JP7380563B2 - Power control device and power control method - Google Patents

Power control device and power control method Download PDF

Info

Publication number
JP7380563B2
JP7380563B2 JP2020532338A JP2020532338A JP7380563B2 JP 7380563 B2 JP7380563 B2 JP 7380563B2 JP 2020532338 A JP2020532338 A JP 2020532338A JP 2020532338 A JP2020532338 A JP 2020532338A JP 7380563 B2 JP7380563 B2 JP 7380563B2
Authority
JP
Japan
Prior art keywords
power
amount
converter
bidirectional
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020532338A
Other languages
Japanese (ja)
Other versions
JPWO2020022182A1 (en
Inventor
直 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2020022182A1 publication Critical patent/JPWO2020022182A1/en
Application granted granted Critical
Publication of JP7380563B2 publication Critical patent/JP7380563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本開示は、電力制御装置及び電力制御方法に関する。 The present disclosure relates to a power control device and a power control method.

資源保護の観点から、家庭内などに蓄電池を設け、太陽光パネルなどで発電された電力を蓄電池に蓄えるとともに、余剰電力を既存の交流電力系統を通じて売電する仕組みが存在する。例えば特許文献1には、交流電力系統を通じて蓄電池への蓄電及び蓄電池からの売電を適切に行うことを目的とした電力供給システムの技術が開示されている。 From the perspective of resource conservation, there is a system in which storage batteries are installed in homes, etc., and the electricity generated by solar panels is stored in the batteries, and the surplus electricity is sold through the existing AC power system. For example, Patent Document 1 discloses a technology for a power supply system that aims to appropriately store electricity in a storage battery and sell electricity from the storage battery through an AC power system.

特開2011-097795号公報Japanese Patent Application Publication No. 2011-097795

蓄電池に蓄えられた電力を、交流電力系統を介してもう一方の蓄電池に送る電力制御において、要求された電力を正確に系統に出力する場合、系統の電圧は一定ではないので、系統の電圧に変動に応じて電流を変化させる必要がある。しかし、系統に対する入出力電流の変化は発振などの不安定な状態を引き起こすおそれがある。 In power control that sends power stored in a storage battery to another storage battery via an AC power grid, if the requested power is to be accurately output to the grid, the voltage of the grid is not constant, so It is necessary to change the current according to fluctuations. However, changes in the input/output current to the grid may cause unstable conditions such as oscillation.

そこで、本開示では、交流電力系統を安定な状態に保ちつつ、交流電力系統を通じた電力融通を適切に行うことが可能な、新規かつ改良された電力制御装置及び電力制御方法を提案する。 Therefore, the present disclosure proposes a new and improved power control device and power control method that can appropriately accommodate power through the AC power system while keeping the AC power system in a stable state.

本開示によれば、外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得する電力量取得部と、前記電力融通期間における、前記電力量取得部が算出した前記実融通電力量の情報を前記電力管理装置に通知する通知部と、を備える、電力制御装置が提供される。 According to the present disclosure, there is provided a current control unit that controls an input/output current between a bidirectional AC/DC converter and an AC power transmission line in accordance with a power control instruction from an external power management device; a power amount acquisition section that acquires the actual interchangeable power amount input and outputted by the bidirectional AC/DC converter during the power interchange period, and the actual interchangeable power amount calculated by the power amount acquisition section during the power interchange period. A power control device is provided, comprising: a notification unit that notifies the power management device of information of the power management device.

また本開示によれば、外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを取得し、差分を算出する電力量取得部と、を備え、前記電流制御部は、電力量取得部が算出した差分に基づいて前記双方向交直流変換器に対して入出力電流を制御する、電力制御装置が提供される。 Further, according to the present disclosure, there is provided a current control unit that controls an input/output current between the bidirectional AC/DC converter and an AC power transmission line according to a power control instruction from an external power management device; a power amount acquisition section that acquires the target power amount specified by the power amount and the actual interchanged power amount input and outputted by the bidirectional AC/DC converter and calculates the difference; A power control device is provided that controls input/output current to the bidirectional AC/DC converter based on the difference calculated by the acquisition unit.

また本開示によれば、外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御することと、前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得することと、前記電力融通期間における前記実融通電力量の情報を前記電力管理装置に通知することと、を含む、電力制御方法が提供される。 Further, according to the present disclosure, according to a power control instruction from an external power management device, input/output current between the bidirectional AC/DC converter and an AC power transmission line is controlled, and based on the power control instruction, , acquiring the actual amount of interchanged power input and outputted by the bidirectional AC/DC converter during the power interchange period; and notifying the power management device of information on the actual amount of interchanged power during the power interchange period; A power control method is provided, including:

また本開示によれば、外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御することと、前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを周期的に取得し、差分を算出することと、前記差分に基づいて前記双方向交直流変換器に対して入出力電流を制御することと、を含む、電力制御方法が提供される。 Further, according to the present disclosure, the input/output current between the bidirectional AC/DC converter and the AC power transmission line is controlled in accordance with a power control instruction from an external power management device, and the input/output current is specified by the power control instruction. periodically acquiring the target power amount and the actual interchange power amount input/output by the bidirectional AC/DC converter, calculating the difference, and controlling the bidirectional AC/DC converter based on the difference. A power control method is provided, comprising: controlling an input/output current to a power source.

以上説明したように本開示によれば、交流電力系統を安定な状態に保ちつつ、交流電力系統を通じた電力融通を適切に行うことが可能な、新規かつ改良された電力制御装置及び電力制御方法を提供することが出来る。 As explained above, according to the present disclosure, a new and improved power control device and power control method are provided that are capable of appropriately performing power interchange through an AC power system while keeping the AC power system in a stable state. can be provided.

なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and in addition to or in place of the above effects, any of the effects shown in this specification or other effects that can be understood from this specification may be used. may be played.

本開示の実施の形態に係る電力供給システムの全体構成例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of the overall configuration of a power supply system according to an embodiment of the present disclosure. 2つの拠点を抜き出して電力供給システムの構成例を示した説明図である。FIG. 2 is an explanatory diagram showing a configuration example of a power supply system with two bases extracted. シナリオの一例を示す説明図である。It is an explanatory diagram showing an example of a scenario. 同実施の形態に係る電力制御装置の機能構成例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of the functional configuration of the power control device according to the embodiment. 同実施の形態に係る電力管理装置の動作例を示す流れ図である。3 is a flowchart showing an example of the operation of the power management device according to the embodiment. 同実施の形態に係る電力制御装置の動作例を示す流れ図である。3 is a flowchart showing an example of the operation of the power control device according to the embodiment. 同実施の形態に係る双方向直流交流変換器の動作例を示す流れ図である。It is a flowchart which shows the example of operation of the bidirectional DC-AC converter based on the same embodiment. 同実施の形態に係る電力供給システムの動作による動作シーケンスの一例を示す説明図である。It is an explanatory diagram showing an example of the operation sequence by the operation of the power supply system concerning the same embodiment. 同実施の形態に係る電力供給システムの動作による動作シーケンスの一例を示す説明図である。It is an explanatory diagram showing an example of the operation sequence by the operation of the power supply system concerning the same embodiment. 同実施の形態に係る電力供給システムの動作による動作シーケンスの一例を示す説明図である。It is an explanatory diagram showing an example of the operation sequence by the operation of the power supply system concerning the same embodiment. 目標電力量と累積電力量の変化の一例を示す説明図である。It is an explanatory view showing an example of change of target electric energy and accumulated electric energy. 同実施の形態の効果を説明するための説明図である。It is an explanatory view for explaining the effect of the embodiment.

以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.

なお、説明は以下の順序で行うものとする。
1.本開示の実施の形態
1.1.構成例
1.2.動作例
2.まとめ
Note that the explanation will be given in the following order.
1. Embodiments of the present disclosure 1.1. Configuration example 1.2. Operation example 2. summary

<1.本開示の実施の形態>
[1.1.構成例]
まず、本開示の実施の形態に係る電力供給システムの全体構成例を説明する。図1は、本開示の実施の形態に係る電力供給システムの全体構成例を示す説明図である。以下、図1を用いて本開示の実施の形態に係る電力供給システムの全体構成例について説明する。
<1. Embodiments of the present disclosure>
[1.1. Configuration example]
First, an example of the overall configuration of a power supply system according to an embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram showing an example of the overall configuration of a power supply system according to an embodiment of the present disclosure. Hereinafter, an example of the overall configuration of a power supply system according to an embodiment of the present disclosure will be described using FIG. 1.

本開示の実施の形態に係る電力供給システムは、交流電力系統1を通じた家庭等の拠点間の電力融通を可能とするシステムである。拠点間の電力融通は、電力管理装置(Power Management Center;PMCとも称する)10によって制御される。図1には、3つの柱上トランス20a、20b、20cが示されている。本実施形態では、同一の柱上トランスの配下にある拠点同士での電力融通が最も効果的であるが、柱上トランスを超えた電力融通も当然に可能である。電力管理装置10は、通信線COMを介して、交流電力計(AMR)30で測定された交流電力系統1の電流値を取得する。 The power supply system according to the embodiment of the present disclosure is a system that enables power interchange between bases such as homes through the AC power system 1. Power interchange between bases is controlled by a power management center (also referred to as PMC) 10. FIG. 1 shows three pillar transformers 20a, 20b, and 20c. In this embodiment, power interchange between bases under the same pole transformer is most effective, but power interchange beyond the pole transformer is of course possible. The power management device 10 acquires the current value of the AC power system 1 measured by the AC power meter (AMR) 30 via the communication line COM.

図1に示した構成において、交流電力系統1を通じた電力融通が可能な拠点は、拠点A-1、A-3、B-1、C-2である。拠点A-1を例にして説明すれば、拠点A-1は、電力制御装置(Power Control Device;PCDとも称する)100a、双方向直流交流変換器(Power Conditioning System;PCS)200a、交流電力計300a、蓄電装置400a、及び、太陽光発電装置500aを含む(なお以下の説明においては、単に、それぞれ電力制御装置100、双方向直流交流変換器200、交流電力計300、蓄電装置400、及び、太陽光発電装置500と表記されることもある)。 In the configuration shown in FIG. 1, the bases where power can be exchanged through the AC power system 1 are bases A-1, A-3, B-1, and C-2. To explain base A-1 as an example, base A-1 includes a power control device (also referred to as PCD) 100a, a bidirectional DC/AC converter (Power Conditioning System; PCS) 200a, and an AC wattmeter. 300a, a power storage device 400a, and a solar power generation device 500a (in the following description, the power control device 100, bidirectional DC/AC converter 200, AC wattmeter 300, power storage device 400, and (Sometimes referred to as a solar power generation device 500).

電力制御装置100aは、拠点A-1と、他の拠点(例えば、拠点A-3)との間の電力融通を制御する装置である。例えば、蓄電装置400aに蓄えられている電力が少なくなってきており、他の拠点に対して電力を融通してもらいたい場合は、電力制御装置100aは、通信線COMを通じて電力管理装置10に電力の融通を要求する。電力制御装置100aは、電力管理装置10から融通指示を受信すると、双方向直流交流変換器200aを制御して、交流電力系統1を通じた電力の融通を受ける。 The power control device 100a is a device that controls power exchange between base A-1 and other bases (for example, base A-3). For example, if the power stored in the power storage device 400a is running low and you want to request power to be shared with another base, the power control device 100a sends the power to the power management device 10 via the communication line COM. request for flexibility. When the power control device 100a receives the accommodation instruction from the power management device 10, it controls the bidirectional DC/AC converter 200a to receive power accommodation through the AC power system 1.

蓄電装置400aに蓄えられている電力が多くなってきており、他の拠点に対して電力を融通することが出来る場合も同様である。この場合は、電力制御装置100aは、通信線COMを通じて電力管理装置10に電力が融通可能である旨を通知する。電力制御装置100aは、電力管理装置10から融通指示を受信すると、双方向直流交流変換器200aを制御して、交流電力系統1へ電力を供給する。 The same applies when the power stored in the power storage device 400a is increasing and the power can be exchanged with other bases. In this case, the power control device 100a notifies the power management device 10 through the communication line COM that power is flexible. Upon receiving the accommodation instruction from the power management device 10, the power control device 100a controls the bidirectional DC/AC converter 200a to supply power to the AC power system 1.

電力制御装置100aは、他の拠点との間で電力の融通が行われる際に、実際に融通が行われた電力量の情報を取得する。交流電力系統1で供給される電力は、電圧が必ずしも一定では無く、電圧の変動の結果、予定していた電力量(予定電力量)を融通することが出来ない場合がある。そこで、電力制御装置100aは、実際に融通が行われた電力量(実融通電力量)の情報を取得して、電力管理装置10に実融通電力量の情報を送信する。ここで予定電力量と実融通電力量との差が所定の閾値以上であった場合、電力管理装置10は、改めてその差分を補正する電力融通が当該拠点間で行われるよう指示する。 The power control device 100a acquires information on the amount of power actually exchanged when power is exchanged with another base. The voltage of the power supplied by the AC power system 1 is not necessarily constant, and as a result of voltage fluctuations, the planned amount of power (scheduled amount of power) may not be flexible. Therefore, the power control device 100a acquires information on the amount of power that has actually been accommodated (actual amount of interchanged power), and transmits the information on the actual amount of interchanged power to the power management device 10. Here, if the difference between the planned power amount and the actual interchanged power amount is equal to or greater than a predetermined threshold value, the power management device 10 instructs that power interchange to correct the difference be performed again between the bases.

交流電力系統1の電圧は、交流電力計から先に繋がっている負荷の変動や、太陽光発電装置の発電量により変化する。しかし、電力制御装置100aは、その電圧を双方向直流交流変換器200aの制御電流の計算には用いず、想定基準電圧のみを制御電流の計算に用いる。交流電力計の積算電力値は、実電圧と実電流に力率の積で計算される実効電力累積値が出力されるので、電力制御装置100aは、融通開始時の累積電力を保持し、また、融通終了時の交流電力計からの累積値を読み出し、実際に融通された電力量を計算する。 The voltage of the AC power system 1 changes depending on changes in the load connected from the AC wattmeter and the amount of power generated by the solar power generation device. However, the power control device 100a does not use this voltage to calculate the control current of the bidirectional DC/AC converter 200a, but uses only the assumed reference voltage to calculate the control current. Since the AC wattmeter outputs the cumulative power value calculated by multiplying the actual voltage, the actual current, and the power factor, the power control device 100a retains the cumulative power at the start of the interchange, and , the cumulative value from the AC wattmeter at the end of the interchange is read out, and the amount of power actually interchanged is calculated.

双方向直流交流変換器200aは、交流の電力を直流の電力に、また直流の電力を交流の電力に変換する機能を持った変換器である。双方向直流交流変換器200aは、他の拠点との間で電力の融通が行われる際に、電力制御装置100aの制御により動作する。双方向直流交流変換器200aは、他の拠点との間で電力の融通が行われる際に、交流電力の電流値をモニタして、そのモニタした電流値を用いて入出力電流を制御する。 The bidirectional DC/AC converter 200a is a converter that has the function of converting AC power to DC power and converting DC power to AC power. The bidirectional DC/AC converter 200a operates under the control of the power control device 100a when power is exchanged with other locations. The bidirectional DC/AC converter 200a monitors the current value of AC power when power is exchanged with another base, and controls input/output current using the monitored current value.

交流電力計300aは、交流電力系統1から拠点へ供給された電力や、逆に拠点から交流電力系統1へ出力された電力を計測する計測器である。電力制御装置100aは、交流電力計300aから情報を取得することで、実融通電力量の情報を得ることが出来る。 The AC power meter 300a is a measuring device that measures the power supplied from the AC power system 1 to the base, and conversely the power output from the base to the AC power system 1. The power control device 100a can obtain information on the actual interchangeable power amount by obtaining information from the AC wattmeter 300a.

本実施形態では、電力会社の1kWH電力価格単位をCp、送電側と受電側の二者間で合意した価格単位をCaとし、Cp>Caの状況で、融通期間Txで、送電側の逆潮流電力Psと受電側の電力PrがPs<Prとなった場合は、受電側がその差分を電力価格単位Cpで電力会社から購入したこととする。一方、Ps>Prとなった場合は、その差分は電力価格単位Caで電力会社が電力を購入したこととする清算方式とする。 In this embodiment, the power company's 1kWH power price unit is Cp, the price unit agreed between the power transmission side and the power reception side is Ca, and in a situation where Cp>Ca, the reverse power flow on the power transmission side is When the power Ps and the power Pr on the power receiving side are Ps<Pr, it is assumed that the power receiving side has purchased the difference from the electric power company in the power price unit Cp. On the other hand, when Ps>Pr, a settlement method is used in which the difference is assumed to be that the power company purchased power in the power price unit Ca.

図2は、2つの拠点を抜き出して電力供給システムの構成例を示した説明図である。図2には、拠点A-1と拠点B-1の2つの拠点が示されている。なお図2において、拠点A-1には2つの負荷50a、50cが存在するが、負荷50aは交流の電力を使用し、負荷50cは直流の電力を使用する。また図2において拠点B-2には負荷50bと交流発電機600が示されている。負荷50bは交流の電力を使用する。 FIG. 2 is an explanatory diagram showing an example of the configuration of the power supply system by extracting two bases. FIG. 2 shows two bases, base A-1 and base B-1. Note that in FIG. 2, there are two loads 50a and 50c at the base A-1, and the load 50a uses AC power, and the load 50c uses DC power. Further, in FIG. 2, a load 50b and an alternator 600 are shown at base B-2. The load 50b uses AC power.

電力制御装置100a、100fは、それぞれ、発電装置の発電スケジュール(例えば太陽光発電装置500aの発電スケジュール)、電力消費スケジュール、電力の売電価格、電力の購入価格などを規定したシナリオを読み込む。そのシナリオと、蓄電装置400a、400fの蓄電量とに基づき、電力の融通を電力管理装置10に申し込む。 The power control devices 100a and 100f each read a scenario that defines a power generation schedule for a power generation device (for example, a power generation schedule for the solar power generation device 500a), a power consumption schedule, a power sales price, a power purchase price, and the like. Based on the scenario and the amount of power stored in power storage devices 400a and 400f, an application is made to power management device 10 for power interchange.

図3は、シナリオの一例を示す説明図である。図3には、シナリオとして、拠点での時系列での電力消費量と、蓄電装置の時系列での最大蓄電量(Max SOC)及び最低蓄電量(Min SOC)が示されている。電力制御装置100aは、このシナリオを参照して、蓄電装置400aの電力量が余剰であると考えられれば売電を申し込み、蓄電装置400aの電力量が不足していると考えられれば買電を申し込む。また図3に示したシナリオには、電力会社から交流電力系統1を通じて電力を購入する際の価格(Grid価格)が高い時間帯は、電力会社からの購入を抑制し、Grid価格が安い時間帯は、電力会社から購入するような設定がなされている。 FIG. 3 is an explanatory diagram showing an example of a scenario. FIG. 3 shows, as a scenario, the power consumption in time series at the base, the maximum amount of power storage (Max SOC) and the minimum amount of power storage (Min SOC) in time series of the power storage device. Referring to this scenario, the power control device 100a applies for power sale if the amount of power in the power storage device 400a is considered to be surplus, and requests power purchase if the amount of power in the power storage device 400a is considered to be insufficient. apply. In addition, in the scenario shown in Figure 3, during times when the price (Grid price) when purchasing electricity from a power company through AC power system 1 is high, purchases from the power company are suppressed, and during times when the Grid price is low. is set up to be purchased from the electric power company.

電力管理装置10は、通信線COMで接続された各々の電力制御装置からの要求に応じて、電力制御装置間の電力融通可能量計算を行い、融通する電力パターンと同期させた融通スケジュールをそれぞれの電力制御装置に送信する。融通する電力パターンとは、例えば1.0kWhの電力を30分間融通する、というようなものである。 The power management device 10 calculates the amount of power accommodating between the power control devices in response to a request from each power control device connected by the communication line COM, and creates a power accommodating schedule synchronized with the power pattern to be accommodated. power control device. The flexible power pattern is, for example, one in which 1.0 kWh of power is flexible for 30 minutes.

電力制御装置100aは、電力管理装置10から受け取った電力パターンと融通スケジュールに従って双方向直流交流変換器200aの電流制御パターンを計算する。与えられた電力パターンから、その双方向直流交流変換器200aが接続されている交流電力系統1の基準電圧と基準力率とを基に、電流量を計算する。従って交流電力系統1の基準電圧が200Vの場合と100Vの場合では、双方向直流交流変換器200aの電流量が倍違うことになる。 The power control device 100a calculates a current control pattern for the bidirectional DC/AC converter 200a according to the power pattern and accommodation schedule received from the power management device 10. From the given power pattern, the amount of current is calculated based on the reference voltage and reference power factor of the AC power system 1 to which the bidirectional DC/AC converter 200a is connected. Therefore, when the reference voltage of the AC power system 1 is 200V and when it is 100V, the amount of current flowing through the bidirectional DC/AC converter 200a is twice as different.

電力制御装置100aは、電力管理装置10で計算された電力パターンに従って双方向直流交流変換器200aの電流制御を行う。ここで、電流計ir1より内側に接続された負荷の消費は融通電力には含まないように、電力融通の制御が行われる。従って電力制御装置100aは、電力融通が無い場合で、負荷が電力を消費しているときは、電流計ir1が常に0Aとなる様、双方向直流交流変換器200aを制御する。 The power control device 100a performs current control of the bidirectional DC/AC converter 200a according to the power pattern calculated by the power management device 10. Here, the power interchange is controlled so that the consumption of the load connected inside the ammeter ir1 is not included in the interchangeable power. Therefore, when there is no power interchange and the load is consuming power, the power control device 100a controls the bidirectional DC/AC converter 200a so that the ammeter ir1 is always 0A.

本開示の実施の形態に係る電力供給システムの特徴の一つは、図1に示したように、電力制御装置が設けられている拠点と、設けられていない拠点とを混在させることが出来ることである。すなわち、電力制御装置が設けられている拠点は、交流電力系統1から電力の供給を受けることが出来るだけでなく、電力制御装置が設けられている他の拠点との間で電力融通が可能である。一方、電力制御装置が設けられていない拠点は、交流電力系統1から電力の供給を受けるのみであるが、電力制御装置が設けられている拠点からの電力供給を受けることは無く、また電力制御装置が設けられている拠点からの電力供給に影響を与えることも無い。 One of the characteristics of the power supply system according to the embodiment of the present disclosure is that, as shown in FIG. 1, bases where a power control device is installed and bases where a power control device is not installed can coexist. It is. In other words, a base where a power control device is installed can not only receive power supply from the AC power system 1, but also be able to exchange power with other bases where a power control device is installed. be. On the other hand, bases that are not equipped with a power control device only receive power from the AC power system 1, but do not receive power from bases that are equipped with a power control device, and It also does not affect the power supply from the base where the device is installed.

以上、本開示の実施の形態に係る電力供給システムの全体構成例を説明した。続いて、本開示の実施の形態に係る電力制御装置の機能構成例について説明する。 The overall configuration example of the power supply system according to the embodiment of the present disclosure has been described above. Next, an example of the functional configuration of the power control device according to the embodiment of the present disclosure will be described.

図4は、本開示の実施の形態に係る電力制御装置100の機能構成例を示す説明図である。以下、図4を用いて本開示の実施の形態に係る電力制御装置100の機能構成例について説明する。 FIG. 4 is an explanatory diagram showing an example of a functional configuration of power control device 100 according to an embodiment of the present disclosure. Hereinafter, a functional configuration example of the power control device 100 according to the embodiment of the present disclosure will be described using FIG. 4.

図4に示したように、本開示の実施の形態に係る電力制御装置100は、融通パターン生成部110と、電流制御部120と、電力量取得部130と、通知部140と、を含んで構成される。 As shown in FIG. 4, the power control device 100 according to the embodiment of the present disclosure includes an accommodation pattern generation section 110, a current control section 120, a power amount acquisition section 130, and a notification section 140. configured.

融通パターン生成部110は、シナリオを読み込み、また蓄電装置400の蓄電量(State Of Charge;SOC)を取得して、電力の融通パターンを生成する。生成した融通パターンは、例えば通知部140によって電力管理装置10に送られる。 The accommodation pattern generation unit 110 reads the scenario, obtains the amount of stored electricity (State of Charge; SOC) of the power storage device 400, and generates an electricity accommodation pattern. The generated accommodation pattern is sent to the power management device 10 by the notification unit 140, for example.

電流制御部120は、電力管理装置10からの電力制御指示に従って、双方向直流交流変換器200に対して、交流電力系統1との間の入出力電流を制御する。 The current control unit 120 controls the input/output current between the bidirectional DC/AC converter 200 and the AC power system 1 according to a power control instruction from the power management device 10 .

電力量取得部130は、電力管理装置10からの電力制御指示に基づき、双方向直流交流変換器200が入出力した、電力管理装置10からの電力制御指示に示された電力融通期間における実融通電力量の情報を取得する。具体的には、電力量取得部130は、電力融通期間の開始時刻における、交流電力計300aが計測した電力量と、電力融通期間の終了時刻における、交流電力計300aが計測した電力量と、を取得する。 Based on the power control instruction from the power management device 10, the power amount acquisition unit 130 calculates the actual power interchange period input/output by the bidirectional DC/AC converter 200 and indicated in the power control instruction from the power management device 10. Get power amount information. Specifically, the power amount acquisition unit 130 obtains the amount of power measured by the AC wattmeter 300a at the start time of the power interchange period, the amount of power measured by the AC wattmeter 300a at the end time of the power interchange period, get.

通知部140は、電力管理装置10に対する通知を実行する。例えば、通知部140は、融通パターン生成部110が生成した融通パターンを電力管理装置10に通知する処理を行う。また例えば、通知部140は、電力融通期間における、電力量取得部130が取得した実融通電力量の情報を電力管理装置10に通知する処理を行う。通知部140が、電力融通期間における実融通電力量の情報を電力管理装置10に通知することで、電力管理装置10は、電力融通期間における予定融通電力量と、実融通電力量との差分を補正するための電力融通を、電力融通を行った拠点の電力制御装置100に指示することが出来る。 The notification unit 140 performs notification to the power management device 10. For example, the notification unit 140 performs a process of notifying the power management device 10 of the accommodation pattern generated by the accommodation pattern generation unit 110. For example, the notification unit 140 performs a process of notifying the power management device 10 of information on the actual interchangeable power amount acquired by the power amount acquisition unit 130 during the power interchange period. The notification unit 140 notifies the power management device 10 of the information on the actual power interchange amount during the power interchange period, so that the power management device 10 calculates the difference between the planned interchange power amount and the actual interchange power amount during the power interchange period. Power accommodation for correction can be instructed to the power control device 100 of the base that performed the power accommodation.

本開示の実施の形態に係る電力制御装置100は、係る構成を有することで、電力融通パターンを生成して電力管理装置10に通知するとともに、電力融通期間における実融通電力量の情報を電力管理装置10に通知することができる。そして本開示の実施の形態に係る電力制御装置100は、このように動作することで、仮に交流電力系統1の電圧が変動し、電力融通時の予定融通電力量と実融通電力量とに差が生じても、電力管理装置10における電力料金の決済時に、電力量の差に基づく電力料金の差額分について補正を行うことが容易となる。 By having such a configuration, the power control device 100 according to the embodiment of the present disclosure generates a power interchange pattern and notifies the power management device 10, and also manages the information on the actual interchanged power amount during the power interchange period. Device 10 may be notified. By operating in this manner, the power control device 100 according to the embodiment of the present disclosure causes a change in the voltage of the AC power system 1 and a difference between the planned interchangeable power amount and the actual interchangeable power amount at the time of power interchange. Even if this occurs, it becomes easy to correct the difference in the power fee based on the difference in the amount of power when paying the power fee in the power management device 10.

例えば、拠点A-1が受電する際の予定融通電力量が1.0kWhであるが、交流電力系統1の電圧が変動し、電力融通時の実融通電力量が0.9kWhであったとする。0.1kWh分の差分が生じるが、その差分の情報は電力管理装置10が把握することが出来る。電力管理装置10はその差分について価格を下げてもよく、後にその差分について再度電力融通を対象の拠点の電力制御装置100に指示しても良い。 For example, suppose that the planned interchangeable power amount when the base A-1 receives power is 1.0 kWh, but the voltage of the AC power system 1 fluctuates, and the actual interchangeable power amount at the time of power interchange is 0.9 kWh. Although a difference of 0.1 kWh occurs, the information on the difference can be grasped by the power management device 10. The power management device 10 may reduce the price for the difference, and may later instruct the power control device 100 of the target base to re-accommodate power for the difference.

以上、図4を用いて本開示の実施の形態に係る電力制御装置100の機能構成例を説明した。続いて、本開示の実施の形態に係る電力供給システムの動作例を説明する。 The functional configuration example of the power control device 100 according to the embodiment of the present disclosure has been described above using FIG. 4. Next, an example of the operation of the power supply system according to the embodiment of the present disclosure will be described.

[1.2.動作例]
図5は、本開示の実施の形態に係る電力管理装置10の動作例を示す流れ図である。以下、図5を用いて本開示の実施の形態に係る電力管理装置10の動作例について説明する。
[1.2. Operation example]
FIG. 5 is a flowchart illustrating an example of the operation of the power management device 10 according to the embodiment of the present disclosure. Hereinafter, an example of the operation of the power management device 10 according to the embodiment of the present disclosure will be described using FIG. 5.

電力管理装置10は、動作を開始すると、まず、電力制御装置100からの電力融通の要求があるかどうか判断する(ステップS101)。電力管理装置10は、電力制御装置100からの電力融通の要求があるまで待機する(ステップS101、No)。 When the power management device 10 starts operating, it first determines whether there is a request for power interchange from the power control device 100 (step S101). The power management device 10 waits until there is a request for power interchange from the power control device 100 (step S101, No).

電力制御装置100からの電力融通の要求があると(ステップS101、Yes)、他の電力制御装置100からの電力融通の要求と合致しているかどうか判断する(ステップS102)。電力制御装置100からの電力融通の要求には、電力提供可能時間、最低電力、最高電力、電力量、価格範囲の情報が含まれる。 When there is a request for power accommodation from the power control device 100 (Step S101, Yes), it is determined whether it matches a request for power accommodation from another power control device 100 (Step S102). The request for power accommodation from the power control device 100 includes information on available power supply time, minimum power, maximum power, amount of power, and price range.

なお、図5では、電力管理装置10は、他の電力制御装置100からの電力融通の要求と合致しているかどうかを判断しているが、交流電力系統1に電力を供給する電力会社も電力融通の相手として選ばれうる。 Note that in FIG. 5, the power management device 10 determines whether the request for power interchange from another power control device 100 is met, but the power company that supplies power to the AC power system 1 also You can be chosen as a flexible partner.

他の電力制御装置100からの電力融通の要求と合致していなければ(ステップS102、No)、電力管理装置10は、取得した電力融通の要求を融通予約リストに加え(ステップS103)、ステップS101の、融通要求を待ち受ける処理に戻る。 If it does not match the request for power accommodation from another power control device 100 (Step S102, No), the power management device 10 adds the obtained request for power interchange to the accommodation reservation list (Step S103), and in Step S101 The process returns to the process of waiting for an accommodation request.

一方、電力制御装置100からの電力融通の要求と合致していれば(ステップS102、Yes)、電力管理装置10は、融通ペア間の融通パターンと開始時間を設定し、合致した融通ペアにデータを送信する(ステップS104)。 On the other hand, if it matches the power accommodation request from the power control device 100 (step S102, Yes), the power management device 10 sets the accommodation pattern and start time between the accommodation pairs, and provides data to the matching accommodation pair. (Step S104).

例えば、電力管理装置10は、拠点A-1の電力制御装置100aと、拠点B-1の電力制御装置100eとを融通ペアとして決定すると、電力制御装置100a、100eに、電力融通パターンと開始時間の情報を送信する。 For example, when the power management device 10 determines the power control device 100a of base A-1 and the power control device 100e of base B-1 as an accommodation pair, the power management device 10 sends the power interchange pattern and start time to the power control devices 100a and 100e. Send information.

その後、開始時間になると、電力管理装置10が決定した融通ペア同士での電力融通が始まる。そして、電力管理装置10は、電力融通を行っている拠点の電力制御装置100から、融通終了通知を受信するまで待機する(ステップS105)。融通終了通知を受信すると(ステップS105、Yes)、電力管理装置10は、融通した2台の電力制御装置100からの終了情報を受け、予定融通電力量と実融通電力量との差分を取得する(ステップS106)。 Thereafter, when the start time arrives, power accommodation begins between the accommodation pairs determined by the power management device 10. Then, the power management device 10 waits until it receives a notification of completion of power interchange from the power control device 100 of the base performing power interchange (step S105). Upon receiving the accommodation end notification (step S105, Yes), the power management device 10 receives the end information from the two accommodating power control devices 100, and obtains the difference between the planned interchange power amount and the actual interchange power amount. (Step S106).

電力管理装置10は、予定融通電力量と実融通電力量との差分が規定以内かどうか判断し(ステップS107)、規定以内であれば(ステップS107、Yes)、ステップS101の、融通要求を待ち受ける処理に戻る。一方、規定以内で無ければ(ステップS107、No)、続いて電力管理装置10は、差分時に融通補正を行う設定になっているかどうか判断する(ステップS108)。 The power management device 10 determines whether or not the difference between the planned interchange power amount and the actual interchange power amount is within the specified range (step S107), and if it is within the specified range (step S107, Yes), it waits for an accommodation request in step S101. Return to processing. On the other hand, if it is not within the specified range (step S107, No), then the power management device 10 determines whether or not it is set to perform accommodation correction at the time of difference (step S108).

融通補正を行う設定になっていなければ(ステップS108、No)、電力管理装置10は、ステップS101の、融通要求を待ち受ける処理に戻る。一方、融通補正を行う設定になっていれば(ステップS108、Yes)、電力管理装置10は、融通補正値を計算し(ステップS109)、融通ペアに融通補正値のデータを送信する(ステップS104)。 If the setting is not to perform accommodation correction (step S108, No), the power management device 10 returns to the process of waiting for an accommodation request in step S101. On the other hand, if the setting is to perform the accommodation correction (step S108, Yes), the power management device 10 calculates the accommodation correction value (step S109), and transmits the data of the accommodation correction value to the accommodation pair (step S104). ).

以上、図5を用いて本開示の実施の形態に係る電力管理装置10の動作例について説明した。続いて、本開示の実施の形態に係る電力制御装置100の動作例について説明する。 The operation example of the power management device 10 according to the embodiment of the present disclosure has been described above using FIG. 5. Next, an example of the operation of the power control device 100 according to the embodiment of the present disclosure will be described.

図6は、本開示の実施の形態に係る電力制御装置100の動作例を示す流れ図である。以下、図6を用いて本開示の実施の形態に係る電力制御装置100の動作例について説明する。 FIG. 6 is a flowchart illustrating an example of the operation of the power control device 100 according to the embodiment of the present disclosure. Hereinafter, an example of the operation of the power control device 100 according to the embodiment of the present disclosure will be described using FIG. 6.

電力制御装置100は、動作を開始すると、まずシナリオや蓄電装置400のSOCを読み込み、将来必要となる電力量の計算を行う(ステップS111)。そして電力制御装置100は、その電力量の計算の結果、蓄電装置400に蓄えられる電力と、負荷などで必要となる消費電力の過不足が規定以上であるか判断する(ステップS112)。 When the power control device 100 starts operating, it first reads the scenario and the SOC of the power storage device 400, and calculates the amount of power that will be required in the future (step S111). Then, as a result of the power amount calculation, power control device 100 determines whether the excess or deficiency between the power stored in power storage device 400 and the power consumed by the load or the like is greater than or equal to a specified value (step S112).

過不足が規定以上であれば(ステップS112、Yes)、電力制御装置100は、融通パターン生成部110で電力融通パターンを生成し、電力管理装置10へ送信する(ステップS113)。この際、電力制御装置100は、電力を融通する際に、売電価格の情報を電力管理装置10へ通知しても良い。一方、過不足が規定以上でなければ(ステップS112、No)、電力制御装置100は、ステップS113の処理をスキップする。 If the excess or deficiency is equal to or greater than the specified value (Step S112, Yes), the power control device 100 generates a power accommodation pattern in the accommodation pattern generation unit 110, and transmits it to the power management device 10 (Step S113). At this time, the power control device 100 may notify the power management device 10 of information on the power selling price when accommodating power. On the other hand, if the excess or deficiency is not equal to or greater than the specified value (step S112, No), the power control device 100 skips the process of step S113.

続いて電力制御装置100は、電力管理装置10からの融通指示があったかどうかを判断する(ステップS114)。電力管理装置10からの融通指示があった場合は(ステップS114、Yes)、電力制御装置100は、電力管理装置10からの融通指示に基づいて双方向直流交流変換器200を制御する。また電力制御装置100は、電力融通の開始時及び終了時の交流電力計300の値を記録し、差分を電力管理装置10に通知する(ステップS115)。一方、電力管理装置10からの融通指示が無い場合は(ステップS114、No)、電力制御装置100は、ステップS111の処理に戻る。 Next, the power control device 100 determines whether there is an accommodation instruction from the power management device 10 (step S114). If there is an accommodation instruction from the power management device 10 (step S114, Yes), the power control device 100 controls the bidirectional DC/AC converter 200 based on the accommodation instruction from the power management device 10. The power control device 100 also records the values of the AC wattmeter 300 at the start and end of power interchange, and notifies the power management device 10 of the difference (step S115). On the other hand, if there is no accommodation instruction from the power management device 10 (step S114, No), the power control device 100 returns to the process of step S111.

電力制御装置100は、双方向直流交流変換器200を制御する際に、制御電流値icを双方向直流交流変換器200aに通知する。 When controlling the bidirectional DC/AC converter 200, the power control device 100 notifies the bidirectional DC/AC converter 200a of the control current value ic.

以上、図6を用いて本開示の実施の形態に係る電力制御装置100の動作例について説明した。続いて、本開示の実施の形態に係る双方向直流交流変換器200の動作例について説明する。 The operation example of the power control device 100 according to the embodiment of the present disclosure has been described above using FIG. 6. Next, an example of the operation of the bidirectional DC/AC converter 200 according to the embodiment of the present disclosure will be described.

図7は、本開示の実施の形態に係る双方向直流交流変換器200の動作例を示す流れ図である。以下、図7を用いて本開示の実施の形態に係る双方向直流交流変換器200の動作例について説明する。 FIG. 7 is a flowchart illustrating an example of the operation of the bidirectional DC/AC converter 200 according to the embodiment of the present disclosure. Hereinafter, an example of the operation of the bidirectional DC/AC converter 200 according to the embodiment of the present disclosure will be described using FIG. 7.

双方向直流交流変換器200は、動作を開始すると、まず電力制御装置100からの制御電流値icを入手する(ステップS121)。続いて双方向直流交流変換器200は、電力融通を実行している際に、流れている電流の電流値irが制御電流値icの規定内かどうか判断する(ステップS122)。 When the bidirectional DC/AC converter 200 starts operating, it first obtains the control current value ic from the power control device 100 (step S121). Subsequently, the bidirectional DC/AC converter 200 determines whether the current value ir of the flowing current is within the regulation of the control current value ic while executing power interchange (step S122).

流れている電流の電流値irが制御電流値icの規定内であれば(ステップS122、Yes)、双方向直流交流変換器200は、ステップS121の処理に戻る。一方、流れている電流の電流値irが制御電流値icの規定内でなければ(ステップS122、No)、双方向直流交流変換器200は、制御目標値を変更して、電流値irが制御電流値icの規定内となるように動作する(ステップS123)。 If the current value ir of the flowing current is within the regulation of the control current value ic (step S122, Yes), the bidirectional DC/AC converter 200 returns to the process of step S121. On the other hand, if the current value ir of the flowing current is not within the regulation of the control current value ic (step S122, No), the bidirectional DC/AC converter 200 changes the control target value so that the current value ir becomes the control current value ic. It operates so that the current value ic falls within the specified range (step S123).

続いて双方向直流交流変換器200は、制御目標値を変更した結果、流れている電流の電流値irが制御電流値icの規定内かどうか判断する(ステップS124)。流れている電流の電流値irが制御電流値icの規定内であれば(ステップS124、Yes)、双方向直流交流変換器200は、ステップS121の処理に戻る。一方、流れている電流の電流値irが制御電流値icの規定内でなければ(ステップS124、No)、双方向直流交流変換器200は、逆潮電流が多い場合は発電機(例えば交流発電機600)の電流抑制を行い、受電電流が多い場合は負荷(例えば負荷50b)の電流抑制を行う(ステップS125)。 Subsequently, the bidirectional DC/AC converter 200 determines whether the current value ir of the flowing current is within the regulation of the control current value ic as a result of changing the control target value (step S124). If the current value ir of the flowing current is within the regulation of the control current value ic (step S124, Yes), the bidirectional DC/AC converter 200 returns to the process of step S121. On the other hand, if the current value ir of the flowing current is not within the regulation of the control current value ic (step S124, No), the bidirectional DC/AC converter 200 converts the current into a generator (for example, an AC generator) if the reverse current is large. (step S125).

以上、図7を用いて本開示の実施の形態に係る双方向直流交流変換器200の動作例について説明した。続いて、本開示の実施の形態に係る電力供給システムの動作による動作シーケンスの一例を説明する。 The operation example of the bidirectional DC/AC converter 200 according to the embodiment of the present disclosure has been described above using FIG. 7 . Next, an example of an operation sequence of the operation of the power supply system according to the embodiment of the present disclosure will be described.

図8は、本開示の実施の形態に係る電力供給システムの動作による動作シーケンスの一例を示す説明図である。図8に示したのは、本開示の実施の形態に係る電力供給システムに含まれる2つの拠点A-1、B-1の間で電力融通を行う場合の動作シーケンスを示したものである。 FIG. 8 is an explanatory diagram showing an example of an operation sequence of the operation of the power supply system according to the embodiment of the present disclosure. FIG. 8 shows an operation sequence when power is exchanged between two bases A-1 and B-1 included in the power supply system according to the embodiment of the present disclosure.

予め2つの拠点A-1、B-1で電力融通パターンが生成され、2つの拠点A-1、B-1の間で電力融通の要求が合致していると電力管理装置10が判断したとする。時刻t1から時刻t2の間、電力融通パターンに基づいて電力融通が実行される。ここで、拠点A-1は20アンペアで30分間の予定で電力を融通してもらうとし、拠点B-1は10アンペアで30分間の予定で電力を供給するとする。 When the power management device 10 determines that a power interchange pattern has been generated in advance between the two bases A-1 and B-1, and that the request for power interchange is matched between the two bases A-1 and B-1. do. From time t1 to time t2, power accommodation is performed based on the power accommodation pattern. Here, it is assumed that base A-1 is supplied with power at 20 amperes for a period of 30 minutes, and base B-1 is supplied with power at 10 amperes for a period of 30 minutes.

しかし、図8に示したように、交流電力系統1の電圧は安定しないことがあり得る。一定の電流を引き込んでいる場合に電圧が変化すれば、供給を受ける、また供給する電力量が変動する。従って、例えば1kWhの電力を融通する場合であっても、拠点A-1は0.9kWhの電力しか供給出来ず、また拠点B-1は1.1kWhの電力を受電してしまう場合があり得る。 However, as shown in FIG. 8, the voltage of the AC power system 1 may not be stable. If the voltage changes when a constant current is being drawn, the amount of power received or supplied will fluctuate. Therefore, even if, for example, 1kWh of power is to be exchanged, base A-1 may be able to supply only 0.9kWh of power, and base B-1 may receive 1.1kWh of power. .

電力管理装置10は、スケジュールされた融通の結果、このような誤差が出てしまい、また、その差が許容される値以上の場合は、交流電力系統1に繋がっている主電力事業者による補填が行われたものと仮定して、その誤差分の電力料金の精算を行う。図8の例では、拠点A-1は0.9kWhの電力を拠点B-1に販売し、拠点B-1は0.9kWhを拠点A-1、B-1の間で合意した価格で購入し、追加の0.2kWhは電力会社からの購入とする。 If such an error occurs as a result of the scheduled accommodation, and if the difference is greater than an allowable value, the power management device 10 determines whether the main electric power company connected to the AC power system 1 should make compensation. Assuming that the error has been made, the electricity charges will be calculated for the error. In the example in Figure 8, base A-1 sells 0.9 kWh of electricity to base B-1, and base B-1 purchases 0.9 kWh at the price agreed between bases A-1 and B-1. However, the additional 0.2kWh will be purchased from the power company.

逆に拠点A-1が予定より電力を多く送電してしまい、拠点B-1が予定より少なく受電した場合、多く放電した量は電力会社の規定価格、または拠点A-1、B-1の間で合意した価格の低い方で販売したものとする。 Conversely, if base A-1 transmits more power than planned and base B-1 receives less power than planned, the amount of discharged will be charged at the power company's specified price or between bases A-1 and B-1. The product shall be sold at the lower price agreed between the parties.

また本実施形態では、この差分を補正するような電力融通を、拠点A-1、B-1の間で改めて実行する。すなわち、拠点A-1は不足する0.1kWhの電力を供給し、拠点B-1は、多く受電した0.1kWhの電力を送電するような電力融通を、電力管理装置10が指示する。図8の例では、時刻t3からt4の間で、拠点B-1が0.1kWhの電力を交流電力系統1に戻し、時刻t5からt6の間で、拠点A-1が0.1kWhの電力を交流電力系統1に送電している。 In addition, in this embodiment, power interchange to correct this difference is executed again between the bases A-1 and B-1. That is, the power management device 10 instructs base A-1 to supply power of 0.1 kWh, which is insufficient, and base B-1 to transmit power of 0.1 kWh, which it received in large quantities. In the example of FIG. 8, between time t3 and t4, base B-1 returns 0.1 kWh of power to AC power system 1, and between time t5 and t6, base A-1 returns 0.1 kWh of power to AC power system 1. is transmitted to AC power system 1.

なお、電力管理装置10は、拠点間の電力融通の際の調停手数料や、融通する経路の長さに伴う送電ロス分の補填電力料金は、規定の計算式により算出して各需要家に請求してもよい。 Note that the power management device 10 calculates arbitration fees when power is exchanged between bases and compensation electricity charges for power transmission losses due to the length of the route to be accommodated using a prescribed calculation formula and bills each customer. You may.

図9は、電源、負荷、バッテリの電流の変化を時系列で示す説明図である。図9には、図1の拠点A-1、B-1、C-2における電流の変化、及び、別の拠点(例えば図1の拠点A-3とする)における交流電力計300、太陽光発電装置500、2つの負荷50、および蓄電装置400の電流の変化の例が示されている。 FIG. 9 is an explanatory diagram showing changes in the currents of the power source, load, and battery in time series. FIG. 9 shows changes in current at bases A-1, B-1, and C-2 in FIG. An example of changes in the currents of power generation device 500, two loads 50, and power storage device 400 is shown.

時刻t1より前に、負荷によって蓄電装置400の電力が使用される。その後、時刻t1からt2の間において、拠点A-3は、拠点A-1から25円/kWhで売電された電力を買っている。この買電により供給される電力の一部は蓄電装置400に蓄えられ、残りは負荷によって使用されている。 Before time t1, the power of power storage device 400 is used by the load. After that, between time t1 and time t2, base A-3 buys the electricity sold from base A-1 at 25 yen/kWh. A part of the power supplied through this power purchase is stored in power storage device 400, and the rest is used by the load.

時刻t2で拠点A-1からの買電は終了し、続いて時刻t3からt4の間において、拠点A-3は、拠点B-1から28円/kWhで売電された電力を買っている。 The power purchase from base A-1 ends at time t2, and subsequently, between time t3 and t4, base A-3 buys the electricity sold from base B-1 at 28 yen/kWh. .

時刻t4で拠点B-1からの買電は終了する。そして時刻t4より前の時点で、太陽光発電装置500による発電が始まり、蓄電装置400は、太陽光発電装置500が発電した電力を蓄えることができる。そして蓄電装置400の蓄電量に余裕が出たので、拠点A-3は、時刻t5からt6の間におい、拠点C-2へ30円/kWhで売電する。 At time t4, power purchase from base B-1 ends. Then, at a time before time t4, power generation by the solar power generation device 500 starts, and the power storage device 400 can store the power generated by the solar power generation device 500. Then, since the power storage device 400 has a surplus in the amount of power stored, the base A-3 sells power to the base C-2 at 30 yen/kWh between times t5 and t6.

これらの拠点A-3の電力の売買は、電力管理装置10により開始時間と終了時間が管理される。その時の電力量は交流電力計300が計算して電力制御装置100から通知される値を使う。そのため、それぞれの拠点の電力価格が違っていても、拠点あたり一台の電力量計で適切に処理できる。図9の例では、拠点A-3の積購買電力価格の合計額は(Pt2-Pt1)×25円+(Pt4-Pt3)×28円-(Pt6-Pt5)×30円となる。この式において、Pt1~Pt6は、それぞれ時刻t1~t6における交流電力計300の値を指す。 The power management device 10 manages the start time and end time of the power buying and selling at these bases A-3. As the amount of power at that time, a value calculated by AC wattmeter 300 and notified from power control device 100 is used. Therefore, even if the electricity prices at each location are different, it can be handled appropriately with one electricity meter per location. In the example of FIG. 9, the total amount of product purchased power prices at base A-3 is (Pt2-Pt1) x 25 yen + (Pt4 - Pt3) x 28 yen - (Pt6 - Pt5) x 30 yen. In this equation, Pt1 to Pt6 refer to the values of AC wattmeter 300 at times t1 to t6, respectively.

電力制御装置100は、電力管理装置10からの電力制御指示で指定された電力融通期間において、電力管理装置10から与えられた目標電力量に対して、定期的に累積電力量を計算し、その差分を随時補正することで、目標電力量と累積電力量との最終的な誤差を低減させるようにしても良い。 The power control device 100 periodically calculates the cumulative power amount with respect to the target power amount given from the power management device 10 during the power interchange period specified by the power control instruction from the power management device 10, and calculates the accumulated power amount. The final error between the target power amount and the cumulative power amount may be reduced by correcting the difference as needed.

図10は、本開示の実施の形態に係る電力制御装置100の動作例を示す流れ図である。以下、図10を用いて本開示の実施の形態に係る電力制御装置100の動作例について説明する。 FIG. 10 is a flowchart illustrating an example of the operation of the power control device 100 according to the embodiment of the present disclosure. Hereinafter, an example of the operation of the power control device 100 according to the embodiment of the present disclosure will be described using FIG. 10.

電力制御装置100は、電力管理装置10からの指示があるまで待機し(ステップS131、No)、電力管理装置10からの指示が到達すると(ステップS131、Yes)、交流電力計300及び電力管理装置10からの情報を取得し、取得したそれぞれの情報を変数に格納する(ステップS132)。ステップS132の処理は、例えば電力量取得部130が実行しうる。 The power control device 100 waits until an instruction from the power management device 10 is received (Step S131, No), and when the instruction from the power management device 10 arrives (Step S131, Yes), the AC wattmeter 300 and the power management device 10 is acquired, and each acquired information is stored in a variable (step S132). The process of step S132 can be executed by the power amount acquisition unit 130, for example.

具体的には、電力制御装置100は交流電力計300の情報から系統電圧値を入手し、その値から平均電圧値を算出して変数Vに保持する。また電力制御装置100は電力管理装置10からの指示電力値を変数Pに保持する。また電力制御装置100は、電力の潮流・逆潮流時間を変数tに保持しておく。 Specifically, the power control device 100 obtains the system voltage value from the information of the AC wattmeter 300, calculates the average voltage value from that value, and stores it in the variable V. Further, the power control device 100 holds the commanded power value from the power management device 10 in a variable P. Further, the power control device 100 holds the power flow/reverse power flow time as a variable t.

続いて電力制御装置100は、変数tが0以下になったかどうか判断する(ステップS133)。ステップS133の処理は、例えば電力量取得部130が実行しうる。変数tが0以下になっていれば(ステップS133、Yes)、電力制御装置100は処理を終了する。一方、変数tが0以下になっていなければ(ステップS133、No)、電力制御装置100は、上記ステップS132で保持した変数P及びt、または後述するステップS135で更新された変数P及びtから、双方向直流交流変換器200の電流値を計算して、双方向直流交流変換器200に指示するとともに、交流電力計300から取得した情報を用いて変数値を更新する(ステップS134)。ステップS134の処理は、例えば電流制御部120が実行しうる。 Subsequently, the power control device 100 determines whether the variable t has become 0 or less (step S133). The process of step S133 can be executed by the power amount acquisition unit 130, for example. If the variable t is less than or equal to 0 (step S133, Yes), the power control device 100 ends the process. On the other hand, if the variable t is not equal to or less than 0 (step S133, No), the power control device 100 uses the variables P and t held in the above step S132 or the variables P and t updated in step S135 described below. , calculates the current value of the bidirectional DC/AC converter 200, instructs the bidirectional DC/AC converter 200, and updates the variable value using the information acquired from the AC wattmeter 300 (step S134). The process of step S134 can be executed by the current control unit 120, for example.

具体的には、電力制御装置100は、変数Pの値とVの値からi=P/Vとして電流値を計算し、そのiの値を双方向直流交流変換器200にセットし制御を行う。また電力制御装置100は、交流電力計300から現在の累積電力量を入手し、変数Wに保持する。 Specifically, the power control device 100 calculates the current value from the value of the variable P and the value of V as i=P/V, sets the value of i to the bidirectional DC/AC converter 200, and performs control. . Furthermore, the power control device 100 obtains the current accumulated power amount from the AC wattmeter 300 and holds it in a variable W.

続いて電力制御装置100は、一定時間Δt待った後に、交流電力計300からの情報を用いて変数値を更新する(ステップS135)。ステップS135の処理は、例えば電力量取得部130が実行しうる。具体的には、電力制御装置100は、ステップS135において一定時間Δt待った後に、交流電力計300からの累積電力量を入手し、変数Wとの差分ΔWhを計算する。また電力制御装置100は、変数tをt=t-Δtとして更新し、また変数PをP=(P×t-ΔWh)/tとして更新する。電力制御装置100は、変数値を更新すると、ステップS133の判断処理に戻る。 Subsequently, the power control device 100 updates the variable value using the information from the AC wattmeter 300 after waiting for a certain period of time Δt (step S135). The process of step S135 can be executed by the power amount acquisition unit 130, for example. Specifically, after waiting for a predetermined time Δt in step S135, the power control device 100 obtains the cumulative power amount from the AC wattmeter 300, and calculates the difference ΔWh with the variable W. Furthermore, the power control device 100 updates the variable t as t=t−Δt, and updates the variable P as P=(P×t−ΔWh)/t. After updating the variable value, the power control device 100 returns to the determination process in step S133.

電力制御装置100は、図10に示した一連の動作を実行することで、電力管理装置10から与えられた目標電力量に対して、定期的に累積電力量を計算し、その差分を随時補正することができる。そして電力制御装置100は、図10に示した一連の動作を実行することで、目標電力量と累積電力量との最終的な誤差を低減させることが可能となる。 By executing the series of operations shown in FIG. 10, the power control device 100 periodically calculates the accumulated power amount with respect to the target power amount given from the power management device 10, and corrects the difference as needed. can do. By executing the series of operations shown in FIG. 10, the power control device 100 can reduce the final error between the target power amount and the accumulated power amount.

図11は、電力管理装置10からの電力制御指示で指定された電力融通期間における、目標電力量と累積電力量の変化の一例を示す説明図である。図11に示したグラフは、横軸に時間を、縦軸に交流電力系統の電圧値、双方向直流交流変換器200の制御電流値、及び電力量を表している。 FIG. 11 is an explanatory diagram showing an example of changes in the target power amount and cumulative power amount during the power interchange period specified by the power control instruction from the power management device 10. In the graph shown in FIG. 11, the horizontal axis represents time, and the vertical axis represents the voltage value of the AC power system, the control current value of the bidirectional DC-AC converter 200, and the amount of electric power.

時刻t1の時点で、目標電力量カーブP1と、累積電力量Psumとの間に差分が生じていることがわかれば、電力制御装置100は、目標電力量を更新するとともに、新たな制御電流値を双方向直流交流変換器200に与えることで、誤差の低減を試みる。 If it is found that a difference has occurred between the target power consumption curve P1 and the cumulative power consumption Psum at time t1, the power control device 100 updates the target power consumption and also sets a new control current value. An attempt is made to reduce the error by applying the following to the bidirectional DC/AC converter 200.

続く時刻t2の時点で、目標電力量カーブP2と、累積電力量Psumとの間に差分が生じていることがわかれば、電力制御装置100は、目標電力量を更新するとともに、新たな制御電流値を双方向直流交流変換器200に与えることで、誤差の低減を試みる。 At the subsequent time t2, if it is found that a difference has occurred between the target power amount curve P2 and the cumulative power amount Psum, the power control device 100 updates the target power amount and also sets a new control current. By supplying the value to the bidirectional DC/AC converter 200, an attempt is made to reduce the error.

続く時刻t3の時点で、目標電力量カーブP3と、累積電力量Psumとの間に差分が生じていることがわかれば、電力制御装置100は、目標電力量を更新するとともに、新たな制御電流値を双方向直流交流変換器200に与えることで、誤差の低減を試みる。 At the subsequent time t3, if it is found that a difference has occurred between the target power amount curve P3 and the cumulative power amount Psum, the power control device 100 updates the target power amount and also sets a new control current. By supplying the value to the bidirectional DC/AC converter 200, an attempt is made to reduce the error.

このように制御を行うことで、電力制御装置100は、電力管理装置10から与えられた目標電力量に対して、定期的に累積電力量を計算し、その差分を随時補正することができる。そして電力制御装置100は、目標電力量と累積電力量との最終的な誤差を低減させることが可能となる。 By controlling in this way, the power control device 100 can periodically calculate the cumulative power amount with respect to the target power amount given from the power management device 10, and correct the difference as needed. Then, the power control device 100 can reduce the final error between the target power amount and the cumulative power amount.

図12は、本開示の実施の形態の効果を示す説明図である。図12には2つの拠点A-1、X-1が示されており、拠点A-1は本開示の実施の形態による構成を備え、拠点X-1は、送電と受電でそれぞれ別の交流電力計を設けている構成を備えている。 FIG. 12 is an explanatory diagram showing the effects of the embodiment of the present disclosure. FIG. 12 shows two bases A-1 and X-1, base A-1 has a configuration according to the embodiment of the present disclosure, and base X-1 has separate AC for power transmission and power reception. It is equipped with a power meter.

買電と売電で料金体系が違うため、拠点X-1では、太陽光発電装置(PV)が発電した電力量を1つの電力量計(AMR2)で計量することで売電料金の計算を行っており、一方、消費電力量は別の電力量計(AMR1)で計量して買電料金の計算を行わなければならない。また拠点X-1では、停電の発生に備え、特定の負荷に対してインバータ(INV)で供給できるようにしているものもあるが、逆潮流はしない方式となっている。 Because the fee structure for purchasing and selling electricity is different, base X-1 calculates the electricity selling fee by measuring the amount of electricity generated by the solar power generation equipment (PV) with one electricity meter (AMR2). On the other hand, electricity consumption must be measured using a separate electricity meter (AMR1) to calculate electricity purchase charges. In addition, at base X-1, in preparation for a power outage, some of the specific loads are made to be supplied by an inverter (INV), but the system does not allow reverse power flow.

これに対して拠点A-1は、売電する時と買電する時の電力量と、融通時間とから電力料金が明確に分かる。そのため、拠点A-1では交流電力計が1つで済むという効果がある。 On the other hand, at base A-1, the electricity rate can be clearly determined from the amount of electricity when selling and buying electricity, and the interchange time. Therefore, the advantage is that base A-1 only needs one AC wattmeter.

<2.まとめ>
以上説明したように本開示の実施の形態によれば、交流電力系統を介して電力を融通し合うことが可能な電力供給システムに設けられる電力制御装置であって、双方向直流交流変換器に対して電流を制御するとともに、融通開始時と終了時の電力量を、中央の電力管理装置に送信する電力制御装置が提供される。本開示の実施の形態に係る電力制御装置は、電力融通時の融通開始時と終了時の電力量を電力管理装置に提供することで、融通が予定された電力量と、実際の融通電力量との差分を把握できる。
<2. Summary>
As described above, according to the embodiments of the present disclosure, there is provided a power control device installed in a power supply system capable of mutually accommodating power via an AC power system, A power control device is provided that controls the current and transmits the amount of power at the start and end of the interchange to a central power management device. The power control device according to the embodiment of the present disclosure provides the power management device with the amount of power at the start and end of the power interchange, thereby determining the amount of power scheduled to be interchanged and the amount of power actually to be interchanged. You can understand the difference between

以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims, and It is understood that these also naturally fall within the technical scope of the present disclosure.

また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Further, the effects described in this specification are merely explanatory or illustrative, and are not limiting. In other words, the technology according to the present disclosure can have other effects that are obvious to those skilled in the art from the description of this specification, in addition to or in place of the above effects.

なお、以下のような構成も本開示の技術的範囲に属する。
(1)
外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、
前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得する電力量取得部と、
前記電力融通期間における、前記電力量取得部が算出した前記実融通電力量の情報を前記電力管理装置に通知する通知部と、
を備える、電力制御装置。
(2)
前記通知部は、電力の融通の必要が生じた場合に前記交流送電線を通じた電力融通を前記電力管理装置に要求する、前記(1)に記載の電力制御装置。
(3)
前記通知部は、所定の電力シナリオに基づいて前記電力管理装置に電力融通を要求する、前記(2)に記載の電力制御装置。
(4)
前記所定の電力シナリオは、電力を使用する負荷による電力消費スケジュールを含む、前記(3)に記載の電力制御装置。
(5)
前記所定の電力シナリオは、電力を発電する発電装置による発電スケジュールを含む、前記(3)に記載の電力制御装置。
(6)
前記発電装置は、太陽光発電装置である、前記(5)に記載の電力制御装置。
(7)
前記所定の電力シナリオは、蓄電池の蓄電量を含む、前記(3)~(6)のいずれかに記載の電力制御装置。
(8)
前記通知部は、前記双方向交直流変換器と接続されている蓄電装置の状態に基づいて前記電力管理装置に電力融通を要求する、前記(2)~(7)のいずれかに記載の電力制御装置。
(9)
前記電流制御部は、前記双方向交直流変換器が接続されている前記交流送電線の基準電圧に基づいて入出力電流を制御する、前記(1)~(8)のいずれかに記載の電力制御装置。
(10)
前記電流制御部は、前記電力融通期間における予定融通電力量と、前記実融通電力量との差分が所定の閾値以上であった場合に、所定のタイミングにおいて差分に相当する電力融通を双方向交直流変換器に対して指示する、前記(1)~(9)のいずれかに記載の電力制御装置。
(11)
前記通知部は、電力を提供する際の売電価格の情報を前記電力管理装置に通知する、前記(1)~(10)のいずれかに記載の電力制御装置。
(12)
外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、
前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを取得し、差分を算出する電力量取得部と、
を備え、
前記電流制御部は、電力量取得部が算出した差分に基づいて前記双方向交直流変換器に対して入出力電流を制御する、電力制御装置。
(13)
前記電力量取得部は、前記電力制御指示で指定された電力融通期間において、前記目標電力量と、前記実融通電力量とを取得し、差分を算出する、前記(12)に記載の電力制御装置。
(14)
外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御することと、
前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得することと、
前記電力融通期間における前記実融通電力量の情報を前記電力管理装置に通知することと、
を含む、電力制御方法。
(15)
外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御することと、
前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを周期的に取得し、差分を算出することと、
前記差分に基づいて前記双方向交直流変換器に対して入出力電流を制御することと、
を含む、電力制御方法。
Note that the following configurations also belong to the technical scope of the present disclosure.
(1)
a current control unit that controls an input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with a power control instruction from an external power management device;
a power amount acquisition unit that acquires the actual interchanged power amount input and outputted by the bidirectional AC/DC converter during the power interchange period based on the power control instruction;
a notification unit that notifies the power management device of information on the actual interchangeable power amount calculated by the power amount acquisition unit during the power interchange period;
A power control device comprising:
(2)
The power control device according to (1), wherein the notification unit requests the power management device to accommodate power through the AC power transmission line when a need for accommodation of power arises.
(3)
The power control device according to (2), wherein the notification unit requests power accommodation from the power management device based on a predetermined power scenario.
(4)
The power control device according to (3), wherein the predetermined power scenario includes a power consumption schedule by a load that uses power.
(5)
The power control device according to (3), wherein the predetermined power scenario includes a power generation schedule by a power generation device that generates power.
(6)
The power control device according to (5), wherein the power generation device is a solar power generation device.
(7)
The power control device according to any one of (3) to (6), wherein the predetermined power scenario includes an amount of electricity stored in a storage battery.
(8)
The notification unit requests power accommodation from the power management device based on a state of a power storage device connected to the bidirectional AC/DC converter, and the power management device according to any one of (2) to (7) above. Control device.
(9)
The electric power according to any one of (1) to (8), wherein the current control unit controls input/output current based on a reference voltage of the AC power transmission line to which the bidirectional AC/DC converter is connected. Control device.
(10)
When the difference between the planned interchangeable power amount and the actual interchangeable power amount in the power interchange period is equal to or greater than a predetermined threshold, the current control unit bidirectionally performs power interchange corresponding to the difference at a predetermined timing. The power control device according to any one of (1) to (9) above, which instructs a DC converter.
(11)
The power control device according to any one of (1) to (10), wherein the notification unit notifies the power management device of information on a power selling price when providing power.
(12)
a current control unit that controls an input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with a power control instruction from an external power management device;
a power amount acquisition unit that acquires the target power amount specified in the power control instruction and the actual interchange power amount input and output by the bidirectional AC/DC converter, and calculates a difference;
Equipped with
The current control unit is a power control device that controls an input/output current to the bidirectional AC/DC converter based on the difference calculated by the power amount acquisition unit.
(13)
The power control according to (12), wherein the power amount acquisition unit acquires the target power amount and the actual power interchange amount in a power interchange period specified by the power control instruction, and calculates a difference. Device.
(14)
controlling input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with power control instructions from an external power management device;
Obtaining the actual amount of interchanged power input and outputted by the bidirectional AC/DC converter during the power interchange period based on the power control instruction;
Notifying the power management device of information on the actual power interchange amount during the power interchange period;
A power control method, including:
(15)
controlling input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with power control instructions from an external power management device;
Periodically acquiring the target power amount specified by the power control instruction and the actual interchange power amount input and output by the bidirectional AC/DC converter, and calculating the difference;
controlling an input/output current to the bidirectional AC/DC converter based on the difference;
A power control method, including:

1 :交流電力系統
10 :電力管理装置
100 :電力制御装置
200 :双方向直流交流変換器
300 :交流電力計
400 :蓄電装置
500 :太陽光発電装置
600 :交流発電機
1: AC power system 10: Power management device 100: Power control device 200: Bidirectional DC/AC converter 300: AC wattmeter 400: Power storage device 500: Solar power generation device 600: AC generator

Claims (14)

外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、
前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得する電力量取得部と、
前記電力融通期間における、前記電力量取得部が算出した前記実融通電力量の情報を前記電力管理装置に通知する通知部と、を備え、
前記電流制御部は、前記電力融通期間における予定融通電力量と、前記実融通電力量との差分が所定の閾値以上であった場合に、所定のタイミングにおいて差分に相当する電力融通を双方向交直流変換器に対して指示する、電力制御装置。
a current control unit that controls an input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with a power control instruction from an external power management device;
a power amount acquisition unit that acquires the actual interchanged power amount input and outputted by the bidirectional AC/DC converter during the power interchange period based on the power control instruction;
a notification unit that notifies the power management device of information on the actual interchangeable power amount calculated by the power amount acquisition unit during the power interchange period ;
When the difference between the planned interchangeable power amount and the actual interchangeable power amount in the power interchange period is equal to or greater than a predetermined threshold, the current control unit bidirectionally performs power interchange corresponding to the difference at a predetermined timing. A power control device that instructs the DC converter .
前記通知部は、電力の融通の必要が生じた場合に前記交流送電線を通じた電力融通を前記電力管理装置に要求する、請求項1に記載の電力制御装置。 The power control device according to claim 1, wherein the notification unit requests the power management device to accommodate power through the AC power transmission line when a need for power accommodation arises. 前記通知部は、所定の電力シナリオに基づいて前記電力管理装置に電力融通を要求する、請求項2に記載の電力制御装置。 The power control device according to claim 2, wherein the notification unit requests power accommodation from the power management device based on a predetermined power scenario. 前記所定の電力シナリオは、電力を使用する負荷による電力消費スケジュールを含む、請求項3に記載の電力制御装置。 The power control device according to claim 3, wherein the predetermined power scenario includes a power consumption schedule by a load using power. 前記所定の電力シナリオは、電力を発電する発電装置による発電スケジュールを含む、請求項3に記載の電力制御装置。 The power control device according to claim 3, wherein the predetermined power scenario includes a power generation schedule by a power generation device that generates power. 前記発電装置は、太陽光発電装置である、請求項5に記載の電力制御装置。 The power control device according to claim 5, wherein the power generation device is a solar power generation device. 前記所定の電力シナリオは、蓄電池の蓄電量を含む、請求項3~6のいずれか1項に記載の電力制御装置。 The power control device according to any one of claims 3 to 6 , wherein the predetermined power scenario includes an amount of electricity stored in a storage battery. 前記通知部は、前記双方向交直流変換器と接続されている蓄電装置の状態に基づいて前記電力管理装置に電力融通を要求する、請求項2~7のいずれか1項に記載の電力制御装置。 The power control unit according to any one of claims 2 to 7 , wherein the notification unit requests power accommodation from the power management device based on a state of a power storage device connected to the bidirectional AC/DC converter. Device. 前記電流制御部は、前記双方向交直流変換器が接続されている前記交流送電線の基準電圧に基づいて入出力電流を制御する、請求項1~8のいずれか1項に記載の電力制御装置。 The power control unit according to any one of claims 1 to 8 , wherein the current control unit controls input/output current based on a reference voltage of the AC power transmission line to which the bidirectional AC/DC converter is connected. Device. 前記通知部は、電力を提供する際の売電価格の情報を前記電力管理装置に通知する、請求項1~9のいずれか1項に記載の電力制御装置。 The power control device according to any one of claims 1 to 9 , wherein the notification unit notifies the power management device of information on a power selling price when providing power. 外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御部と、
前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを取得し、差分を算出する電力量取得部と、
を備え、
前記電流制御部は、電力量取得部が算出した差分に基づいて前記双方向交直流変換器に対して入出力電流を制御する、電力制御装置。
a current control unit that controls an input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with a power control instruction from an external power management device;
a power amount acquisition unit that acquires the target power amount specified in the power control instruction and the actual interchange power amount input and output by the bidirectional AC/DC converter, and calculates a difference;
Equipped with
The current control unit is a power control device that controls an input/output current to the bidirectional AC/DC converter based on the difference calculated by the power amount acquisition unit.
前記電力量取得部は、前記電力制御指示で指定された電力融通期間において、前記目標電力量と、前記実融通電力量とを取得し、差分を算出する、請求項11に記載の電力制御装置。 The power control device according to claim 11 , wherein the power amount acquisition unit acquires the target power amount and the actual power interchange amount in a power interchange period specified by the power control instruction, and calculates a difference. . 外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御する電流制御ステップと、
前記電力制御指示に基づき、前記双方向交直流変換器が入出力した、電力融通期間における実融通電力量を取得する電力量取得ステップと、
前記電力融通期間における前記実融通電力量の情報を前記電力管理装置に通知する通知ステップと、を含み、
前記電流制御ステップでは、前記電力融通期間における予定融通電力量と、前記実融通電力量との差分が所定の閾値以上であった場合に、所定のタイミングにおいて差分に相当する電力融通を双方向交直流変換器に対して指示する、電力制御方法。
a current control step of controlling input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with a power control instruction from an external power management device;
a power amount acquisition step of acquiring the actual power interchange amount input/output by the bidirectional AC/DC converter during the power interchange period based on the power control instruction;
a notification step of notifying the power management device of information on the actual power interchange amount during the power interchange period ;
In the current control step, when the difference between the planned interchangeable power amount and the actual interchangeable power amount in the power interchange period is equal to or greater than a predetermined threshold, the power interchange corresponding to the difference is bidirectionally exchanged at a predetermined timing. A power control method that instructs a DC converter .
外部の電力管理装置からの電力制御指示に従って、双方向交直流変換器に対して交流送電線との間の入出力電流を制御することと、
前記電力制御指示で指定された目標電力量と、前記双方向交直流変換器が入出力した実融通電力量とを周期的に取得し、差分を算出することと、
前記差分に基づいて前記双方向交直流変換器に対して入出力電流を制御することと、
を含む、電力制御方法。
controlling input/output current between the bidirectional AC/DC converter and the AC power transmission line in accordance with power control instructions from an external power management device;
Periodically acquiring the target power amount specified by the power control instruction and the actual interchange power amount input and output by the bidirectional AC/DC converter, and calculating the difference;
controlling an input/output current to the bidirectional AC/DC converter based on the difference;
A power control method, including:
JP2020532338A 2018-07-26 2019-07-18 Power control device and power control method Active JP7380563B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018140248 2018-07-26
JP2018140248 2018-07-26
PCT/JP2019/028279 WO2020022182A1 (en) 2018-07-26 2019-07-18 Electric power control device and electric power control method

Publications (2)

Publication Number Publication Date
JPWO2020022182A1 JPWO2020022182A1 (en) 2021-08-05
JP7380563B2 true JP7380563B2 (en) 2023-11-15

Family

ID=69180448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020532338A Active JP7380563B2 (en) 2018-07-26 2019-07-18 Power control device and power control method

Country Status (2)

Country Link
JP (1) JP7380563B2 (en)
WO (1) WO2020022182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121937A1 (en) 2014-02-13 2015-08-20 株式会社日立製作所 Power interchange management system and power interchange management method
JP2015177566A (en) 2014-03-13 2015-10-05 株式会社Nttファシリティーズ Power transfer system and power transfer method
WO2018078750A1 (en) 2016-10-26 2018-05-03 株式会社日立製作所 Power interchange management device, power interchange management method, and power interchange management program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121937A1 (en) 2014-02-13 2015-08-20 株式会社日立製作所 Power interchange management system and power interchange management method
JP2015177566A (en) 2014-03-13 2015-10-05 株式会社Nttファシリティーズ Power transfer system and power transfer method
WO2018078750A1 (en) 2016-10-26 2018-05-03 株式会社日立製作所 Power interchange management device, power interchange management method, and power interchange management program

Also Published As

Publication number Publication date
JPWO2020022182A1 (en) 2021-08-05
WO2020022182A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US10700524B2 (en) Management device and control method
JP2006280154A (en) Dispersion power control system
US10110004B2 (en) Power management system
JP6915233B2 (en) Power management equipment, power systems, consumer equipment, power management methods and power management programs
WO2014185035A1 (en) Power network system and power adjustment device and method
WO2003071656A1 (en) Power supply method and power supply system
JP2017224208A (en) Storage battery control system, method and program
JP2013143814A (en) Power supply system, power supply control device, power supply method and program
KR101677832B1 (en) Control device for eneregy storage system and opreating method thereof
JP2023044776A (en) Charging/discharging control device of electric vehicle
JP6464247B2 (en) Power management apparatus, power management system, and power management method
JP6554785B2 (en) Power management apparatus, power system, customer apparatus, power management method, and power management program
WO2020012834A1 (en) Control system and control method
JP2004040956A (en) Power supply management method
WO2013179809A1 (en) Device, system, and method for managing power
WO2012046832A1 (en) Power supply system
JP7380563B2 (en) Power control device and power control method
JP2019097375A (en) Power management device and program
JP6922570B2 (en) Processing equipment, processing methods and programs
JP6698371B2 (en) Electric charge management device, electric charge management method and program
US20180375328A1 (en) Method for managing a group of electrical energy consuming devices, and electrical energy management module
WO2021152667A1 (en) Power supply management apparatus and power supply management method
JP2016062537A (en) Power feeding system, power charge calculation device, power feeding method, power charge calculation method, and program
JP2020054136A (en) Charge power calculation device and storage battery charging system
CN113841314A (en) Storage power source management device, method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151