含む酸化電極と、還元触媒機能を持つ部材を含む還元電極と、が対向して設置されており、前記酸化電極及び前記還元電極の少なくとも一方が透光性を有し、前記酸化電極と前記還元電極との間に電解液が導入されていることを特徴とする電気化学セルである。   In one aspect of the present invention, an oxidation electrode including a member having an oxidation catalyst function and a reduction electrode including a member having a reduction catalyst function are disposed to face each other, and at least of the oxidation electrode and the reduction electrode One of the electrochemical cells is light-transmitting, and an electrolytic solution is introduced between the oxidation electrode and the reduction electrode.

ここで、前記酸化電極及び前記還元電極の少なくとも一方の可視光波長領域における透過率が20%以上であることが好適である。   Here, it is preferable that the transmittance in the visible light wavelength region of at least one of the oxidation electrode and the reduction electrode is 20% or more.

また、前記酸化電極及び前記還元電極の間にバイアス電圧が印加されていることが好適である。   In addition, it is preferable that a bias voltage is applied between the oxidation electrode and the reduction electrode.

本発明の別の態様は、上記電気化学セルを備え、前記酸化電極及び前記還元電極の間に太陽電池が電気的に接続されており、前記太陽電池によって前記バイアス電圧が印加されている光合成装置である。   Another aspect of the present invention is a photosynthesizing device comprising the electrochemical cell, wherein a solar cell is electrically connected between the oxidation electrode and the reduction electrode, and the bias voltage is applied by the solar cell. It is.

ここで、前記電解液は、リン酸又はホウ酸緩衝水溶液であることが好適である。   Here, the electrolytic solution is preferably a phosphoric acid or boric acid buffer aqueous solution.

また、前記還元電極は、二酸化炭素(CO)に対する還元機能を有し、前記酸化電極は、水(HO)を酸化して酸素(O)を発生させる酸化機能を有することが好適である。 The reduction electrode preferably has a function of reducing carbon dioxide (CO 2 ), and the oxidation electrode preferably has an oxidation function of oxidizing water (H 2 O) to generate oxygen (O 2 ). It is.

また、前記還元電極は、水(HO)を還元して水素(H)を発生させる酸化機能を有し、前記酸化電極は、水(HO)を酸化して酸素(O)を発生させる酸化機能を有することが好適である。 The reduction electrode has an oxidation function of reducing water (H 2 O) to generate hydrogen (H 2 ), and the oxidation electrode oxidizes water (H 2 O) to generate oxygen (O 2). It is preferable to have an oxidation function that generates).

本発明によれば、透光性を有する酸化電極又は還元電極を備えた電気化学セル及び光合成装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrochemical cell and photosynthesis apparatus provided with the oxidation electrode or reduction electrode which have translucency can be provided.

本発明の実施の形態における光合成装置の構成を示す図である。It is a figure which shows the structure of the photosynthesis apparatus in embodiment of this invention. 本発明の実施の形態における還元電極の構成を示す図である。It is a figure which shows the structure of the reduction electrode in embodiment of this invention. 本発明の実施の形態における酸化電極の構成を示す図である。It is a figure which shows the structure of the oxidation electrode in embodiment of this invention. 本発明の実施例における反応の測定結果を示す図である。It is a figure which shows the measurement result of the reaction in the Example of this invention. 本発明の実施例における光合成装置の電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the photosynthesis apparatus in the Example of this invention. 本発明の実施例におけるギ酸の生成の測定結果を示す図である。It is a figure which shows the measurement result of the production | generation of formic acid in the Example of this invention. 本発明の実施例における酸化電極の透過特性の測定結果を示す図である。It is a figure which shows the measurement result of the permeation | transmission characteristic of the oxidation electrode in the Example of this invention.

本発明の実施の形態における光合成装置100は、図1に示すように、還元電極102、酸化電極104、電解液106、太陽電池セル108、窓材110及び枠材112を含んで構成される。   As shown in FIG. 1, the photosynthesis apparatus 100 according to the embodiment of the present invention includes a reduction electrode 102, an oxidation electrode 104, an electrolytic solution 106, a solar battery cell 108, a window material 110, and a frame material 112.

還元電極102は、還元反応によって物質を還元するために利用される電極である。還元電極102は、図2の断面模式図に示すように、基板10、透明導電層12、集電配線14及び還元触媒16を含んで構成される。なお、図2は模式図であり、各層の膜厚や幅等は実際のものとは異なっている。   The reduction electrode 102 is an electrode used for reducing a substance by a reduction reaction. As shown in the schematic cross-sectional view of FIG. 2, the reduction electrode 102 includes a substrate 10, a transparent conductive layer 12, a current collection wiring 14, and a reduction catalyst 16. FIG. 2 is a schematic diagram, and the thickness and width of each layer are different from the actual ones.

基板10は、還元電極102を構造的に支持する部材である。基板10は、特に材料が限定されるものではないが、還元電極102を透光性を有するようにするには、例えば、ガラス基板やプラスチック等とすることが好適である。   The substrate 10 is a member that structurally supports the reduction electrode 102. The material of the substrate 10 is not particularly limited. However, in order to make the reduction electrode 102 have translucency, for example, a glass substrate or plastic is preferable.

透明導電層12は、還元電極102における集電を効果的にするために設けられる。透明導電層12は、特に限定されるものではないが、酸化インジウム錫(ITO)、フッ素ドープ酸化錫(FTO)、酸化亜鉛(ZnO)等とすることが好適である。特に、熱的及び化学的な安定性を考慮するとフッ素ドープ酸化錫(FTO)を用いることが好適である。   The transparent conductive layer 12 is provided to effectively collect current at the reduction electrode 102. The transparent conductive layer 12 is not particularly limited, but is preferably indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), or the like. In particular, it is preferable to use fluorine-doped tin oxide (FTO) in consideration of thermal and chemical stability.

集電配線14は、還元電極102における集電の効果を高めるために設けられる。すなわち、還元電極102を大面積化した場合、透明導電層12のみでは還元電極102の全面において十分な反応を促進させるための導電性を確保できなくなるので、還元電極102の導電性を高めるために設けられる。集電配線14は、例えば、間隔を置いて櫛形状に配置された線状のフィンガー電極と、フィンガー電極を更に集電するためのバス電極とを組み合わせた構成とすることができる。集電配線14は、導電部14a、第1シール部14b及び第2シール部14cから構成することが好適である。導電部14aは、導電性の高い材料で構成され、金属を含む材料で構成することが好適である。例えば、銀(Ag)、銅(Cu)等を含む材料で構成することが好適である。また、第1シール部14b及び第2シール部14cは、導電部14aを化学的及び機械的に保護するために少なくとも導電部14aの一部を被覆するように設けられる。第1シール部14bは、低融点のガラスコート材とすることができる。また、第2シール部14cは、シリコーンゴム(脱オキシムタイプ、低分子シロキサン低減材、耐油・耐溶剤フロロシリコーン等)、ポリイソブチレン、ポリプロピレン、メタクリル(アクリル)、ポリカーボネート、フッ素樹脂(テフロン(登録商標))、エポキシ樹脂等の樹脂とすることができる。   The current collection wiring 14 is provided to enhance the effect of current collection at the reduction electrode 102. That is, when the reduction electrode 102 is increased in area, the transparent conductive layer 12 alone cannot secure sufficient conductivity for promoting the reaction over the entire surface of the reduction electrode 102, so that the conductivity of the reduction electrode 102 can be increased. Provided. The current collection wiring 14 can be configured, for example, by combining linear finger electrodes arranged in a comb shape at intervals and a bus electrode for further collecting the finger electrodes. The current collecting wiring 14 is preferably composed of a conductive portion 14a, a first seal portion 14b, and a second seal portion 14c. The conductive portion 14a is made of a highly conductive material, and is preferably made of a material containing metal. For example, it is preferable to use a material containing silver (Ag), copper (Cu), or the like. The first seal portion 14b and the second seal portion 14c are provided so as to cover at least a part of the conductive portion 14a in order to protect the conductive portion 14a chemically and mechanically. The first seal portion 14b can be a glass coating material having a low melting point. The second seal portion 14c is made of silicone rubber (deoxime type, low molecular siloxane reducing material, oil / solvent resistant fluorosilicone, etc.), polyisobutylene, polypropylene, methacryl (acrylic), polycarbonate, fluororesin (Teflon (registered trademark)). )), A resin such as an epoxy resin.

還元触媒16は、還元触媒機能を有する材料を含んで構成される。還元触媒機能を有する材料は、例えば、白金(Pt)とすることができる。白金は、ナノコロイド溶液として集電配線14が形成された透明導電層12の表面上に担持することができる(例:国際特許公開WO2005/023467A1)。   The reduction catalyst 16 includes a material having a reduction catalyst function. The material having a reduction catalyst function can be, for example, platinum (Pt). Platinum can be supported as a nanocolloid solution on the surface of the transparent conductive layer 12 on which the current collector wiring 14 is formed (for example, International Patent Publication WO2005 / 023467A1).

酸化電極104は、酸化反応によって物質を酸化するために利用される電極である。酸化電極104は、図3の断面模式図に示すように、基板20、透明導電層22、集電配線24及び酸化触媒26を含んで構成される。なお、図3は模式図であり、各層の膜厚や幅等は実際のものとは異なっている。   The oxidation electrode 104 is an electrode used for oxidizing a substance by an oxidation reaction. As shown in the schematic cross-sectional view of FIG. 3, the oxidation electrode 104 includes a substrate 20, a transparent conductive layer 22, a current collection wiring 24, and an oxidation catalyst 26. FIG. 3 is a schematic diagram, and the thickness and width of each layer are different from the actual ones.

基板20は、酸化電極104を構造的に支持する部材である。基板20は、特に材料が限定されるものではないが、酸化電極104を透光性を有するようにするには、例えば、ガラス基板やプラスチック等とすることが好適である。   The substrate 20 is a member that structurally supports the oxidation electrode 104. The material of the substrate 20 is not particularly limited. However, in order to make the oxidation electrode 104 have translucency, for example, a glass substrate or plastic is preferable.

透明導電層22は、酸化電極104における集電を効果的にするために設けられる。透明導電層22は、特に限定されるものではないが、酸化インジウム錫(ITO)、フッ素ドープ酸化錫(FTO)、酸化亜鉛(ZnO)等とすることが好適である。特に、熱的及び化学的な安定性を考慮するとフッ素ドープ酸化錫(FTO)を用いることが好適である。   The transparent conductive layer 22 is provided to effectively collect current at the oxidation electrode 104. The transparent conductive layer 22 is not particularly limited, but is preferably made of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), or the like. In particular, it is preferable to use fluorine-doped tin oxide (FTO) in consideration of thermal and chemical stability.

集電配線24は、酸化電極104における集電の効果を高めるために設けられる。すなわち、酸化電極104を大面積化した場合、透明導電層22のみでは酸化電極104の全面において十分な反応を促進させるための導電性を確保できなくなるので、酸化電極104の導電性を高めるために設けられる。集電配線24は、例えば、間隔を置いて櫛形状に配置された線状のフィンガー電極と、フィンガー電極を更に集電するためのバス電極とを組み合わせた構成とすることができる。集電配線24は、導電部24a、第1シール部24b及び第2シール部24cから構成することが好適である。導電部24aは、導電性の高い材料で構成され、金属を含む材料で構成することが好適である。例えば、銀(Ag)、銅(Cu)等を含む材料で構成することが好適である。また、第1シール部24b及び第2シール部24cは、導電部24aを化学的及び機械的に保護するために少なくとも導電部24aの一部を被覆するように設けられる。第1シール部24bは、低融点のガラスコート材とすることができる。また、第2シール部24cは、シリコーンゴム(脱オキシムタイプ、低分子シロキサン低減材、耐油・耐溶剤フロロシリコーン等)、ポリイソブチレン、ポリプロピレン、メタクリル(アクリル)、ポリカーボネート、フッ素樹脂(テフロン(登録商標))、エポキシ樹脂等の樹脂とすることができる。   The current collection wiring 24 is provided to enhance the effect of current collection in the oxidation electrode 104. That is, when the area of the oxidation electrode 104 is increased, the conductivity for promoting the reaction sufficiently on the entire surface of the oxidation electrode 104 cannot be ensured only by the transparent conductive layer 22. Provided. The current collection wiring 24 can be configured, for example, by combining linear finger electrodes arranged in a comb shape at intervals and a bus electrode for further collecting the finger electrodes. The current collecting wiring 24 is preferably composed of a conductive portion 24a, a first seal portion 24b, and a second seal portion 24c. The conductive portion 24a is made of a highly conductive material, and is preferably made of a material containing metal. For example, it is preferable to use a material containing silver (Ag), copper (Cu), or the like. The first seal part 24b and the second seal part 24c are provided so as to cover at least a part of the conductive part 24a in order to protect the conductive part 24a chemically and mechanically. The first seal portion 24b can be a glass coating material having a low melting point. The second seal portion 24c is made of silicone rubber (deoxime type, low molecular siloxane reducing material, oil / solvent-resistant fluorosilicone, etc.), polyisobutylene, polypropylene, methacrylic (acrylic), polycarbonate, fluororesin (Teflon (registered trademark)). )), A resin such as an epoxy resin.

酸化触媒26は、酸化触媒機能を有する材料を含んで構成される。酸化触媒機能を有する材料は、例えば、酸化イリジウム(IrOx)を含む材料とすることができる。酸化イリジウムは、ナノコロイド溶液として集電配線24が形成された透明導電層22の表面上に担持することができる(T.Arai et.al, Energy Environ. Sci 8, 1998 (2015))。   The oxidation catalyst 26 includes a material having an oxidation catalyst function. The material having an oxidation catalyst function can be, for example, a material containing iridium oxide (IrOx). Iridium oxide can be supported on the surface of the transparent conductive layer 22 on which the current collector wiring 24 is formed as a nanocolloid solution (T. Arai et.al, Energy Environ. Sci 8, 1998 (2015)).

このように、本実施の形態では、還元電極102及び酸化電極104を可視光波長領域において透光性を有する構成とすることができる。ここで、可視光波長領域とは、400nm以上700nm以下の光の波長領域とする。また、可視光波長領域において透光性を有するとは、400nm以上700nm以下の光の波長領域において還元電極102及び酸化電極104に入射した光のうち少なくとも20%以上を透過することを意味するものとする。   Thus, in this embodiment mode, the reduction electrode 102 and the oxidation electrode 104 can have a light-transmitting property in the visible light wavelength region. Here, the visible light wavelength region is a wavelength region of light of 400 nm to 700 nm. In addition, having translucency in the visible light wavelength region means that at least 20% or more of light incident on the reduction electrode 102 and the oxidation electrode 104 is transmitted in the wavelength region of light of 400 nm to 700 nm. And

なお、還元電極102及び酸化電極104の両方を可視光波長領域において透光性を有する構成とすることなく、少なくとも1つを可視光波長領域において透光性を有する構成とすればよい。この場合、還元電極102及び酸化電極104のうち透光性を持たないものは、従来の還元電極102又は酸化電極104とすればよい。還元電極102及び酸化電極104の少なくとも1つを可視光波長領域において透光性を有する構成とすることで、光合成装置100における反応を目視で確認できるようになる。具体的には、反応の不具合を目視にて確認することができ、早急に対応できるようになる。   Note that at least one of the reduction electrode 102 and the oxidation electrode 104 may have a light-transmitting property in the visible light wavelength region without using a light-transmitting property in the visible light wavelength region. In this case, the reduction electrode 102 and the oxidation electrode 104 that do not have translucency may be the conventional reduction electrode 102 or oxidation electrode 104. By setting at least one of the reduction electrode 102 and the oxidation electrode 104 to have a light-transmitting property in the visible light wavelength region, the reaction in the photosynthesis apparatus 100 can be visually confirmed. Specifically, the reaction failure can be visually confirmed, and it becomes possible to respond quickly.

本実施の形態における光合成装置100は、還元電極102と酸化電極104を組み合わせて構成される。例えば、図1に示すように、還元電極102と酸化電極104を還元触媒16及び酸化触媒26が対向するように配置し、その間に反応物が溶解された電解液106を導入させる。反応物は、炭化化合物とすることができ、例えば、二酸化炭素(CO)とすることができる。また、電解液は、リン酸緩衝水溶液やホウ酸緩衝水溶液とすることが好適である。具体的な構成例では、二酸化炭素(CO)飽和リン酸緩衝液のタンクを設け、ポンプによって当該液を還元電極102と酸化電極104との間に設けられた間隙に供給し、還元反応によって生じたギ酸(HCOOH)や酸素(O)を外部の燃料タンクに回収する。 Photosynthesis apparatus 100 in the present embodiment is configured by combining reduction electrode 102 and oxidation electrode 104. For example, as shown in FIG. 1, the reduction electrode 102 and the oxidation electrode 104 are arranged so that the reduction catalyst 16 and the oxidation catalyst 26 face each other, and an electrolytic solution 106 in which a reactant is dissolved is introduced therebetween. The reactant can be a carbonized compound, for example, carbon dioxide (CO 2 ). The electrolyte is preferably a phosphate buffer aqueous solution or a borate buffer aqueous solution. In a specific configuration example, a tank of carbon dioxide (CO 2 ) saturated phosphate buffer is provided, and the liquid is supplied to a gap provided between the reduction electrode 102 and the oxidation electrode 104 by a pump, and a reduction reaction is performed. The generated formic acid (HCOOH) and oxygen (O 2 ) are recovered in an external fuel tank.

還元電極102と酸化電極104との間を電気的に接続し、適切なバイアス電圧を印加した状態とする。バイアス電圧を印加する手段は、特に限定されるものではなく、化学的電池(一次電池、二次電池等を含む)、定電圧源、太陽電池等が挙げられる。このとき、酸化電極104の集電配線24に正極が接続され、還元電極102の集電配線14に負極が接続される。   The reduction electrode 102 and the oxidation electrode 104 are electrically connected, and an appropriate bias voltage is applied. The means for applying the bias voltage is not particularly limited, and examples thereof include a chemical battery (including a primary battery and a secondary battery), a constant voltage source, and a solar battery. At this time, the positive electrode is connected to the current collector wiring 24 of the oxidation electrode 104, and the negative electrode is connected to the current collector wiring 14 of the reduction electrode 102.

本実施の形態では、太陽電池セル108を採用している。太陽電池セル108は、還元電極102及び酸化電極104に隣接して配置することができる。図1の例では、還元電極102と酸化電極104とを対向させた電気化学セルの還元電極102の背面に太陽電池セル108を配置し、太陽電池セル108の正極を酸化電極104に接続し、負極を還元電極102に接続している。   In the present embodiment, the solar battery cell 108 is employed. The solar battery cell 108 can be disposed adjacent to the reduction electrode 102 and the oxidation electrode 104. In the example of FIG. 1, the solar cell 108 is disposed on the back surface of the reduction electrode 102 of the electrochemical cell in which the reduction electrode 102 and the oxidation electrode 104 are opposed to each other, and the positive electrode of the solar cell 108 is connected to the oxidation electrode 104. The negative electrode is connected to the reduction electrode 102.

二酸化炭素(CO)からギ酸(HCOOH)等を合成する場合、水(HO)は酸化されて二酸化炭素(CO)に電子とプロトンを供給する。pH7付近では水(HO)の酸化電位は0.82V、還元電位は−0.41V(何れもNHE)である。また、二酸化炭素(CO)から一酸化炭素(CO)、ギ酸(HCOOH)、メチルアルコール(CHOH)への還元電位はそれぞれ−0.53V,−0.61V,−0.38Vである。したがって、酸化電位と還元電位の電位差は1.20〜1.43Vである。そこで、炭化化合物である二酸化炭素(CO)を還元する場合、太陽電池セル108は、4つの結晶系シリコン太陽電池を直接に接続した結晶シリコン系4接合太陽電池や3つのアモルファス系シリコン太陽電池を直列に接続したアモルファスシリコン系3接合太陽電池とすることが好適である。 When synthesizing formic acid (HCOOH) or the like from carbon dioxide (CO 2 ), water (H 2 O) is oxidized to supply electrons and protons to carbon dioxide (CO 2 ). In the vicinity of pH 7, the oxidation potential of water (H 2 O) is 0.82 V, and the reduction potential is −0.41 V (both are NHE). The reduction potentials from carbon dioxide (CO 2 ) to carbon monoxide (CO), formic acid (HCOOH), and methyl alcohol (CH 3 OH) are −0.53 V, −0.61 V, and −0.38 V, respectively. . Therefore, the potential difference between the oxidation potential and the reduction potential is 1.20 to 1.43V. Therefore, when carbon dioxide (CO 2 ), which is a carbonized compound, is reduced, the solar battery cell 108 includes a crystalline silicon-based four-junction solar cell or three amorphous silicon solar cells in which four crystalline silicon solar cells are directly connected. It is preferable to form amorphous silicon-based three-junction solar cells connected in series.

ここで、還元電極102及び酸化電極104の両方が可視光波長領域にて透光性を有する場合、太陽電池セル108はいずれの側に配置してもよい。一方、還元電極102及び酸化電極104の一方のみが可視光波長領域にて透光性を有する場合、太陽電池セル108は可視光波長領域にて透光性を持たない側に配置することが好適である。すなわち、可視光波長領域にて透光性を有する側に太陽電池セル108を配置しないことによって、太陽電池セル108によって目視の視界を遮られることがなくなる。   Here, when both the reduction electrode 102 and the oxidation electrode 104 have translucency in the visible light wavelength region, the solar battery cell 108 may be disposed on either side. On the other hand, when only one of the reduction electrode 102 and the oxidation electrode 104 has a light-transmitting property in the visible light wavelength region, the solar battery cell 108 is preferably disposed on the side that does not have a light-transmitting property in the visible light wavelength region. It is. That is, when the solar battery cell 108 is not disposed on the side having translucency in the visible light wavelength region, the visual field of view is not blocked by the solar battery cell 108.

太陽電池セル108に対しては、受光面側に窓材110を設けることが好適である。窓材110は、太陽電池セル108を保護する部材である。窓材110は、太陽電池セル108において発電に寄与する波長の光を透過する部材とし、例えば、ガラス、プラスチック等とすることができる。   For the solar battery cell 108, it is preferable to provide a window member 110 on the light receiving surface side. The window material 110 is a member that protects the solar battery cell 108. The window member 110 is a member that transmits light having a wavelength that contributes to power generation in the solar battery cell 108, and may be glass, plastic, or the like, for example.

還元電極102、酸化電極104、太陽電池セル108及び窓材110は、枠材112によって構造的に支持される。   The reduction electrode 102, the oxidation electrode 104, the solar battery cell 108, and the window material 110 are structurally supported by the frame material 112.

[実施例]
<酸化電極の作製方法>
まず、酸化イリジウム(IrOx)のナノコロイドを合成した(T. Arai, S. Sato, and T. Morikawa, Energy Environ. Sci 8, 1998 (2015))。2mMの塩化イリジウム酸(IV)カリウム(KIrCl)水溶液50mlに10wt%の水酸化ナトリウム(NaOH)水溶液を加えてpH13に調整した黄色溶液を、ホットスターラーを用いて90℃で20分加熱した。これによって得られた青色溶液を氷水で1時間冷却した。さらに、冷やした溶液(20ml)に3M硝酸(HNO)を滴下してpH1に調整し、80分攪拌し、酸化イリジウム(IrOx)のナノコロイド水溶液を得た。この溶液に1.5wt%NaOH水溶液(1−2ml)を滴下してpH12に調整した。
[Example]
<Production method of oxidation electrode>
First, nano colloids of iridium oxide (IrOx) were synthesized (T. Arai, S. Sato, and T. Morikawa, Energy Environ. Sci 8, 1998 (2015)). A yellow solution adjusted to pH 13 by adding 10 wt% aqueous sodium hydroxide (NaOH) solution to 50 ml of 2 mM potassium (IV) chloroiridate (K 2 IrCl 6 ) solution was heated at 90 ° C. for 20 minutes using a hot stirrer. did. The resulting blue solution was cooled with ice water for 1 hour. Further, 3M nitric acid (HNO 3 ) was added dropwise to the cooled solution (20 ml) to adjust the pH to 1 and stirred for 80 minutes to obtain an aqueous iridium oxide (IrOx) nanocolloid solution. To this solution, 1.5 wt% NaOH aqueous solution (1-2 ml) was added dropwise to adjust the pH to 12.

本実施例では、基板20及び透明導電層22は、ITOより化学的及び熱的に安定性が高いフッ素ドープ酸化錫(FTO)透明導電膜付きのガラス(日本板硝子製SA−25)を用いた。FTOである透明導電層22上に、スクリーン印刷を適用して、銀(Ag)のペーストを所望のパターンに塗布して、大気中において熱処理450℃を施して銀(Ag)を焼結させて導電部24aを形成した。さらに、銀(Ag)の配線上に、スクリーン印刷法を適用して、低融点ガラスペーストを用いてカバーガラスを塗布し、大気中において熱処理(400℃)を施してカバーガラスを第1シール部24bとして形成した。その上に、ディスペンサーを用いてシリコーン樹脂(ゴム)を塗布して、室温で乾燥させて第2シール部24cを形成した。これによって、3層構造の集電配線24を作製した。   In this example, the substrate 20 and the transparent conductive layer 22 were made of glass (SA-25 manufactured by Nippon Sheet Glass) with a fluorine-doped tin oxide (FTO) transparent conductive film that is chemically and thermally more stable than ITO. . On the transparent conductive layer 22 which is FTO, screen printing is applied, a silver (Ag) paste is applied in a desired pattern, and heat treatment is performed at 450 ° C. in the atmosphere to sinter the silver (Ag). A conductive portion 24a was formed. Further, a screen printing method is applied to the silver (Ag) wiring, a cover glass is applied using a low-melting glass paste, and heat treatment (400 ° C.) is performed in the atmosphere to cover the cover glass with the first seal portion. 24b was formed. A silicone resin (rubber) was applied thereon using a dispenser and dried at room temperature to form the second seal portion 24c. As a result, a current collecting wiring 24 having a three-layer structure was produced.

このように、集電配線24が形成された透明導電層22上にpH12に調整した酸化イリジウム(IrOx)のナノコロイド水溶液を塗布し、乾燥炉内において60℃で40分間保持して乾燥した。乾燥後、析出した塩を超純水で洗浄し、酸化触媒26を形成した。このようにして、10cm×10cmの大きさの酸化電極104を得た。このとき、酸化イリジウム(IrOx)のナノコロイド水溶液の塗布量(25ml×1回、2回、3回/10cm角)を変えて、3種類の酸化電極104を形成した。   Thus, the nano colloid aqueous solution of iridium oxide (IrOx) adjusted to pH 12 was apply | coated on the transparent conductive layer 22 in which the current collection wiring 24 was formed, and it dried by hold | maintaining at 60 degreeC for 40 minute (s) in a drying furnace. After drying, the precipitated salt was washed with ultrapure water to form an oxidation catalyst 26. In this way, an oxidation electrode 104 having a size of 10 cm × 10 cm was obtained. At this time, three types of oxidation electrodes 104 were formed by changing the amount of iridium oxide (IrOx) nanocolloid aqueous solution applied (25 ml × 1, 2 times, 3 times / 10 cm square).

<還元電極の作製方法1>
本実施例では、還元電極102は透光性をもたないルテニウム錯体ポリマー(RuCP)担持多孔質炭素還元電極(サイズ:10cm×10cm)とした(T. Arai, S. Sato, and T. Morikawa, Energy Environ. Sci 8, 1998 (2015))。
<Production Method 1 of Reduction Electrode>
In this embodiment, the reduction electrode 102 is a ruthenium complex polymer (RuCP) -supporting porous carbon reduction electrode (size: 10 cm × 10 cm) having no translucency (T. Arai, S. Sato, and T. Morikawa). , Energy Environ. Sci 8, 1998 (2015)).

まず、管状炉を用いて、多孔質炭素をアルゴン(Ar)の雰囲気下において350℃で2時間予備加熱した。その多孔質炭素の表面上に、二酸化炭素(CO)の還元触媒であるRu錯体ポリマー(RuCP)を修飾した。具体的には、25mgの[Ru{4,4’−di(1H−prrrolyl−3−propylcarbonate)−2,2’−bipyridine}(CO)(MeCN)Cl]を35mlのアセトニトリル(MeCN)に溶解させてRu錯体溶液を調製した。そして、2.5μlのピロールを50mlのMeCNに溶解させた1.84mlのピロール溶液をRu錯体溶液に投入後、塩化鉄(III)(FeCl)をエタノールに溶解した9mlの0.2MFeCl溶液を滴下して混合した。FeCl溶液の添加により、Feイオンによりピロールの重合反応を促進させて、Ru錯体ポリマー(RuCP)溶液が調製されたことで、Ru錯体溶液は赤色から黒色に変化した。このように生成された本溶液を4.6ml/1回の量で多孔質炭素担体に塗布して、常温で5分間真空乾燥した。この塗布、真空乾燥処理を10回繰り返した。その後、超純水で洗浄して余分なFeClを除去して乾燥した後、RuCPで修飾された多孔質炭素担体を作製した。 First, using a tubular furnace, porous carbon was preheated at 350 ° C. for 2 hours in an argon (Ar) atmosphere. On the surface of the porous carbon, a Ru complex polymer (RuCP) which is a reduction catalyst of carbon dioxide (CO 2 ) was modified. Specifically, 25 mg of [Ru {4,4′-di (1H-propyl-3-propylcarbonate) -2,2′-bipyridine] (CO) (MeCN) Cl 2 ] in 35 ml of acetonitrile (MeCN). A Ru complex solution was prepared by dissolution. Then, after turning the pyrrole solution of 1.84ml dissolved pyrrole of 2.5μl in MeCN in 50ml of Ru complex solution, 0.2MFeCl 3 solution 9ml of iron (III) chloride and (FeCl 3) were dissolved in ethanol Were added dropwise and mixed. By adding the FeCl 3 solution, the polymerization reaction of pyrrole was promoted by Fe ions, and the Ru complex polymer (RuCP) solution was prepared, so that the Ru complex solution changed from red to black. The solution thus produced was applied to a porous carbon support in an amount of 4.6 ml / time and vacuum dried at room temperature for 5 minutes. This coating and vacuum drying treatment was repeated 10 times. Subsequently, after washing with ultrapure water to remove excess FeCl 3 and drying, a porous carbon support modified with RuCP was produced.

続いて、FTOである透明導電層上に、スクリーン印刷を適用して、銀(Ag)のペーストを所望のパターンに塗布して、大気中において熱処理450℃を施して銀(Ag)を焼結させて導電部を形成した。さらに、銀(Ag)の配線上に、スクリーン印刷法を適用して、低融点ガラスペーストを用いてカバーガラスを塗布し、大気中において熱処理(400℃)を施してカバーガラスを第1シール部として形成した。その上に、ディスペンサーを用いてシリコーン樹脂(ゴム)を塗布して、室温で乾燥させて第2シール部を形成した。これによって、3層構造の集電配線を作製した。そして、グラファイト系導電性接着剤を用いて、ルテニウム錯体ポリマー(RuCP)担持多孔質炭素を上記3層構造の集電配線付きFTO基板上に貼りつけた。   Subsequently, screen printing is applied to the transparent conductive layer, which is an FTO, a silver (Ag) paste is applied in a desired pattern, and heat treatment is performed at 450 ° C. in the atmosphere to sinter the silver (Ag). Thus, a conductive portion was formed. Further, a screen printing method is applied to the silver (Ag) wiring, a cover glass is applied using a low-melting glass paste, and heat treatment (400 ° C.) is performed in the atmosphere to cover the cover glass with the first seal portion. Formed as. A silicone resin (rubber) was applied thereon using a dispenser, and dried at room temperature to form a second seal portion. Thus, a current collecting wiring having a three-layer structure was produced. And ruthenium complex polymer (RuCP) carrying porous carbon was affixed on the FTO board | substrate with the current collection wiring of the said 3 layer structure using the graphite type conductive adhesive.

<還元電極の作製方法2>
透光性を有する還元電極102の実施例としてナノ粒子のPtを担持した電極を作製した。すなわち、透光性を有する水電解による水素生成用の還元電極102を作成した。
<Production Method 2 of Reduction Electrode>
As an example of the reducing electrode 102 having translucency, an electrode carrying Pt of nanoparticles was produced. That is, a reduction electrode 102 for producing hydrogen by water electrolysis having translucency was prepared.

基板10及び透明導電層12は、フッ素ドープ酸化錫(FTO)透明導電膜付きのガラスを用いた。塩化白金酸(HPtCl)のイソプロパノール溶液(濃度0.005mol/l)を調製し、スピンコート法(回転数:300回転30秒後600回転1分)で透明導電層12上に塗布した。塗布後、大気中400℃10分焼成した。本手法で、透明導電層12が設けられた基板10上に粒径2〜10nmのナノ粒子Ptが担持された。 As the substrate 10 and the transparent conductive layer 12, glass with a fluorine-doped tin oxide (FTO) transparent conductive film was used. An isopropanol solution (concentration 0.005 mol / l) of chloroplatinic acid (H 2 PtCl 6 ) was prepared and applied onto the transparent conductive layer 12 by spin coating (rotation speed: 300 rotations 30 seconds and then 600 rotations 1 minute). . After the application, it was baked in the atmosphere at 400 ° C. for 10 minutes. In this method, nanoparticles Pt having a particle diameter of 2 to 10 nm were supported on the substrate 10 provided with the transparent conductive layer 12.

<電気化学特性評価>
本実施例では、二酸化炭素(CO)還元反応と水(HO)の酸化反応の電気化学特性の評価を行った。上記方法で形成した酸化電極(アノード電極)104とルテニウム錯体ポリマー(RuCP)担持多孔質炭素還元電極(カソード電極)を対向させて、その間隙にリン酸緩衝水溶液中で二酸化炭素(CO)ガスをバブリングしながら供給した。リン酸緩衝水溶液は、KHPOとKHPOをモル比1:1で混合し、リン酸濃度0.1Mになるように超純水を用いて調製した。二酸化炭素(CO)の還元反応と水(HO)の酸化反応は、電気化学測定システム(北斗電工製HA−3001A)を用いて定電流モードで制御した。このとき、還元電極102と酸化電極104とを太陽電池セル108を介して接続した光合成装置100とし、光照射して、水(HO)の酸化反応で生成された酸素(O)と二酸化炭素(CO)の還元反応で生成されたギ酸(HCOOH)をモニターし、電流−電圧特性を測定した。
<Electrochemical characteristics evaluation>
In this example, the electrochemical characteristics of carbon dioxide (CO 2 ) reduction reaction and water (H 2 O) oxidation reaction were evaluated. The oxidation electrode (anode electrode) 104 and the ruthenium complex polymer (RuCP) -supporting porous carbon reduction electrode (cathode electrode) formed by the above method are opposed to each other, and carbon dioxide (CO 2 ) gas in a phosphate buffer aqueous solution is interposed between the electrodes. Was supplied while bubbling. The phosphate buffer aqueous solution was prepared by mixing K 2 HPO 4 and KH 2 PO 4 at a molar ratio of 1: 1 and using ultrapure water so that the phosphate concentration was 0.1M. The reduction reaction of carbon dioxide (CO 2 ) and the oxidation reaction of water (H 2 O) were controlled in a constant current mode using an electrochemical measurement system (HA-3001A manufactured by Hokuto Denko). At this time, the photosynthesis apparatus 100 in which the reduction electrode 102 and the oxidation electrode 104 are connected via the solar battery cell 108 is used, and the light (O 2 ) generated by the oxidation reaction of water (H 2 O) is irradiated with light. Formic acid (HCOOH) produced by the reduction reaction of carbon dioxide (CO 2 ) was monitored, and current-voltage characteristics were measured.

このとき、可視光波長領域において透光性を有する酸化電極104を通してリン酸緩衝水溶液における水(HO)の酸化反応を観察することができた。すなわち、酸化電極104を通して水(HO)の酸化反応で生成された酸素(O)の泡を明瞭に観察することができた。 At this time, the oxidation reaction of water (H 2 O) in the phosphate buffered aqueous solution could be observed through the oxidation electrode 104 having translucency in the visible light wavelength region. In other words, oxygen (O 2 ) bubbles generated by the oxidation reaction of water (H 2 O) through the oxidation electrode 104 could be clearly observed.

図4は、酸化電極104と還元電極(カソード電極)間の電圧をモニターした結果を示す。図4に示すように、2mA/cm及び3mA/cmのいずれの定電流モードにおいても時間的に安定に二酸化炭素(CO)還元反応と水(HO)の酸化反応が持続することが確認できた。また、図5に示すように、還元電極102と酸化電極104とを太陽電池セル108を介して接続した光合成装置100における電流−電圧特性が測定された。 FIG. 4 shows the result of monitoring the voltage between the oxidation electrode 104 and the reduction electrode (cathode electrode). As shown in FIG. 4, the carbon dioxide (CO 2 ) reduction reaction and the water (H 2 O) oxidation reaction continue stably over time in both constant current modes of 2 mA / cm 2 and 3 mA / cm 2. I was able to confirm. Further, as shown in FIG. 5, the current-voltage characteristics were measured in the photosynthetic device 100 in which the reduction electrode 102 and the oxidation electrode 104 were connected via the solar battery cell 108.

また、図6は、二酸化炭素(CO)還元反応で生成したギ酸(HCOOH)をイオンクロマトグラフ(Thermo製 ICS−2100)で定量した結果を示す。図6に示すように、ギ酸(HCOOH)の生成量は時間の経過に伴って線形的に増加した。また、ファラデー効率は、85%以上88%以下であった。 FIG. 6 shows the results of quantitative determination of formic acid (HCOOH) produced by carbon dioxide (CO 2 ) reduction reaction by ion chromatography (ICS-2100 manufactured by Thermo). As shown in FIG. 6, the amount of formic acid (HCOOH) produced increased linearly with time. The Faraday efficiency was 85% or more and 88% or less.

<電極の光学特性評価>
本実施例における酸化電極104及び還元電極102の光学特性(直線透過率)を分光エリプソメーター(JAウーラム社製 M2000U)を用いて計測した。図7は、光学特性の測定結果を示す。なお、比較例として、市販のTi基板上に酸化イリジウム(IrOx)をコーティングした酸化電極(Anodic100:日進化成)及び市販のPt箔状の触媒電極の光学特性を測定した。なお、図7中において、酸化イリジウム(IrOx)を1回塗布した例を(IrOx 25ml×1)と示し、2回塗布した例を(IrOx 25ml×2)と示し、3回塗布した例を(IrOx 25ml×3)と示した。また、上記還元電極の作製方法2にて作成した還元電極102の例を(ナノ粒子Pt/FTO)と示した。また、市販の酸化電極を(Anodic)と示し、Pt箔状の電極を(Ptホイル)と示した。
<Evaluation of optical characteristics of electrode>
The optical characteristics (linear transmittance) of the oxidation electrode 104 and the reduction electrode 102 in this example were measured using a spectroscopic ellipsometer (M2000U manufactured by JA Woollam). FIG. 7 shows the measurement results of the optical characteristics. As comparative examples, the optical characteristics of an oxidation electrode (Anodic 100: Nihon Kasei Co., Ltd.) obtained by coating a commercially available Ti substrate with iridium oxide (IrOx) and a commercially available Pt foil-like catalyst electrode were measured. In FIG. 7, an example in which iridium oxide (IrOx) is applied once is shown as (IrOx 25 ml × 1), an example in which it is applied twice (IrOx 25 ml × 2), and an example in which it is applied three times ( IrOx 25 ml × 3). Moreover, the example of the reduction electrode 102 produced by the production method 2 of the reduction electrode is shown as (nanoparticle Pt / FTO). A commercially available oxidation electrode was indicated as (Anodic), and a Pt foil-like electrode was indicated as (Pt foil).

図7に示すように、本実施例における酸化電極104及び還元電極の作製方法2にて作成した還元電極102の透過率は、いずれも、市販のTi基板上に酸化イリジウム(IrOx)をコーティングした酸化電極(Anodic100:日進化成)やPt箔触媒電極よりも高く、視認性に優れていることが判明した。また、具体的には、本実施例の酸化電極104及び還元電極の作製方法2にて作成した還元電極102は、400nm以上700nm以下の光の波長領域において入射した光のうち少なくとも20%以上を透過することが確認できた。   As shown in FIG. 7, the transmittance of the reduction electrode 102 produced by the production method 2 of the oxidation electrode 104 and the reduction electrode in this example were both coated with iridium oxide (IrOx) on a commercially available Ti substrate. It was found to be higher than the oxidation electrode (Anodic 100: Nihon Kasei Co., Ltd.) and the Pt foil catalyst electrode and excellent in visibility. Further, specifically, the oxidation electrode 104 and the reduction electrode 102 produced by the production method 2 of the reduction electrode of the present example can emit at least 20% or more of incident light in the wavelength region of light of 400 nm to 700 nm. It was confirmed that it was transmitted.

以上のように、水(HO)の酸化反応(酸素ガス発生)及び水(HO)の還元反応(水素ガス発生)を外部から目視で確認でき、電気化学セルの内部の反応を管理して、不具合箇所を早期に発見することができる。すなわち、還元電極102の還元電位と酸化電極104の酸化電位間の電位差に相当する光起電力を太陽電池セル108で供給し、太陽電池セル108の背面において還元電極102及び酸化電極104を対向させて配置し、そのどちらか一方を透光性を有する構成とすることで反応を確認し易い光合成装置を提供することができる。 As described above, water oxidation (oxygen gas evolution) of (H 2 O) and reduction (hydrogen gas evolution) of water (H 2 O) can be confirmed visually from the outside, the inside of the reaction of the electrochemical cell It is possible to manage and find a defective part at an early stage. That is, photovoltaic power corresponding to the potential difference between the reduction potential of the reduction electrode 102 and the oxidation potential of the oxidation electrode 104 is supplied by the solar cell 108, and the reduction electrode 102 and the oxidation electrode 104 are opposed to each other on the back surface of the solar cell 108. The photosynthesis apparatus which can confirm reaction easily can be provided by setting it as the structure which has translucency in either one.

10 基板、12 透明導電層、14 集電配線、14a 導電部、14b 第1シール部、14c 第2シール部、16 還元触媒、20 基板、22 透明導電層、24 集電配線、24a 導電部、24b 第1シール部、24c 第2シール部、26 酸化触媒、100 光合成装置、102 還元電極、104 酸化電極、106 電解液、108 太陽電池セル、110 窓材、112 枠材。
DESCRIPTION OF SYMBOLS 10 Board | substrate, 12 Transparent conductive layer, 14 Current collection wiring, 14a Conductive part, 14b 1st sealing part, 14c 2nd sealing part, 16 Reduction catalyst, 20 Substrate, 22 Transparent conductive layer, 24 Current collection wiring, 24a Conductive part, 24b 1st seal | sticker part, 24c 2nd seal | sticker part, 26 Oxidation catalyst, 100 Photosynthesis apparatus, 102 Reduction electrode, 104 Oxidation electrode, 106 Electrolyte, 108 Solar cell, 110 Window material, 112 Frame material.

Claims (7)

酸化触媒機能を持つ部材を含む酸化電極と、還元触媒機能を持つ部材を含む還元電極と、が対向して設置されており、
前記酸化電極及び前記還元電極の少なくとも一方が透光性を有し、前記酸化電極と前記還元電極との間に電解液が導入されていることを特徴とする電気化学セル。
An oxidation electrode including a member having an oxidation catalyst function and a reduction electrode including a member having a reduction catalyst function are installed facing each other.
An electrochemical cell, wherein at least one of the oxidation electrode and the reduction electrode has translucency, and an electrolytic solution is introduced between the oxidation electrode and the reduction electrode.
請求項1に記載の電気化学セルであって、
前記酸化電極及び前記還元電極の少なくとも一方の可視光波長領域における透過率が20%以上であることを特徴とする電気化学セル。
The electrochemical cell according to claim 1,
An electrochemical cell having a transmittance in a visible light wavelength region of at least one of the oxidation electrode and the reduction electrode of 20% or more.
請求項1又は2に記載の電気化学セルであって、
前記酸化電極及び前記還元電極の間にバイアス電圧が印加されていることを特徴とする電気化学セル。
The electrochemical cell according to claim 1 or 2,
An electrochemical cell, wherein a bias voltage is applied between the oxidation electrode and the reduction electrode.
請求項3に記載の電気化学セルを備え、
前記酸化電極及び前記還元電極の間に太陽電池が電気的に接続されており、前記太陽電池によって前記バイアス電圧が印加されていることを特徴とする光合成装置。
An electrochemical cell according to claim 3,
A photosynthesis device, wherein a solar cell is electrically connected between the oxidation electrode and the reduction electrode, and the bias voltage is applied by the solar cell.
請求項4に記載の光合成装置であって、
前記電解液は、リン酸又はホウ酸緩衝水溶液であることを特徴とする光合成装置。
The photosynthesis device according to claim 4,
The photosynthetic apparatus characterized in that the electrolytic solution is a phosphoric acid or boric acid buffer aqueous solution.
請求項4又は5に記載の光合成装置であって、
前記還元電極は、二酸化炭素(CO)に対する還元機能を有し、
前記酸化電極は、水(HO)を酸化して酸素(O)を発生させる酸化機能を有することを特徴とする光合成装置。
The photosynthesis device according to claim 4 or 5,
The reduction electrode has a reduction function for carbon dioxide (CO 2 ),
The photosynthesis apparatus, wherein the oxidation electrode has an oxidation function of oxidizing water (H 2 O) to generate oxygen (O 2 ).
請求項4又は5に記載の光合成装置であって、
前記還元電極は、水(HO)を還元して水素(H)を発生させる酸化機能を有し、
前記酸化電極は、水(HO)を酸化して酸素(O)を発生させる酸化機能を有することを特徴とする光合成装置。
The photosynthesis device according to claim 4 or 5,
The reduction electrode has an oxidation function of reducing water (H 2 O) to generate hydrogen (H 2 ),
The photosynthesis apparatus, wherein the oxidation electrode has an oxidation function of oxidizing water (H 2 O) to generate oxygen (O 2 ).
JP2017176016A 2017-09-13 2017-09-13 Electrochemical cells and photosynthetic equipment Active JP7069611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017176016A JP7069611B2 (en) 2017-09-13 2017-09-13 Electrochemical cells and photosynthetic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176016A JP7069611B2 (en) 2017-09-13 2017-09-13 Electrochemical cells and photosynthetic equipment

Publications (2)

Publication Number Publication Date
JP2019052340A true JP2019052340A (en) 2019-04-04
JP7069611B2 JP7069611B2 (en) 2022-05-18

Family

ID=66014365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176016A Active JP7069611B2 (en) 2017-09-13 2017-09-13 Electrochemical cells and photosynthetic equipment

Country Status (1)

Country Link
JP (1) JP7069611B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338146A (en) * 2020-04-09 2020-06-26 Tcl华星光电技术有限公司 Backboard, dimming method thereof and display device
JP2020186454A (en) * 2019-05-16 2020-11-19 株式会社豊田中央研究所 Artificial photosynthetic cell
JP2021063246A (en) * 2019-10-10 2021-04-22 株式会社豊田中央研究所 Electrode for reductive reaction, method for manufacturing electrode for reductive reaction, and reaction device using electrode for reductive reaction
JP7501316B2 (en) 2020-11-09 2024-06-18 株式会社豊田中央研究所 Carbon dioxide reduction device and artificial photosynthesis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842750B2 (en) * 2003-03-25 2006-11-08 Azエレクトロニックマテリアルズ株式会社 Photosensitive resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435512A (en) * 2002-01-30 2003-08-13 友昕科技股份有限公司 Ozone producing electrolyzer
JP2003293177A (en) * 2002-02-06 2003-10-15 Yukin Kagi Kofun Yugenkoshi Electrolytic cell for generating ozone
JP2010090466A (en) * 2008-10-10 2010-04-22 Nittetsu Mining Co Ltd Method and apparatus for treating hydrogen sulfide-containing solution
JP2014205874A (en) * 2013-04-11 2014-10-30 株式会社健康支援センター Electrolytic device
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
JP2017155337A (en) * 2016-02-29 2017-09-07 株式会社東芝 Electrochemical reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435512A (en) * 2002-01-30 2003-08-13 友昕科技股份有限公司 Ozone producing electrolyzer
JP2003293177A (en) * 2002-02-06 2003-10-15 Yukin Kagi Kofun Yugenkoshi Electrolytic cell for generating ozone
JP2010090466A (en) * 2008-10-10 2010-04-22 Nittetsu Mining Co Ltd Method and apparatus for treating hydrogen sulfide-containing solution
JP2014205874A (en) * 2013-04-11 2014-10-30 株式会社健康支援センター Electrolytic device
JP2017150072A (en) * 2016-02-23 2017-08-31 株式会社東芝 Electrochemical reaction device
JP2017155337A (en) * 2016-02-29 2017-09-07 株式会社東芝 Electrochemical reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186454A (en) * 2019-05-16 2020-11-19 株式会社豊田中央研究所 Artificial photosynthetic cell
JP7215321B2 (en) 2019-05-16 2023-01-31 株式会社豊田中央研究所 artificial photosynthetic cell
JP2021063246A (en) * 2019-10-10 2021-04-22 株式会社豊田中央研究所 Electrode for reductive reaction, method for manufacturing electrode for reductive reaction, and reaction device using electrode for reductive reaction
JP7347098B2 (en) 2019-10-10 2023-09-20 株式会社豊田中央研究所 Electrode for reduction reaction, method for manufacturing electrode for reduction reaction, and reaction device using electrode for reduction reaction
CN111338146A (en) * 2020-04-09 2020-06-26 Tcl华星光电技术有限公司 Backboard, dimming method thereof and display device
JP7501316B2 (en) 2020-11-09 2024-06-18 株式会社豊田中央研究所 Carbon dioxide reduction device and artificial photosynthesis device

Also Published As

Publication number Publication date
JP7069611B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
Andrei et al. Scalable triple cation mixed halide perovskite–bivo4 tandems for bias‐free water splitting
JP2019052340A (en) Electrochemical cell, and photosynthesis apparatus
Mor et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation
Fuku et al. Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias
Coridan et al. Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes
Park et al. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting
Gurudayal et al. Perovskite–hematite tandem cells for efficient overall solar driven water splitting
Azevedo et al. Unbiased solar energy storage: Photoelectrochemical redox flow battery
Mehmood et al. Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs)
De Jongh et al. Cu2O: electrodeposition and characterization
Sheridan et al. All-in-one derivatized tandem p+ n-silicon–SnO2/TiO2 water splitting photoelectrochemical cell
JP4354665B2 (en) Tandem battery for water cleavage by visible light
Fu et al. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells
Li et al. A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation
Sang et al. Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes, and resulting H2 generation rates
JP3995051B2 (en) Water electrolysis using organic photocatalyst
Roger et al. Silver leakage from Ag/AgCl reference electrodes as a potential cause of interference in the electrocatalytic hydrogen evolution reaction
JP2011028918A (en) Dye-sensitized solar cell
Zukalova et al. Electrochemical doping of compact TiO2 thin layers
Liang et al. Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode
JP5642459B2 (en) Photocatalyst electrode, hydrogen generator, and hydrogen generation method
Le et al. Fabrication and Electrochemical Behavior Investigation of a Pt‐Loaded Reduced Graphene Oxide Composite (Pt@ rGO) as a High‐Performance Cathode for Dye‐Sensitized Solar Cells
Wessels et al. Influence of calcination temperature on the photoelectrochemical and photocatalytic properties of porous TiO2 films electrodeposited from Ti (IV)-alkoxide solution
Miao et al. Enhancement of the efficiency of dye-sensitized solar cells with highly ordered Pt-decorated nanostructured silicon nanowires based counter electrodes
JP6922580B2 (en) Electrodes for oxidation reaction, electrodes for reduction reaction, electrochemical cells and artificial photosynthesis equipment using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150