JP2019047781A - Method for producing soy sauce using porous film - Google Patents

Method for producing soy sauce using porous film Download PDF

Info

Publication number
JP2019047781A
JP2019047781A JP2018164585A JP2018164585A JP2019047781A JP 2019047781 A JP2019047781 A JP 2019047781A JP 2018164585 A JP2018164585 A JP 2018164585A JP 2018164585 A JP2018164585 A JP 2018164585A JP 2019047781 A JP2019047781 A JP 2019047781A
Authority
JP
Japan
Prior art keywords
soy sauce
porous membrane
resin
area
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018164585A
Other languages
Japanese (ja)
Other versions
JP7182960B2 (en
Inventor
辰徳 小比類巻
Tatsunori Kohiruimaki
辰徳 小比類巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2019047781A publication Critical patent/JP2019047781A/en
Application granted granted Critical
Publication of JP7182960B2 publication Critical patent/JP7182960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for producing a soy sauce including a filtration step of a fired soy sauce using a porous film, which is low in a change in the total nitrogen component of a fired soy sauce before and after filtration, is high in removal quality of a dregs component, and has high permeated water amount avoidance after a cleaning step of a porous fil and resistance to a cleaning liquid (medicine liquid).SOLUTION: A method for producing a soy sauce includes: a firing step of firing a soy sauce containing a dregs component to form an aggregate of the dregs component; and a filtration step of passing a fired soy sauce containing the aggregate of the dregs component through a porous film composed of formed of a resin having a three-dimensional network structure to separate a filtrate from the aggregate of the dregs component, where the total of the area of a resin part having an area of 1 μmor less is 70% or more based on the total area of the resin part, and when a dregs component ratio of the fired soy sauce before the filtration step is represented by X0, the total nitrogen component thereof is represented by N0, a dregs component ratio of the fired soy sauce after the filtration step is represented by X1 and the total nitrogen component thereof is represented by N1, the methods satisfy relationships of X1/X0×100<5% and N1/N0×100≥97%.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質膜を用いた火入れ醤油のろ過工程を含む醤油の製造方法に関する。より詳しくは、本発明は、澱成分の凝集物を含有する火入れ醤油から該凝集物を除去するための多孔質膜を用いるろ過工程を含む醤油の製造方法において、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、多孔質膜の洗浄工程後の透水量回復性や洗浄液(薬液)耐性も高い方法の関する。   The present invention relates to a method for producing soy sauce comprising the step of filtering a fired soy sauce using a porous membrane. More particularly, the present invention relates to a method for producing soy sauce comprising a filtration step using a porous membrane for removing the agglomerates from the glazed soy sauce containing the agglomerates of the sediment component, wherein total nitrogen of the cooked soy sauce before and after filtration The method relates to a method in which the change in the composition is low, the removal rate of the sediment component is high, and the water permeability recovery after the porous membrane washing step and the washing liquid (chemical solution) resistance are also high.

懸濁水である海水、河川水、湖沼水、地下水等の天然水源から飲料水や工業用水を得るための上水処理、下水等の生活排水を処理して再生水を製造し、放流可能な清澄水にするための下水処理、火入れ醤油から澱成分を除去する工程を含む醤油の製造方法等には、懸濁物を分離・除去するための固液分離操作(除濁操作)が必要である。かかる除濁操作においては、上水処理に関しては懸濁水である天然水源水由来の濁質物(粘土、コロイド、細菌等)が除去され、下水処理に関しては下水中の懸濁物、活性汚泥等により生物処理(2次処理)した処理水中の懸濁物(汚泥等)が除去され、醤油の製造方法においては、火入れにより凝集した澱成分凝集物が除去される。   Water treatment to obtain drinking water and industrial water from natural water sources such as suspended water, river water, lake water, groundwater, etc., treatment of domestic wastewater such as sewage to produce reclaimed water, clear water that can be released In the method of producing soy sauce including sewage treatment for making the waste water, and the process of removing the sediment component from the burning soy sauce, a solid-liquid separation operation (clouding operation) for separating and removing the suspension is required. In this turbidity removal operation, suspended matter (clay, colloid, bacteria, etc.) derived from natural water source water which is suspended water is removed for the treatment of fresh water, and for sewage treatment, suspended matter in the lower water, activated sludge, etc. Suspensions (sludge etc.) in treated water subjected to biological treatment (secondary treatment) are removed, and in the method of producing soy sauce, sediment component aggregates aggregated by burning are removed.

従来、これらの除濁操作は、主に、加圧浮上法、沈殿法、砂ろ過法、凝集沈殿砂ろ過法、珪藻土ろ過等により行われてきたが、近年、これらの方法に代えて、膜ろ過法が普及しつつある。膜ろ過法の利点としては、(1)得られる水質の除濁レベルが高く、かつ、安定している(得られる水の安全性が高い)こと、(2)ろ過装置の設置スペースが小さくてすむこと、(3)自動運転が容易であること等が挙げられる。例えば、海水淡水化逆浸透ろ過の前処理では、加圧浮上法の代替手段として、又は加圧浮上法の後段として、加圧浮上処理された処理水の水質をさらに向上するために膜ろ過法が用いられている。これら膜ろ過による除濁操作には、平均孔径が数nm〜数百nmの範囲の平膜又は中空糸状の多孔質限外ろ過膜や精密ろ過膜が用いられる。
このように、膜ろ過法による除濁操作は、前記した従来の加圧浮上法、砂ろ過法等にはない利点が多くあるために、従来法の代替又は補完手段として、海水淡水化前処理等への普及が進んでおり、また、多孔質膜として以下の特許文献1に記載されるような樹脂により構成される有機膜が多用されている。
In the past, these turbidity removal operations have mainly been carried out by the pressure flotation method, sedimentation method, sand filtration method, flocculation sedimentation sand filtration method, diatomaceous earth filtration etc., but in recent years, in place of these methods, membranes Filtration methods are becoming popular. Among the advantages of the membrane filtration method are: (1) high turbidity removal level of the obtained water quality and stability (high safety of the obtained water) (2) the installation space of the filtration device is small And (3) ease of automatic operation. For example, in the pretreatment of seawater desalination reverse osmosis filtration, as an alternative means of the pressurized flotation method, or as a subsequent stage of the pressurized flotation method, a membrane filtration method to further improve the water quality of the treated water subjected to pressurized flotation treatment Is used. A flat or hollow fiber porous ultrafiltration membrane or a microfiltration membrane having an average pore diameter in the range of several nm to several hundreds nm is used for the turbidity removal operation by the membrane filtration.
Thus, since the turbidity removal operation by the membrane filtration method has many advantages which the above-mentioned conventional pressurized flotation method, sand filtration method and the like do not have, there is a desalination pretreatment for seawater as an alternative or complementary means of the conventional method. Dissemination to, etc. is progressing, and an organic film composed of a resin as described in Patent Document 1 below is widely used as a porous film.

また、従来火入れ醤油の澱成分除去には、主に珪藻土ろ過が用いられてきたが、使用済み珪藻土の廃棄費用がかさむことから、近年、代替手段として膜ろ過が使用されている。しかしながら、澱成分を除去するための膜ろ過の前後で、火入れ醤油の全窒素成分が変化しないことが重要であり、また、ろ過工程後の洗浄工程における洗浄液(薬液)として2〜3重量%と高い濃度の水酸化ナトリウムを使用する場合には、薬液コストと廃水処理コストが高くなるという問題がある。   In addition, diatomaceous earth filtration has been mainly used to remove the sediment component of conventionally heated soy sauce, but membrane filtration has recently been used as an alternative means because disposal costs of used diatomaceous earth increase. However, it is important that the total nitrogen component of the heated soy sauce does not change before and after the membrane filtration for removing the sediment component, and 2 to 3% by weight as a washing solution (chemical solution) in the washing process after the filtration process. When using high concentration sodium hydroxide, there is a problem that chemical solution cost and wastewater treatment cost become high.

特開2011−168741号公報JP, 2011-168741, A

前記したように、多孔質膜として樹脂により構成される有機膜が多用されているものの、樹脂素材で多孔質ろ過膜を作製する際、製膜方法が異なると膜を構成する素材のミクロ構造に差異が現れる。また、火入れ醤油の澱成分の除去のためのろ過においては、澱成分の除去率を高く維持しつつ、全窒素成分の低下を極力抑制することが要求される。さらに、通常、ろ過運転を継続すると膜は目詰まりを起こすため、多孔質ろ過膜を用いたろ過方法の運転には、洗浄工程が伴う。他方、洗浄工程に薬剤を使用すると、膜の強度劣化を誘発する。このとき、多孔質ろ過膜を構成する素材のミクロ構造に差異があると、繰り返される洗浄工程で使用する洗浄液(薬液)による多孔質ろ過膜へのダメージの程度が異なる結果、ろ過性能や寿命に影響を及ぼすという問題もある。
かかる問題に鑑み、本発明が解決しようとする課題は、澱成分の凝集物を含有する火入れ醤油から該凝集物を除去するための多孔質膜を用いるろ過工程を含む醤油の製造方法において、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、多孔質膜の洗浄工程後の透水量回復性や洗浄液(薬液)耐性も高い方法を提供することである。
As described above, although an organic membrane composed of a resin is often used as a porous membrane, when producing a porous filtration membrane using a resin material, if the film forming method is different, the microstructure of the material constituting the membrane is used. A difference appears. Moreover, in the filtration for the removal of the sediment component of a burning soy sauce, suppressing the fall of a total nitrogen component as much as possible is required, maintaining the removal rate of a sediment component highly. Furthermore, since the membrane usually becomes clogged when the filtration operation is continued, the operation of the filtration method using a porous filtration membrane involves a washing step. On the other hand, the use of agents in the washing process induces membrane strength degradation. At this time, if there is a difference in the microstructure of the material constituting the porous filtration membrane, the degree of damage to the porous filtration membrane by the cleaning liquid (chemical solution) used in the repeated washing step is different, resulting in the filtration performance and the life. There is also the problem of influence.
In view of such problems, the problem to be solved by the present invention is a method for producing soy sauce comprising a filtration step using a porous membrane for removing the aggregate from a fired soy sauce containing an aggregate of a sediment component, wherein It is an object of the present invention to provide a method in which the change in the total nitrogen component of burned soy sauce before and after burning is low, the removal rate of the sediment component is high, and the water permeability recovery after washing the porous membrane and the washing liquid (chemical solution) resistance are high.

本願発明者は、前記した課題を解決すべく鋭意検討し実験を重ねた結果、多孔質ろ過膜の被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用することで、澱成分の凝集物を含有する火入れ醤油から該凝集物を除去するための多孔質膜を用いるろ過工程を含む醤油の製造方法において、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができることを予想外に見出し、本発明を完成するに至ったものである。   The inventor of the present invention has conducted intensive studies and repeated experiments to solve the above-mentioned problems, and as a result, communication of pores from the inside of the membrane on the treated side of the porous filtration membrane to the outside of the membrane on the filtrate side In the method for producing soy sauce comprising a filtration step using a porous membrane for removing the aggregate from the fired soy sauce containing the aggregate of the sediment component by using the membrane having good conductivity, the cooked soy sauce before and after the filtration Change of total nitrogen component is low, removal rate of sediment component is high, and further, as a cleaning solution (chemical solution) used in the washing step, hot water at 50 ° C to 90 ° C, and / or 0.05% by weight or more and 0.5% or more Even when using an aqueous solution containing sodium hypochlorite in an amount of not more than% by weight or sodium hydroxide in an amount of not less than 0.4% by weight, it is expected that the deterioration of the film can be minimized. Find out and complete the present invention Those were.

すなわち、本発明は以下のとおりのものである。
[1]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[2]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[3]以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
[4]前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、前記[1]〜[3]のいずれかに記載の方法。
[5]前記多孔質膜の表面開口率は25〜60%である、前記[1]〜[4]のいずれかに記載の方法。
[6]前記多孔質膜は中空糸膜である、前記[1]〜[5]のいずれかに記載の方法。
[7]前記多孔質膜を構成する樹脂は熱可塑性樹脂である、前記[1]〜[6]のいずれかに記載の方法。
[8]前記熱可塑性樹脂はフッ素樹脂である、前記[7]に記載の方法。
[9]前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる、前記[8]に記載の方法。
[10]前記熱可塑性樹脂はポリエチレン(PE)である、前記[7]に記載の方法。
[11]前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃〜90℃の湯である、前記[1]〜[10]のいずれかに記載の方法。
[12]前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、前記[1]〜[10]のいずれかに記載の方法。
[13]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、前記[11]又は[12]に記載の方法。
[14]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、前記[11]又は[12]に記載の方法。
[15]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、前記[11]又は[12]に記載の方法。
[16]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、X/L0×100≧90%である、前記[11]又は[12]に記載の方法。
[17]前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、前記[11]〜[16]のいずれかに記載の方法。
[18]前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、前記[17]に記載の方法。
[19]前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、前記[17]又は[18]に記載の方法。
That is, the present invention is as follows.
[1] The following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields.
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[2] the following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 10 μm 2 or more is 15% or less of the total area of the resin part in each area of a total of four visual fields of visual field, and
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[3] The following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields, and a resin having an area of 10 μm 2 or more The total area of the part is 15% or less of the total area of the resin part, and
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[4] The porous film is a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film, a field of view including the inner surface, a field of view including the outer surface of the film, and these fields of view in 2 field each region a total of four field of between was taken at regular intervals of, 1 [mu] m 2 total area of the resin portion having an area of less than super 10 [mu] m 2 is at most 15% of the total area of the resin portion The method according to any one of the above [1] to [3].
[5] The method according to any one of the above [1] to [4], wherein the surface open area ratio of the porous membrane is 25 to 60%.
[6] The method according to any one of the above [1] to [5], wherein the porous membrane is a hollow fiber membrane.
[7] The method according to any one of the above [1] to [6], wherein the resin constituting the porous membrane is a thermoplastic resin.
[8] The method according to [7] above, wherein the thermoplastic resin is a fluorine resin.
[9] The fluorine resin is vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE) The method according to [8] above, which is selected from the group consisting of hexafluoropropylene resins, and mixtures of these resins.
[10] The method according to [7] above, wherein the thermoplastic resin is polyethylene (PE).
[11] The method further comprises a washing step of washing the inside of the porous membrane by passing or immersing a washing liquid in the porous membrane after the filtration step, wherein the washing liquid is hot water at 50 ° C. to 90 ° C. The method according to any one of the above [1] to [10].
[12] The method further includes a washing step of washing the inside of the porous membrane by passing or immersing a washing liquid in the porous membrane after the filtration step, wherein the washing liquid is 0.05 wt% or more and 0.5 wt%. The method according to any one of the above [1] to [10], which is an aqueous solution containing at most% sodium hypochlorite or at least 0.4 wt% and at most 4 wt% sodium hydroxide.
[13] The relationship between the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking elongation E1 of the porous membrane after the washing step is E1 / E0 × 100 ≧ 80% , The method as described in said [11] or [12].
[14] Tensile elongation at break E0 of the porous membrane before the washing step, and the porous membrane after repeating the washing step X times (here, X is an integer of 2 to 100) The method according to the above [11] or [12], wherein the relationship with the tensile elongation at break EX is EX / E0 × 100 ≧ 70%.
[15] The above [11] or the relation between the flux L0 of the porous membrane before the filtration step and the flux L1 of the porous membrane after the cleaning step is L1 / L0 × 100 ≧ 95%, [11] or The method described in [12].
[16] The flux L0 of the porous membrane before the filtration step, and the flux LX of the porous membrane after repeating the cleaning step X times (here, X is an integer of 2 to 100) The method according to the above [11] or [12], wherein the relationship of is X / L0 × 1009090%.
[17] The washing step includes the washing step of washing with the washing liquid and the rinsing step of rinsing with rinse water for removing the remaining washing liquid component thereafter. The method described in either.
[18] The method according to [17], wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane.
[19] The above [17] or [17], wherein the chlorine concentration in the filtrate after restarting the filtration step after the rinse step is 0.1 ppm or less and the pH of the filtrate is 8.6 or less 18].

本発明に係る醤油の製造方法におけるろ過工程は、多孔質ろ過膜の被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができる。それゆえ、本発明に係る醤油の製造方法は、ろ過性能、及びその回復性、薬液耐性に優れ、かつ、高寿命の方法である。具合的には、本発明に係る醤油の製造方法におけるろ過工程に用いる多孔質膜は多孔の連通性が高いため、火入れ醤油の全窒素成分の膜への吸着が少なく、ろ過前後での全窒素成分の変化が3%以下であり、かつ、澱成分の除去率は95%超である。さらに、洗浄工程において、1重量%と比較的低い濃度の水酸化ナトリウム水溶液を洗浄液として使用した場合であっても、多孔質膜の透水量を十分に回復させることができる。   The filtration step in the method for producing soy sauce according to the present invention uses a membrane having good communication of pores extending from the inside of the membrane on the treated liquid side of the porous filtration membrane to the outside of the membrane on the filtrate side. Therefore, the change in the total nitrogen component of the heated soy sauce before and after filtration is low, the removal rate of the sediment component is high, and furthermore, 50 ° C. to 90 ° C. hot water and / or 0. 2 as a cleaning solution (chemical solution) used in the washing step. Even when using an aqueous solution containing at least 05 wt% but not more than 0.5 wt% sodium hypochlorite or at least 0.4 wt% but not more than 4 wt% sodium hydroxide, the deterioration of the film is minimized. Can be reduced to Therefore, the method for producing soy sauce according to the present invention is a method which is excellent in filtration performance, its recoverability, chemical resistance, and has a long life. Conditionally, the porous membrane used in the filtration step in the method for producing soy sauce according to the present invention has high porosity communication, so adsorption of all nitrogen components of the burned soy sauce to the membrane is small, and total nitrogen before and after filtration The change of the component is 3% or less, and the removal rate of the sediment component is more than 95%. Furthermore, even when a sodium hydroxide aqueous solution having a relatively low concentration of 1% by weight is used as the washing solution in the washing step, the water permeability of the porous membrane can be sufficiently recovered.

本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の断面のSEM画像の一例である(黒部分は樹脂、白部分は細孔(開孔)を示す)。It is an example of the SEM image of the cross section of the porous membrane used for the filtration process in the manufacturing method of the soy sauce of this embodiment (a black part shows resin and a white part shows a pore (open hole)). 実施例1で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 1. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 実施例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 2. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 実施例3で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 3. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 比較例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and a field between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Comparative Example 2. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval.

以下、本発明の実施形態(以下、本実施形態ともいう。)について詳細に説明する。尚、本発明は本実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention (hereinafter, also referred to as the present embodiment) will be described in detail. The present invention is not limited to the present embodiment.

<醤油の製造方法>
本実施形態の醤油の製造方法は、以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする。
X1/X0×100<0.5%であることが好ましくは、より好ましくはX1/X0×100<0.3%である。
また、N1/N0×100≧98%であることが好ましく、より好ましくはN1/N0×100≧99.5%である。
多孔質膜の形状としては特に制限はなく、平膜、管状膜、中空糸膜であることができるが、ろ過装置の省スペース性の観点から、すなわち、膜モジュール単位体積当たりの膜面積を大きくすることができるため、中空糸膜が好ましい。
<Method for producing soy sauce>
The method for producing soy sauce of this embodiment comprises the following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method for producing soy sauce containing the following components, wherein the sediment component ratio of the cooked soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the cooked soy sauce after the filtration step is X1, Satisfy the relationship of X1 / X0 × 100 <5% and N1 / N0 × 100 ≧ 97%,
It is characterized by
Preferably, X1 / X0 × 100 <0.5%, and more preferably, X1 / X0 × 100 <0.3%.
Further, it is preferable that N1 / N0 × 10010098%, and more preferably N1 / N0 × 100 ≧ 99.5%.
The shape of the porous membrane is not particularly limited, and may be a flat membrane, a tubular membrane, or a hollow fiber membrane, but from the viewpoint of space saving of the filtration device, that is, the membrane area per unit volume of membrane module is large. Hollow fiber membranes are preferred because they can be

本実施形態の醤油の製造方法におけるろ過工程としては、例えば、多孔質中空糸膜の中空部(内側表面)に火入れにより凝集した澱成分の凝集物を含有する火入れ醤油(被処理液)を供給し、多孔質中空糸膜の膜厚(肉厚)部を通過させ、多孔質中空糸膜の外側表面から滲み出した液体をろ液として取り出す、いわゆる内圧式のろ過工程であってもよいし、多孔質中空糸膜の外側表面から被処理液を供給し、多孔質中空糸膜の内側表面から滲み出したろ液を、中空部を介して取り出す、いわゆる外圧式のろ過工程であってもよい。
本明細書中、用語「多孔質膜の内部」とは、多数の細孔が形成されている膜厚(肉厚)部を指す。
As a filtration step in the method for producing soy sauce according to the present embodiment, for example, a burned soy sauce (liquid to be treated) containing an aggregate of a sediment component coagulated by burning in a hollow portion (inner surface) of a porous hollow fiber membrane is supplied A so-called internal pressure type filtration step which passes the membrane thickness (thickness) portion of the porous hollow fiber membrane and takes out the liquid exuded from the outer surface of the porous hollow fiber membrane as a filtrate. A so-called external pressure type filtration process may be used, in which the liquid to be treated is supplied from the outer surface of the porous hollow fiber membrane and the filtrate exuded from the inner surface of the porous hollow fiber membrane is taken out through the hollow portion. .
As used herein, the term "inside of the porous membrane" refers to a portion of a film thickness (thickness) in which a large number of pores are formed.

好ましくは、本実施形態の醤油の製造方法は、前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液は50℃〜90℃の湯(以下、熱水ともいう。)であることができる。
より好ましくは、本実施形態の醤油の製造方法は、前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液(以下、薬液ともいう。)であることができる。上記洗浄工程においては、熱水洗浄の後に、薬液洗浄をすることが好ましい。
洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含むことができる。洗浄液が熱水の場合、熱水の温度は、好ましくは55℃以上85℃以下、より好ましくは60℃以上80℃以下であることができる。洗浄液が前記薬液の場合、薬液の温度は、好ましくは15℃以上35℃以下、より好ましくは20℃以上35℃以下であることができる。また、前記薬液中の水酸化ナトリウムの濃度は、0.7重量%以上4重量%以下がより好ましく、1重量%以上4重量%以下がさらに好ましい。前記薬液中の次亜塩素酸ナトリウムの濃度は、0.1重量%以上0.5重量%以下がより好ましく、0.2重量%以上0.5重量%以下がさらに好ましい。洗浄工程としては、例えば、ろ過工程における火入れ醤油の流れ方向とは逆方向に、すなわち、ろ液側から火入れ醤油側に洗浄液を通過させることによって多孔質膜のろ過面(火入れ醤油側表面)から付着物(不溶解成分)を引き離して、除去する逆圧水洗浄、エアによって多孔質膜を揺らして多孔質膜に付着した不溶解成分を振るい落とすエアスクラビングなどが挙げられる。前記リンス工程で使用するリンス水の量は、好ましくは、前記多孔質膜の単位面積当たり100L/m以下、より好ましくは50L/m以下であることができる。また、前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下であることが好ましい。
本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の構造、素材(材料)、及び製造方法を、以下、詳述する。
Preferably, the method for producing soy sauce of the present embodiment further comprises a washing step of washing the inside of the porous membrane by passing or immersing the porous membrane with a washing liquid after the filtration step, the washing liquid It may be hot water at 50 ° C. to 90 ° C. (hereinafter, also referred to as hot water).
More preferably, the method for producing soy sauce of the present embodiment further comprises a washing step of washing the inside of the porous membrane by passing or immersing a washing liquid in the porous membrane after the filtration step, the washing liquid The aqueous solution containing 0.05% by weight or more and 0.5% by weight or less of sodium hypochlorite or 0.4% by weight or more and 4% by weight or less of sodium hydroxide (hereinafter also referred to as a chemical solution) it can. In the cleaning step, it is preferable to perform chemical solution cleaning after the hot water cleaning.
The washing step may include a washing step of washing with the washing solution and a rinsing step of rinsing with rinse water to remove the remaining washing component. When the cleaning liquid is hot water, the temperature of the hot water can be preferably 55 ° C. or more and 85 ° C. or less, more preferably 60 ° C. or more and 80 ° C. or less. When the cleaning liquid is the chemical solution, the temperature of the chemical solution may be preferably 15 ° C. or more and 35 ° C. or less, more preferably 20 ° C. or more and 35 ° C. or less. The concentration of sodium hydroxide in the chemical solution is more preferably 0.7% by weight or more and 4% by weight or less, and still more preferably 1% by weight or more and 4% by weight or less. The concentration of sodium hypochlorite in the chemical solution is more preferably 0.1% by weight or more and 0.5% by weight or less, and still more preferably 0.2% by weight or more and 0.5% by weight or less. As the washing step, for example, from the filtration side of the porous membrane by passing the washing solution from the filtrate side to the burning soy sauce side in the opposite direction to the flow direction of the burning soy sauce in the filtering step Examples of the method include reverse pressure water washing to separate and remove attached matter (insoluble component), and air scrubbing to shake the porous film with air to shake the insoluble component attached to the porous film. The amount of rinsing water used in the rinsing step, it is preferable that the porous film per unit area 100L / m 2 or less of, and more preferably at 50L / m 2 or less. Moreover, it is preferable that chlorine concentration in the filtrate after restarting the said filtration process after the said rinse process is 0.1 ppm or less, and pH of this filtrate is 8.6 or less.
The structure, raw material (material) and manufacturing method of the porous membrane used for the filtration process in the manufacturing method of soy sauce of this embodiment are explained in full detail below.

<多孔質膜>
多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であるもの;同各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;のいずれかである。好ましい多孔質膜は、同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるものである。
<Porous membrane>
The porous membrane is a field of view including the inner surface, a field of view including the outer surface of the membrane, and the like between the fields of view in the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields of two visual fields photographed at a distance; The total area of the resin part having an area of 10 μm 2 or more is 15% or less with respect to the total area of the resin part; the total area of the resin part having an area of 1 μm 2 or less in each region But the total area of the resin part having an area of 70 μm or more and 10 μm 2 or more with respect to the total area of the resin part is 15% or less with respect to the total area of the resin part; It is either. Preferred porous membranes in the respective regions, the total area of the resin portion having an area of 1 [mu] m 2 or less, is 70% or more of the total area of the resin portion, an area of less than 1 [mu] m 2 Ultra 10 [mu] m 2 The total area of the resin part is 15% or less of the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the total area of the resin part It is 15% or less.

図1は、本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の断面のSEM画像の一例である。かかるSEM画像は、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、内側に最も近い領域の内、内側に最も近い領域内の所定視野を撮影して得たSEM画像写真を二値化処理した画像である。
尚、前記各領域内では、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面と、該内側表面に平行する断面との間では、樹脂部の存在分布の差異、すなわち、孔の連通性の異方性は事実上無視することができる。
本明細書中、用語「樹脂部」とは、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分である。図1に黒色で示す部分が樹脂部であり、白色の部分が孔である。
多孔質膜内部には、膜の内側から外側まで屈曲しながら連通している連通孔が形成されており、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であれば、孔の連通性が高い(すなわち、膜内部の連通孔の存在割合が高い)ものとなり、被処理液のフラックス(透水量、透水性)、洗浄後の透水量保持率が高く、引張破断伸度で指標される薬液洗浄後の膜へのダメージも軽減される。しかしながら、樹脂部の総面積に対する1μm以下の面積を有する樹脂部の面積の合計の割合が高すぎると、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎるものとなるため、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であることを維持しつつ、1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在するものが好ましく、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下で存在するものがより好ましく、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上15%以下で存在するものがさらに好ましい。1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在すれば、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎないため、多孔質膜の強度、引張破断伸度を適切に維持することができる。
FIG. 1: is an example of the SEM image of the cross section of the porous membrane used for the filtration process in the manufacturing method of the soy sauce of this embodiment. Such an SEM image is a SEM image of a cross section of the membrane in the film thickness direction orthogonal to the inner surface of the hollow fiber porous membrane, a field of view including the inner surface, a field of view including the outer surface of the membrane, and a field of view Among the areas of the total of four visual fields of two visual fields photographed at equal intervals, among the areas closest to the inner side, the SEM image obtained by photographing the predetermined visual field in the area closest to the inner side is a binarized image is there.
In each of the regions, the difference in the presence distribution of the resin portion, ie, the pores, between the cross section in the thickness direction orthogonal to the inner surface of the hollow fiber porous membrane and the cross section parallel to the inner surface. The communication anisotropy of can be virtually ignored.
In the present specification, the term "resin part" is a dendritic skeleton part of a three-dimensional network structure composed of a resin, which forms a large number of pores in a porous membrane. The portions shown in black in FIG. 1 are resin portions, and the white portions are holes.
Inside the porous membrane, there are formed communicating holes which are communicated while being bent from the inside to the outside of the membrane, and the inside of the SEM image of the membrane cross section in the film thickness direction orthogonal to the inside surface of the porous membrane The total area of the resin part having an area of 1 μm 2 or less in each field of a total of four fields of view including the surface, the field of view including the outer surface of the film, and two fields captured at equal intervals between these fields However, if the total area of the resin portion is 70% or more, the communication of the holes is high (that is, the existence ratio of the communication holes in the membrane is high), and the flux of the liquid to be treated (water permeability, Permeability), retention of water permeability after cleaning is high, and damage to the membrane after chemical solution cleaning indicated by tensile breaking elongation is also alleviated. However, when the ratio of the total area of the resin part having an area of 1 μm 2 or less to the total area of the resin part is too high, a tree of a three-dimensional network structure made of resin forms many pores in the porous membrane. to become as Jo skeletal portion is too thin, the total area of the resin portion having an area of 1 [mu] m 2 or less, while maintaining 70% or more relative to the total area of the resin portion, 1 [mu] m 2 greater than The total area of the resin part having an area is preferably 2% to 30% of the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the resin The total area of the resin part having an area of more than 1 μm 2 and less than 10 μm 2 is more preferably 15% or less with respect to the total area of the resin part. , and, 10μm 2 or more Total area of the resin portion having a product is, those present at less than 15% 2% relative to the total area of the resin portion are more preferable. If the total area of the resin part having an area of more than 1 μm 2 is present at 2% or more and 30% or less with respect to the total area of the resin part, the dendritic skeleton part having a three-dimensional network structure composed of resin Since it is not too thin, the strength and tensile elongation at break of the porous membrane can be maintained properly.

図2〜5は、それぞれ、実施例1、実施例2、実施例3、比較例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。図1には、樹脂部が粒状に表れている。図2〜5は、この粒状の樹脂部のそれぞれの面積を計測し、その粒状の樹脂部の面積毎について、各領域内の所定サイズの視野における全樹脂部の総面積に対する面積割合をヒストグラムとして示している。図2〜5における丸1は、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、最も内側に近い領域の番号であり、丸4は、最も内側に近い領域の番号である。例えば、実施例1丸1は、実施例1の多孔質中空糸膜の最も内側の領域内の所定サイズの視野を撮影したときのヒストグラムである。多孔質中空糸膜の各領域内の樹脂部の面積分布の測定方法については、後述する。   2 to 5 respectively show SEM images of the cross section of the membrane in the thickness direction orthogonal to the inner surface of the porous membrane used in Example 1, Example 2, Example 3 and Comparative Example 2. In each of the four fields of view (circles 1 to 4) of 2 fields of view including 2 fields of view including the field of view including the outer surface of the film and the fields of view including the outer surface of the film It is a histogram which shows the ratio (%) of the sum total of the area of the resin part which has an area. In FIG. 1, the resin part appears in a granular form. 2 to 5 measure the area of each of the granular resin parts, and for each of the areas of the granular resin parts, the ratio of the area to the total area of all the resin parts in the field of a predetermined size in each region is a histogram It shows. The circle 1 in FIGS. 2 to 5 is a field of view including the inner surface, a field of view including the outer surface of the film, and a field of view in the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film. Of the total of four visual field areas of two visual fields photographed at regular intervals, it is the number of the area closest to the inner side, and the circle 4 is the number of the area closest to the inner side. For example, Example 1 circle 1 is a histogram when a visual field of a predetermined size in the innermost region of the porous hollow fiber membrane of Example 1 is photographed. The measuring method of the area distribution of the resin part in each area | region of a porous hollow fiber membrane is mentioned later.

多孔質膜の表面開口率は25〜60%であることが好ましく、より好ましくは25〜50%であり、更に好ましくは25〜45%である。処理対象液と接触する側の表面開口率が25%以上であれば、目詰まり、膜表面擦過による透水性能の劣化が小さくなるため、ろ過安定性を高めることができる。他方、表面開口率が高く、孔径が大きすぎると、要求される分離性能を発揮できないおそれがある。そのため、多孔質膜の平均細孔径は100〜700nmであることが好ましく、100〜600nmがより好ましい。平均細孔径が100〜700nmであれば、分離性能は十分であり、孔の連通性も確保できる。表面開口率、平均細孔径の測定方法については、それぞれ後述する。   The surface open area ratio of the porous membrane is preferably 25 to 60%, more preferably 25 to 50%, and still more preferably 25 to 45%. If the surface opening ratio on the side to be in contact with the liquid to be treated is 25% or more, the clogging and the deterioration of the water permeability due to abrasion of the membrane surface are reduced, so that the filtration stability can be enhanced. On the other hand, if the surface open area ratio is high and the pore diameter is too large, the required separation performance may not be exhibited. Therefore, the average pore diameter of the porous membrane is preferably 100 to 700 nm, and more preferably 100 to 600 nm. When the average pore diameter is 100 to 700 nm, the separation performance is sufficient, and the connectivity of the pores can be secured. The method of measuring the surface aperture ratio and the average pore diameter will be described later, respectively.

多孔質膜の膜厚は、好ましくは80〜1,000μmであり、より好ましくは100〜300μmである。膜厚が80μm以上であれば、膜の強度が確保でき、他方、1000μm以下であれば、膜抵抗による圧損が小さくなる。   The thickness of the porous membrane is preferably 80 to 1,000 μm, more preferably 100 to 300 μm. If the film thickness is 80 μm or more, the strength of the film can be secured, and if it is 1000 μm or less, the pressure loss due to the film resistance will be small.

多孔質中空糸膜の形状としては、円環状の単層膜を挙げることができるが、分離層と分離層を支持する支持層とで違う孔径を持つ多層膜であってもよい。また、膜の内側表面と外側表面で、突起を持つなど異形断面構造であてもよい。   The shape of the porous hollow fiber membrane may be an annular single layer membrane, but it may be a multilayer membrane having different pore sizes in the separation layer and the support layer supporting the separation layer. In addition, the inner and outer surfaces of the membrane may have an irregular cross-sectional structure such as having projections.

(多孔質膜の素材(材質))
多孔質膜を構成する樹脂は、好ましくは熱可塑性樹脂であり、フッ素樹脂がより好ましい。フッ素樹脂としては、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれるものが挙げられる。
熱可塑性樹脂として、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、それらの混合物が挙げられる。熱可塑性樹脂として、例えば、ポリエチレン(PE)、ポリプロピレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、これらの混合物が挙げられる。これらの樹脂は、は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン樹脂、テトラフルオロエチレン樹脂、ヘキサフルオロプロピレン樹脂又はそれらの混合物、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー又はコポリマー、あるいは、ホモポリマーとコポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合物、エチレン−テトラフルオロエチレン共重合物、エチレン−クロロトリフルオロエチレン共重合体等のフッ素樹脂が挙げられる。
(Material of porous membrane (material))
The resin constituting the porous membrane is preferably a thermoplastic resin, and more preferably a fluorine resin. As a fluorine resin, vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE), hexameric resin Those selected from the group consisting of fluoropropylene resins, and mixtures of these resins.
Thermoplastic resins include polyolefins, copolymers of olefins and halogenated olefins, halogenated polyolefins, and mixtures thereof. As a thermoplastic resin, for example, polyethylene (PE), polypropylene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride (which may contain a domain of hexafluoropropylene), these A mixture of These resins are excellent as a membrane material because they are thermoplastic and have excellent handleability and toughness. Among these, vinylidene fluoride resin, tetrafluoroethylene resin, hexafluoropropylene resin or mixtures thereof, ethylene, tetrafluoroethylene, homopolymers or copolymers of chlorotrifluoroethylene, or mixtures of homopolymers and copolymers are mechanical. It is preferable because it has excellent strength and chemical strength (chemical resistance) and good moldability. More specifically, fluorine resin such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer and the like can be mentioned.

多孔質膜は、熱可塑性樹脂以外の成分(不純物等)を5質量%程度まで含み得る。例えば、多孔質膜製造時に用いる溶剤が含まれる。後述するように、多孔質膜の製造時に溶剤として用いた第1の溶剤(以下、非溶剤ともいう)、第2の溶剤(以下、良溶剤若しくは貧溶剤ともいう)、又はその両方が含まれる。これらの溶剤は、熱分解GC−MS(ガスクロマトグラフィー質量分析法)により検出することができる。   The porous membrane can contain components (impurity and the like) other than the thermoplastic resin up to about 5% by mass. For example, the solvent used at the time of porous membrane manufacture is included. As described later, it contains the first solvent (hereinafter also referred to as non-solvent), the second solvent (hereinafter also referred to as good solvent or poor solvent), or both used as the solvent at the time of production of the porous membrane. . These solvents can be detected by pyrolysis GC-MS (gas chromatography mass spectrometry).

第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。
また、第2の溶剤は、第1の溶剤と異なり、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。炭素数6以上30以下の脂肪酸としては、カプリン酸、ラウリン酸、オレイン酸等が挙げられる。また、エポキシ化植物油としては、エポキシ大豆油、エポキシ化亜麻仁油等が挙げられる。
第1の溶剤は、熱可塑性樹脂と第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、熱可塑性樹脂が第1の溶剤に均一に溶解しない非溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度で熱可塑性樹脂が第2の溶剤に均一に溶解する良溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃では熱可塑性樹脂が第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度では熱可塑性樹脂が第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。
The first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, having 6 to 30 carbon atoms And at least one selected from the group consisting of epoxidized vegetable oils.
In addition, the second solvent is different from the first solvent in sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphorus It may be at least one selected from the group consisting of an acid ester, a fatty acid having 6 to 30 carbon atoms, and an epoxidized vegetable oil. Examples of fatty acids having 6 to 30 carbon atoms include capric acid, lauric acid and oleic acid. Moreover, as epoxidized vegetable oil, epoxy soybean oil, epoxidized linseed oil and the like can be mentioned.
The first solvent is thermoplastic even if the temperature of the first mixed solution is raised to the boiling point of the first solvent in the first mixed solution in which the ratio of the thermoplastic resin to the first solvent is 20:80. It is preferable that the resin be a non-solvent which does not dissolve uniformly in the first solvent.
The second solvent is a second mixture having a ratio of the thermoplastic resin to the second solvent of 20:80, and the temperature of the second mixture is higher than 25 ° C. and not more than the boiling point of the second solvent. It is preferable that the thermoplastic resin is a good solvent which is uniformly dissolved in the second solvent at a certain temperature.
The second solvent is a second mixed solution in which the ratio of the thermoplastic resin and the second solvent is 20:80, and the temperature of the second mixed solution is 25 ° C., and the thermoplastic resin is uniformly mixed in the second solvent. The thermoplastic resin is a poor solvent which is uniformly dissolved in the second solvent at any temperature which is higher than 100.degree. C. and not higher than the boiling point of the second solvent. preferable.

また、本実施形態の醤油の製造方法におけるろ過工程においては、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用いた多孔質中空糸膜であって、第1の溶剤(非溶剤)を含むものを用いることができる。
この場合、第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、ポリフッ化ビニリデンが第1の溶剤に均一に溶解しない非溶剤であることができる。非溶媒としては、アジピン酸ビス2−エチルヘキシル(DOA)が好ましい。
また、上記多孔質中空糸膜は、第1の溶剤とは異なる第2の溶剤を含んでもよい。この場合、第2の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度でポリフッ化ビニリデンが第2の溶剤に均一に溶解する良い溶剤であることが好ましい。また、第2の溶剤は、第2の混合液の温度が25℃ではポリフッ化ビニリデンが第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度ではポリフッ化ビニリデンが第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。貧溶媒としては、アセチルクエン酸トリブチル(ATBC)が好ましい。
In the filtration step of the method for producing soy sauce of this embodiment, a porous hollow fiber membrane using polyvinylidene fluoride (PVDF) as a thermoplastic resin, which contains a first solvent (non-solvent) It can be used.
In this case, the first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 At least one selected from the group consisting of fatty acids of 30 or less and epoxidized vegetable oil, wherein the ratio of polyvinylidene fluoride to the first solvent is 20:80 in the first mixed solution; The polyvinylidene fluoride can be a non-solvent which does not dissolve uniformly in the first solvent even if the temperature of the liquid is raised to the boiling point of the first solvent. As a non-solvent, bis 2-ethylhexyl adipate (DOA) is preferred.
Also, the porous hollow fiber membrane may contain a second solvent different from the first solvent. In this case, the second solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 At least one selected from the group consisting of fatty acids of 30 or less and epoxidized vegetable oil, wherein the ratio of polyvinylidene fluoride to the second solvent is 20:80; It is preferable that polyvinylidene fluoride be a good solvent which is uniformly dissolved in the second solvent at any temperature which is higher than 25 ° C. and not higher than the boiling point of the second solvent. In the second solvent, polyvinylidene fluoride is not uniformly dissolved in the second solvent when the temperature of the second mixed solution is 25 ° C., and the temperature of the second mixed solution is higher than 100 ° C. It is more preferable that polyvinylidene fluoride is a poor solvent which is uniformly dissolved in the second solvent at any temperature below the boiling point of the above. As a poor solvent, tributyl acetyl citrate (ATBC) is preferred.

(多孔質膜の物性)
多孔質膜は、引張破断伸度の初期値は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上、特に好ましくは120%以上である。引張破断伸度の測定方法については後述する。
(Physical properties of porous membrane)
The initial value of the tensile elongation at break of the porous membrane is preferably 60% or more, more preferably 80% or more, still more preferably 100% or more, and particularly preferably 120% or more. The measuring method of tensile elongation at break will be described later.

また、実用上の観点から、多孔質膜の圧縮強度は0.2MPa以上が好ましく、より好ましくは0.3〜1.0MPa、更に好ましくは0.4〜1.0MPaである。   Moreover, from a practical viewpoint, the compressive strength of the porous membrane is preferably 0.2 MPa or more, more preferably 0.3 to 1.0 MPa, and still more preferably 0.4 to 1.0 MPa.

<多孔質膜の製造方法>
以下、多孔質中空糸膜の製造方法について説明する。但し、本実施形態のろ過方法に用いる多孔質中空糸膜の製造方法は、以下の製造方法に限定されるものではない。
本実施形態の醤油の製造方法におけるろ過工程に用い多孔質中空糸膜の製造方法は、(a)溶融混練物を準備する工程と、(b)溶融混練物を多重構造の紡糸ノズルに供給し、紡糸ノズルから溶融混練物を押し出すことによって中空糸膜を得る工程と、(c)可塑剤を中空糸膜から抽出する工程とを含むものであることができる。溶融混練物が添加剤を含む場合には、工程(c)の後に、(d)添加剤を中空糸膜から抽出する工程をさらに含んでもよい。
<Method of producing porous membrane>
Hereinafter, the manufacturing method of a porous hollow fiber membrane is demonstrated. However, the method for producing the porous hollow fiber membrane used in the filtration method of the present embodiment is not limited to the following production method.
The method for producing a porous hollow fiber membrane used in the filtration step in the method for producing soy sauce according to the present embodiment includes (a) preparing a melt-kneaded product, and (b) supplying the melt-kneaded product to a spinning nozzle having a multiple structure. The method may include the steps of: obtaining a hollow fiber membrane by extruding the melt-kneaded product from a spinning nozzle; and (c) extracting the plasticizer from the hollow fiber membrane. When the melt-kneaded product contains an additive, the method may further include the step (d) of extracting the additive from the hollow fiber membrane after the step (c).

溶融混練物の熱可塑性樹脂の濃度は好ましくは20〜60質量%であり、より好ましくは25〜45質量%であり、更に好ましくは30〜45質量%である。この値が20質量%以上であれば、機械的強度を高くすることができ、他方、60質量%以下であれば、透水性能を高くすることができる。溶融混練物は添加剤を含んでもよい。
溶融混練物は、熱可塑性樹脂と溶剤の二成分からなるものであってもよく、熱可塑性樹脂、添加剤、及び溶剤の三成分からなるものであってもよい。溶剤は、後述するように、少なくとも非溶剤を含む。
工程(c)で使用する抽出剤としては、塩化メチレンや各種アルコールなど熱可塑性樹脂は溶けないが可塑剤と親和性が高い液体を使用することが好ましい。
添加剤を含まない溶融混練物を使用する場合には、工程(c)を経て得られる中空糸膜を多孔質中空糸膜として使用してもよい。添加剤を含む溶融混練物を使用して多孔質中空糸膜を製造する場合には、工程(c)後に、中空糸膜から(d)添加剤を抽出除去して多孔性中空糸膜を得る工程をさらに経ることが好ましい。工程(d)における抽出剤には、湯、又は酸、アルカリなど使用した添加剤を溶解できるが熱可塑性樹脂は溶解しない液体を使用することが好ましい。
The concentration of the thermoplastic resin of the melt-kneaded product is preferably 20 to 60% by mass, more preferably 25 to 45% by mass, and still more preferably 30 to 45% by mass. If this value is 20 mass% or more, mechanical strength can be increased, and if it is 60 mass% or less, water permeability can be increased. The melt-kneaded product may contain an additive.
The melt-kneaded product may be composed of two components of a thermoplastic resin and a solvent, or may be composed of three components of a thermoplastic resin, an additive and a solvent. The solvent contains at least a non-solvent as described later.
As the extractant used in step (c), it is preferable to use a liquid such as methylene chloride or various alcohols which does not dissolve the thermoplastic resin but which has a high affinity for the plasticizer.
When a melt-kneaded product containing no additive is used, the hollow fiber membrane obtained through the step (c) may be used as a porous hollow fiber membrane. When a porous hollow fiber membrane is produced using a melt-kneaded product containing additives, after step (c), the additive (d) is extracted and removed from the hollow fiber membrane to obtain a porous hollow fiber membrane It is preferable to go through the process further. As the extractant in the step (d), it is preferable to use a liquid which can dissolve the used additives such as hot water or an acid or an alkali but not the thermoplastic resin.

添加剤として無機物を使用してもよい。無機物は無機微粉が好ましい。溶融混練物に含まれる無機微粉の一次粒径は、好ましくは50nm以下であり、より好ましくは5nm以上30nm未満である。無機微粉の具体例としては、シリカ(微粉シリカを含む)、酸化チタン、塩化リチウム、塩化カルシウム、有機クレイ等が挙げられ、これらのうち、コストの観点から微粉シリカが好ましい。上述の「無機微粉の一次粒径」は電子顕微鏡写真の解析から求めた値を意味する。すなわち、まず無機微粉の一群をASTM D3849の方法によって前処理を行う。その後、透過型電子顕微鏡写真に写された3000〜5000個の粒子直径を測定し、これらの値を算術平均することで無機微粉の一次粒径を算出することができる。
多孔質中空糸膜内部の無機微粉について、蛍光X線等により存在する元素を同定することで、存在する無機微粉の素材(材料)を同定することができる。
添加剤として有機物を使用する場合、ポリビニルピロリドン、ポリエチレングリコールなどの親水性高分子を使用すると中空糸膜に親水性を付与することができる。また、グリセリン、エチレングリコールなど粘度の高い添加剤を使用すると溶融混練物の粘度をコントロールすることができる。
An inorganic substance may be used as an additive. The inorganic substance is preferably an inorganic fine powder. The primary particle diameter of the inorganic fine powder contained in the melt-kneaded product is preferably 50 nm or less, and more preferably 5 nm or more and less than 30 nm. Specific examples of the inorganic fine powder include silica (including fine powder silica), titanium oxide, lithium chloride, calcium chloride, organic clay and the like, and among these, fine powder silica is preferable from the viewpoint of cost. The above-mentioned "primary particle size of inorganic fine powder" means a value determined from analysis of an electron micrograph. That is, first, a group of inorganic fine powders is pretreated by the method of ASTM D3849. Thereafter, the particle diameters of 3000 to 5000 particles photographed in the transmission electron micrograph are measured, and the primary particle diameter of the inorganic fine powder can be calculated by arithmetically averaging these values.
About the inorganic fine powder inside a porous hollow fiber membrane, the raw material (material) of the inorganic fine powder which exists can be identified by identifying the element which exists by a fluorescent X ray etc.
When an organic substance is used as the additive, the hollow fiber membrane can be rendered hydrophilic by using a hydrophilic polymer such as polyvinyl pyrrolidone or polyethylene glycol. In addition, the viscosity of the melt-kneaded product can be controlled by using an additive having high viscosity such as glycerin and ethylene glycol.

次に、本実施形態の多孔質中空糸膜の製造方法における(a)溶融混練物を準備する工程について詳細に説明する。
本実施形態の多孔質中空糸膜の製造方法では、熱可塑性樹脂の非溶剤を、良溶剤又は貧溶剤に混合させる。混合後の混合溶媒は、使用する熱可塑性樹脂の非溶剤である。このように膜の原材料として非溶剤を用いると、3次元網目構造を持つ多孔質中空糸膜が得られる。その作用機序は必ずしも明らかではないが、非溶剤を混合させて、より溶解性を低くした溶剤を用いた方がポリマーの結晶化が適度に阻害され、3次元網目構造になりやすいと考えられる。例えば、非溶剤、及び貧溶剤又は良溶剤は、フタル酸エステル、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油等の各種エステル等からなる群から選ばれる。
熱可塑性樹脂を常温で溶解させることができる溶剤を良溶剤、常温では溶解できないが高温にして溶解させることができる溶剤をその熱可塑性樹脂の貧溶剤、高温にしても溶解させることができない溶剤を非溶剤と呼ぶが、良溶剤、貧溶剤、及び非溶剤は、以下のようにして判定することができる。
試験管に2g程度の熱可塑性樹脂と8g程度の溶剤を入れ、試験管用ブロックヒーターにて10℃刻み程度でその溶剤の沸点まで加温し、スパチュラなどで試験管内を混合し、熱可塑性樹脂が溶解するものが良溶剤又は貧溶剤、溶解しないものが非溶剤である。100℃以下の比較的低温で溶解するものが良溶剤、100℃以上沸点以下の高温にしないと溶解しないものを貧溶剤と判定する。
例えば、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用い、溶剤としてアセチルクエン酸トリブチル(ATBC)、セバシン酸ジブチル又はアジピン酸ジブチルを用いると、200℃程度でPVDFはこれらの溶剤に均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)、アジピン酸ジイソノニル、又はセバシン酸ビス2エチルヘキシルを用いると温度を250℃まで上げても、PVDFはこれらの溶剤には溶解しない。
また、熱可塑性樹脂としてエチレン−テトラフルオロエチレン共重合体(ETFE)を用い、溶剤としてアジピン酸ジエチルを用いると、200℃程度でETFEは均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DIBA)を用いると溶解しない。
また、熱可塑性樹脂としてエチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)を用い、溶剤としてクエン酸トリエチルを用いると200℃程度で均一に溶解し、トリフェニル亜リン酸(TPP)を用いると溶解しない。
Next, the step of preparing (a) the melt-kneaded product in the method for producing a porous hollow fiber membrane of the present embodiment will be described in detail.
In the method of manufacturing the porous hollow fiber membrane of the present embodiment, the non-solvent of the thermoplastic resin is mixed with the good solvent or the poor solvent. The mixed solvent after mixing is a non-solvent of the thermoplastic resin used. Thus, when a non-solvent is used as a raw material of the membrane, a porous hollow fiber membrane having a three-dimensional network structure can be obtained. The mechanism of action is not necessarily clear, but it is thought that crystallization of the polymer is appropriately inhibited and a three-dimensional network structure is more likely to be obtained if a solvent having a lower solubility is used by mixing a non-solvent. . For example, non-solvent and poor solvent or good solvent are phthalic acid ester, sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester It is selected from the group consisting of phosphate esters, fatty acids having 6 to 30 carbon atoms, and various esters such as epoxidized vegetable oil.
The solvent which can dissolve the thermoplastic resin at normal temperature is a good solvent. The solvent which can not dissolve at normal temperature but can be dissolved at high temperature can be a poor solvent of the thermoplastic resin. The solvent which can not dissolve even at high temperature. Although called non-solvent, good solvent, poor solvent, and non-solvent can be determined as follows.
Add about 2 g of thermoplastic resin and about 8 g of solvent in a test tube, heat to the boiling point of the solvent in 10 ° C increments with a test tube block heater, mix the inside of the test tube with a spatula, etc. What dissolves is a good solvent or a poor solvent, and what does not dissolve is a non-solvent. Those which are soluble at relatively low temperatures of 100 ° C. or less are judged as good solvents, and those which do not dissolve unless they are heated to a temperature of 100 ° C. or more and boiling points or less are judged as poor solvents.
For example, using polyvinylidene fluoride (PVDF) as a thermoplastic resin and tributyl acetyl citrate (ATBC), dibutyl sebacate or dibutyl adipate as a solvent, PVDF is uniformly mixed with these solvents at about 200 ° C. Dissolve. On the other hand, using bis (2-ethylhexyl) adipate (DOA), diisononyl adipate, or bis (2-ethylhexyl) sebacate as the solvent, PVDF does not dissolve in these solvents even if the temperature is raised to 250 ° C.
When ethylene-tetrafluoroethylene copolymer (ETFE) is used as the thermoplastic resin and diethyl adipate is used as the solvent, ETFE is uniformly mixed and dissolved at about 200 ° C. On the other hand, it does not dissolve when bis 2-ethylhexyl adipate (DIBA) is used as a solvent.
Also, when ethylene-monochlorotrifluoroethylene copolymer (ECTFE) is used as a thermoplastic resin and triethyl citrate is used as a solvent, it dissolves uniformly at about 200 ° C. When triphenylphosphorous acid (TPP) is used, it dissolves do not do.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。実施例、比較例における各物性値は以下の方法で各々求めた。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Each physical property value in an Example and a comparative example was calculated by the following methods, respectively.

(1)多孔質中空糸膜の外径、内径
多孔質中空糸膜を、長さ方向に直交する断面でカミソリを使って薄くスライスし、100倍拡大鏡にて、外径と内径を測定した。一つのサンプルについて、長さ方法に30mm間隔で60箇所の切断面で測定を行い、平均値を中空糸膜の外径と内径とした。
(1) Outer diameter and inner diameter of porous hollow fiber membrane The porous hollow fiber membrane was thinly sliced using a razor in a cross section orthogonal to the length direction, and the outer diameter and inner diameter were measured with a 100-fold magnifying glass. . For one sample, measurement was performed on 60 cross sections at intervals of 30 mm in the length method, and the average value was taken as the outer diameter and the inner diameter of the hollow fiber membrane.

(2)電子顕微鏡撮影
多孔質中空糸膜を、長さ方向に直交する断面で円環状に裁断し、10%リンタングステン酸+四酸化オスミウム染色を実施し、エポキシ樹脂に包埋した。次いで、トリミング後、試料断面にBIB加工を施して平滑断面を作製し、導電処理し、検鏡試料を作製した。作製した検鏡試料を、HITACHI製電子顕微鏡SU8000シリーズを使用し、加速電圧1kVで膜の断面の電子顕微鏡(SEM)画像を5,000〜30,000倍で、膜厚(肉厚部)断面の内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(図2〜5における丸1〜丸4)内で所定の視野で撮影した。平均孔径に応じて倍率を変えて測定することができ、具体的には、平均孔径が0.1μm以上の場合には、5000倍、平均孔径が0.05μm以上0.1μm未満の場合には、10,000倍、平均孔径が0.05μm未満の場合には、30,000倍とした。尚、視野のサイズは、2560×1920ピクセルとした。
画像処理には、ImageJを用い、撮影したSEM画像に対してThreshold処理(Image−Adjust−Treshold:大津法(Otsuを選択))を施すことより、孔の部分と樹脂部とで二値化した。
表面開口率:二値化画像の樹脂部と孔部との割合を算出することにより表面開口率を測定した。
樹脂部の面積分布:ImageJの「Analyze Particle」コマンド(Analyz Particle:Size0.10−Infinity)を使用し、撮影したSEM画像に含まれる二値化された粒状の樹脂部の大きさをそれぞれ計測した。SEM画像に含まれる全樹脂部の総面積をΣSとし、1μm以下の樹脂部の面積をΣS(<1μm)とした場合に、ΣS(<1μm)/ΣSを算出することによって、1μm以下の面積を有する樹脂部の面積割合を算出した。同様に、所定範囲の面積を有する樹脂部の面積割合を算出した。
尚、二値化処理を施す際のノイズ除去については、0.1μm未満の面積の樹脂部をノイズとして除去し、0.1μm以上の面積の樹脂部を分析対象とした。また、ノイズ除去は、メディアンフィルタ処理(Process−Filters−Median:Radius:3.0pixels)を施すことによって行った。
また、SEM画像の端で切れている粒状の樹脂部についても計測対象とした。また、「Incude Holes」(穴をうめる)の処理は行わなかった。また、「雪だるま」型を「扁平」型などに形状を補正する処理は行わなかった。
平均細孔孔径:ImageJの「Plugins−Bone J−Thickness」コマンドを使用して測定した。尚、空間サイズは空隙に入る最大の円サイズとして定義した。
(2) Electron Microscopy The porous hollow fiber membrane was cut in an annular shape in a cross section orthogonal to the length direction, 10% phosphotungstic acid + osmium tetraoxide staining was performed, and embedded in an epoxy resin. Then, after trimming, the sample cross section was subjected to BIB processing to produce a smooth cross section, and a conductive processing was performed to produce a speculum sample. Using the electron microscope SU8000 series manufactured by HITACHI, the produced microscope sample is an electron microscope (SEM) image of a cross section of the film at an acceleration voltage of 1 kV at 5,000 to 30,000 times a thickness (thick portion) cross section Within each of the four fields of view (circles 1 to 4 in FIGS. 2 to 5), the field of view including the inner surface of the field of view, the field of view including the outer surface of the film, and two fields of view taken at equal intervals between these fields of view. Taken with a given field of view. Depending on the average pore size, the magnification can be changed, and specifically, when the average pore size is 0.1 μm or more, 5000 times, and when the average pore size is 0.05 μm or more and less than 0.1 μm. And 10,000 times, and when the average pore diameter is less than 0.05 μm, 30,000 times. The size of the field of view was 2560 × 1920 pixels.
For image processing, ImageJ was used, and threshold processing (Image-Adjust-Treshold: Otsu method (select Otsu)) was performed on the photographed SEM image to binarize the hole portion and the resin portion. .
Surface aperture ratio: The surface aperture ratio was measured by calculating the ratio of the resin part and the hole part of the binarized image.
Area distribution of resin part: The size of the binarized granular resin part included in the photographed SEM image was measured using the "Analyze Particle" command (Analyse Particle: Size 0.10-Infinity) of ImageJ. . Assuming that the total area of all the resin parts contained in the SEM image is ΣS and the area of the resin part of 1 μm 2 or less is ΣS (<1 μm 2 ), 1 μm is calculated by calculating ΣS (<1 μm 2 ) / ΣS. The area ratio of the resin part having an area of 2 or less was calculated. Similarly, the area ratio of the resin part having an area in a predetermined range was calculated.
In addition, about the noise removal at the time of performing a binarization process, the resin part of the area less than 0.1 micrometer 2 was removed as a noise, and the resin part of the area 0.1 micrometer 2 or more was made into analysis object. Also, noise removal was performed by applying median filtering (Process-Filters-Median: Radius: 3.0 pixels).
In addition, the granular resin portion cut at the end of the SEM image was also measured. In addition, "Incude Holes" was not processed. In addition, no process was performed to correct the shape of the "snowman" type into a "flat" type or the like.
Average pore size: Measured using ImageJ's "Plugins-Bone J-Thickness" command. In addition, space size was defined as the largest circle size which enters an air gap.

(3)フラックス(透水性、初期純水フラックス)
多孔質中空糸膜をエタノールに浸漬した後、純水浸漬を数回繰り返した後、約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内に注射針を挿入し、25℃の環境下にて注射針から0.1MPaの圧力で25℃の純水を注入し、膜の外側表面から透過してくる純水量を測定し、下記式:
初期純水フラックス[L/m/h]=60×(透過水量[L])/{π×(膜外径[m])×(膜有効長[m])×(測定時間[min])}
により純水フラックスを決定し、透水性を評価した。
尚、「膜有効長」は、注射針が挿入されている部分を除いた、正味の膜長を指す。
(3) Flux (water permeability, initial pure water flux)
After immersing the porous hollow fiber membrane in ethanol, the pure water immersion is repeated several times, and then one end of the wet hollow fiber membrane of about 10 cm length is sealed, and the injection needle is inserted into the hollow portion at the other end, 25 Pure water of 25 ° C. is injected from the injection needle at a pressure of 0.1 MPa in an environment of 0 ° C., and the amount of pure water transmitted from the outer surface of the membrane is measured, and the following formula:
Initial pure water flux [L / m 2 / h] = 60 × (permeate flow rate [L]) / {π × (outer membrane diameter [m]) × (effective membrane length [m]) × (measurement time [min] )}
The pure water flux was determined by the following equation to evaluate the water permeability.
The "membrane effective length" refers to the net length of the membrane excluding the portion where the injection needle is inserted.

(4)実液ろ過時の透水性能保持率 まず、生揚醤油に70℃60分の熱を入れ、火入れし、火入れ醤油原液を作製した。
次に(i)循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取し、初期透水量とした。
次いで、(ii)配管内の水を抜いた後、循環タンクに火入れ醤油原液を投入し、膜間差圧=0.15MPaになるように循環ろ過した。
次いで、(iii)配管の中の火入れ醤油残液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過し、水洗を行った。
次いで、(iv)配管の中の水を抜いた後、循環容器に調合した薬液を投入し、膜循環ろ過を行って30分薬液洗浄を行った。薬液には0.2重量%の次亜塩素酸ナトリウムと1重量%の苛性ソーダを混合させた水溶液を用いた。
次いで、(v)薬液洗浄後、配管の中の薬液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行い、出てきた透過水を10L/mのタイミングで繰り返し採取、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了し、そのリンスの水量を記録した。また、引き続き同じ膜間差圧で循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
各パラメーターは、下記式で算出した:
膜間差圧={(入圧)+(出圧)}/2
膜内表面積[m]=π×(中空糸膜内径[m])×(中空糸膜有効長[m])
膜面線速[m/s]=4×(循環水量[m/s])/{π×(膜内径[m])}。また、操作は全て25℃、膜面線速1.0m/秒で行った。
(4) Permeability retention rate at the time of real liquid filtration First, heat was applied to fresh fried soy sauce at 70 ° C. for 60 minutes, and the mixture was burned to prepare a seasoned soy sauce stock solution.
Next, (i) pure water was introduced into the circulation tank, circulation filtration was performed so as to obtain a transmembrane pressure difference of 0.05 MPa, and permeated water was collected for 1 minute to obtain an initial water permeability.
Next, (ii) after draining the water in the pipe, a firewood soy sauce stock solution was put into a circulation tank, and circulation filtration was performed so as to obtain an inter-membrane differential pressure = 0.15 MPa.
Then, after (iii) removing the burned soy sauce residual solution in the piping, pure water was introduced into the circulation tank, and circulation filtration was performed so that the pressure difference between the membranes was 0.05 MPa, and the water was washed.
Next, (iv) after draining the water in the piping, the prepared chemical solution was charged into the circulation container, and membrane circulation filtration was performed to perform chemical solution cleaning for 30 minutes. As a chemical solution, an aqueous solution in which 0.2% by weight of sodium hypochlorite and 1% by weight of caustic soda were mixed was used.
Next, after (v) chemical solution cleaning, after removing the chemical solution in the pipe, pure water is put into the circulation tank, circulation filtration is performed so that the pressure difference between the membranes = 0.05 MPa, and the permeated water comes out The water was repeatedly collected at a timing of 10 L / m 2 , and when the chlorine concentration of the permeate water was 0.1 ppm or less and the pH became 8.6 or less, the water washing was ended, and the amount of water in the rinse was recorded. In addition, circulation filtration was performed with the same transmembrane differential pressure to collect the permeated water for 1 minute, and the water permeability was determined and compared with the initial water permeability.
Each parameter was calculated by the following equation:
Transmembrane differential pressure = {(input pressure) + (output pressure)} / 2
Intra-membrane surface area [m 2 ] = π × (hollow fiber membrane inner diameter [m]) × (hollow fiber membrane effective length [m])
Membrane surface linear velocity [m / s] = 4 × (circulating water amount [m 3 / s]) / {π × (inner diameter of membrane [m]) 2 }. Moreover, all the operations were performed at 25 ° C. and a film surface linear velocity of 1.0 m / sec.

(5)引張破断伸度(%)
サンプルとして多孔質中空糸膜をそのまま用い、張破断伸度をJIS K7161に従って算出した。引張破断時の荷重と変位を以下の条件で測定した。
測定機器:インストロン型引張試験機(島津製作所製AGS-5D)
チャック間距離:5cm
引張り速度:20cm/分
(5) Tensile elongation at break (%)
The porous hollow fiber membrane was used as a sample as it was, and the tensile elongation at break was calculated according to JIS K7161. The load and displacement at tensile failure were measured under the following conditions.
Measuring equipment: Instron type tensile tester (AGS-5D manufactured by Shimadzu Corporation)
Chuck distance: 5 cm
Tension speed: 20 cm / min

(8)火入れ醤油のろ過前後の、澱成分比率(X0、X1) 澱成分は、対象の醤油20mLをメスシリンダーに入れ、85℃に設定した恒温槽で90分加熱したのち、室温で5日間静置して、沈殿成分の高さを測定して、ろ過前後の沈殿成分の高さを比較して評価した。静置後澱成分の高さを比較することにより、醤油単位容積中に存在する澱成分比率を求めることができる。 (8) Stirred component ratio (X0, X1) before and after filtration of roasted soy sauce Add 20 mL of soy sauce to be treated into a measuring cylinder and heat it for 90 minutes in a thermostatic bath set at 85 ° C, then for 5 days at room temperature After standing, the height of the precipitated component was measured, and the height of the precipitated component before and after filtration was compared and evaluated. The ratio of the sediment component present in the soy sauce unit volume can be determined by comparing the height of the sediment component after standing.

(9)全窒素量(N0、N1)の測定
醤油試料を純酸素気流中で燃焼させ、さらに還元して、試料中の全窒素量を窒素ガスとして定量した。全窒素分は試料容量に対する百分比として算出した。測定装置は住化分析センター社製SUMIGRAPH NC−220Fを用い、測定方法はMETHOD「L×M」、試料量は500μL、反応炉温度:870℃、還元炉温度:600℃に設定した。定量は、アスパラギン酸の校正曲線から算出した。
(9) Measurement of total nitrogen content (N0, N1) A soy sauce sample was burned in a stream of pure oxygen and further reduced to determine the total nitrogen content in the sample as nitrogen gas. The total nitrogen content was calculated as a percentage of the sample volume. The measuring apparatus used SUMIGRAPH NC-220F by Sumika analysis center company, the measuring method set METHOD "LxM", sample volume to 500 microliters, reactor temperature: 870 degreeC, and reduction furnace temperature: 600 degreeC. The quantification was calculated from the calibration curve of aspartic acid.

[実施例1]
熱可塑性樹脂としてPVDF樹脂(クレハ社製、KF−W#1000)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアセチルクエン酸トリブチル(ATBC, 沸点343℃)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとATBCを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.78%であり、2%未満の変化であった。
Example 1
40% by mass of PVDF resin (Kureha KF-W # 1000) as a thermoplastic resin, 23% by mass of finely powdered silica (primary particle diameter: 16 nm), and bis 2-ethylhexyl adipate (DOA) as a non-solvent. A melt-kneaded product was prepared using 9% by mass and tributyl acetyl citrate (ATBC, boiling point 343 ° C.) 4.1% by mass as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove DOA and ATBC, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in a 20 mass% aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. Moreover, it was a film with high flux (water permeability) and high communication. The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen content after filtration was 1.78%, a change of less than 2%.

[実施例2]
熱可塑性樹脂としてETFE樹脂(旭硝子社製、TL−081)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアジピン酸ジイソブチル(DIBA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとDIBAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.77%であり、2%未満の変化であった。
Example 2
40% by mass of ETFE resin (manufactured by Asahi Glass Co., Ltd., TL-081) as a thermoplastic resin, 23% by mass of finely powdered silica (primary particle diameter: 16 nm), 32.9% by mass of bis-2-ethylhexyl adipate (DOA) as a non-solvent A melt-kneaded product was prepared using% and 4.1% by mass of diisobutyl adipate (DIBA) as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove DOA and DIBA, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in a 20 mass% aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. Moreover, it was a film with high flux (water permeability) and high communication.
The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen content after filtration was 1.77%, a change of less than 2%.

[実施例3]
熱可塑性樹脂として熱可塑性樹脂としてECTFE樹脂(ソルベイスペシャルティポリマーズ社製、Halar901)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてトリフェニル亜リン酸(TPP)32.9質量%と、貧溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてTPPとDOAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、連通性の高い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.71%であり、約3%の変化であった。
[Example 3]
40% by mass of ECTFE resin (manufactured by Solvay Specialty Polymers, Halar 901) as thermoplastic resin and 23% by mass of finely divided silica (primary particle diameter: 16 nm) and triphenylphosphorous acid (TPP) 32 as non-solvent A melt-kneaded product was prepared using 9% by mass and bis-2-ethylhexyl adipate (DOA) 4.1% by mass as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove TPP and DOA, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in 20% by weight aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. Moreover, it was a film with high flux (water permeability) and high communication.
The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen content after filtration was 1.71%, a change of about 3%.

[比較例1]
溶剤をATBCのみとしたこと以外は、実施例1と同様にして製膜し、比較例1の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスが低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.2%であり、約32%の変化であった。
Comparative Example 1
A hollow fiber membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that the solvent was changed to ATBC only. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. Moreover, it was a film with low flux and low communication.
The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77 wt%, while the total nitrogen content after filtration was 1.2%, a change of about 32%.

[比較例2]
微粉シリカを0%とし、溶剤をγ-ブチロラクトンのみとしたこと以外は、実施例1と同様にして製膜し、比較例2の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.3%であり、約27%の変化であった。
Comparative Example 2
A hollow fiber membrane of Comparative Example 2 was obtained in the same manner as in Example 1 except that the amount of finely divided silica was 0% and the solvent was only γ-butyrolactone. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. Also, the flux was low and the membrane was low in communication.
The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen content after filtration was 1.3%, a change of about 27%.

[比較例3]
溶剤をDOAのみとした以外は、実施3と同様にして製膜し、比較例3の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であった。
火入れ工程を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記多孔質膜でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、1mmの澱成分の沈殿が形成された。すなわち、該ろ過による澱成分の除去率は99%超であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.25%であり、約29%変化であった。
Comparative Example 3
A hollow fiber membrane of Comparative Example 3 was obtained in the same manner as in Example 3 except that the solvent was changed to DOA only. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. Also, the flux was low and the membrane was low in communication.
The burning process was carried out. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step through the porous membrane was treated in the same manner, a sediment of 1 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the filtration was over 99%. Also, the total nitrogen content of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen content after filtration was 1.25%, a change of about 29%.

[比較例4]
火入れ後の醤油原液をスタンダードスーパーセル(セライト社製)の珪藻土と混合し、内外醸機社製フィルタープレスにより圧力=1.0MPaとなるようにろ過を実施した。火入れ工程後の醤油20mLをメスシリンダーにいれ、85℃に設定した恒温槽で90分間加熱した後、室温で5日間静置したところ、液面高さ138mmに対して、110mmの澱成分の沈殿が形成された。他方、火入れ工程後の醤油を前記珪藻土でろ過したろ液20mLを同様に処理したところ、液面高さ138mmに対して、5mmの澱成分の沈殿が形成された。すなわち、該珪藻土ろ過による澱成分の除去率は約95%であった。また、火入れ醤油のろ過前の全窒素成分は1.77重量%であり、他方、ろ過後の全窒素成分は1.74%であり、約2%変化であった。
Comparative Example 4
The soy sauce stock solution after burning was mixed with diatomaceous earth of a standard super cell (made by Celite), and filtration was carried out with a filter press made by Oita Keiki Co., Ltd. so that the pressure was 1.0 MPa. After adding 20 mL of soy sauce after burning in a graduated cylinder and heating it for 90 minutes in a thermostatic bath set at 85 ° C, let stand at room temperature for 5 days, and precipitate sediment of 110 mm against a liquid level of 138 mm. Was formed. On the other hand, when 20 mL of the filtrate obtained by filtering the soy sauce after the burning step with diatomaceous earth was treated in the same manner, a sediment of 5 mm was formed at a liquid level of 138 mm. That is, the removal rate of the sediment component by the diatomaceous earth filtration was about 95%. Also, the total nitrogen component of the cooked soy sauce before filtration was 1.77% by weight, while the total nitrogen component after filtration was 1.74%, a change of about 2%.

以上の結果から、連通性が良好な膜は、ろ過性能、薬液耐性に優れ、かつ、高寿命であることが分かった。   From the above results, it was found that the membrane having good communication was excellent in filtration performance and chemical solution resistance, and had a long life.

本発明に係る醤油の製造方法におけるろ過工程は、多孔質ろ過膜の(被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、ろ過前後の火入れ醤油の全窒素成分の変化が低く、澱成分の除去率が高く、さらに、洗浄工程で使用する洗浄液(薬液)として、50℃〜90℃の湯、及び/又は0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム若しくは0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液を使用した場合であっても、膜の劣化を最小限に抑えることができる。それゆえ、本発明に係る醤油の製造方法は、ろ過性能、薬液耐性に優れ、かつ、高寿命の方法である。   The filtration step in the method for producing soy sauce according to the present invention uses a membrane having good communication of pores extending from the inside of the membrane on the liquid side to the outside of the membrane on the filtrate side of the porous filtration membrane Therefore, the change in the total nitrogen component of the fired soy sauce before and after filtration is low, the removal rate of the sediment component is high, and furthermore, 50 ° C to 90 ° C hot water and / or 0 as a washing solution (chemical solution) used in the washing step. Even when an aqueous solution containing not less than .05 wt% and not more than 0.5 wt% sodium hypochlorite or not less than 0.4 wt% and not more than 4 wt% sodium hydroxide is used, the deterioration of the film is minimized. Therefore, the method for producing soy sauce according to the present invention is a method having excellent filtration performance and chemical resistance and a long life.

Claims (19)

以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
The following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields.
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
The following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 10 μm 2 or more is 15% or less of the total area of the resin part in each area of a total of four visual fields of visual field, and
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
以下の工程:
澱成分を含有する醤油を火入れして、該澱成分の凝集体を形成する火入れ工程;及び
3次元網目構造の樹脂から構成される多孔質膜に、該澱成分の凝集体を含有する火入れ醤油を通過させて、該澱成分の凝集体からろ液を分離するろ過工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該ろ過工程前の火入れ醤油の澱成分比率をX0、全窒素成分をN0、該ろ過工程後の火入れ醤油の澱成分比率をX1、全窒素成分をN1とするとき、X1/X0×100<5%、及びN1/N0×100≧97%の関係を満たす、
ことを特徴とする前記醤油の製造方法。
The following steps:
A firing step of burning soy sauce containing a precipitate component to form an aggregate of the precipitate component; and a cooked soy sauce containing an aggregate of the precipitate component in a porous membrane composed of a resin of a three-dimensional network structure. Filtration to separate the filtrate from aggregates of the sediment component by passing through
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields, and a resin having an area of 10 μm 2 or more The total area of the part is 15% or less of the total area of the resin part, and
When the sediment component ratio of the fired soy sauce before the filtration step is X0, the total nitrogen component is N0, the sediment component ratio of the fired soy sauce after the filtration step is X1, and the total nitrogen component is N1, X1 / X0 × 100 <5 % And N1 / N0 × 100 ≧ 97%
The manufacturing method of the said soy sauce characterized by the above-mentioned.
前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、請求項1〜3のいずれか1項に記載の方法。 The porous membrane is a field of view including the inner surface, a field of view including the outer surface of the membrane, and a field of view in the SEM image of the cross section of the membrane in the thickness direction orthogonal to the inner surface of the porous membrane. in each area of a total of four field of 2 field taken at regular intervals, the total area of the resin portion having an area of less than 1 [mu] m 2 ultra 10 [mu] m 2 is 15% or less relative to the total area of the resin portion, wherein The method according to any one of Items 1 to 3. 前記多孔質膜の表面開口率は25〜60%である、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the surface open area ratio of the porous membrane is 25 to 60%. 前記多孔質膜は中空糸膜である、請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the porous membrane is a hollow fiber membrane. 前記多孔質膜を構成する樹脂は熱可塑性樹脂である、請求項1〜6のいずれか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein the resin constituting the porous membrane is a thermoplastic resin. 前記熱可塑性樹脂はフッ素樹脂である、請求項7に記載の方法。   The method according to claim 7, wherein the thermoplastic resin is a fluorocarbon resin. 前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる、請求項8に記載の方法。   The fluorine resin is vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE), hexamer 9. The method of claim 8 selected from the group consisting of fluoropropylene resins, and mixtures of these resins. 前記熱可塑性樹脂はポリエチレン(PE)である、請求項7に記載の方法。   The method according to claim 7, wherein the thermoplastic resin is polyethylene (PE). 前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が50℃〜90℃の湯である、請求項1〜10のいずれか1項に記載の方法。   The method further comprises the step of washing the inside of the porous membrane by passing or immersing the washing liquid in the porous membrane after the filtration step, and the washing liquid is hot water at 50 ° C. to 90 ° C. 10. The method according to any one of. 前記ろ過工程の後に、該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程を更に含み、該洗浄液が0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム又は0.4重量%以上4重量%以下の水酸化ナトリウムを含有する水溶液である、請求項1〜10のいずれか1項に記載の方法。   After the filtration step, the method further includes a washing step of washing the inside of the porous membrane by passing or immersing a washing liquid in the porous membrane, wherein the washing liquid is 0.05% by weight or more and 0.5% by weight or less The method according to any one of claims 1 to 10, which is an aqueous solution containing sodium hypochlorite or 0.4 wt% or more and 4 wt% or less of sodium hydroxide. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、請求項11又は12に記載の方法。   The relationship between the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking elongation E1 of the porous membrane after the washing step is E1 / E0 × 100 ≧ 80%. The method according to 11 or 12. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、請求項11又は12に記載の方法。   Tensile breaking elongation E0 of the porous membrane before the washing step, and tensile breaking elongation of the porous membrane after repeating the washing step X times (where X is an integer of 2 to 100) The method according to claim 11 or 12, wherein the relationship with the degree EX is EX / E0 x 100 70 70%. 前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、請求項11又は12に記載の方法。   The relationship between the flux L0 of the porous membrane before the filtration step and the flux L1 of the porous membrane after the washing step is L1 / L0 × 100 ≧ 95%, according to claim 11 or 12, Method. 前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、X/L0×100≧90%である、請求項11又は12に記載の方法。   The relationship between the flux L0 of the porous membrane before the filtration step and the flux LX of the porous membrane after repeating the cleaning step X times (where X is an integer of 2 to 100) is The method according to claim 11 or 12, wherein X / L0 x 100 90 90%. 前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、請求項11〜16のいずれか1項に記載の方法。   The cleaning process according to any one of claims 11 to 16, wherein the cleaning process includes a cleaning process performing the cleaning with the cleaning solution and a rinsing process performing the rinsing with rinse water to remove the remaining cleaning solution components thereafter. the method of. 前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、請求項17に記載の方法。 The method according to claim 17, wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane. 前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、請求項17又は18に記載の方法。   The method according to claim 17 or 18, wherein the chlorine concentration in the filtrate after restarting the filtration step after the rinse step is 0.1 ppm or less, and the pH of the filtrate is 8.6 or less. .
JP2018164585A 2017-09-07 2018-09-03 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE Active JP7182960B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017171974 2017-09-07
JP2017171974 2017-09-07

Publications (2)

Publication Number Publication Date
JP2019047781A true JP2019047781A (en) 2019-03-28
JP7182960B2 JP7182960B2 (en) 2022-12-05

Family

ID=65904655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164585A Active JP7182960B2 (en) 2017-09-07 2018-09-03 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE

Country Status (1)

Country Link
JP (1) JP7182960B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645173A (en) * 1979-09-19 1981-04-24 Kuraray Co Ltd Treating method of deposited soy sauce sediment
JPS5726560A (en) * 1980-07-21 1982-02-12 Kuraray Co Ltd Filtration of soysauce sediment
JPH03143533A (en) * 1989-10-26 1991-06-19 Nitto Denko Corp Method for washing membrane in stage for treating heated soy sauce
JPH04277018A (en) * 1991-03-01 1992-10-02 Nitto Denko Corp Method for washing porous plate-shaped membrane for filtering pasteurized soy sauce
JPH10234332A (en) * 1996-12-26 1998-09-08 Kikkoman Corp Method for producing pale soy sauce and conditioning gloss of soy sauce
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2009095808A (en) * 2007-10-19 2009-05-07 Toyobo Co Ltd Hollow fiber membrane for liquid processing
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP2012040461A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Method for manufacturing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filter using porous hollow fiber membrane, and water-treating method using porous hollow fiber membrane
JP2013075294A (en) * 2006-04-19 2013-04-25 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
JP2016196004A (en) * 2013-09-18 2016-11-24 三菱レイヨン株式会社 Porous hollow fiber membrane
JP2019047779A (en) * 2017-09-07 2019-03-28 旭化成株式会社 Method for producing soy sauce using porous film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645173A (en) * 1979-09-19 1981-04-24 Kuraray Co Ltd Treating method of deposited soy sauce sediment
JPS5726560A (en) * 1980-07-21 1982-02-12 Kuraray Co Ltd Filtration of soysauce sediment
JPH03143533A (en) * 1989-10-26 1991-06-19 Nitto Denko Corp Method for washing membrane in stage for treating heated soy sauce
JPH04277018A (en) * 1991-03-01 1992-10-02 Nitto Denko Corp Method for washing porous plate-shaped membrane for filtering pasteurized soy sauce
JPH10234332A (en) * 1996-12-26 1998-09-08 Kikkoman Corp Method for producing pale soy sauce and conditioning gloss of soy sauce
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2013075294A (en) * 2006-04-19 2013-04-25 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
JP2009095808A (en) * 2007-10-19 2009-05-07 Toyobo Co Ltd Hollow fiber membrane for liquid processing
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP2012040461A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Method for manufacturing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filter using porous hollow fiber membrane, and water-treating method using porous hollow fiber membrane
JP2016196004A (en) * 2013-09-18 2016-11-24 三菱レイヨン株式会社 Porous hollow fiber membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
JP2019047779A (en) * 2017-09-07 2019-03-28 旭化成株式会社 Method for producing soy sauce using porous film

Also Published As

Publication number Publication date
JP7182960B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
US20190022601A1 (en) Porous hollow fiber membrane, method for producing the same, and filtration method
JP6839766B2 (en) Filtration method using a porous membrane
JP7244426B2 (en) Porous hollow fiber membrane, method for producing porous hollow fiber membrane, and filtration method
JP7204382B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7169129B2 (en) Method for producing saccharified liquid using porous membrane
JP7165000B2 (en) Method for producing tea beverage using porous membrane
JP7182960B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP6839765B2 (en) Filtration method using a porous membrane
JP7105654B2 (en) Method for filtration of culture broth using porous membrane
JP2018144006A (en) Porous hollow fiber membrane and manufacturing method of the same
JP7185448B2 (en) Porous hollow fiber membrane, manufacturing method thereof, and filtration method
JP6832440B2 (en) Method of producing brewed liquor using a porous membrane
WO2020100763A1 (en) Filtration method in which porous membrane is used
JP6920833B2 (en) Porous hollow fiber membrane and its manufacturing method
JP2019042735A (en) Method for producing porous hollow membrane containing separation layer, porous hollow membrane and filtration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7182960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150