JP2019050666A - Processing apparatus, controller, pcs, processing method, control method, and program - Google Patents

Processing apparatus, controller, pcs, processing method, control method, and program Download PDF

Info

Publication number
JP2019050666A
JP2019050666A JP2017173197A JP2017173197A JP2019050666A JP 2019050666 A JP2019050666 A JP 2019050666A JP 2017173197 A JP2017173197 A JP 2017173197A JP 2017173197 A JP2017173197 A JP 2017173197A JP 2019050666 A JP2019050666 A JP 2019050666A
Authority
JP
Japan
Prior art keywords
charge
command value
discharge
command
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017173197A
Other languages
Japanese (ja)
Other versions
JP7003509B2 (en
Inventor
耕治 工藤
Koji Kudo
耕治 工藤
博 倉金
Hiroshi Kurakane
博 倉金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017173197A priority Critical patent/JP7003509B2/en
Publication of JP2019050666A publication Critical patent/JP2019050666A/en
Application granted granted Critical
Publication of JP7003509B2 publication Critical patent/JP7003509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Abstract

To provide a technique for grasping power amounts of various kinds of electric power.SOLUTION: A processing apparatus 10 comprises: a smart meter measurement acquisition part 11 for acquiring charge and discharge amounts of power measured by a smart meter, which are amounts of electric power charged into and discharged from a power-storage system within given time; a charge/discharge instruction amount acquisition part 12 for acquiring a charge instruction value determined by integrating, with respect to time, a charge-side integration instruction value within the given time in an integration instruction value within the given time, and a discharge instruction amount determined by integrating, with respect to time, a discharge-side integration instruction value; a correction coefficient calculating part 13 for calculating a correction coefficient in charge, and a correction coefficient in discharge; and a various kinds of charge/discharge amount-calculating part 14 for calculating an amount charged or discharged by the power-storage system according to each of more than one kind of instruction values based on the correction coefficient in charge, the correction coefficient in discharge, and more than one kind of instruction values.SELECTED DRAWING: Figure 3

Description

本発明は、処理装置、制御装置、PCS、処理方法、制御方法及びプログラムに関する。   The present invention relates to a processing device, a control device, a PCS, a processing method, a control method, and a program.

電力需要家が保有する蓄電池の動作を制御する様々なサービスが検討されている。例えば、電気料金(電力単価)が相対的に安い時間帯に充電し、相対的に高い時間帯に放電するよう蓄電池の充放電を制御する、季・時別電気料金へ対応した充放電の制御サービス(以下、「エネルギーマネジメントサービス」)がある。当該サービスによれば、電力需要家は、電力会社に支払う電気料金を抑えることができる。   Various services for controlling the operation of storage batteries owned by power consumers are being considered. For example, charge / discharge control corresponding to seasonal and hourly electricity charges, in which charging / discharging of the storage battery is controlled so as to charge in a relatively cheap time zone and charge in a relatively high time zone There is a service (hereinafter, "energy management service"). According to the service, the power consumer can reduce the electricity bill paid to the power company.

その他、電力系統の需給バランス調整のために、蓄電池の充放電を制御するサービス(以下、「アンシラリーサービス」)がある。すなわち、電力需要家の蓄電池を電力系統の需給バランス調整のための調整力や予備力等として利用する。当該サービスは、送配電事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した電力需要家に所定のインセンティブを支払うことで、電力需要家に向けたサービスと捉えることもできる。   In addition, there is a service (hereinafter referred to as “ancillary service”) that controls charging and discharging of a storage battery in order to balance supply and demand of a power system. That is, the storage battery of the power consumer is used as an adjusting power or a reserve power for adjusting supply and demand balance of the power system. The service is a service for transmission and distribution companies. In addition, it can also be regarded as a service for the power consumer by paying a predetermined incentive to the power consumer who provided the storage battery for the service.

その他、小売電気事業者からの依頼に基づき、蓄電池の充放電を制御するサービス(以下、「インバランス回避サービス」)がある。小売電気事業者は、自システムの調整による30分同時同量の達成が困難な場合、当該サービスを提供する事業者に、小売電気事業者が電力供給契約している電力需要家の蓄電池に対して(「小売電気事業者が電力供給契約をしていない別の電力需要家の蓄電池に対して」も可能であるが対価計算やインセンティブ等の支払いプロセスが少し複雑になる)、所定のタイミングで所定量の充電又は放電を依頼する。当該サービスを提供する事業者は、上記依頼に基づき電力需要家の蓄電池を制御し、所定のタイミングで所定量の充電又は放電を行わせる。当該サービスは、小売電気事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した電力需要家に所定のインセンティブを支払うことで、電力需要家に向けたサービスと捉えることもできる。   In addition, there is a service (hereinafter, "imbalance avoidance service") that controls charging and discharging of a storage battery based on a request from a retail electric power company. If it is difficult for the retailer to achieve the same amount for 30 minutes simultaneously by adjusting its own system, the retailer providing the service to the storage battery of the electricity demander whose electricity supply contract the retailer has a power supply contract with (It is also possible for “retail electricity supplier to the battery of another power consumer who does not have a power supply contract”, but the payment process such as consideration calculation and incentive becomes a little complicated) at a predetermined timing Request a predetermined amount of charge or discharge. The provider who provides the service controls the storage battery of the power consumer based on the above request, and performs charging or discharging of a predetermined amount at a predetermined timing. The service is a service for retail electric utilities. In addition, it can also be regarded as a service for the power consumer by paying a predetermined incentive to the power consumer who provided the storage battery for the service.

その他、自然エネルギー(例:太陽光)を利用した発電装置等を保有する発電事業者からの依頼に基づき、蓄電池の充放電を制御するサービス(以下、「余剰電力吸収サービス」)が考えられる。送配電事業者は、電力系統の需給運用に支障を及ぼす可能性がある場合、発電事業者に出力抑制(電力系統への逆潮流の抑制)を要請できる。出力抑制の要請を受けた発電事業者は、当該サービスを提供する事業者に、出力抑制を受けた時間帯に抑制が必要な分を充電する依頼を行う。そして、発電事業者は、出力抑制を受けた時間帯においても、出力抑制を行うことなく通常通りの出力を行う。当該サービスを提供する事業者は、上記依頼に基づき電力需要家の蓄電池を制御し、出力抑制を受けた時間帯に抑制が必要な分を充電させる。当該サービスは、発電事業者に向けたサービスである。なお、当該サービスのために蓄電池を提供した電力需要家に所定のインセンティブを支払うことで、電力需要家に向けたサービスと捉えることもできる。   In addition, based on a request from a power generation company that owns a power generation device or the like using natural energy (for example, solar light), a service (hereinafter, "surplus power absorption service") that controls charging and discharging of a storage battery can be considered. If there is a possibility that the power transmission and distribution operation company may interfere with the supply and demand operation of the power system, the power transmission and distribution business can request the power generation company to suppress the output (suppress the reverse flow to the power system). The power generation company that has received the request for output reduction requests the company providing the service to charge the part that needs to be suppressed during the output reduction time zone. And a power generation company performs usual output, without performing output control also in the time slot which received output control. The provider who provides the service controls the storage battery of the power consumer based on the above request, and charges the part that needs to be suppressed in the time period when the output is suppressed. The service is a service for a power producer. In addition, it can also be regarded as a service for the power consumer by paying a predetermined incentive to the power consumer who provided the storage battery for the service.

これらのサービスの実施に関連する技術が、特許文献1及び2に開示されている。特許文献1には、蓄電池を保有する電力需要家に対して、蓄電池の充放電制御スケジュールを提供するサーバ装置が開示されている。蓄電池を制御する制御装置は、当該充放電制御スケジュールを基に、電気料金レートが最も高い時間帯と最も低い時間帯との料金差が一定以上である場合、その電気料金が高い時間帯の予想消費電力に相当する電力を他方の時間帯に充電し、電気料金が高い時間帯において放電するよう蓄電池を制御する。   Techniques related to the implementation of these services are disclosed in Patent Documents 1 and 2. Patent Document 1 discloses a server apparatus that provides a charge / discharge control schedule of a storage battery to a power consumer who holds the storage battery. The control device that controls the storage battery is, based on the charge / discharge control schedule, an estimate of a time slot with a high electricity rate when the charge difference between the time slot with the highest electricity rate and the time slot with the lowest electricity rate is a certain value or more. Power corresponding to power consumption is charged in the other time zone, and the storage battery is controlled to discharge in the time zone where the electricity charge is high.

特許文献2には、蓄電池の寿命を考慮したアンシラリーサービスを提供するアンシラリーサービス提供装置が開示されている。   Patent Document 2 discloses an ancillary service providing apparatus that provides ancillary services in consideration of the life of a storage battery.

特開2014−236627号公報JP, 2014-236627, A 特開2012−60833号公報Unexamined-Japanese-Patent No. 2012-60833

現在、電力需要家施設内にスマートメータを設置し、「電力系統から電力需要家システムに供給された電力量[Wh]」や「電力需要家システムから電力系統に供給された電力量[Wh]」等の計量がなされている。そして、上述したような様々なサービスの実施に伴い、上述した電力量[Wh]のみならず、その他の各種電力(例:各種サービス用電力)の電力量[Wh]を把握する技術が望まれている。本発明は、各種電力の電力量[Wh]を把握する技術を提供することを課題とする。   Currently, a smart meter is installed in the power demand facility, and "the amount of power supplied from the power grid to the power demander system [Wh]" and "the amount of power supplied from the power demander system to the power grid [Wh] Etc. are measured. And with the implementation of the various services mentioned above, the technology which grasps not only the electric energy [Wh] mentioned above but also the electric energy [Wh] of other various electric power (example: electric power for various services) is desired. ing. An object of the present invention is to provide a technology for grasping the amount of power [Wh] of various types of power.

本発明によれば、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段と、
を有する処理装置が提供される。
According to the invention
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount obtaining means for obtaining a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh];
A processing device is provided.

また、本発明によれば、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段と、
を有する制御装置が提供される。
Moreover, according to the present invention,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value A unit for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
A control device is provided.

また、本発明によれば、前記処理装置または前記制御装置を¥を含み、蓄電池を制御するPCSが提供される。   Further, according to the present invention, there is provided a PCS for controlling a storage battery, which includes the processing device or the control device.

また、本発明によれば、
コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得工程と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得工程と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出工程と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出工程と、
を実行する処理方法が提供される。
Moreover, according to the present invention,
The computer is
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring step of acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time A charge / discharge command amount acquisition step of acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side among the values [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. A correction coefficient calculation step of calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation steps for calculating [Wh];
There is provided a processing method for performing

また、本発明によれば、
コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段、
として機能させるプログラムが提供される。
Moreover, according to the present invention,
Computer,
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquisition means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values,
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount acquisition means for acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W],
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient,
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh],
A program to function as is provided.

また、本発明によれば、
コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる工程と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する工程と、
を実行する制御方法が提供される。
Moreover, according to the present invention,
The computer is
Calculating an integrated command value [W] by adding a plurality of types of command values [W], controlling a storage battery to charge and discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
A control method for performing

また、本発明によれば、
コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段、
として機能させるプログラムが提供される。
Moreover, according to the present invention,
Computer,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W] and controls a storage battery to charge / discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Means for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side,
A program to function as is provided.

本発明によれば、各種電力の電力量を把握する技術が実現される。   According to the present invention, a technique for grasping the amount of power of various kinds of power is realized.

本実施形態の電力需要家システム100の機能ブロック図の一例を示す図である。It is a figure which shows an example of the functional block diagram of the power consumer system 100 of this embodiment. 本実施形態の装置のハードウエア構成の一例を概念的に示す図である。It is a figure which shows notionally an example of the hardware constitutions of the apparatus of this embodiment. 本実施形態の処理装置10の機能ブロック図の一例を示す図である。It is a figure which shows an example of the functional block diagram of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment. 本実施形態の処理装置10の処理の具体例を説明するための図である。It is a figure for demonstrating the specific example of a process of the processing apparatus 10 of this embodiment.

「電力需要家システム100」
まず、図1を用いて電力需要家システム100を説明する。電力需要家システム100は、一般家庭、店舗、会社、ビル、工場などに設けられる。図1に示すように、電力需要家システム100は、蓄電システム101と、負荷群102と、制御装置103と、第1のスマートメータ104と、第2のスマートメータ105と、センサー106とを備える。図中、実線で電力線を示し、点線で通信線を示している。
"Power demander system 100"
First, the power customer system 100 will be described using FIG. The power consumer system 100 is provided in a general home, a store, a company, a building, a factory, and the like. As shown in FIG. 1, the power consumer system 100 includes a storage system 101, a load group 102, a control device 103, a first smart meter 104, a second smart meter 105, and a sensor 106. . In the figure, solid lines indicate power lines, and dotted lines indicate communication lines.

蓄電システム101は、蓄電池と、蓄電池の充放電を制御するPCS(power conditioning system)とを有する。   The storage system 101 includes a storage battery and a PCS (power conditioning system) that controls charging and discharging of the storage battery.

負荷群102は、電力を動力源として動作する。負荷群102は、例えば、照明、エアコン、テレビ、冷蔵庫などの家電、パソコンやプリンターなどのオフィス機器、機械などの工場設備等が例示されるが、これらに限定されない。   The load group 102 operates using power as a power source. Examples of the load group 102 include, but are not limited to, lighting, air conditioners, televisions, household appliances such as refrigerators, office equipment such as personal computers and printers, and factory equipment such as machines.

第1のスマートメータ104は、電力系統から電力需要家システム100に供給された電力積算量[Wh]、及び、電力需要家システム100から電力系統に供給された電力積算量[Wh]を測定する。そして、予め定められた時間(例:30分)毎の電力積算量[Wh]を出力する。図示していないが、第1のスマートメータ104は外部装置と通信可能に構成され、外部装置から要求された時刻(タイミング)や予め定められた時間(例:30分)毎の電力積算量[Wh]を外部装置に送信してもよい。   The first smart meter 104 measures the integrated power amount [Wh] supplied from the power system to the power consumer system 100 and the integrated power amount [Wh] supplied from the power consumer system 100 to the power system. . Then, the integrated power amount [Wh] for each predetermined time (for example, 30 minutes) is output. Although not shown, the first smart meter 104 is configured to be able to communicate with an external device, and the integrated amount of power per time (timing) requested from the external device or for a predetermined time (for example, 30 minutes) W h] may be sent to the external device.

第2のスマートメータ105は、蓄電システム101から放電された電力積算量[Wh]、及び、蓄電システム101に充電された電力積算量[Wh]を測定する。そして、予め定められた時間(例:30分)毎の電力積算量[Wh]を出力する。図示していないが、第2のスマートメータ105は処理装置10(不図示)と通信可能に構成され、処理装置10から要求された時刻(タイミング)や予め定められた時間(例:30分)毎の電力積算量[Wh]を処理装置10に送信する。   The second smart meter 105 measures the integrated amount of power [Wh] discharged from the storage system 101 and the integrated amount of power [Wh] charged in the storage system 101. Then, the integrated power amount [Wh] for each predetermined time (for example, 30 minutes) is output. Although not shown, the second smart meter 105 is configured to be able to communicate with the processing device 10 (not shown), and the time (timing) requested by the processing device 10 or a predetermined time (for example, 30 minutes) Each integrated power amount [Wh] is transmitted to the processing device 10.

センサー106は、負荷群102に供給された電力[W]の瞬時値を測定する。センサー106は、測定した電力[W]の瞬時値を制御装置103に送信する。センサー106は、電流センサ(CT:Current Transformer)であり、センサー106は、測定した電流[A]の瞬時値を制御装置103に送信し、制御装置103が別途測定した電圧[V]を用いて電力[W]の瞬時値を算出しても良い。   The sensor 106 measures an instantaneous value of the power [W] supplied to the load group 102. The sensor 106 transmits the measured instantaneous value of the power [W] to the control device 103. The sensor 106 is a current sensor (CT: Current Transformer), and the sensor 106 transmits an instantaneous value of the measured current [A] to the control device 103, using a voltage [V] separately measured by the control device 103. The instantaneous value of the power [W] may be calculated.

制御装置103は、複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、算出した統合指令値[W]を蓄電システム101に送信する。蓄電システム101のPCSは、取得した統合指令値[W]で充放電するように蓄電池を制御する。   The control device 103 calculates an integrated command value [W] obtained by adding together a plurality of types of command values [W], and transmits the calculated integrated command value [W] to the storage system 101. The PCS of the storage system 101 controls the storage battery to charge and discharge with the acquired integrated command value [W].

ここで、複数種類の指令値[W]を算出する処理及び統合指令値[W]を算出する処理の一例を説明する。なお、指令値[W]は、蓄電システム101に充電させる指令値[W]である充電指令値[W]と、蓄電システム101に放電させる指令値[W]である放電指令値[W]とを含み得る。   Here, an example of a process of calculating a plurality of types of command values [W] and a process of calculating an integrated command value [W] will be described. The command value [W] is a charge command value [W] that is a command value [W] for charging the storage system 101, and a discharge command value [W] that is a command value [W] for discharging the storage system 101. May be included.

<LFC制御(アンシラリーサービス)の指令値[W]>
アンシラリーサービスは、主として送配電事業者に向けたサービスである。アンシラリーサービスでは、電力系統の需給バランス調整のために、蓄電池の充放電を制御する。すなわち、需要過多の場合には放電し、電力系統に電力を供給する動作を蓄電池に実行させる。一方、供給過多の場合には充電する動作を蓄電池に実行させることで、電力系統内の電力を消費させる。
<Command value of LFC control (ancillary service) [W]>
Ancillary services are mainly for transmission and distribution companies. In ancillary services, charging and discharging of storage batteries are controlled to adjust the balance between supply and demand of the power system. That is, when the demand is excessive, the storage battery is discharged to perform the operation of supplying power to the power system. On the other hand, when the supply is excessive, the storage battery is caused to execute the charging operation to consume the power in the power system.

電力需要家システム100の制御装置103は、複数の電力需要家システム100の蓄電池を統合制御する中央制御装置(例:サーバ200)から受信した情報に基づき、LFC制御のための指令値[W]を算出する。サーバ200と電力需要家システム100は、インターネット等の通信ネットワーク300を介して通信する。   The control device 103 of the power customer system 100 uses the command value for LFC control [W] based on the information received from the central control device (for example: server 200) that performs integrated control of the storage batteries of the plurality of power customer systems 100. Calculate The server 200 and the power demander system 100 communicate via a communication network 300 such as the Internet.

まず、中央制御装置は、制御対象の複数の蓄電池各々に対応して、LFC制御のための電力入出力の上限amax_nを、所定周期(例:15分)で繰り返し決定する。そして、中央制御装置は、決定した上限amax_nを、所定周期(例:15分)で繰り返し各制御装置103に送信する。 First, the central control apparatus repeatedly determines the upper limit a max — n of the power input / output for LFC control in a predetermined cycle (for example, 15 minutes) corresponding to each of the plurality of storage batteries to be controlled. Then, the central control device repeatedly transmits the determined upper limit a max — n to each control device 103 in a predetermined cycle (for example, 15 minutes).

また、中央制御装置は、複数の蓄電池各々の上限amax_nを足し合わせたAmaxを所定周期(例:15分)で繰り返し算出し、送配電事業者のシステムに所定周期(例:15分)で繰り返し送信する。 The central control device, a plurality of storage batteries each upper a Max_n the sum combined A max the predetermined period: repeatedly calculated in (Example 15 minutes), the system in a predetermined period of power transmission and distribution service provider (for example 15 minutes) Repeatedly send with.

また、中央制御装置は、送配電事業者のシステムからLFC信号を所定周期(例:数秒)で繰り返しまたは不定周期で受信する。LFC信号には、複数の蓄電池で充電又は放電する電力のトータル指令値[W]が含まれる。送配電事業者のシステムは、中央制御装置から受信したAmax以下の範囲でトータル指令値[W]を決定し、中央制御装置に送信する。なお、LFC信号は、動作内容(充電及び放電)を識別可能になっている。例えば、充電の時は正の値、放電の時は負の値で示されてもよい。所定周期は、15分に限らず、5分等色々可能である。 Further, the central control unit receives the LFC signal from the system of the power transmission and distribution company in a predetermined cycle (for example, several seconds) repeatedly or in an unfixed cycle. The LFC signal includes a total command value [W] of power charged or discharged by a plurality of storage batteries. The system of the power transmission and distribution company determines the total command value [W] in the range of A max or less received from the central control device, and transmits it to the central control device. The LFC signal is capable of identifying the operation content (charging and discharging). For example, it may be indicated by a positive value at the time of charging and a negative value at the time of discharging. The predetermined period is not limited to 15 minutes, and may be 5 minutes.

LFC信号の受信に応じて、中央制御装置は、LFC信号で特定されるトータル指令値[W]をAmaxで割った値Bを算出する。そして、中央制御装置は、算出した値Bを、複数の制御装置103に一斉送信する。値Bの送信は、所定周期(例:数秒)で繰り返しまたは不定周期で行われる。一斉送信の実現手段としては、例えばマルチキャスト、FM通信等を用いたブロードキャスト、その他の手法を用いることもできる。一斉送信できない場合は、個別送信でも良い。 In response to the reception of the LFC signal, the central control unit calculates a value B obtained by dividing the total command value [W] specified by the LFC signal by Amax . Then, the central control device simultaneously transmits the calculated value B to the plurality of control devices 103. The transmission of the value B is performed repeatedly or indefinitely at a predetermined cycle (eg, several seconds). As means for realizing simultaneous transmission, it is also possible to use, for example, multicast, broadcast using FM communication and the like, and other methods. If simultaneous transmission can not be performed, individual transmission may be used.

各制御装置103は、所定周期(例:15分)で繰り返し受信するamax_nと、所定周期(例:数秒)で繰り返しまたは不定周期で受信する値Bとに基づき、LFC制御のための指令値[W]を算出する。具体的には、制御装置は、amax_nとBとの積を、LFC制御のための指令値[W]として算出する。新たなamax_nまたはBを取得するまで、最新のamax_n及びBに基づき算出した指令値[W]で蓄電池に充放電させる。 Each control device 103 is a command value for LFC control based on a max — n repeatedly received in a predetermined cycle (for example, 15 minutes) and a value B received repeatedly in a predetermined cycle (for example: several seconds) or in an indefinite cycle. Calculate [W]. Specifically, the control device calculates a product of a max — n and B as a command value [W] for LFC control. The storage battery is charged and discharged with the command value [W] calculated based on the latest a max — n and B until a new a max — n or B is acquired.

当該例の変形例として、送配電事業者のシステムは、複数の蓄電池で充電又は放電する電力のトータル指令値[W]を含むLFC信号に代えて、トータル指令値[W]をAmaxで割った値Bを含むLFC信号を中央制御装置に送信してもよい。そして、中央制御装置は、値Bを算出する処理を実行せず、受信した値Bを複数の制御装置103に一斉送信してもよい。 As a modification of the example, the system of the power transmission and distribution company divides the total command value [W] by A max instead of the LFC signal including the total command value [W] of the power charged or discharged by the plurality of storage batteries. An LFC signal containing the value B may be sent to the central controller. Then, the central control device may simultaneously transmit the received value B to the plurality of control devices 103 without executing the process of calculating the value B.

他の変形例として、中央制御装置は、複数の制御装置103に、各蓄電池に対応して決定したamax_nに加えて、Amaxを所定周期(例:15分)で繰り返し送信してもよい。そして、送配電事業者のシステムから、複数の蓄電池で充電又は放電する電力のトータル指令値[W]を含むLFC信号を受信すると、中央制御装置は、トータル指令値[W]をAmaxで割った値Bに代えて、当該トータル指令値[W]を複数の制御装置103に一斉送信してもよい。そして、各制御装置103が、トータル指令値[W]をAmaxで割った値Bにamax_nを掛けて、LFC制御のための指令値[W]を算出してもよい。 As another modification, the central control unit may repeatedly transmit A max to the plurality of control units 103 in a predetermined cycle (for example, 15 minutes) in addition to a max — n determined corresponding to each storage battery. . Then, when the LFC signal including the total command value [W] of the power to be charged or discharged by the plurality of storage batteries is received from the system of the power transmission and distribution company, the central control unit divides the total command value [W] by A max . Instead of the value B, the total command value [W] may be simultaneously transmitted to a plurality of control devices 103. Then, each control device 103 may calculate a command value [W] for LFC control by multiplying a value B obtained by dividing the total command value [W] by A max by a max — n .

他の変形例として、中央制御装置は、各蓄電池に対応して決定したamax_nを、Amaxで割った値dを算出してもよい。そして、中央制御装置は、amax_nに代えて、dを、複数の制御装置103に所定周期(例:15分)で繰り返し送信してもよい。そして、送配電事業者のシステムから、複数の蓄電池で充電又は放電する電力のトータル指令値[W]を含むLFC信号を受信すると、中央制御装置は、当該トータル指令値[W]を複数の制御装置103に一斉送信してもよい。そして、各制御装置103が、トータル指令値[W]にdを掛けて、LFC制御のための指令値[W]を算出してもよい。 As another modification, the central control unit, a a Max_n determined in correspondence with each accumulator may calculate the value d n divided by A max. Then, the central control device may repeatedly transmit d n to the plurality of control devices 103 in a predetermined cycle (for example, 15 minutes) instead of a max — n . Then, when the LFC signal including the total command value [W] of the power to be charged or discharged by the plurality of storage batteries is received from the system of the power transmission and distribution company, the central control unit controls the plurality of total command values [W]. It may be simultaneously transmitted to the device 103. Then, each control device 103 may calculate the command value [W] for LFC control by multiplying the total command value [W] by d n .

<GF相当制御(アンシラリーサービス)の指令値[W]>
まず、中央制御装置(例:サーバ200)は、制御対象の複数の蓄電池各々に対応して、GF相当制御のための電力入出力[W]の上限cmax_nを、所定周期(例:15分)で繰り返し決定する。その後、中央制御装置は、蓄電池ごとに、GF相当制御の内容を決定する。具体的には、中央制御装置は、各蓄電池で充電又は放電する電力[W]の指令値[W]を、系統周波数の基準値からの乖離の程度に応じて定めたGF相当制御情報(例:関数、対応テーブル等、系統周波数の基準値を含む)を生成する。GF相当制御情報においては、電力入出力[W]の最大値が、上限cmax_n以下となるように定められる。中央制御装置は、複数の制御装置103各々に、各々に対応したGF相当制御情報を送信する。
<Command value [W] of GF equivalent control (ancillary service)>
First, the central control unit (e.g., server 200) sets upper limit c max_n of power input / output [W] for GF equivalent control to a predetermined cycle (e.g., 15 minutes) corresponding to each of a plurality of storage batteries to be controlled. Repeatedly determine with). After that, the central control unit determines the contents of GF equivalent control for each storage battery. Specifically, the central control device determines the command value [W] of the power [W] to be charged or discharged in each storage battery according to the degree of the deviation of the grid frequency from the reference value (example corresponding to the example : Generate a function, a correspondence table, etc., including the system frequency reference value). In the GF equivalent control information, the maximum value of the power input / output [W] is determined to be equal to or less than the upper limit c max — n . The central control unit transmits GF corresponding control information corresponding to each of the plurality of control units 103.

各制御装置103は、内部センサーや自装置の近くに設置された測定サンサーを用いて、系統周波数を所定周期(例:十数ミリ秒)で繰り返し測定する。そして、制御装置103は、当該測定値と、予め与えられていた基準値とに基づき、系統周波数の基準値からの乖離を繰り返し算出する。また、制御装置103は、算出した乖離と、GF相当制御情報とに基づき、GF相当制御のための指令値[W]を算出する。新たな系統周波数の測定値またはGF相当制御情報を取得するまで、最新の系統周波数の測定値及びGF相当制御情報に基づき算出した指令値[W]で蓄電池に充放電させる。   Each control device 103 repeatedly measures the grid frequency at a predetermined cycle (for example, ten and several milliseconds) using an internal sensor or a measurement sensor installed near the own device. Then, the control device 103 repeatedly calculates the deviation of the grid frequency from the reference value based on the measured value and the reference value given in advance. Further, the control device 103 calculates the command value [W] for the GF equivalent control based on the calculated deviation and the GF equivalent control information. The battery is charged and discharged with the command value [W] calculated based on the latest measured value of the grid frequency and the GF corresponding control information until the new measured value of the grid frequency or the GF corresponding control information is acquired.

<エネルギーマネジメントサービスの指令値[W]>
エネルギーマネジメントサービスは、電力需要家に向けたサービスである。当該サービスでは、電力単価が相対的に安い時間帯(例:夜間、23:00〜07:00など)に電力を充電し、電力単価が相対的に高い時間帯(例:昼間、07:00〜23:00など)に電力を放電(負荷群の電力需要に追随するように放電)する充放電動作を蓄電池に実行させる。
<Command value of energy management service [W]>
Energy management service is a service for power consumers. In the service, the power is charged in a time zone in which the power unit price is relatively low (eg, night time, 23:00 to 07:00), and the time zone in which the power unit price is relatively high (eg, daytime, 07:00) The storage battery is caused to execute charge / discharge operation to discharge power (discharge to follow the power demand of the load group) to ~ 23: 00).

制御装置103は、電力単価が相対的に安い時間帯に電力を充電し、電力単価が相対的に高い時間帯に電力を放電する充放電スケジュールを生成する。例えば、制御装置103は、電力単価が所定値より高い時間帯を放電させる時間帯とし、電力単価が当該所定値以下の時間帯を充電させる時間帯としてもよい。所定値は、例えば、時間帯ごとに設定された電力単価(例:P1時からP2時「Q1円/kWh」、P2時からP3時「Q2円/kWh」、・・・)の統計値(例:平均値、中央値等)であってもよいし、予め電力会社のサービス内容を考慮し、制御装置103に与えられた計画値(例:7月~9月は、特にP4時からP5時「Q3円/kWh」など)であってもよい。   The control device 103 charges the power in the time zone in which the power unit price is relatively low, and generates a charge and discharge schedule for discharging the power in the time zone in which the power unit price is relatively high. For example, the control device 103 may set a time zone in which a power unit price is higher than a predetermined value as a time zone to discharge, and may set a time zone in which a power unit price is equal to or less than the predetermined value. The predetermined value is, for example, a statistical value (for example, P1 to P2 "Q1 yen / kWh", P2 to P3 "Q2 / kWh, ...) of the power unit price set for each time zone ( Example: Average value, median value, etc.) or the plan value given to the control device 103 in consideration of the service contents of the power company in advance (eg: July to September, especially from P4 to P5) The time may be "Q3 yen / kWh" etc.).

そして、制御装置103は、所定の上限(蓄電池毎に予め定められたエネルギーマネジメントサービスのための電力入出力の上限)以下を満たす範囲で、充電させる時間帯に充電させ、かつ、放電させる時間帯に放電させる充放電スケジュールを生成する。なお、これら充放電では、1日をサイクルとして、エネルギーマネジメントサービスで充電可能な電力量の上限(例:SOC95%まで充電可能)を超えない範囲で、積算充電量[Wh]ができるだけ大きくなるのが好ましい。また、エネルギーマネジメントサービスで放電可能な電力量の上限(例:SOC5%まで放電可能)を超えない範囲で、積算放電量[Wh]ができるだけ大きくなるのが好ましい。即ち、電力単価が安い時間帯にできるだけ満充電まで充電し、電力単価が高い時間帯にできるだけ電池が枯渇するまで放電させることが、季・時別電力料金差を用いた蓄電池運用における便益を高めるのに有効である。但し、放電時間帯において、無理に負荷群の電力需要を増やす必要はない。   Then, the control device 103 charges and discharges in a charging time zone in a range satisfying a predetermined upper limit (upper limit of power input / output for energy management service predetermined for each storage battery) or less. Generate a charge and discharge schedule to discharge the In addition, in these charge and discharge, the integrated charge amount [Wh] becomes as large as possible within the range not exceeding the upper limit of the chargeable amount by the energy management service (eg, chargeable to SOC 95%) with one day as a cycle. Is preferred. In addition, it is preferable that the integrated discharge amount [Wh] be as large as possible within the range not exceeding the upper limit of the electric energy dischargeable by the energy management service (e.g. dischargeable to SOC 5%). That is, charging to full charge as much as possible in a time zone where the power unit price is low and discharging until the battery is exhausted as much as possible in a time zone where the power unit price is high enhances the benefit in storage battery operation using the seasonal and hourly power rate difference. It is effective. However, it is not necessary to forcibly increase the power demand of the load group during the discharge period.

なお、エネルギーマネジメントサービスを提供する事業者のシステム(例:サーバ200)が、上述のような手法で充放電スケジュールを生成してもよい。そして、制御装置103は、当該システムから充放電スケジュールを受信してもよい。この充放電スケジュールを所定周期(例えば15分)毎に生成し、LFC制御に必要な情報(例:amax_nなど)を所定周期(例えば5分毎)毎に生成し、GF相当制御情報を所定周期(例えば5分)毎に生成してもよい。 In addition, the system (example: server 200) of the company which provides energy management service may produce | generate a charging / discharging schedule by the above methods. Then, the control device 103 may receive the charge and discharge schedule from the system. This charge / discharge schedule is generated every predetermined cycle (for example, 15 minutes), information required for LFC control (for example, a max_n etc.) is generated every predetermined cycle (for example, every 5 minutes), and GF equivalent control information is predetermined It may be generated every cycle (for example, 5 minutes).

制御装置103は、充放電スケジュールに基づき、各タイミングにおけるエネルギーマネジメントサービスのための指令値[W]を決定する。充電させる時間帯においては、例えば、充放電スケジュールで定められた各タイミングの充電電力[W]を、各タイミングにおけるエネルギーマネジメントサービスのための指令値[W]として決定する。一方、放電させる時間帯においては、例えば、充放電スケジュールで定められた各タイミングの放電電力の上限値[W]以下の範囲で、センサー106で測定された電力[W]の瞬時値に追従して放電させる指令値[W]を決定する(負荷追従放電)。センサー106の電力の測定は、例えば系統周波数の1サイクル毎(系統周波数が50Hzの場合、20msec毎)に実施してもよい。センサー106から新たな測定値[W]を取得するまで、最新の測定値[W]に基づき決定された指令値[W]で蓄電池に充放電させる。   Control device 103 determines a command value [W] for the energy management service at each timing based on the charge and discharge schedule. In the charging time zone, for example, the charging power [W] of each timing defined in the charging and discharging schedule is determined as the command value [W] for the energy management service at each timing. On the other hand, in the discharge time zone, for example, the instantaneous value of the power [W] measured by the sensor 106 is followed within the range not exceeding the upper limit [W] of the discharge power at each timing defined in the charge and discharge schedule. The command value [W] to be discharged is determined (load following discharge). The measurement of the power of the sensor 106 may be performed, for example, every cycle of the grid frequency (every 20 msec when the grid frequency is 50 Hz). Until the new measured value [W] is obtained from the sensor 106, the storage battery is charged and discharged with the command value [W] determined based on the latest measured value [W].

<インバランス回避サービスの指令値[W]>
インバランス回避サービスは、小売電気事業者に向けたサービスである。小売電気事業者は、自システムの調整による30分の計画値同時同量の達成が困難な場合、当該サービスを提供する事業者に、小売電気事業者が電力供給契約している電力需要家の有する蓄電池に対して、所定のタイミングで所定量の充電又は放電を依頼する。当該依頼に基づき、各電力需要家の蓄電池の充放電が制御される。
<The command value for imbalance avoidance service [W]>
Imbalance avoidance service is a service for retail electric utilities. If it is difficult for the retail electric utility to achieve the planned same value for 30 minutes by the adjustment of its own system, the retail electricity supplier's electricity demander whose electric power supply contract has a power supply contract with the provider who provides the service. A predetermined amount of charge or discharge is requested to the storage battery having at a predetermined timing. Based on the request, charging / discharging of the storage battery of each power consumer is controlled.

中央制御装置(例:サーバ200)は、複数の制御装置103から所定周期で繰り返し受信する各蓄電池の状態(例:SOC)を示す情報や、各電力需要家のベースライン情報や、将来の電力需要予測等に基づき、インバランス回避サービスで充電させることができる電力量[Wh]や放電させることができる放電量[Wh]等の最新の値、また、将来の推定値を蓄電池ごとに把握する。そして、中央制御装置は、それらを足し合わせることで、複数の蓄電池全体で充電させることができる電力量[Wh]や放電させることができる放電量[Wh]等の最新の値、また、将来の推定値を算出する。   The central control unit (for example: server 200) is information indicating the state (for example: SOC) of each storage battery repeatedly received from the plurality of control units 103 at a predetermined cycle, baseline information for each power consumer, future power Based on the demand forecast etc., grasp the latest value such as the electric energy [Wh] that can be charged by the imbalance avoidance service, the discharge amount [Wh] that can be discharged, and the estimated value in the future for each storage battery. . Then, the central control unit adds the total amount of electric energy [Wh] that can be charged by the whole of the plurality of storage batteries, the latest value such as the discharge amount [Wh] that can be discharged, and the future Calculate the estimated value.

中央制御装置は、算出した上記結果を、インバランス回避サービスを実施した際の対価の情報とともに、あらかじめ小売電気事業者のシステムに送信する。小売電気事業者のシステムは、対価を考慮し、当該結果で示される上限を超えない範囲で、インバランス回避のための依頼(所定のタイミングでの所定量の放電又は充電)を行う。   The central control unit sends the above calculated result to the retail electric utility system in advance, together with information on the value when the imbalance avoidance service is performed. The retail electric utility's system takes into consideration the price and performs a request for imbalance avoidance (a predetermined amount of discharge or charge at a predetermined timing) within the range not exceeding the upper limit indicated by the result.

中央制御装置は、上記依頼に基づき、充電又は放電を行う電力量[Wh]、及び、時間帯を特定する。そして、中央制御装置は、依頼の内容、及び、把握している各蓄電池で充電及び/又は放電できる量[Wh]等に基づき、充電又は放電を行わせる蓄電池を選択するとともに、各蓄電池に充電又は放電させる電力量[Wh]を決定する。そして、中央制御装置は、決定された電力量[Wh]を、上記時間帯の中で充電又は放電させる充放電スケジュールを生成し、各充放電スケジュールを各制御装置103に送信する。なお、各蓄電池の充放電スケジュールは、電力入出力[W]が所定の上限(蓄電池毎に予め定められたインバランス回避サービスのための電力入出力の上限)以下を満たすように生成される。   The central control unit specifies the amount of power [Wh] to be charged or discharged and the time zone based on the request. Then, the central control unit selects a storage battery to be charged or discharged based on the contents of the request and the amount [Wh] that can be charged and / or discharged by each storage battery being grasped, etc., and charges each storage battery. Alternatively, determine the amount of power to be discharged [Wh]. Then, the central control unit generates a charge / discharge schedule for charging or discharging the determined electric energy [Wh] in the above time zone, and transmits each charge / discharge schedule to each control unit 103. The charge / discharge schedule of each storage battery is generated such that the power input / output [W] satisfies the predetermined upper limit (the upper limit of the power input / output for the imbalance avoidance service predetermined for each storage battery).

各制御装置103は、インバランス回避サービスのための充放電スケジュールを受信する。そして、各制御装置103は、当該充放電スケジュールに基づき、各タイミングにおけるインバランス回避サービスのための指令値[W]を決定する。   Each control device 103 receives a charge / discharge schedule for the imbalance avoidance service. Then, each control device 103 determines a command value [W] for the imbalance avoidance service at each timing based on the charge and discharge schedule.

<余剰電力吸収サービスの指令値>
余剰電力吸収サービスは、自然エネルギー(例:太陽光)を利用した発電装置等を保有する発電事業者に向けたサービスである。発電事業者は、送配電事業者から出力抑制の要請(電力系統への逆潮流の抑制)を受けると、当該サービスを提供する事業者に、当該出力抑制を回避するための充電を依頼する。当該依頼に基づき、各電力需要家の蓄電池の充放電が制御される。
<Order value of surplus power absorption service>
The surplus power absorption service is a service directed to a power producer holding a power generation device or the like using natural energy (eg, sunlight). When the power generation enterprise receives a request for output suppression (suppression of reverse power flow to the electric power system) from the power transmission and distribution enterprise, it requests the enterprise providing the service to charge for avoiding the output suppression. Based on the request, charging / discharging of the storage battery of each power consumer is controlled.

中央制御装置(例:サーバ200)は、発電事業者に送られた出力抑制の要請を受信する。出力抑制の要請では、抑制する時間帯(例:翌日1日、翌日の13時から16時等)が定められる。抑制内容は、例えば、出力[W]を「0」とする場合や、出力[W]の上限(定格出力の○○%)を単位時間帯(例:30分)毎に定められる場合などが考えらえる。   The central control unit (e.g., server 200) receives the request for output suppression sent to the power producer. In the output suppression request, a time period to be suppressed (e.g., one day the next day, 13 o'clock to 16 o'clock the next day, etc.) is determined. The suppression content is, for example, when the output [W] is set to “0” or when the upper limit of the output [W] (○% of rated output) is determined for each unit time zone (eg, 30 minutes) I think.

また、中央制御装置は、各発電事業者の発電予測(例:翌日分の単位時間帯毎の発電予測)を取得する。例えば、中央制御装置は、各発電事業者のシステムから受信してもよいし、自装置で生成してもよい。   Further, the central control unit acquires the power generation prediction of each power generation company (for example, the power generation prediction for each unit time zone for the next day). For example, the central control unit may be received from each generator's system or may be generated by its own unit.

そして、中央制御装置は、出力抑制の要請の内容と、発電予測とに基づき、各タイミングで抑制される電力[W]、すなわち各タイミングで充電すべき電力[W]を算出する。許される出力[W]の上限を超えた分が、抑制される電力[W]となる。その後、中央制御装置は、各タイミングで充電すべき電力[W]を複数の蓄電池に割り振ることで、複数の蓄電池各々の充電スケジュールを生成する。そして、中央制御装置は、各充電スケジュールを各制御装置103に送信する。なお、各蓄電池の充電スケジュールは、電力入出力[W]が所定の上限(蓄電池毎に予め定められた余剰電力吸収サービスのための電力入出力の上限)以下を満たすように生成される。   Then, the central control device calculates the power [W] suppressed at each timing, that is, the power [W] to be charged at each timing, based on the content of the request for output suppression and the power generation prediction. The amount exceeding the upper limit of the allowable output [W] is the power [W] to be suppressed. Thereafter, the central control unit allocates the power [W] to be charged at each timing to the plurality of storage batteries, and generates a charging schedule for each of the plurality of storage batteries. Then, the central control unit transmits each charging schedule to each control unit 103. The charging schedule of each storage battery is generated so that the power input / output [W] satisfies the predetermined upper limit (the upper limit of the power input / output for the surplus power absorption service predetermined for each storage battery).

各制御装置103は、余剰電力吸収サービスのための充電スケジュールを受信する。そして、各制御装置103は、当該充電スケジュールに基づき、各タイミングにおける余剰電力吸収サービスのための指令値[W]を決定する。   Each control device 103 receives a charging schedule for the surplus power absorption service. Then, each control device 103 determines a command value [W] for the surplus power absorbing service at each timing based on the charging schedule.

<統合指令値[W]>
制御装置103は、上述した複数種類の指令値[W](LFC制御の指令値[W]、GF相当制御の指令値[W]、エネルギーマネジメントサービスの指令値[W]、インバランス回避サービスの指令値[W]、余剰電力吸収サービスの指令値[W]等)の中の2つ以上を決定する。
<Integrated command value [W]>
The control device 103 sets the above-described plural types of command values [W] (LFC control command value [W], GF equivalent control command value [W], energy management service command value [W], imbalance avoidance service Two or more of the command value [W], the command value for surplus power absorption service [W], etc.) are determined.

そして、制御装置103は、決定した複数種類の指令値[W]に基づき、統合指令値[W]を算出する。具体的には、制御装置103は、同じタイミングで充電又は放電させる複数種類の指令値[W]を足し合わせることで、統合指令値[W]を算出する。例えば、放電させる指令値[W]及び充電させる指令値[W]の一方は正の値で示され、他方は負の値で示された状態で、複数種類の指令値[W]が足し合わされる。   Then, the control device 103 calculates the integrated command value [W] based on the determined plurality of types of command values [W]. Specifically, the control device 103 calculates an integrated command value [W] by adding a plurality of types of command values [W] to be charged or discharged at the same timing. For example, in the state where one of the command value [W] to be discharged and the command value [W] to be charged is indicated by a positive value and the other is indicated by a negative value, a plurality of command values [W] are added together Ru.

「処理装置10」
次に、処理装置10について説明する。処理装置10は電力需要家システム100に含まれてもよいし、電力需要家システム100と物理的及び/又は論理的に分かれて構成されてもよい。例えば、電力需要家システム100の制御装置103が処理装置10の機能を備えてもよい。また、処理装置10が制御装置103の機能を備えてもよい。
"Processing device 10"
Next, the processing apparatus 10 will be described. The processing apparatus 10 may be included in the power demander system 100 or may be physically and / or logically separated from the power demander system 100. For example, the control device 103 of the power demander system 100 may have the function of the processing device 10. Further, the processing device 10 may have the function of the control device 103.

処理装置10は、蓄電システム101が複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する。なお、電力系統から電力需要家システム100に供給された電力量[Wh]や、電力需要家システム100から電力系統に供給された電力量[Wh]は、スマートメータ(第1のスマートメータ104)で測定される。このため、蓄電システム101が複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]の算出結果は、スマートメータで測定した場合と同等の結果となるのが好ましい。本実施形態の処理装置10によれば、これを実現することができる。以下、説明する。   The processing device 10 calculates the amount of power [Wh] that the storage system 101 has charged or discharged according to each of the plurality of types of command values [W]. The electric energy [Wh] supplied from the electric power system to the electric power consumer system 100 and the electric energy [Wh] supplied from the electric power customer system 100 to the electric power system are smart meters (first smart meter 104). It is measured by For this reason, it is preferable that the calculation result of the electric energy [Wh] charged or discharged by the storage system 101 according to each of the plurality of types of command values [Wh] be equivalent to the result measured by the smart meter. According to the processing apparatus 10 of the present embodiment, this can be realized. This will be described below.

まず、本実施形態の処理装置10のハードウエア構成の一例について説明する。なお、制御装置103のハードウエア構成の一例も、以下で説明する処理装置10のハードウエア構成の一例と同様とすることができる。   First, an example of the hardware configuration of the processing apparatus 10 of the present embodiment will be described. Note that an example of the hardware configuration of the control device 103 can also be the same as an example of the hardware configuration of the processing device 10 described below.

本実施形態の処理装置10が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。   The respective units included in the processing apparatus 10 according to the present embodiment include a central processing unit (CPU), a memory, a program loaded into the memory, and a storage unit such as a hard disk storing the program (from the stage of shipping the apparatus in advance) In addition to stored programs, it can also store storage media such as CDs (Compact Disc), programs downloaded from servers on the Internet, etc.) Arbitrary combinations of hardware and software centered on the network connection interface Is realized by And it is understood by those skilled in the art that there are various modifications in the implementation method and apparatus.

図2は、本実施形態の処理装置10のハードウエア構成を例示するブロック図である。図2に示すように、処理装置10は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。なお、周辺回路4Aを有さなくてもよい。   FIG. 2 is a block diagram illustrating the hardware configuration of the processing apparatus 10 according to the present embodiment. As shown in FIG. 2, the processing device 10 includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A. Peripheral circuit 4A includes various modules. The peripheral circuit 4A may not be provided.

バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPU(Central Processing Unit) やGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置(例:キーボード、マウス、マイク等)、外部装置、外部サーバ、外部センサー等から情報を取得するためのインターフェイスや、出力装置(例:ディスプレイ、スピーカ、プリンター、メーラ等)、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。   The bus 5A is a data transmission path for the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A to mutually transmit and receive data. The processor 1A is, for example, an arithmetic processing unit such as a central processing unit (CPU) or a graphics processing unit (GPU). The memory 2A is, for example, a memory such as a random access memory (RAM) or a read only memory (ROM). The input / output interface 3A is an interface for acquiring information from an input device (eg, keyboard, mouse, microphone, etc.), an external device, an external server, an external sensor, etc., an output device (eg, display, speaker, printer, mailer) Etc.), an interface for outputting information to an external device, an external server, etc. The processor 1A can issue an instruction to each module and perform an operation based on the result of the operation.

次に、処理装置10の機能構成を説明する。図3に、処理装置10の機能ブロック図の一例を示す。図示するように、処理装置10は、スマートメータ測定値取得部11と、充放電指令値取得部12と、補正係数算出部13と、各種充放電量算出部14とを有する。なお、機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。   Next, the functional configuration of the processing device 10 will be described. An example of a functional block diagram of the processing device 10 is shown in FIG. As illustrated, the processing apparatus 10 includes a smart meter measurement value acquisition unit 11, a charge and discharge command value acquisition unit 12, a correction coefficient calculation unit 13, and various charge and discharge amount calculation units 14. Note that the functional block diagram does not show the configuration of hardware units, but shows blocks of function units.

スマートメータ測定値取得部11は、蓄電システム101が所定時間T内に充放電した電力量[Wh]であって、スマートメータ(図1の第2のスマートメータ105)で測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得する。所定時間Tは、できるだけ小さくするのが好ましい。第2のスマートメータ105から充電電力量[Wh]や放電電力量[Wh]を取得する所定時間Tは、M分毎(例:30分毎)としてもよい。スマートメータ測定値取得部11は、所定時間T毎に、充電電力量[Wh]及び放電電力量[Wh]を取得する。なお、第1のスマートメータ104や第2のスマートメータ105は、継続的に電力量の積算値[Wh]を計測し、要求があった場合に、その要求時刻での積算電力量の値を返信する。よって、M分間の積算電力量[Wh]を取得する場合、M分の開始時刻をT、M分の終了時刻をTとすると、時刻Tでのスマートメータの積算電力量から時刻Tでのスマートメータの積算電力量を引くことで求める。 The smart meter measurement value acquiring unit 11 is the amount of electric power [Wh] that the storage system 101 charges and discharges within a predetermined time T, and is a value measured by the smart meter (the second smart meter 105 in FIG. 1). The charge energy [Wh] and the discharge energy [Wh] are acquired. The predetermined time T is preferably as small as possible. The predetermined time T for acquiring the charge energy [Wh] and the discharge energy [Wh] from the second smart meter 105 may be every M minutes (e.g., every 30 minutes). The smart meter measurement value acquiring unit 11 acquires the charging power amount [Wh] and the discharging power amount [Wh] every predetermined time T. The first smart meter 104 and the second smart meter 105 continuously measure the integrated value [Wh] of the electric energy, and when there is a request, the value of the integrated electric energy at the request time is Send back. Therefore, when obtaining the integrated electricity of M min [Wh], the start time of the M frequency T 0, an end time of the M frequency and T 1, the time from the integrated electricity of the smart meters at time T 1 T Calculated by subtracting the integrated power amount of the smart meter at 0 .

充放電指令値取得部12は、所定時間T内における統合指令値[W]の中の充電側の統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、所定時間T内における統合指令値[W]の中の放電側の統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する。充放電指令値取得部12は、所定時間T毎に、充電指令量[Wh]及び放電指令量[Wh]を取得する。   The charge / discharge command value acquisition unit 12 calculates a charge command amount [Wh] obtained by integrating over time the integration-side command value [W] on the charge side in the integration command value [W] within the predetermined time T, and The discharge command amount [Wh] obtained by time-integrating the discharge-side integrated command value [W] in the integrated command value [W] within the time T is acquired. The charge / discharge command value acquisition unit 12 acquires the charge command amount [Wh] and the discharge command amount [Wh] every predetermined time T.

充電側の統合指令値[W]は、蓄電システム101に充電させる統合指令値[W]を意味する。放電側の統合指令値[W]は、蓄電システム101に放電させる統合指令値[W]を意味する。例えば、第1の種類の指令値が50Wの充電指令値であり、第2の種類の指令値が30Wの放電指令値である場合、統合指令値は20W充電させる指令値となる(充電側の指令値)。また、第1の種類の指令値が10Wの放電指令値であり、第2の種類の指令値が30Wの放電指令値である場合、統合指令値は40W放電させる指令値となる(放電側の指令値)。   The integrated command value [W] on the charging side means an integrated command value [W] for charging the storage system 101. The integrated command value [W] on the discharge side means an integrated command value [W] for causing the storage system 101 to discharge. For example, if the first type of command value is a charge command value of 50 W and the second type of command value is a discharge command value of 30 W, the integrated command value is a command value to charge by 20 W (on the charging side Command value). When the first type command value is a discharge command value of 10 W and the second type command value is a discharge command value of 30 W, the integrated command value is a command value for discharging 40 W (on the discharge side) Command value).

なお、充放電指令値取得部12が、充電指令量[Wh]及び放電指令量[Wh]を算出してもよい。その他、他の装置(例:制御装置103)が充電指令量[Wh]及び放電指令量[Wh]を算出し、充放電指令値取得部12は当該他の装置により算出された充電指令量[Wh]及び放電指令量[Wh]を取得してもよい。   The charge / discharge command value acquisition unit 12 may calculate the charge command amount [Wh] and the discharge command amount [Wh]. In addition, another device (e.g., the control device 103) calculates the charge command amount [Wh] and the discharge command amount [Wh], and the charge / discharge command value acquisition unit 12 calculates the charge command amount calculated by the other device [ Wh] and the discharge command amount [Wh] may be acquired.

補正係数算出部13は、充電電力量[Wh]を充電指令量[Wh]で割ることで充電時補正係数を算出する。また、補正係数算出部13は、放電電力量[Wh]を放電指令量[Wh]で割ることで放電時補正係数を算出する。補正係数算出部13は、所定時間T毎に、充電時補正係数及び放電時補正係数を算出する。   The correction coefficient calculation unit 13 calculates the correction coefficient at the time of charge by dividing the charge electric energy [Wh] by the charge command amount [Wh]. Further, the correction coefficient calculation unit 13 calculates the discharge correction coefficient by dividing the discharge energy amount [Wh] by the discharge command amount [Wh]. The correction coefficient calculation unit 13 calculates the charging correction coefficient and the discharging correction coefficient every predetermined time T.

各種充放電量算出部14は、充電時補正係数と、放電時補正係数と、複数種類の指令値[W]とに基づき、蓄電システム101が複数種類の指令値各々に応じて充電又は放電した電力量[Wh]を算出する。   The various charge / discharge amount calculation units 14 charge or discharge the storage system 101 according to each of the plurality of types of command values based on the charge correction coefficient, the discharge correction coefficient, and the plurality of types of command values [W]. Calculate the amount of power [Wh].

第1の種類の指令値に応じて蓄電システム101が所定時間T内に充電した電力量[Wh]の算出処理は、例えば以下のようになる。   The process of calculating the amount of electric power [Wh] charged by the power storage system 101 within the predetermined time T according to the first type of command value is, for example, as follows.

各種充放電量算出部14は、所定時間T内の第1の種類の指令値[W]に含まれる充電指令値[W]の中の統合指令値[W]が充電側になる充電指令値[W]を時間積分して得られた値[Wh]と充電時補正係数との積(第1の値)を算出する。
また、各種充放電量算出部14は所定時間T内の第1の種類の指令値[W]に含まれる充電指令値[W]の中の統合指令値[W]が放電側になる充電指令値[W]を時間積分して得られた値[Wh]と放電時補正係数との積(第2の値)を算出する。
そして、各種充放電量算出部14は、第1の値と第2の値との和を、第1の種類の指令値[W]に応じて蓄電システム101が所定時間T内に充電した電力量[Wh]として算出する。
The various charge / discharge amount calculation units 14 charge command values in which the integrated command value [W] in the charge command value [W] included in the first type command value [W] within the predetermined time T is on the charge side. A product (first value) of a value [Wh] obtained by time-integrating [W] and a charge correction coefficient is calculated.
In addition, the various charge / discharge amount calculation units 14 charge commands in which the integrated command value [W] in the charge command values [W] included in the first type of command values [W] within the predetermined time T is discharged. The product (second value) of the value [Wh] obtained by time-integrating the value [W] and the correction coefficient at the time of discharge is calculated.
Then, the various charge / discharge amount calculation units 14 calculate the sum of the first value and the second value according to the first type of command value [W] according to the command value [W] of the power storage system 101 within the predetermined time T. Calculated as the quantity [Wh].

統合指令値[W]が充電側になる充電指令値[W]は、当該充電指令値[W]と他の種類の指令値[W]とを足し合わせて得られた統合指令値[W]が充電側となる充電指令値[W]を意味する。統合指令値[W]が放電側になる充電指令値[W]は、当該充電指令値[W]と他の種類の指令値[W]とを足し合わせて得られた統合指令値[W]が放電側となる充電指令値[W]を意味する。   The charge command value [W] for which the integration command value [W] is on the charge side is the integrated command value [W] obtained by adding the charge command value [W] and another type of command value [W]. Means the charge command value [W] on which the charge side is to be. The charge command value [W] for which the integration command value [W] is on the discharge side is the integrated command value [W] obtained by adding the charge command value [W] and other types of command values [W]. Means the charge command value [W] on which the discharge side is to be.

第1の種類の指令値に応じて蓄電システム101が所定時間T内に放電した電力量[Wh]の算出処理は、例えば以下のようになる。   Calculation processing of the amount of electric power [Wh] discharged by the power storage system 101 within the predetermined time T according to the first type of command value is, for example, as follows.

各種充放電量算出部14は、所定時間T内の第1の種類の指令値[W]に含まれる放電指令値[W]の中の統合指令値[W]が充電側になる放電指令値[W]を時間積分して得られた値[Wh]と充電時補正係数との積(第3の値)を算出する。
また、各種充放電量算出部14は、所定時間T内の第1の種類の指令値[W]に含まれる放電指令値[W]の中の統合指令値[W]が放電側になる放電指令値[W]を時間積分して得られた値[Wh]と放電時補正係数との積(第4の値)を算出する。
そして、各種充放電量算出部14は、第3の値と第4の値との和を、第1の種類の指令値[W]に応じて蓄電システム101が所定時間T内に放電した電力量[Wh]として算出する。
The various charge / discharge amount calculation units 14 are discharge command values in which the integrated command value [W] in the discharge command value [W] included in the first type command value [W] within the predetermined time T is on the charge side The product (third value) of the value [Wh] obtained by time-integrating [W] and the charge correction coefficient is calculated.
In addition, the various charge / discharge amount calculation units 14 discharge the integrated command value [W] in the discharge command value [W] included in the first type command value [W] within the predetermined time T on the discharge side. A product (fourth value) of a value [Wh] obtained by time-integrating the command value [W] and a correction coefficient at discharge is calculated.
Then, the various charge / discharge amount calculation units 14 calculate the sum of the third value and the fourth value according to the first type of the command value [W] and the electric power discharged by the storage system 101 within the predetermined time T. Calculated as the quantity [Wh].

統合指令値[W]が充電側になる放電指令値[W]は、当該放電指令値[W]と他の種類の指令値[W]とを足し合わせて得られた統合指令値[W]が充電側となる放電指令値[W]を意味する。統合指令値[W]が放電側になる放電指令値[W]は、当該放電指令値[W]と他の種類の指令値[W]とを足し合わせて得られた統合指令値[W]が放電側となる放電指令値[W]を意味する。   The discharge command value [W] for which the integration command value [W] is on the charge side is the integrated command value [W] obtained by adding the discharge command value [W] and other types of command values [W]. Means the discharge command value [W] on the charging side. The discharge command value [W] at which the integration command value [W] becomes the discharge side is the integrated command value [W] obtained by adding the discharge command value [W] and other types of command values [W]. Means the discharge command value [W] on which the discharge side is to be.

ここで、具体例を用いて処理装置10の処理を説明する。   Here, processing of the processing apparatus 10 will be described using a specific example.

「前提事項」
当該例では、蓄電システム101は、GF相当制御の指令値[W]と、エネルギーマネジメントサービスの指令値[W]とを足し合わせた統合指令値[W]に応じて充放電を行うものとする。
Assumptions
In this example, the storage system 101 performs charging and discharging according to the integrated command value [W] obtained by adding the command value [W] for GF equivalent control and the command value [W] for energy management service. .

図4に示すように各変数を定義する。1区間は所定時間T(例:30分)よりも小さい値であり、例えば10秒である。tは、各区間の通番である。所定時間T(例:30分)は、t=1乃至t=nの区間を含む。   Each variable is defined as shown in FIG. One section has a value smaller than a predetermined time T (e.g., 30 minutes) and is, for example, 10 seconds. t is a serial number of each section. The predetermined time T (e.g., 30 minutes) includes a section of t = 1 to t = n.

ASdischarge(t)は、区間tにおけるGF相当制御の指令値[W]の中の放電指令値[W]を時間積分した値である。AScharge(t)は、区間tにおける、GF相当制御の指令値[W]の中の充電指令値[W]を時間積分した値である。 AS discharge (t) is a value obtained by time-integrating the discharge command value [W] in the command value [W] for GF equivalent control in the section t. AS charge (t) is a value obtained by time-integrating the charge command value [W] in the command value [W] for GF equivalent control in the interval t.

USERdischarge(t)は、区間tにおけるエネルギーマネジメントサービスの指令値[W]の中の放電指令値[W]を時間積分した値である。USERcharge(t)は、区間tにおけるエネルギーマネジメントサービスの指令値[W]の中の充電指令値[W]を時間積分した値である。 USER discharge (t) is a value obtained by time-integrating the discharge command value [W] in the command value [W] of the energy management service in the section t. USER charge (t) is a value obtained by time-integrating the charge command value [W] in the command value [W] of the energy management service in the section t.

ALLdischarge(t)は、区間tにおける統合指令値[W]の中の放電側の統合指令値[W]を時間積分した値である。ALLcharge(t)は、区間tにおける統合指令値[W]の中の充電側の統合指令値[W]を時間積分した値である。 ALL discharge (t) is a value obtained by time-integrating the integrated command value [W] on the discharge side in the integrated command value [W] in the section t. ALL charge (t) is a value obtained by time-integrating the integrated command value [W] on the charging side in the integrated command value [W] in the interval t.

SMdischarge(0)は、所定時間Tの開始時点における蓄電システム101の放電電力積算量[Wh]の測定値である。SMdischarge(n)は、所定時間Tの終了時点(区間nの終了時点)における蓄電システム101の放電電力積算量[Wh]の測定値である。SMcharge(0)は、所定時間Tの開始時点における蓄電システム101の充電電力積算量[Wh]の測定値である。SMcharge(n)は、所定時間Tの終了時点(区間nの終了時点)における蓄電システム101の充電電力積算量[Wh]の測定値である。これらは、第2のスマートメータ105の測定値である。 SM discharge (0) is a measured value of the discharge power integrated amount [Wh] of the storage system 101 at the start time of the predetermined time T. SM discharge (n) is a measurement value of the discharge power integrated amount [Wh] of the storage system 101 at the end time of the predetermined time T (end time of the section n). SM charge (0) is a measurement value of the integrated charging power amount [Wh] of the storage system 101 at the start time of the predetermined time T. SM charge (n) is a measurement value of the charge power integrated amount [Wh] of the storage system 101 at the end time of the predetermined time T (end time of the section n). These are the measurement values of the second smart meter 105.

ここで、ASdischarge(t)は、統合指令値[W]が充電側になる放電指令値[W]の積算値であるAS discharge(t)と、統合指令値[W]が放電側になる放電指令値[W]の積算値であるAS discharge(t)とに分類される。同様に、AScharge(t)は、統合指令値[W]が充電側になる充電指令値[W]の積算値であるAS charge(t)と、統合指令値[W]が放電側になる充電指令値[W]の積算値であるAS charge(t)とに分類される。 Here, AS discharge (t) is the integrated value of discharge command value [W] at which integrated command value [W] is on the charge side, AS + discharge (t), and integrated command value [W] is on the discharge side. It is classified into AS - discharge (t) which is an integrated value of the discharge command value [W]. Similarly, AS charge (t) is the integrated value of charge command value [W] at which integrated command value [W] is on the charge side, and AS + charge (t) and integrated command value [W] are at the discharge side. It is classified into AS - charge (t) which is an integrated value of charge command value [W].

また、USERdischarge(t)は、統合指令値[W]が充電側になる放電指令値[W]の積算値であるUSER discharge(t)と、統合指令値[W]が放電側になる放電指令値[W]の積算値であるUSER discharge(t)とに分類される。同様に、USERcharge(t)は、統合指令値[W]が充電側になる充電指令値[W]の積算値であるUSER charge(t)と、統合指令値[W]が放電側になる充電指令値[W]の積算値であるUSER charge(t)とに分類される。 In addition, USER discharge (t) is the integrated value of discharge command value [W] where integrated command value [W] becomes charge side USER + discharge (t), and integrated command value [W] becomes discharge side It is classified into USER - discharge (t) which is an integrated value of discharge command value [W]. Similarly, for USER charge (t), integrated command value [W] is the charge side, and USER + charge (t) is the integrated value of charge command value [W] and integrated command value [W] is on the discharge side. It is classified into USER - charge (t) which is an integrated value of charge command value [W] which becomes.

なお、各種指令値[W]と統合指令値[W]の充放電の方向が一致する変数を正の値とし、逆になる変数を負の値とする。例えば、AS discharge(t)は、統合指令値[W]が充電側になる放電指令値[W]の積算値である。この変数は負の値とする。また、AS discharge(t)は、統合指令値[W]が放電側になる放電指令値[W]の積算値である。この変数は正の値とする。また、AS charge(t)は、統合指令値[W]が充電側になる充電指令値[W]の積算値である。この変数は正の値とする。その他の変数も同様である。 A variable in which the directions of charging and discharging of the various command values [W] and the integrated command value [W] coincide with each other is a positive value, and a variable in reverse is a negative value. For example, AS + discharge (t) is an integrated value of discharge command value [W] for which integrated command value [W] is on the charge side. This variable has a negative value. Further, AS - discharge (t) is an integrated value of the discharge command value [W] at which the integrated command value [W] becomes the discharge side. This variable has a positive value. Further, AS + charge (t) is an integrated value of the charge command value [W] at which the integrated command value [W] is on the charge side. This variable has a positive value. Other variables are similar.

分類後の各変数の関係は図5のようにまとめることができる。「逆潮流(放電方向)計量分」の行のグループは、統合指令値[W]が放電側となる変数の組合せである。このような組み合わせとしては、(USER discharge(t)、AS discharge(t))、(USER discharge(t)、AS charge(t))、(USER charge(t)、AS discharge(t))の3組が存在する。なお、統合指令値[W]が放電側となる(USER charge(t)、AS charge(t))の組合せは存在しないので、「×」で当該組み合わせを消去している。 The relationship of each variable after classification can be summarized as shown in FIG. A group of “reverse power flow (discharge direction) measurement” row is a combination of variables for which the integrated command value [W] is on the discharge side. As such combinations, (USER - discharge (t), AS - discharge (t)), (USER - discharge (t), AS - charge (t)), (USER - charge (t), AS - discharge There are three sets of (t)). In addition, since there is no combination (USER - charge (t), AS - charge (t)) in which the integration command value [W] becomes the discharge side, the combination is erased by “x”.

一方、「順潮流(充電方向)計量分」の行のグループは、統合指令値[W]が充電側となる変数の組合せである。このような組み合わせとしては、(USER discharge(t)、AS charge(t))、(USER charge(t)、AS discharge(t))、(USER charge(t)、AS charge(t))の3組が存在する。なお、統合指令値[W]が充電側となる(USER discharge(t)、AS discharge(t))の組合せは存在しないので、「×」で当該組み合わせを消去している。 On the other hand, the group of the line of “forward flow (charging direction) measurement” is a combination of variables for which the integrated command value [W] is on the charging side. Such combinations include (USER + discharge (t), AS + charge (t)), (USER + charge (t), AS + discharge (t)), (USER + charge (t), AS + charge There are three sets of (t)). It should be noted that since there is no combination of (USER + discharge (t), AS + discharge (t)) in which the integrated command value [W] is on the charge side, the combination is deleted by “x”.

上記説明及び図5の関係より、図6に示すような条件式が導かれる。   From the above description and the relationship in FIG. 5, the conditional expression as shown in FIG. 6 is derived.

「放電時補正係数及び充電時補正係数の算出」
ここで、補正係数算出部13は、図7に示す式(7−1)を用いて、放電時補正係数kdischargeを算出する。また、補正係数算出部13は、図7に示す式(7−2)を用いて、充電時補正係数kchargeを算出する。
"Calculation of discharge correction factor and charge correction factor"
Here, the correction coefficient calculation unit 13 calculates the discharge correction coefficient k discharge using the equation (7-1) shown in FIG. 7. Further, the correction coefficient calculation unit 13 calculates the charge correction coefficient k charge using the equation (7-2) shown in FIG. 7.

式(7−1)の左辺は、蓄電システム101が所定時間T内に放電した電力量[Wh]であって、第2のスマートメータ105で測定された値である放電電力量[Wh]を示す。この値は、スマートメータ測定値取得部11により取得された第2のスマートメータ105の実測値である。   The left side of the equation (7-1) is the amount of power [Wh] discharged by the storage system 101 within the predetermined time T, and the amount of discharged power [Wh] which is a value measured by the second smart meter 105. Show. This value is an actual measurement value of the second smart meter 105 acquired by the smart meter measurement value acquisition unit 11.

式(7−1)の右辺は、放電時補正係数kdischargeと、放電指令量[Wh]との積となっている。放電指令量[Wh]は、所定時間T内における統合指令値[W]の中の放電側の統合指令値[W]を時間積分して得られた値である。放電指令量[Wh]が得られれば、放電時補正係数kdischargeが算出される。 The right side of Expression (7-1) is the product of the discharge correction coefficient k discharge and the discharge command amount [Wh]. The discharge command amount [Wh] is a value obtained by performing time integration on the discharge-side integrated command value [W] in the integrated command value [W] within the predetermined time T. As long resulting discharge command amount [Wh] is, the discharge time correction coefficient k Discharge is calculated.

式(7−2)の左辺は、蓄電システム101が所定時間T内に充電した電力量[Wh]であって、第2のスマートメータ105で測定された値である充電電力量[Wh]を示す。この値は、スマートメータ測定値取得部11により取得された第2のスマートメータ105の実測値である。   The left side of the equation (7-2) is the amount of power [Wh] that the storage system 101 charges in a predetermined time T, and the amount of charge power [Wh] which is a value measured by the second smart meter 105 Show. This value is an actual measurement value of the second smart meter 105 acquired by the smart meter measurement value acquisition unit 11.

式(7−2)の右辺は、充電時補正係数kchargeと、充電指令量[Wh]との積となっている。充電指令量[Wh]は、所定時間T内における統合指令値[W]の中の充電側の統合指令値[W]を時間積分して得られた値である。充電指令量[Wh]が得られれば、充電時補正係数kchargeが算出される。 The right side of Formula (7-2) is the product of the charge correction coefficient k charge and the charge command amount [Wh]. The charge command amount [Wh] is a value obtained by time-integrating the integrated command value [W] on the charging side in the integrated command value [W] within the predetermined time T. If the charge command amount [Wh] is obtained, the charge correction coefficient k charge is calculated.

所定時間T内における、充電時補正係数kchargeや放電時補正係数kdischargeを算出する際、所定時間Tは、ある程度短いことが望ましい。その理由は、Tが長くなると、蓄電システムを取り巻く周辺温度の変化等の影響により、補正係数が変化することが想定されるからである。 When calculating the charge correction coefficient k charge and the discharge correction coefficient k discharge within the predetermined time T, it is desirable that the predetermined time T be short to some extent. The reason is that as T becomes longer, it is assumed that the correction coefficient changes due to the influence of changes in the ambient temperature surrounding the power storage system and the like.

ここで、放電指令量[Wh]及び充電指令量[Wh]を求める方法を説明する。   Here, a method of determining the discharge command amount [Wh] and the charge command amount [Wh] will be described.

「方法1」
方法1では、図6に示す式(6−5)及び式(6−6)を用いて、放電指令量[Wh]及び充電指令量[Wh]を求める。
"Method 1"
In the method 1, the discharge command amount [Wh] and the charge command amount [Wh] are obtained using the equations (6-5) and (6-6) shown in FIG.

まず、補正係数算出部13は、複数種類の指令値[W]各々を充電指令値[W]及び放電指令値[W]に分類し、さらにそれらを、統合指令値[W]が充電側になるもの及び放電側になるものに分類する。そして、補正係数算出部13は、各指令値[W]の充電指令値[W]及び放電指令値[W]各々毎に、統合指令値[W]が充電側になるもの及び放電側になるもの各々を時間積分して、AS discharge(t)、AS discharge(t)、AS charge(t)、AS charge(t)、USER discharge(t)、USER discharge(t)、USER charge(t)、USER charge(t)を算出する。 First, correction coefficient calculation unit 13 classifies each of a plurality of types of command values [W] into charge command value [W] and discharge command value [W], and further integrates command values [W] on the charge side. And the discharge side. Then, the correction coefficient calculation unit 13 determines that the integrated command value [W] is on the charge side and the discharge side for each of the charge command value [W] and the discharge command value [W] of each command value [W]. Time integration of each one, AS + discharge (t), AS - discharge (t), AS + charge (t), AS - charge (t), USER + discharge (t), USER - discharge (t), Calculate USER + charge (t) and USER - charge (t).

例えば、制御装置103は複数種類の指令値[W]や統合指令値[W]を蓄積してもよい。そして、補正係数算出部13は、制御装置103に蓄積された複数種類の指令値[W]や統合指令値[W]を用いて上記処理を行ってもよい。その他、制御装置103は生成した複数種類の指令値[W]や統合指令値[W]を任意のタイミングで処理装置10に送信してもよい。そして、処理装置10は制御装置103から受信した複数種類の指令値[W]や統合指令値[W]を蓄積してもよい。補正係数算出部13は、処理装置10に蓄積された複数種類の指令値[W]や統合指令値[W]を用いて上記処理を行ってもよい。   For example, the control device 103 may store a plurality of types of command values [W] and integrated command values [W]. Then, the correction coefficient calculation unit 13 may perform the above process using a plurality of types of command values [W] and integrated command values [W] accumulated in the control device 103. In addition, the control device 103 may transmit the plurality of types of generated command values [W] and integrated command value [W] to the processing device 10 at any timing. Then, the processing device 10 may accumulate a plurality of types of command values [W] and integrated command values [W] received from the control device 103. The correction coefficient calculation unit 13 may perform the above process using a plurality of types of command values [W] and integrated command values [W] accumulated in the processing device 10.

その後、補正係数算出部13は、上記算出した結果と式(6−5)とを用いてt=1からn各々のALLdischarge(t)を算出し、それらを足し合わせることで放電指令量[Wh]を算出する。また、補正係数算出部13は、上記算出した結果と式(6−6)とを用いてt=1からn各々のALLcharge(t)を算出し、それらを足し合わせることで、充電指令量[Wh]を算出する。 Thereafter, the correction coefficient calculation unit 13 calculates ALL discharge (t) for each of t = 1 to n using the calculated result and the equation (6-5), and adds them together to calculate the discharge command amount [ Calculate Wh]. In addition, correction coefficient calculation unit 13 calculates ALL charge (t) for each of t = 1 to n using the result calculated above and equation (6-6), and adds them together to obtain the charge command amount. Calculate [Wh].

「方法2」
方法2では、図8及び図9に示す式をさらに用いて、放電指令量[Wh]及び充電指令量[Wh]を求める。
"Method 2"
In the method 2, the discharge command amount [Wh] and the charge command amount [Wh] are determined by further using the equations shown in FIG. 8 and FIG.

まず、区間内のエネルギーマネジメントサービスの指令値[W]を放電側のみに制限した場合、図8の式(8−1)が得られる。図6に示す式(6−1)乃至(6−6)に式(8−1)を代入すると、図8の式(8−2)が得られる。そして、式(8−2)を変形すると、式(8−3)が得られる。式(8−3)は、左辺の変数を求める式となっている。   First, when the command value [W] of the energy management service in the section is limited only to the discharge side, the equation (8-1) in FIG. 8 is obtained. Substituting the equation (8-1) into the equations (6-1) to (6-6) shown in FIG. 6, the equation (8-2) in FIG. 8 is obtained. Then, equation (8-3) is obtained by modifying equation (8-2). Expression (8-3) is an expression for obtaining a variable on the left side.

式(8−3)の右辺に含まれる複数の変数のうち、スマートメータの測定値や各種指令値に基づき値が得られないのはUSER discharge(t)のみである。USER discharge(t)の値が得られれば、式(8−3)の左辺の変数を求めることができる。 Among the plurality of variables included in the right side of the equation (8-3), only the USER - discharge (t) can not obtain a value based on the measurement value of the smart meter or various command values. If the value of USER - discharge (t) is obtained, the variable on the left side of equation (8-3) can be obtained.

そこで、方法2では、補正係数算出部13は、方法1で説明した方法と同様にして、t=1からn各々に対応して、USER discharge(t)を算出する。すなわち、エネルギーマネジメントサービスの放電指令値[W]の中の統合指令値[W]が放電側となる放電指令値[W]を時間積分することで、t=1からn各々に対応して、USER discharge(t)を算出する。 Therefore, in the method 2, the correction coefficient calculation unit 13 calculates USER - discharge (t) corresponding to each of t = 1 to n in the same manner as the method described in the method 1. That is, time integration of the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] of the energy management service is on the discharge side corresponds to each of t = 1 to n, Calculate USER - discharge (t).

そして、補正係数算出部13は、t=1からn各々に対応して算出したUSER discharge(t)の値と、t=1からn各々に対応する式(8−3)の右辺のその他の変数の値とを用いて、t=1からn各々に対応してAS discharge(t)、AS discharge(t)、AS charge(t)、AS charge(t)を算出する。 Then, the correction coefficient calculation unit 13 calculates the value of USER - discharge (t) calculated corresponding to each of t = 1 to n, and the other of the right side of the equation (8-3) corresponding to each of t = 1 to n. The AS + discharge (t), AS - discharge (t), AS + charge (t), and AS - charge (t) are calculated for each of t = 1 to n using the values of

その後、式(6−5)を用いて、t=1からn各々のALLdischarge(t)を算出することができる。また、式(6−6)を用いて、t=1からn各々のALLcharge(t)を算出することができる。 Thereafter, ALL discharge (t) for each of t = 1 to n can be calculated using equation (6-5). In addition, ALL charge (t) for each of t = 1 to n can be calculated using Expression (6-6).

同様に、区間内のエネルギーマネジメントサービスの指令値[W]を充電側のみに制限した場合、図9の式(9−1)が得られる。図6に示す式(6−1)乃至(6−6)に式(9−1)を代入すると、図9の式(9−2)が得られる。そして、式(9−2)を変形すると、式(9−3)が得られる。式(9−3)は、左辺の変数を求める式となっている。   Similarly, when the command value [W] of the energy management service in the section is limited to only the charging side, the equation (9-1) in FIG. 9 is obtained. By substituting the equation (9-1) into the equations (6-1) to (6-6) shown in FIG. 6, the equation (9-2) in FIG. 9 is obtained. Then, equation (9-3) is obtained by modifying equation (9-2). Expression (9-3) is an expression for obtaining a variable on the left side.

式(9−3)の右辺に含まれる複数の変数のうち、スマートメータの測定値や各種指令値に基づき値が得られないのはUSER charge(t)のみである。USER charge(t)の値が得られれば、式(9−3)の左辺の変数を求めることができる。 Among the plurality of variables included in the right side of the equation (9-3), it is only USER + charge (t) that a value can not be obtained based on the measurement value of the smart meter and various command values. If the value of USER + charge (t) is obtained, the variable on the left side of equation (9-3) can be obtained.

そこで、方法2では、補正係数算出部13は、方法1で説明した方法と同様にして、t=1からn各々に対応して、USER charge(t)を算出する。すなわち、エネルギーマネジメントサービスの充電指令値[W]の中の統合指令値[W]が充電側となる充電指令値[W]を時間積分することで、t=1からn各々に対応して、USER charge(t)を算出する。 Therefore, in the method 2, the correction coefficient calculation unit 13 calculates USER + charge (t) in the same manner as the method described in the method 1, corresponding to each of t = 1 to n. That is, by integrating the charge command value [W] in which the integrated command value [W] in the charge command value [W] of the energy management service is on the charge side over time, corresponding to each of t = 1 to n, Calculate USER + charge (t).

そして、補正係数算出部13は、t=1からn各々に対応して算出したUSER charge(t)の値と、t=1からn各々に対応する式(8−3)の右辺のその他の変数の値とを用いて、t=1からn各々に対応してAS discharge(t)、AS discharge(t)、AS charge(t)、AS charge(t)を算出する。 Then, the correction coefficient calculation unit 13 calculates the value of USER + charge (t) calculated corresponding to each of t = 1 to n, and the other of the right side of the equation (8-3) corresponding to each of t = 1 to n. The AS + discharge (t), AS - discharge (t), AS + charge (t), and AS - charge (t) are calculated for each of t = 1 to n using the values of

その後、式(6−5)を用いて、t=1からn各々のALLdischarge(t)を算出することができる。また、式(6−6)を用いて、t=1からn各々のALLcharge(t)を算出することができる。 Thereafter, ALL discharge (t) for each of t = 1 to n can be calculated using equation (6-5). In addition, ALL charge (t) for each of t = 1 to n can be calculated using Expression (6-6).

この手法では、例えば、夜間23:00−07:00の電気料金が安い時間帯では、「需要家向け充電のみ」とすることで、その時間帯内での30分間隔の区間におけるALLdischarge(t)やALLcharge(t)の算出は、手法1よりも変数を少なくすることができるため簡単になる。同様に、昼間07:00−23:00の電気料金が高い時間帯では、「需要家向け放電のみ」とすることで、その時間帯内での30分間隔の区間におけるALLdischarge(t)やALLcharge(t)の算出は、手法1よりも変数を少なくすることができるため処理が簡単になる。 In this method, for example, in the time zone where the electricity bill is low at 23:00-07:00 at night, “charging only for customers” is set, and ALL discharge (in the interval of 30 minutes in that time zone) The calculation of t) and ALL charge (t) is simpler than the method 1 because the number of variables can be reduced. Similarly, in the time zone where there is a high electricity bill at 07: 00-23: 00 in the daytime, by setting it as "only for customer's discharge", ALL discharge (t) in the interval of 30 minutes interval in that time zone The calculation of ALL charge (t) is simpler than the method 1 because the number of variables can be reduced.

また、需要家向け放電のみの時間帯と、需要家向け充電のみの時間帯を跨いだ時間帯における、放電指令量[Wh]や充電指令量[Wh]に対して補正係数を算出する場合は、エネルギーマネジメントサービスの指令値[W]を放電側のみに制限した区間及び充電側のみに制限した区間各々のALLdischarge(t)及びALLcharge(t)を算出した後、それらを用いて放電指令量[Wh]及び充電指令量[Wh]を算出する。具体的には、エネルギーマネジメントサービスの指令値[W]を放電側のみに制限した区間のALLdischarge(t)と、充電側のみに制限した区間のALLdischarge(t)とを足し合わせることで、放電指令量[Wh]を算出する。同様に、エネルギーマネジメントサービスの指令値[W]を充電側のみに制限した区間のALLcharge(t)と、放電側のみに制限した区間のALLcharge(t)とを足し合わせることで、充電指令量[Wh]を算出する。 In addition, in the case of calculating the correction coefficient for the discharge command amount [Wh] and the charge command amount [Wh] in the time zone over the discharge only for customer and the time zone for only charge for customer After calculating the ALL discharge (t) and ALL charge (t) of the section in which the command value [W] of the energy management service is limited to the discharge side and the section in which it is limited to the charge side only The amount [Wh] and the charge command amount [Wh] are calculated. Specifically, by adding ALL discharge (t) of the section in which the energy management service command value [W] is limited to the discharge side only and ALL discharge (t) of the section limited to the charge side only, The discharge command amount [Wh] is calculated. Similarly, the charge command can be obtained by adding together the ALL charge (t) of the section in which the command value [W] of the energy management service is limited to the charging side only and the ALL charge (t) of the section limited to the discharging side only. Calculate the quantity [Wh].

なお、方法2を採用する場合、区間内(単位時間内)のエネルギーマネジメントサービスの指令値[W]を放電側及び充電側いずれかに制限する必要がある。当該制御は、制御装置103が行ってもよい。   In addition, when adopting method 2, it is necessary to limit the command value [W] of the energy management service in the section (within the unit time) to either the discharge side or the charge side. The control device 103 may perform the control.

「複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]の算出」
上述のようにして充電時補正係数、放電時補正係数、各種変数の値が得られると、各種充放電量算出部14は、図10に示す式を用いて、複数種類の指令値[W]各々に応じて各区間に充電又は放電した電力量[Wh]を算出する。
“Calculation of the amount of electric power [Wh] charged or discharged according to each of a plurality of command values [W]”
As described above, when the values of the charge correction coefficient, the discharge correction coefficient, and the various variables are obtained, the various charge / discharge amount calculation units 14 use the formulas shown in FIG. According to each, the electric energy [Wh] charged or discharged in each section is calculated.

図示する周波数制御放電電力量[Wh]は、GF相当制御で放電した電力量[Wh]である。周波数制御充電電力量[Wh]は、GF相当制御で充電した電力量[Wh]である。需要家放電電力量[Wh]は、エネルギーマネジメントサービスで放電した電力量[Wh]である。需要家充電電力量[Wh]は、エネルギーマネジメントサービスで充電した電力量[Wh]である。   The frequency control discharge electric energy [Wh] shown is the electric energy [Wh] discharged by GF equivalent control. Frequency control charge electric energy [Wh] is electric energy [Wh] charged by GF equivalent control. The customer discharge electric energy [Wh] is the electric energy discharged by the energy management service [Wh]. The customer charge electric energy [Wh] is the electric energy [Wh] charged by the energy management service.

なお、補正係数(充電時補正係数及び放電時補正係数)を用いた電力量の算出では、スマートメータの計量値を計量法に則り課金可能な正しい値としているため、補正係数の値が1から大きくずれる場合は補正の信頼性が低下する。よって、電力量を算出する上で利用可能な補正係数の範囲を1±0.1等に限定してもよい。   In the calculation of the amount of power using the correction factor (the correction factor for charging and the correction factor for discharging), since the meter value of the smart meter is the correct value that can be charged according to the weighing method, the value of the correction factor is from 1 to In the case of a large deviation, the reliability of the correction decreases. Therefore, the range of correction coefficients that can be used to calculate the amount of power may be limited to 1 ± 0.1 or the like.

「変形例」
ここで、変形例を説明する。上記方法1及び方法2では、処理装置10が、AS discharge(t)、AS discharge(t)、AS charge(t)、AS charge(t)、USER discharge(t)、USER discharge(t)、USER charge(t)、USER charge(t)を算出することを示した。変形例では、制御装置103が上記算出を行ってもよい。そして、処理装置10は制御装置103により算出された値を取得し、当該値に基づき、充電時補正係数、放電時補正係数、複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出してもよい。
"Modification"
Here, a modified example will be described. In the above method 1 and method 2, the processing apparatus 10, AS + discharge (t), AS - discharge (t), AS + charge (t), AS - charge (t), USER + discharge (t), USER - It was shown to calculate discharge (t), USER + charge (t), and USER - charge (t). In a modification, the control device 103 may perform the above calculation. Then, the processing device 10 obtains the value calculated by the control device 103, and based on the value, the charge-time correction coefficient, the discharge-time correction coefficient, and the electric power charged or discharged according to each of the plural types of command values [W]. The amount [Wh] may be calculated.

他の変形例として、図1では、蓄電システム101と制御装置103とを分けて記載し、これらが物理的及び/又は論理的に分かれて設けられる例を示したが、蓄電システム101及び制御装置103は物理的及び/又は論理的に一体となっていてもよい。例えば、蓄電システム101のPCSが、制御装置103の機能を備えてもよい。または、蓄電システム101内に、PCSと物理的及び/又は論理的に分かれて制御装置103が設けられてもよい。この場合、PCSが、AS discharge(t)、AS discharge(t)、AS charge(t)、AS charge(t)、USER discharge(t)、USER discharge(t)、USER charge(t)、USER charge(t)の算出をおこなってもよい。また、蓄電システム101のPCSが、処理装置10の機能を備えてもよい。または、蓄電システム101内に、PCSと物理的及び/又は論理的に分かれて処理装置10が設けられてもよい。 As another modification, FIG. 1 separately shows the storage system 101 and the control device 103, and shows an example in which these are provided physically and / or logically separated. However, the storage system 101 and the control device 103 may be physically and / or logically integrated. For example, the PCS of the storage system 101 may have the function of the control device 103. Alternatively, control device 103 may be provided physically and / or logically separately from PCS in power storage system 101. In this case, the PCS is AS + discharge (t), AS - discharge (t), AS + charge (t), AS - charge (t), USER + discharge (t), USER - discharge (t), USER + The calculation of charge (t) and USER - charge (t) may be performed. Also, the PCS of the storage system 101 may have the function of the processing device 10. Alternatively, the processor 10 may be provided physically and / or logically separated from the PCS in the storage system 101.

以上説明した本実施形態の処理装置10によれば、蓄電システム101が複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出することができる。また、充電時補正係数及び放電時補正係数を算出し、これらで補正することで、各種電力量[Wh]をスマートメータで測定した場合と同等の結果を得ることができる。   According to the processing apparatus 10 of the present embodiment described above, it is possible to calculate the amount of power [Wh] that the storage system 101 has charged or discharged according to each of the plurality of types of command values [W]. In addition, by calculating and correcting with the charge correction coefficient and the discharge correction coefficient, it is possible to obtain the same result as in the case of measuring the various electric energy [Wh] with the smart meter.

以下、参考形態の例を付記する。
1. 複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段と、
を有する処理装置。
2. 1に記載の処理装置において、
前記指令値[W]は、充電指令値[W]及び放電指令値[W]を含み、
前記各種充放電量算出手段は、
第1の種類の前記指令値[W]に含まれる前記充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]と前記充電時補正係数との積と、前記第1の種類の前記指令値[W]に含まれる前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]と前記放電時補正係数との積との和を、前記第1の種類の前記指令値[W]に応じて前記蓄電システムが前記所定時間内に充電した電力量[Wh]として算出する処理装置。
3. 1または2に記載の処理装置において、
前記指令値[W]は、充電指令値[W]及び放電指令値[W]を含み、
前記各種充放電量算出手段は、
第1の種類の前記指令値[W]に含まれる前記放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]と前記充電時補正係数との積と、前記第1の種類の前記指令値[W]に含まれる前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]と前記放電時補正係数との積との和を、前記第1の種類の前記指令値[W]に応じて前記蓄電システムが前記所定時間内に放電した電力量[Wh]として算出する処理装置。
4. 1から3のいずれかに記載の処理装置において、
前記補正係数算出手段は、前記所定時間毎に、前記充電時補正係数及び前記放電時補正係数を算出する処理装置。
5. 1から4のいずれかに記載の処理装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
単位時間の間、少なくとも1種類の前記指令値[W]を充電指令値[W]及び放電指令値[W]の一方のみに制限する手段と、
をさらに有する処理装置。
6. 複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段と、
を有する制御装置。
7. 6に記載の制御装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段と、
をさらに有する制御装置。
8. 6又は7に記載の制御装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
単位時間の間、少なくとも1種類の前記指令値[W]を充電指令値[W]及び放電指令値[W]の一方のみに制限する手段と、
を有する制御装置。
9. 1から5のいずれかに記載の処理装置を含み、蓄電池を制御するPCS。
10. 6から8のいずれかに記載の制御装置を含み、蓄電池を制御するPCS。
11. コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得工程と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得工程と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出工程と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出工程と、
を実行する処理方法。
12. コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段、
として機能させるプログラム。
13. コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる工程と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する工程と、
を実行する制御方法。
14. コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段、
として機能させるプログラム。
Hereinafter, an example of a reference form is added.
1. The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount obtaining means for obtaining a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh];
Processing apparatus having:
2. In the processing device described in 1,
The command value [W] includes a charge command value [W] and a discharge command value [W].
The various charge / discharge amount calculation means
Obtained by integrating over time the charge command value [W] in which the integrated command value [W] in the charge command value [W] included in the first type of the command value [W] is on the charge side The integrated command value [W] in the charge command value [W] contained in the product of the charge value [Wh] and the charge correction coefficient, and the command value [W] of the first type is discharged The sum of the product of the value [Wh] obtained by time-integrating the charge command value [W] on the side and the product of the discharge correction coefficient according to the command value [W] of the first type A processing device for calculating the amount of power [Wh] charged by the power storage system within the predetermined time.
3. In the processing device described in 1 or 2,
The command value [W] includes a charge command value [W] and a discharge command value [W].
The various charge / discharge amount calculation means
Obtained by temporally integrating the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] included in the first type of the command value [W] is on the charge side The integrated command value [W] in the discharge command value [W] contained in the product of the charge value [Wh] and the charge correction coefficient, and the command value [W] of the first type is discharged The sum of the product of the value [Wh] obtained by time-integrating the discharge command value [W] on the side and the product of the discharge correction coefficient according to the command value [W] of the first type A processing device for calculating the amount of power [Wh] discharged by the power storage system within the predetermined time.
4. In the processing device according to any one of 1 to 3,
The processing device, wherein the correction coefficient calculation means calculates the charge correction coefficient and the discharge correction coefficient at each predetermined time.
5. In the processing apparatus according to any one of 1 to 4,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
A unit for limiting at least one of the command value [W] to only one of the charge command value [W] and the discharge command value [W] during the unit time;
The processing apparatus which further has.
6. A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value A unit for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
A control device having
7. In the control device described in 6,
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount obtaining means for obtaining a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh];
The control device further having
8. In the control device described in 6 or 7,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
A unit for limiting at least one of the command value [W] to only one of the charge command value [W] and the discharge command value [W] during the unit time;
A control device having
9. A PCS for controlling a storage battery, comprising the processing device according to any one of 1 to 5.
10. A PCS for controlling a storage battery, comprising the control device according to any one of 6 to 8.
11. The computer is
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring step of acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time A charge / discharge command amount acquisition step of acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side among the values [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. A correction coefficient calculation step of calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation steps for calculating [Wh];
How to perform processing.
12. Computer,
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquisition means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values,
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount acquisition means for acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W],
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient,
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh],
A program to function as
13. The computer is
Calculating an integrated command value [W] by adding a plurality of types of command values [W], controlling a storage battery to charge and discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
Control method to execute.
14. Computer,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W] and controls a storage battery to charge / discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Means for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side,
A program to function as

1A プロセッサ
2A メモリ
3A 入出力I/F
4A 周辺回路
5A バス
10 処理装置
11 スマートメータ測定値取得部
12 充放電指令値取得部
13 補正係数算出部
14 各種充放電量算出部
100 電力需要家システム
101 蓄電システム
102 負荷群
103 制御装置
104 第1のスマートメータ
105 第2のスマートメータ
106 センサー
200 サーバ
300 ネットワーク
1A processor 2A memory 3A input / output I / F
4A Peripheral Circuit 5A Bus 10 Processing Device 11 Smart Meter Measured Value Acquisition Unit 12 Charge / Discharge Command Value Acquisition Unit 13 Correction Coefficient Calculation Unit 14 Various Charge / Discharge Calculation Unit 100 Power Demander System 101 Storage System 102 Load Group 103 Control Device 104 One smart meter 105 Second smart meter 106 Sensor 200 Server 300 Network

Claims (14)

複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段と、
を有する処理装置。
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount obtaining means for obtaining a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh];
Processing apparatus having:
請求項1に記載の処理装置において、
前記指令値[W]は、充電指令値[W]及び放電指令値[W]を含み、
前記各種充放電量算出手段は、
第1の種類の前記指令値[W]に含まれる前記充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]と前記充電時補正係数との積と、前記第1の種類の前記指令値[W]に含まれる前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]と前記放電時補正係数との積との和を、前記第1の種類の前記指令値[W]に応じて前記蓄電システムが前記所定時間内に充電した電力量[Wh]として算出する処理装置。
In the processing device according to claim 1,
The command value [W] includes a charge command value [W] and a discharge command value [W].
The various charge / discharge amount calculation means
Obtained by integrating over time the charge command value [W] in which the integrated command value [W] in the charge command value [W] included in the first type of the command value [W] is on the charge side The integrated command value [W] in the charge command value [W] contained in the product of the charge value [Wh] and the charge correction coefficient, and the command value [W] of the first type is discharged The sum of the product of the value [Wh] obtained by time-integrating the charge command value [W] on the side and the product of the discharge correction coefficient according to the command value [W] of the first type A processing device for calculating the amount of power [Wh] charged by the power storage system within the predetermined time.
請求項1または2に記載の処理装置において、
前記指令値[W]は、充電指令値[W]及び放電指令値[W]を含み、
前記各種充放電量算出手段は、
第1の種類の前記指令値[W]に含まれる前記放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]と前記充電時補正係数との積と、前記第1の種類の前記指令値[W]に含まれる前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]と前記放電時補正係数との積との和を、前記第1の種類の前記指令値[W]に応じて前記蓄電システムが前記所定時間内に放電した電力量[Wh]として算出する処理装置。
In the processing device according to claim 1 or 2,
The command value [W] includes a charge command value [W] and a discharge command value [W].
The various charge / discharge amount calculation means
Obtained by temporally integrating the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] included in the first type of the command value [W] is on the charge side The integrated command value [W] in the discharge command value [W] contained in the product of the charge value [Wh] and the charge correction coefficient, and the command value [W] of the first type is discharged The sum of the product of the value [Wh] obtained by time-integrating the discharge command value [W] on the side and the product of the discharge correction coefficient according to the command value [W] of the first type A processing device for calculating the amount of power [Wh] discharged by the power storage system within the predetermined time.
請求項1から3のいずれか1項に記載の処理装置において、
前記補正係数算出手段は、前記所定時間毎に、前記充電時補正係数及び前記放電時補正係数を算出する処理装置。
The processing device according to any one of claims 1 to 3.
The processing device, wherein the correction coefficient calculation means calculates the charge correction coefficient and the discharge correction coefficient at each predetermined time.
請求項1から4のいずれか1項に記載の処理装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
単位時間の間、少なくとも1種類の前記指令値[W]を充電指令値[W]及び放電指令値[W]の一方のみに制限する手段と、
をさらに有する処理装置。
The processing apparatus according to any one of claims 1 to 4.
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
A unit for limiting at least one of the command value [W] to only one of the charge command value [W] and the discharge command value [W] during the unit time;
The processing apparatus which further has.
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段と、
を有する制御装置。
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value A unit for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
A control device having
請求項6に記載の制御装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段と、
をさらに有する制御装置。
In the control device according to claim 6,
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount obtaining means for obtaining a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh];
The control device further having
請求項6又は7に記載の制御装置において、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段と、
単位時間の間、少なくとも1種類の前記指令値[W]を充電指令値[W]及び放電指令値[W]の一方のみに制限する手段と、
を有する制御装置。
In the control device according to claim 6 or 7,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W], controls a storage battery, and charges and discharges with the integrated command value [W];
A unit for limiting at least one of the command value [W] to only one of the charge command value [W] and the discharge command value [W] during the unit time;
A control device having
請求項1から5のいずれか1項に記載の処理装置を含み、蓄電池を制御するPCS。   The PCS which controls the storage battery including the processing unit according to any one of claims 1 to 5. 請求項6から8のいずれか1項に記載の制御装置を含み、蓄電池を制御するPCS。   A PCS for controlling a storage battery, comprising the control device according to any one of claims 6 to 8. コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得工程と、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得工程と、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出工程と、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出工程と、
を実行する処理方法。
The computer is
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquiring step of acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values;
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time A charge / discharge command amount acquisition step of acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side among the values [W];
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. A correction coefficient calculation step of calculating a coefficient;
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation steps for calculating [Wh];
How to perform processing.
コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]に応じて充放電を行う蓄電システムが所定時間内に充放電した電力量[Wh]であって、スマートメータで測定された値である充電電力量[Wh]及び放電電力量[Wh]を取得するスマートメータ測定値取得手段、
前記所定時間内における前記統合指令値[W]の中の充電側の前記統合指令値[W]を時間積分して得られた充電指令量[Wh]、及び、前記所定時間内における前記統合指令値[W]の中の放電側の前記統合指令値[W]を時間積分して得られた放電指令量[Wh]を取得する充放電指令量取得手段、
前記充電電力量[Wh]を前記充電指令量[Wh]で割ることで充電時補正係数を算出するとともに、前記放電電力量[Wh]を前記放電指令量[Wh]で割ることで放電時補正係数を算出する補正係数算出手段、
前記充電時補正係数と、前記放電時補正係数と、前記複数種類の指令値[W]とに基づき、前記蓄電システムが前記複数種類の指令値[W]各々に応じて充電又は放電した電力量[Wh]を算出する各種充放電量算出手段、
として機能させるプログラム。
Computer,
The amount of power [Wh] charged / discharged within a predetermined time by the storage system performing charging / discharging according to the integrated command value [W] obtained by adding a plurality of command values [W], and measured by the smart meter Smart meter measurement value acquisition means for acquiring charge electric energy [Wh] and discharge electric energy [Wh] which are values,
A charge command amount [Wh] obtained by integrating over time the integration command value [W] on the charging side of the integration command value [W] within the predetermined time, and the integration command within the predetermined time Charge / discharge command amount acquisition means for acquiring a discharge command amount [Wh] obtained by time-integrating the integrated command value [W] on the discharge side in the value [W],
The charge correction amount is calculated by dividing the charge amount [Wh] by the charge command amount [Wh], and the discharge correction amount is calculated by dividing the discharge amount [Wh] by the discharge command amount [Wh]. Correction coefficient calculation means for calculating a coefficient,
The amount of power charged or discharged by the storage system according to each of the plurality of command values [W] based on the charge correction coefficient, the discharge correction coefficient, and the plurality of command values [W] Various charge / discharge amount calculation means for calculating [Wh],
A program to function as
コンピュータが、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる工程と、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する工程と、
を実行する制御方法。
The computer is
Calculating an integrated command value [W] by adding a plurality of types of command values [W], controlling a storage battery to charge and discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side;
Control method to execute.
コンピュータを、
複数種類の指令値[W]を足し合わせた統合指令値[W]を算出し、蓄電池を制御して前記統合指令値[W]で充放電させる手段、
複数種類の前記指令値[W]の中の少なくとも一部に対応して、充電指令値[W]の中の前記統合指令値[W]が充電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、前記充電指令値[W]の中の前記統合指令値[W]が放電側になる前記充電指令値[W]を時間積分して得られた値[Wh]、放電指令値[W]の中の前記統合指令値[W]が充電側になる前記放電指令値[W]を時間積分して得られた値[Wh]、及び、前記放電指令値[W]の中の前記統合指令値[W]が放電側になる前記放電指令値[W]を時間積分して得られた値[Wh]を算出する手段、
として機能させるプログラム。
Computer,
A unit that calculates an integrated command value [W] by adding a plurality of types of command values [W] and controls a storage battery to charge / discharge with the integrated command value [W];
The charge command value [W] for which the integrated command value [W] in the charge command value [W] is on the charge side corresponding to at least a part of the plurality of types of command values [W] The value [Wh] obtained by integration, the integrated command value [W] in the charge command value [W] becomes the discharge side, and the value obtained by performing time integration of the charge command value [W] [ Wh], a value [Wh] obtained by integrating over time the discharge command value [W] in which the integrated command value [W] in the discharge command value [W] is on the charge side, and the discharge command value Means for calculating a value [Wh] obtained by integrating over time the discharge command value [W] at which the integrated command value [W] in [W] becomes the discharge side,
A program to function as
JP2017173197A 2017-09-08 2017-09-08 Processing device, control device, PCS, processing method, control method and program Active JP7003509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173197A JP7003509B2 (en) 2017-09-08 2017-09-08 Processing device, control device, PCS, processing method, control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173197A JP7003509B2 (en) 2017-09-08 2017-09-08 Processing device, control device, PCS, processing method, control method and program

Publications (2)

Publication Number Publication Date
JP2019050666A true JP2019050666A (en) 2019-03-28
JP7003509B2 JP7003509B2 (en) 2022-01-20

Family

ID=65905915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173197A Active JP7003509B2 (en) 2017-09-08 2017-09-08 Processing device, control device, PCS, processing method, control method and program

Country Status (1)

Country Link
JP (1) JP7003509B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262456A (en) * 2001-03-01 2002-09-13 Hitachi Ltd Information supply system for secondary battery for electric power storage and information supply method
US20100090532A1 (en) * 2008-10-09 2010-04-15 The Aes Corporation Frequency Responsive Charge Sustaining Control of Electricity Storage Systems for Ancillary Services on an Electrical Power Grid
JP2013081267A (en) * 2011-09-30 2013-05-02 Toshiba Corp Device, method and program for charging/discharging decision
JP2014128141A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Power control device and control method
JP2014527789A (en) * 2012-07-20 2014-10-16 パナソニック株式会社 Control method of energy storage system
JP2015177623A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Supply-demand control method and device, and power storage system
JP2015211516A (en) * 2014-04-25 2015-11-24 富士電機株式会社 Charge/discharge control system for power storage device
JP6701965B2 (en) * 2016-05-27 2020-05-27 日本電気株式会社 Processing device, processing method, and program
JP6922570B2 (en) * 2017-09-08 2021-08-18 日本電気株式会社 Processing equipment, processing methods and programs

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262456A (en) * 2001-03-01 2002-09-13 Hitachi Ltd Information supply system for secondary battery for electric power storage and information supply method
US20100090532A1 (en) * 2008-10-09 2010-04-15 The Aes Corporation Frequency Responsive Charge Sustaining Control of Electricity Storage Systems for Ancillary Services on an Electrical Power Grid
JP2013081267A (en) * 2011-09-30 2013-05-02 Toshiba Corp Device, method and program for charging/discharging decision
JP2014527789A (en) * 2012-07-20 2014-10-16 パナソニック株式会社 Control method of energy storage system
US20140347016A1 (en) * 2012-07-20 2014-11-27 Panasonic Corporation Method for controlling an energy storage system
JP2014128141A (en) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd Power control device and control method
JP2015177623A (en) * 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Supply-demand control method and device, and power storage system
JP2015211516A (en) * 2014-04-25 2015-11-24 富士電機株式会社 Charge/discharge control system for power storage device
JP6701965B2 (en) * 2016-05-27 2020-05-27 日本電気株式会社 Processing device, processing method, and program
JP6922570B2 (en) * 2017-09-08 2021-08-18 日本電気株式会社 Processing equipment, processing methods and programs

Also Published As

Publication number Publication date
JP7003509B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP6838792B2 (en) Control device, control system, control device operation method and program
JP6304367B2 (en) Storage battery sharing system, information processing apparatus, storage battery sharing method, and storage battery sharing program
JP6701965B2 (en) Processing device, processing method, and program
US8694360B2 (en) Smart server and smart device
WO2013046657A1 (en) Charge/discharge system
WO2017170018A1 (en) Power control device, power control method, and program
JP6554785B2 (en) Power management apparatus, power system, customer apparatus, power management method, and power management program
JPWO2016143239A1 (en) Power adjustment apparatus, power distribution system, and program
JP6922570B2 (en) Processing equipment, processing methods and programs
WO2013179809A1 (en) Device, system, and method for managing power
JP2011176948A (en) Billing apparatus, billing method, and billing system
JP7056579B2 (en) Power management equipment, power management system, power management method, and program
JP6698371B2 (en) Electric charge management device, electric charge management method and program
KR102018875B1 (en) Apparatus for managing Battery Energy Storage System and method for the same
JP2017118715A (en) Power management device, power management system, and power management method
JP6996550B2 (en) Power management device, power management method, and program
JP7003509B2 (en) Processing device, control device, PCS, processing method, control method and program
US11156975B2 (en) Electric power information generation device and electric power information display system
JP2018011452A (en) Method for operating storage battery and storage battery operation device
WO2020234953A1 (en) Stored power origin management device, method and program
JP7024707B2 (en) Controls, control methods and programs
JP5886400B1 (en) Power market pricing system and method
KR102601209B1 (en) Demand management control method and apparatus for inducing dynamic participation of consumers in energy consumption loads management program
JP2020048370A (en) Power management method and power management system
JP7380563B2 (en) Power control device and power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213