JP2019047779A - Method for producing soy sauce using porous film - Google Patents

Method for producing soy sauce using porous film Download PDF

Info

Publication number
JP2019047779A
JP2019047779A JP2018164436A JP2018164436A JP2019047779A JP 2019047779 A JP2019047779 A JP 2019047779A JP 2018164436 A JP2018164436 A JP 2018164436A JP 2018164436 A JP2018164436 A JP 2018164436A JP 2019047779 A JP2019047779 A JP 2019047779A
Authority
JP
Japan
Prior art keywords
porous membrane
washing
resin
water
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018164436A
Other languages
Japanese (ja)
Other versions
JP7204382B2 (en
Inventor
辰徳 小比類巻
Tatsunori Kohiruimaki
辰徳 小比類巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2019047779A publication Critical patent/JP2019047779A/en
Application granted granted Critical
Publication of JP7204382B2 publication Critical patent/JP7204382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for producing a soy sauce including a filtration step using a porous film and a cleaning step, which is a filtration method that is excellent in resistance to a cleaning liquid (medicine liquid) (medicine liquid resistance), is excellent in filtration performance, has a long lifetime, and dispenses with cleaning dye to a surface active agent-containing cleaning agent.SOLUTION: A method for producing a soy sauce includes the following steps of a filtration step of passing soy sauce through a porous film formed of a resin having a three-dimensional network structure to separate a filtrate from a dregs component; and a cleaning step of passing or immersing a cleaning liquid through/in the porous film to clean inside of the porous film, where the total of the area of a resin part having an area of 1 μmor less is 70% or more based on the total area of the resin part, and the cleaning liquid is hot water at 50°C or higher and 90°C or lower as primary cleaning water, 0.05 wt.% or more and 0.5 wt.% or less of sodium hypochlorite as secondary cleaning water, and 0.4 wt.% or more and 4 wt.% or less of an aqueous solution at 15°C or higher and 35°C or lower containing sodium hydroxide.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質膜を用いたろ過工程、及び洗浄工程を含む醤油の製造方法に関する。より詳しくは、本発明は、多孔質膜を用いたろ過工程、及び洗浄工程を含む醤油の製造方法において、洗浄液(薬液)に対する耐性、洗浄回復性に優れる方法に関する。   The present invention relates to a method for producing soy sauce comprising a filtration step using a porous membrane and a washing step. More specifically, the present invention relates to a method for producing soy sauce which includes a filtration step using a porous membrane and a washing step, and is a method excellent in the resistance to a washing solution (chemical solution) and the washing recovery.

懸濁水である海水、河川水、湖沼水、地下水等の天然水源から飲料水や工業用水を得るための上水処理、下水等の生活排水を処理して再生水を製造し、放流可能な清澄水にするための下水処理、醤油の製造方法における澱成分の除去等には、懸濁物を分離・除去するための固液分離操作(除濁操作)が必要である。かかる除濁操作においては、上水処理に関しては懸濁水である天然水源水由来の濁質物(粘土、コロイド、細菌等)が除去され、下水処理に関しては下水中の懸濁物、活性汚泥等により生物処理(2次処理)した処理水中の懸濁物(汚泥等)が除去され、醤油の製造方法においては凝集したタンパク質や多糖類などの澱成分が除去される。   Water treatment to obtain drinking water and industrial water from natural water sources such as suspended water, river water, lake water, groundwater, etc., treatment of domestic wastewater such as sewage to produce reclaimed water, clear water that can be released In order to treat sewage for the purpose of removal and removal of the sediment component in the method of producing soy sauce, a solid-liquid separation operation (cloud removal operation) for separating and removing the suspension is required. In this turbidity removal operation, suspended matter (clay, colloid, bacteria, etc.) derived from natural water source water which is suspended water is removed for the treatment of fresh water, and for sewage treatment, suspended matter in the lower water, activated sludge, etc. Suspensions (sludge etc.) in treated water subjected to biological treatment (secondary treatment) are removed, and in the method of producing soy sauce, sedimented components such as aggregated proteins and polysaccharides are removed.

従来、これらの除濁操作は、主に、加圧浮上法、沈殿法、砂ろ過法、凝集沈殿砂ろ過法、遠心分離、フィルタープレス、篩処理等により行われてきたが、近年、これらの方法に代えて、膜ろ過法が普及しつつある。膜ろ過法の利点としては、(1)得られる水質の除濁レベルが高く、かつ、安定している(得られる水の安全性が高い)こと、(2)ろ過装置の設置スペースが小さくてすむこと、(3)自動運転が容易であること等が挙げられる。例えば、海水淡水化逆浸透ろ過の前処理では、加圧浮上法の代替手段として、又は加圧浮上法の後段として、加圧浮上処理された処理水の水質をさらに向上するために膜ろ過法が用いられている。これら膜ろ過による除濁操作には、平均孔径が数nm〜数百nmの範囲の平膜又は中空糸状の多孔質限外ろ過膜や精密ろ過膜が用いられる。
このように、膜ろ過法による除濁操作は、前記した従来の加圧浮上法、砂ろ過法等にはない利点が多くあるために、従来法の代替又は補完手段として、海水淡水化前処理等への普及が進んでおり、また、多孔質膜として以下の特許文献1に記載されるような樹脂により構成される有機膜が多用されている。
Heretofore, these turbidity removal operations have mainly been carried out by the pressure flotation method, sedimentation method, sand filtration method, coagulation sedimentation sand filtration method, centrifugation, filter press, sieving, etc. Instead of the method, the membrane filtration method is spreading. Among the advantages of the membrane filtration method are: (1) high turbidity removal level of the obtained water quality and stability (high safety of the obtained water) (2) the installation space of the filtration device is small And (3) ease of automatic operation. For example, in the pretreatment of seawater desalination reverse osmosis filtration, as an alternative means of the pressurized flotation method, or as a subsequent stage of the pressurized flotation method, a membrane filtration method to further improve the water quality of the treated water subjected to pressurized flotation treatment Is used. A flat or hollow fiber porous ultrafiltration membrane or a microfiltration membrane having an average pore diameter in the range of several nm to several hundreds nm is used for the turbidity removal operation by the membrane filtration.
Thus, since the turbidity removal operation by the membrane filtration method has many advantages which the above-mentioned conventional pressurized flotation method, sand filtration method and the like do not have, there is a desalination pretreatment for seawater as an alternative or complementary means of the conventional method. Dissemination to, etc. is progressing, and an organic film composed of a resin as described in Patent Document 1 below is widely used as a porous film.

従来、生醤油の製造方法においては、タンパク質、多糖類などの澱成分を分離・除去するための膜ろ過工程の後、用いた多孔質膜を、水で洗浄した後、洗浄液として次亜塩素酸ナトリウム及び/水酸化ナトリウムの水溶液で洗浄し、かかる洗浄後の当水量が、新品時の透水量の70%以上にならない場合、次亜塩素酸ナトリウム及び/水酸化ナトリウムの水溶液では除去できない物質が多孔質膜に未だ付着していると判断して、界面活性剤含有洗浄液によるさらなる洗浄を実施していた。   Conventionally, in the method of producing soy sauce, after the membrane filtration step for separating and removing the sediment components such as proteins and polysaccharides, the used porous membrane is washed with water and then hypochlorous acid as a washing solution. The sodium hypochlorite and / or sodium hydroxide aqueous solution can not be removed if it is washed with an aqueous solution of sodium and / or sodium hydroxide and the amount of water after such washing does not exceed 70% of the water permeability of the new product. It was judged that it still adhered to the porous membrane, and further washing with a surfactant-containing washing solution was carried out.

特開2011−168741号公報JP, 2011-168741, A

前記したように、多孔質膜として樹脂により構成される有機膜が多用されているものの、樹脂素材で多孔質ろ過膜を作製する際、製膜方法が異なると膜を構成する素材のミクロ構造に差異が現れる。通常、ろ過運転を継続すると膜は目詰まりを起こすため、多孔質ろ過膜を用いたろ過方法の運転には、洗浄工程が伴う。他方、洗浄工程に薬剤を使用すると、膜の強度劣化を誘発する。このとき、多孔質ろ過膜を構成する素材のミクロ構造に差異があると、繰り返される洗浄工程で使用する洗浄液(薬液)による多孔質ろ過膜へのダメージの程度が異なる結果、ろ過性能や寿命に影響を及ぼすという問題がある。
また、醤油の製造方法において、タンパク質や多糖類などの澱成分を分離・除去するための膜ろ過工程の後、用いた多孔質膜を、水で洗浄した後、洗浄液として次亜塩素酸ナトリウム及び/水酸化ナトリウムの水溶液で洗浄し、界面活性剤含有洗浄液によるさらなる洗浄を実施すると、洗浄工程において、大量に使用する水及び洗浄剤のコストに加え、大量の廃水が発生し、これを更に処理しなければならないという問題がある。
かかる問題に鑑み、本発明が解決しようとする課題は、多孔質ろ過膜を用いるろ過工程、及び洗浄液(薬液)を使用した洗浄工程を含む醤油の製造方法において、薬液耐性、ろ過性能に優れ、高寿命であり、さらに界面活性剤含有洗浄剤により洗浄を不要とする方法を提供することである。
As described above, although an organic membrane composed of a resin is often used as a porous membrane, when producing a porous filtration membrane using a resin material, if the film forming method is different, the microstructure of the material constituting the membrane is used. A difference appears. Usually, when the filtration operation is continued, the membrane is clogged, so the operation of the filtration method using the porous filtration membrane involves the washing step. On the other hand, the use of agents in the washing process induces membrane strength degradation. At this time, if there is a difference in the microstructure of the material constituting the porous filtration membrane, the degree of damage to the porous filtration membrane by the cleaning liquid (chemical solution) used in the repeated washing step is different, resulting in the filtration performance and the life. There is a problem of influence.
Further, in the method for producing soy sauce, after the membrane filtration step for separating and removing sediment components such as proteins and polysaccharides, the used porous membrane is washed with water, and then sodium hypochlorite as a washing solution and Washing with an aqueous solution of sodium hydroxide and carrying out further washing with a detergent containing detergent, in addition to the cost of the water and detergents used in the washing step, a large amount of waste water is generated which is further treated There is a problem of having to
In view of this problem, the problem to be solved by the present invention is a method of producing soy sauce including a filtration step using a porous filtration membrane and a washing step using a washing solution (chemical solution), which is excellent in chemical resistance and filtration performance, It is an object of the present invention to provide a method which has a long service life and does not require cleaning with a surfactant-containing detergent.

本願発明者は、前記した課題を解決すべく鋭意検討し実験を重ねた結果、多孔質ろ過膜の被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用することで、洗浄工程で使用する洗浄液(薬液)として、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液を使用し、その後の更なる界面活性剤含有洗浄剤を使用しない場合であっても、膜の劣化を最小限に抑えることができ、かつ、多孔質膜の透水量を回復できることを予想外に見出し、本発明を完成するに至ったものである。   The inventor of the present invention has conducted intensive studies and repeated experiments to solve the above-mentioned problems, and as a result, communication of pores from the inside of the membrane on the treated side of the porous filtration membrane to the outside of the membrane on the filtrate side By using a film having good conductivity, as a washing solution (chemical solution) used in the washing step, hot water of 50 ° C. or more and 90 ° C. or less as primary washing water, and 0.05 wt% or more as secondary washing water Using an aqueous solution at 15 ° C. or more and 35 ° C. or less containing 0.5% by weight or less of sodium hypochlorite and 0.4% by weight or more and 4% by weight or less of sodium hydroxide, and then further containing surfactant Even when the cleaning agent is not used, it has been unexpectedly found that the deterioration of the membrane can be minimized and the water permeability of the porous membrane can be recovered, and the present invention has been completed. is there.

すなわち、本発明は以下のとおりのものである。
[1]以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
[2]以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
[3]以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
[4]前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、前記[1]〜[3]のいずれかに記載の方法。
[5]前記多孔質膜の表面開口率は25〜60%である、前記[1]〜[4]のいずれかに記載の方法。
[6]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、前記[1]〜[5]のいずれかに記載の方法。
[7]前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、前記[1]〜[5]のいずれかに記載の方法。
[8]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、前記[1]〜[7]のいずれかに記載の方法。
[9]前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、LX/L0×100≧90%である、前記[1]〜[7]のいずれかに記載の方法。
[10]前記多孔質膜は中空糸膜である、前記[1]〜[9]のいずれかに記載の方法。
[11]前記多孔質膜を構成する樹脂は熱可塑性樹脂である、前記[1]〜[10]のいずれかに記載の方法。
[12]前記熱可塑性樹脂はフッ素樹脂である、前記[11]に記載の方法。
[13]前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる、前記[12]に記載の方法。
[14]前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、[1]〜[13]のいずれかに記載の方法。
[15]前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、前記[14]に記載の方法。
[16]前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、前記[14]又は[15]に記載の方法。
That is, the present invention is as follows.
[1] The following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields.
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[2] the following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 10 μm 2 or more is 15% or less of the total area of the resin part in each area of a total of four visual fields of visual field, and
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[3] The following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields, and a resin having an area of 10 μm 2 or more The total area of the part is 15% or less of the total area of the resin part, and
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
[4] The porous film is a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film, a field of view including the inner surface, a field of view including the outer surface of the film, and these fields of view in 2 field each region a total of four field of between was taken at regular intervals of, 1 [mu] m 2 total area of the resin portion having an area of less than super 10 [mu] m 2 is at most 15% of the total area of the resin portion The method according to any one of the above [1] to [3].
[5] The method according to any one of the above [1] to [4], wherein the surface open area ratio of the porous membrane is 25 to 60%.
[6] The relationship between the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking elongation E1 of the porous membrane after the washing step is E1 / E0 × 100 ≧ 80% , The method in any one of said [1]-[5].
[7] Tensile elongation at break E0 of the porous membrane before the washing step, and the porous membrane after repeating the washing step X times (here, X is an integer of 2 to 100) The method according to any one of the above [1] to [5], wherein the relationship with the tensile elongation at break EX is EX / E0 × 100 ≧ 70%.
[8] The above-mentioned [1], wherein the relationship between the flux L0 of the porous membrane before the filtration step and the flux L1 of the porous membrane after the cleaning step is L1 / L0 × 100 ≧ 95%. The method according to any one of [7].
[9] The flux L0 of the porous membrane before the filtration step, and the flux LX of the porous membrane after repeating the cleaning step X times (here, X is an integer of 2 to 100) The method according to any one of the above [1] to [7], wherein the relationship of is LX / L0 × 100 ≧ 90%.
[10] The method according to any one of the above [1] to [9], wherein the porous membrane is a hollow fiber membrane.
[11] The method according to any one of the above [1] to [10], wherein the resin constituting the porous membrane is a thermoplastic resin.
[12] The method according to [11] above, wherein the thermoplastic resin is a fluorine resin.
[13] The fluorine resin is vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE) The method according to [12] above, which is selected from the group consisting of hexafluoropropylene resins, and mixtures of these resins.
[14] The washing step includes any of the washing steps for washing with the washing liquid and the rinsing steps for rinsing with rinse water for removing the remaining washing liquid components thereafter. How to describe.
[15] The method according to [14], wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane.
[16] The above [14] or [14], wherein the chlorine concentration in the filtrate after resuming the filtration step after the rinsing step is 0.1 ppm or less and the pH of the filtrate is 8.6 or less 15].

本発明に係る醤油の製造方法におけるろ過工程は、多孔質ろ過膜の(被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、洗浄工程で使用する洗浄液(薬液)として、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液を使用した場合に、膜の劣化を最小限に抑えることができ、それゆえ、多孔質ろ過膜を用いるろ過工程、及び薬液を使用した洗浄工程を含む醤油の製造方法において、薬液耐性、ろ過性能に優れ、高寿命であり、さらに界面活性剤含有洗浄液による洗浄を省略しても多孔質膜の透水量を回復できる方法である。   The filtration step in the method for producing soy sauce according to the present invention uses a membrane having good communication of pores extending from the inside of the membrane on the liquid side to the outside of the membrane on the filtrate side of the porous filtration membrane Therefore, as the cleaning solution (chemical solution) used in the cleaning step, the hot water of 50 ° C. or more and 90 ° C. or less as the primary cleaning water, and the next of 0.05% by weight or more and 0.5% by weight or less as the secondary cleaning water When using an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium chlorite and 0.4% by weight or more and 4% by weight or less of sodium hydroxide, the deterioration of the membrane can be minimized. In a method of producing soy sauce comprising a filtration step using a porous filtration membrane and a washing step using a chemical solution, it is excellent in chemical solution resistance and filtration performance, has a long life, and further omits cleaning with a surfactant-containing cleaning solution Recovery of Permeability of Porous Membranes It is that way.

本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の断面のSEM画像の一例である(黒部分は樹脂、白部分は細孔(開孔)を示す)。It is an example of the SEM image of the cross section of the porous membrane used for the filtration process in the manufacturing method of the soy sauce of this embodiment (a black part shows resin and a white part shows a pore (open hole)). 実施例1で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 1. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 実施例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 2. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 実施例3で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。A field of view including the inner surface, a field of view including the outer surface of the film, and the like between the fields of view in a SEM image of a film cross section in a film thickness direction orthogonal to the inner surface of the porous film used in Example 3. It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area with respect to the total area of the resin part in each area | region (circle 1-circle 4) of a total of four visual fields of 2 visual fields image | photographed by space | interval. 比較例2で用いた多多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。In the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film used in Comparative Example 2, a field of view including the inner surface, a field of view including the outer surface of the film, and It is a histogram which shows the ratio (%) of the total of the area of the resin part which has a predetermined area to the total area of the resin part in each field (circle 1-circle 4) of a total of four views of 2 views photographed at equal intervals .

以下、本発明の実施形態(以下、本実施形態ともいう。)について詳細に説明する。尚、本発明は本実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention (hereinafter, also referred to as the present embodiment) will be described in detail. The present invention is not limited to the present embodiment.

<ろ過工程>
本実施形態の醤油の製造方法は、3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする。
多孔質膜の形状としては特に制限はなく、平膜、管状膜、中空糸膜であることができるが、ろ過装置の省スペース性の観点から、すなわち、膜モジュール単位体積当たりの膜面積を大きくすることができるため、中空糸膜が好ましい。
<Filtration process>
In the method for producing soy sauce of this embodiment, a filtration step of separating the filtrate from the sediment component by passing the soy sauce containing the sediment component through a porous membrane composed of a resin of a three-dimensional network structure; A washing step of washing the inside of the porous membrane by passing or immersing the washing liquid in the porous membrane;
A method for producing soy sauce comprising: a hot water of 50 ° C. or more and 90 ° C. or less as primary washing water; and a next of 0.05 wt. It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium chlorite and 0.4 wt% or more and 4 wt% or less of sodium hydroxide, and after washing with hot water as the primary washing water in the washing step. Washing with an aqueous solution as the secondary washing water,
It is characterized by
The shape of the porous membrane is not particularly limited, and may be a flat membrane, a tubular membrane, or a hollow fiber membrane, but from the viewpoint of space saving of the filtration device, that is, the membrane area per unit volume of membrane module is large. Hollow fiber membranes are preferred because they can be

本実施形態の醤油の製造方法におけるろ過工程としては、例えば、多孔質中空糸膜の中空部(内側表面)に澱成分を含有する醤油(被処理液)を供給し、多孔質中空糸膜の膜厚(肉厚)部を通過させ、多孔質中空糸膜の外側表面から滲み出した液体をろ液として取り出す、いわゆる内圧式のろ過工程であってもよいし、多孔質中空糸膜の外側表面から被処理液を供給し、多孔質中空糸膜の内側表面から滲み出したろ液を、中空部を介して取り出す、いわゆる外圧式のろ過工程であってもよい。
本明細書中、用語「多孔質膜の内部」とは、多数の細孔が形成されている膜厚(肉厚)部を指す。
As a filtration step in the method for producing soy sauce according to the present embodiment, for example, soy sauce (liquid to be treated) containing a sediment component is supplied to the hollow portion (inner surface) of the porous hollow fiber membrane. It may be a so-called internal pressure type filtration step which passes the membrane thickness (thickness) portion and takes out the liquid exuded from the outer surface of the porous hollow fiber membrane as a filtrate, or the outer side of the porous hollow fiber membrane It may be a so-called external pressure type filtration step in which the liquid to be treated is supplied from the surface and the filtrate which has exuded from the inner surface of the porous hollow fiber membrane is taken out through the hollow portion.
As used herein, the term "inside of the porous membrane" refers to a portion of a film thickness (thickness) in which a large number of pores are formed.

<洗浄工程>
本実施形態の醤油の製造方法における洗浄工程は、多孔質膜に洗浄液として、1次洗浄水としての50℃以上90℃以下の湯(以下、熱水ともいう。)、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液(以下、薬液ともいう。)を、この順に、通過又は浸漬させて、多孔質膜の内部を洗浄する工程を含む。つまり、該洗浄工程においては、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する。洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含むことができる。1次洗浄水の温度は、好ましくは55℃以上85℃以下、より好ましくは60℃以上80℃以下であることができる。2次洗浄水の温度は、好ましくは20℃以上35℃以下であることができる。また、2次洗浄水中の水酸化ナトリウムの濃度は、0.7重量%以上4重量%以下がより好ましく、1重量%以上4重量%以下がさらに好ましい。2次洗浄水中の次亜塩素酸ナトリウムの濃度は、0.1重量%以上0.5重量%以下がより好ましく、0.2重量%以上0.5重量%以下がさらに好ましい。洗浄工程としては、例えば、ろ過工程においける醤油の流れ方向とは逆方向に、すなわち、ろ液側から醤油側に洗浄液を通過させることによって多孔質膜のろ過面(醤油側表面)から付着物(不溶解成分)を引き離して、除去する逆圧水洗浄、エアによって多孔質膜を揺らして多孔質膜に付着した不溶解成分を振るい落とすエアスクラビングなどが挙げられる。前記リンス工程で使用するリンス水の量は、好ましくは、前記多孔質膜の単位面積当たり100L/m以下、より好ましくは50L/m以下であることができる。また、前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下であることが好ましい。
以下に述べるように、本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜は、孔の連通性が高いため、多孔質膜の表面又は内部に付着・残存した澱成分凝集物等の除去すべき物質の残存率が低く、また、その洗浄工程において、まず、熱水で洗浄することにより、該残存物質が除去され易い状態となり、その後、薬液で洗浄することにより、十分に透水量が回復するため、従来実施されていた界面活性剤含有水溶液による更なる洗浄が不要である。
本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質膜の構造、素材(材料)、及び製造方法を、以下、詳述する。
<Washing process>
The washing step in the method for producing soy sauce according to the present embodiment is a porous membrane with a hot water of 50 ° C. to 90 ° C. as primary washing water (hereinafter also referred to as hot water) as a primary washing water and a secondary washing water. An aqueous solution of 15 ° C. to 35 ° C. containing 0.05% by weight or more and 0.5% by weight or less of sodium hypochlorite and 0.4% by weight or more and 4% by weight or less of sodium hydroxide B) passing or immersing in this order to wash the inside of the porous membrane. That is, in the washing step, after washing with hot water as the primary washing water, it is washed with an aqueous solution as the secondary washing water. The washing step may include a washing step of washing with the washing solution and a rinsing step of rinsing with rinse water to remove the remaining washing component. The temperature of the primary washing water can be preferably 55 ° C. or more and 85 ° C. or less, more preferably 60 ° C. or more and 80 ° C. or less. The temperature of the secondary washing water can be preferably 20 ° C. or more and 35 ° C. or less. The concentration of sodium hydroxide in the secondary washing water is more preferably 0.7% by weight or more and 4% by weight or less, and still more preferably 1% by weight or more and 4% by weight or less. The concentration of sodium hypochlorite in the secondary washing water is more preferably 0.1 wt% or more and 0.5 wt% or less, and still more preferably 0.2 wt% or more and 0.5 wt% or less. As the washing step, for example, the washing solution is allowed to pass from the filtrate side to the soy sauce side in the opposite direction to the flow direction of soy sauce in the filtration step, ie, from the filtration side (soy sauce side surface) of the porous membrane. Examples of the method include reverse pressure water washing to separate and remove a deposit (insoluble component), and air scrubbing to shake the porous film with air to shake off the insoluble component attached to the porous film. The amount of rinsing water used in the rinsing step, it is preferable that the porous film per unit area 100L / m 2 or less of, and more preferably at 50L / m 2 or less. Moreover, it is preferable that chlorine concentration in the filtrate after restarting the said filtration process after the said rinse process is 0.1 ppm or less, and pH of this filtrate is 8.6 or less.
As described below, since the porous membrane used in the filtration step in the method for producing soy sauce of this embodiment has high porosity communication, it is possible that sediment component aggregates and the like adhere or remain on the surface or inside of the porous membrane. The residual rate of the substance to be removed is low, and in the washing step, the residual substance is easily removed by washing with hot water first, and then the amount of water permeation is sufficient by washing with a chemical solution. As a result, the conventional cleaning with surfactant-containing aqueous solution is not necessary.
The structure, raw material (material) and manufacturing method of the porous membrane used for the filtration process in the manufacturing method of soy sauce of this embodiment are explained in full detail below.

<多孔質膜>
多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であるもの;同各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるもの;のいずれかである。好ましい多孔質膜は、同各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であるものである。
<Porous membrane>
The porous membrane is a field of view including the inner surface, a field of view including the outer surface of the membrane, and the like between the fields of view in the SEM image of the membrane cross section in the film thickness direction orthogonal to the inner surface of the porous membrane The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields of two visual fields photographed at a distance; The total area of the resin part having an area of 10 μm 2 or more is 15% or less with respect to the total area of the resin part; the total area of the resin part having an area of 1 μm 2 or less in each region But the total area of the resin part having an area of 70 μm or more and 10 μm 2 or more with respect to the total area of the resin part is 15% or less with respect to the total area of the resin part; It is either. Preferred porous membranes in the respective regions, the total area of the resin portion having an area of 1 [mu] m 2 or less, is 70% or more of the total area of the resin portion, an area of less than 1 [mu] m 2 Ultra 10 [mu] m 2 The total area of the resin part is 15% or less of the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the total area of the resin part It is 15% or less.

図1は、本実施形態のろ過方法に用いる多孔質膜の断面のSEM画像の一例である。かかるSEM画像は、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、内側に最も近い領域の内、内側に最も近い領域内の所定視野を撮影して得たSEM画像写真を二値化処理した画像である。
尚、前記各領域内では、中空糸多孔質膜の内側表面に直交する膜厚方向における膜断面と、該内側表面に平行する断面との間では、樹脂部の存在分布の差異、すなわち、孔の連通性の異方性は事実上無視することができる。本明細書中、用語「樹脂部」とは、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分である。図1に黒色で示す部分が樹脂部であり、白色の部分が孔である。
多孔質膜内部には、膜の内側から外側まで屈曲しながら連通している連通孔が形成されており、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であれば、孔の連通性が高い(すなわち、膜内部の連通孔の存在割合が高い)ものとなり、被処理液のフラックス(透水量、透水性)、洗浄後の透水量保持率が高く、引張破断伸度で指標される薬液洗浄後の膜へのダメージも軽減される。しかしながら、樹脂部の総面積に対する1μm以下の面積を有する樹脂部の面積の合計の割合が高すぎると、多孔質膜において多数の孔を形成する、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎるものとなるため、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であることを維持しつつ、1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在するものが好ましく、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下で存在するものがより好ましく、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上15%以下で存在するものがさらに好ましい。1μm超の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して2%以上30%以下で存在すれば、樹脂から構成される3次元網目構造の樹状骨格部分が細すぎないため、多孔質膜の強度、引張破断伸度を適切に維持することができる。
FIG. 1 is an example of a SEM image of a cross section of a porous membrane used in the filtration method of the present embodiment. Such an SEM image is a SEM image of a cross section of the membrane in the film thickness direction orthogonal to the inner surface of the hollow fiber porous membrane, a field of view including the inner surface, a field of view including the outer surface of the membrane, and a field of view Among the areas of the total of four visual fields of two visual fields photographed at equal intervals, among the areas closest to the inner side, the SEM image obtained by photographing the predetermined visual field in the area closest to the inner side is a binarized image is there.
In each of the regions, the difference in the presence distribution of the resin portion, ie, the pores, between the cross section in the thickness direction orthogonal to the inner surface of the hollow fiber porous membrane and the cross section parallel to the inner surface. The communication anisotropy of can be virtually ignored. In the present specification, the term "resin part" is a dendritic skeleton part of a three-dimensional network structure composed of a resin, which forms a large number of pores in a porous membrane. The portions shown in black in FIG. 1 are resin portions, and the white portions are holes.
Inside the porous membrane, there are formed communicating holes which are communicated while being bent from the inside to the outside of the membrane, and the inside of the SEM image of the membrane cross section in the film thickness direction orthogonal to the inside surface of the porous membrane The total area of the resin part having an area of 1 μm 2 or less in each field of a total of four fields of view including the surface, the field of view including the outer surface of the film, and two fields captured at equal intervals between these fields However, if the total area of the resin portion is 70% or more, the communication of the holes is high (that is, the existence ratio of the communication holes in the membrane is high), and the flux of the liquid to be treated (water permeability, Permeability), retention of water permeability after cleaning is high, and damage to the membrane after chemical solution cleaning indicated by tensile breaking elongation is also alleviated. However, when the ratio of the total area of the resin part having an area of 1 μm 2 or less to the total area of the resin part is too high, a tree of a three-dimensional network structure made of resin forms many pores in the porous membrane. to become as Jo skeletal portion is too thin, the total area of the resin portion having an area of 1 [mu] m 2 or less, while maintaining 70% or more relative to the total area of the resin portion, 1 [mu] m 2 greater than The total area of the resin part having an area is preferably 2% to 30% of the total area of the resin part, and the total area of the resin part having an area of 10 μm 2 or more is the resin The total area of the resin part having an area of more than 1 μm 2 and less than 10 μm 2 is more preferably 15% or less with respect to the total area of the resin part. , and, 10μm 2 or more Total area of the resin portion having a product is, those present at less than 15% 2% relative to the total area of the resin portion are more preferable. If the total area of the resin part having an area of more than 1 μm 2 is present at 2% or more and 30% or less with respect to the total area of the resin part, the dendritic skeleton part having a three-dimensional network structure composed of resin Since it is not too thin, the strength and tensile elongation at break of the porous membrane can be maintained properly.

図2〜5は、それぞれ、実施例1、実施例2、実施例3、比較例2で用いた多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(丸1〜丸4)において、樹脂部の総面積に対する、所定面積を有する樹脂部の面積の合計の割合(%)を示すヒストグラムである。図1には、樹脂部が粒状に表れている。図2〜5は、この粒状の樹脂部のそれぞれの面積を計測し、その粒状の樹脂部の面積毎について、各領域内の所定サイズの視野における全樹脂部の総面積に対する面積割合をヒストグラムとして示している。図2〜5における丸1は、多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の領域の内、最も内側に近い領域の番号であり、丸4は、最も内側に近い領域の番号である。例えば、実施例1丸1は、実施例1の多孔質中空糸膜の最も内側の領域内の所定サイズの視野を撮影したときのヒストグラムである。多孔質中空糸膜の各領域内の樹脂部の面積分布の測定方法については、後述する。   2 to 5 respectively show SEM images of the cross section of the membrane in the thickness direction orthogonal to the inner surface of the porous membrane used in Example 1, Example 2, Example 3 and Comparative Example 2. In each of the four fields of view (circles 1 to 4) of 2 fields of view including 2 fields of view including the field of view including the outer surface of the film and the fields of view including the outer surface of the film It is a histogram which shows the ratio (%) of the sum total of the area of the resin part which has an area. In FIG. 1, the resin part appears in a granular form. 2 to 5 measure the area of each of the granular resin parts, and for each of the areas of the granular resin parts, the ratio of the area to the total area of all the resin parts in the field of a predetermined size in each region is a histogram It shows. The circle 1 in FIGS. 2 to 5 is a field of view including the inner surface, a field of view including the outer surface of the film, and a field of view in the SEM image of the film cross section in the film thickness direction orthogonal to the inner surface of the porous film. Of the total of four visual field areas of two visual fields photographed at regular intervals, it is the number of the area closest to the inner side, and the circle 4 is the number of the area closest to the inner side. For example, Example 1 circle 1 is a histogram when a visual field of a predetermined size in the innermost region of the porous hollow fiber membrane of Example 1 is photographed. The measuring method of the area distribution of the resin part in each area | region of a porous hollow fiber membrane is mentioned later.

多孔質膜の表面開口率は25〜60%であることが好ましく、より好ましくは25〜50%であり、更に好ましくは25〜45%である。処理対象液と接触する側の表面開口率が25%以上であれば、目詰まり、膜表面擦過による透水性能の劣化が小さくなるため、ろ過安定性を高めることができる。他方、表面開口率が高く、孔径が大きすぎると、要求される分離性能を発揮できないおそれがある。そのため、多孔質膜の平均細孔径は10〜700nmであることが好ましく、20〜600nmがより好ましい。平均細孔径が30〜400nmであれば、分離性能は十分であり、孔の連通性も確保できる。表面開口率、平均細孔径の測定方法については、それぞれ後述する。   The surface open area ratio of the porous membrane is preferably 25 to 60%, more preferably 25 to 50%, and still more preferably 25 to 45%. If the surface opening ratio on the side to be in contact with the liquid to be treated is 25% or more, the clogging and the deterioration of the water permeability due to abrasion of the membrane surface are reduced, so that the filtration stability can be enhanced. On the other hand, if the surface open area ratio is high and the pore diameter is too large, the required separation performance may not be exhibited. Therefore, it is preferable that it is 10-700 nm, and, as for the average pore diameter of a porous membrane, 20-600 nm is more preferable. When the average pore size is 30 to 400 nm, the separation performance is sufficient, and the connectivity of the pores can be ensured. The method of measuring the surface aperture ratio and the average pore diameter will be described later, respectively.

多孔質膜の膜厚は、好ましくは80〜1,000μmであり、より好ましくは100〜300μmである。膜厚が80μm以上であれば、膜の強度が確保でき、他方、1000μm以下であれば、膜抵抗による圧損が小さくなる。   The thickness of the porous membrane is preferably 80 to 1,000 μm, more preferably 100 to 300 μm. If the film thickness is 80 μm or more, the strength of the film can be secured, and if it is 1000 μm or less, the pressure loss due to the film resistance will be small.

多孔質中空糸膜の形状としては、円環状の単層膜を挙げることができるが、分離層と分離層を支持する支持層とで違う孔径を持つ多層膜であってもよい。また、膜の内側表面と外側表面で、突起を持つなど異形断面構造であてもよい。   The shape of the porous hollow fiber membrane may be an annular single layer membrane, but it may be a multilayer membrane having different pore sizes in the separation layer and the support layer supporting the separation layer. In addition, the inner and outer surfaces of the membrane may have an irregular cross-sectional structure such as having projections.

(多孔質膜の素材(材質))
多孔質膜を構成する樹脂は、好ましくは熱可塑性樹脂であり、フッ素樹脂がより好ましい。フッ素樹脂としては、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれるものが挙げられる。
熱可塑性樹脂として、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、それらの混合物が挙げられる。熱可塑性樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン(ヘキサフルオロプロピレンのドメインを含んでもよい)、これらの混合物が挙げられる。これらの樹脂は、は熱可塑性ゆえに取り扱い性に優れ、且つ強靱であるため、膜素材として優れる。これらの中でもフッ化ビニリデン樹脂、テトラフルオロエチレン樹脂、ヘキサフルオロプロピレン樹脂又はそれらの混合物、エチレン、テトラフルオロエチレン、クロロトリフルオロエチレンのホモポリマー又はコポリマー、あるいは、ホモポリマーとコポリマーの混合物は、機械的強度、化学的強度(耐薬品性)に優れ、且つ成形性が良好であるために好ましい。より具体的には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合物、エチレン−テトラフルオロエチレン共重合物、エチレン−クロロトリフルオロエチレン共重合体等のフッ素樹脂が挙げられる。
(Material of porous membrane (material))
The resin constituting the porous membrane is preferably a thermoplastic resin, and more preferably a fluorine resin. As a fluorine resin, vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE), hexameric resin Those selected from the group consisting of fluoropropylene resins, and mixtures of these resins.
Thermoplastic resins include polyolefins, copolymers of olefins and halogenated olefins, halogenated polyolefins, and mixtures thereof. As a thermoplastic resin, for example, polyethylene, polypropylene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride (which may contain a hexafluoropropylene domain), a mixture thereof It can be mentioned. These resins are excellent as a membrane material because they are thermoplastic and have excellent handleability and toughness. Among these, vinylidene fluoride resin, tetrafluoroethylene resin, hexafluoropropylene resin or mixtures thereof, ethylene, tetrafluoroethylene, homopolymers or copolymers of chlorotrifluoroethylene, or mixtures of homopolymers and copolymers are mechanical. It is preferable because it has excellent strength and chemical strength (chemical resistance) and good moldability. More specifically, fluorine resin such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer and the like can be mentioned.

多孔質膜は、熱可塑性樹脂以外の成分(不純物等)を5質量%程度まで含み得る。例えば、多孔質膜製造時に用いる溶剤が含まれる。後述するように、多孔質膜の製造時に溶剤として用いた第1の溶剤(以下、非溶剤ともいう)、第2の溶剤(以下、良溶剤若しくは貧溶剤ともいう)、又はその両方が含まれる。これらの溶剤は、熱分解GC−MS(ガスクロマトグラフィー質量分析法)により検出することができる。   The porous membrane can contain components (impurity and the like) other than the thermoplastic resin up to about 5% by mass. For example, the solvent used at the time of porous membrane manufacture is included. As described later, it contains the first solvent (hereinafter also referred to as non-solvent), the second solvent (hereinafter also referred to as good solvent or poor solvent), or both used as the solvent at the time of production of the porous membrane. . These solvents can be detected by pyrolysis GC-MS (gas chromatography mass spectrometry).

第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。
また、第2の溶剤は、第1の溶剤と異なり、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、及びエポキシ化植物油からなる群から選択される少なくとも1種であることができる。炭素数6以上30以下の脂肪酸としては、カプリン酸、ラウリン酸、オレイン酸等が挙げられる。また、エポキシ化植物油としては、エポキシ大豆油、エポキシ化亜麻仁油等が挙げられる。
第1の溶剤は、熱可塑性樹脂と第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、熱可塑性樹脂が第1の溶剤に均一に溶解しない非溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度で熱可塑性樹脂が第2の溶剤に均一に溶解する良溶剤であることが好ましい。
第2の溶剤は、熱可塑性樹脂と第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃では熱可塑性樹脂が第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度では熱可塑性樹脂が第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。
The first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, having 6 to 30 carbon atoms And at least one selected from the group consisting of epoxidized vegetable oils.
In addition, the second solvent is different from the first solvent in sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphorus It may be at least one selected from the group consisting of an acid ester, a fatty acid having 6 to 30 carbon atoms, and an epoxidized vegetable oil. Examples of fatty acids having 6 to 30 carbon atoms include capric acid, lauric acid and oleic acid. Moreover, as epoxidized vegetable oil, epoxy soybean oil, epoxidized linseed oil and the like can be mentioned.
The first solvent is thermoplastic even if the temperature of the first mixed solution is raised to the boiling point of the first solvent in the first mixed solution in which the ratio of the thermoplastic resin to the first solvent is 20:80. It is preferable that the resin be a non-solvent which does not dissolve uniformly in the first solvent.
The second solvent is a second mixture having a ratio of the thermoplastic resin to the second solvent of 20:80, and the temperature of the second mixture is higher than 25 ° C. and not more than the boiling point of the second solvent. It is preferable that the thermoplastic resin is a good solvent which is uniformly dissolved in the second solvent at a certain temperature.
The second solvent is a second mixed solution in which the ratio of the thermoplastic resin and the second solvent is 20:80, and the temperature of the second mixed solution is 25 ° C., and the thermoplastic resin is uniformly mixed in the second solvent. The thermoplastic resin is a poor solvent which is uniformly dissolved in the second solvent at any temperature which is higher than 100.degree. C. and not higher than the boiling point of the second solvent. preferable.

また、本実施形態の醤油の製造方法におけるろ過工程においては、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用いた多孔質中空糸膜であって、第1の溶剤(非溶剤)を含むものを用いることができる。
この場合、第1の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第1の溶剤との比率が20:80の第1の混合液において、第1の混合液の温度を第1の溶剤の沸点まで上げても、ポリフッ化ビニリデンが第1の溶剤に均一に溶解しない非溶剤であることができる。非溶媒としては、アジピン酸ビス2−エチルヘキシル(DOA)が好ましい。
また、上記多孔質中空糸膜は、第1の溶剤とは異なる第2の溶剤を含んでもよい。この場合、第2の溶剤は、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油からなる群から選択される少なくとも1種であって、ポリフッ化ビニリデンと第2の溶剤との比率が20:80の第2の混合液において、第2の混合液の温度が25℃より高く第2の溶剤の沸点以下のいずれかの温度でポリフッ化ビニリデンが第2の溶剤に均一に溶解する良い溶剤であることが好ましい。また、第2の溶剤は、第2の混合液の温度が25℃ではポリフッ化ビニリデンが第2の溶剤に均一に溶解せず、第2の混合液の温度が100℃より高く第2の溶剤の沸点以下のいずれかの温度ではポリフッ化ビニリデンが第2の溶剤に均一に溶解する貧溶剤であることがより好ましい。貧溶媒としては、アセチルクエン酸トリブチル(ATBC)が好ましい。
In the filtration step of the method for producing soy sauce of this embodiment, a porous hollow fiber membrane using polyvinylidene fluoride (PVDF) as a thermoplastic resin, which contains a first solvent (non-solvent) It can be used.
In this case, the first solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 At least one selected from the group consisting of fatty acids of 30 or less and epoxidized vegetable oil, wherein the ratio of polyvinylidene fluoride to the first solvent is 20:80 in the first mixed solution; The polyvinylidene fluoride can be a non-solvent which does not dissolve uniformly in the first solvent even if the temperature of the liquid is raised to the boiling point of the first solvent. As a non-solvent, bis 2-ethylhexyl adipate (DOA) is preferred.
Also, the porous hollow fiber membrane may contain a second solvent different from the first solvent. In this case, the second solvent is sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester, phosphoric acid ester, carbon number 6 At least one selected from the group consisting of fatty acids of 30 or less and epoxidized vegetable oil, wherein the ratio of polyvinylidene fluoride to the second solvent is 20:80; It is preferable that polyvinylidene fluoride be a good solvent which is uniformly dissolved in the second solvent at any temperature which is higher than 25 ° C. and not higher than the boiling point of the second solvent. In the second solvent, polyvinylidene fluoride is not uniformly dissolved in the second solvent when the temperature of the second mixed solution is 25 ° C., and the temperature of the second mixed solution is higher than 100 ° C. It is more preferable that polyvinylidene fluoride is a poor solvent which is uniformly dissolved in the second solvent at any temperature below the boiling point of the above. As a poor solvent, tributyl acetyl citrate (ATBC) is preferred.

(多孔質膜の物性)
多孔質膜は、洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%であるものが好ましい。また、洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%であるものが好ましい。
引張破断伸度の初期値は60%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは100%以上、特に好ましくは120%以上である。引張破断伸度の測定方法については後述する。
薬液に対する耐性(膜に対するダメージの起こり難さ)は、薬液浸漬前後の引張破断伸度の保持率(薬液浸漬後伸度保持率)によって指標することができ、具体的には、0.5重量%の次亜塩素酸ナトリウム及び4重量%の水酸化ナトリウムを含有する水溶液に10日間浸漬させた後の引張破断伸度(洗浄工程後の多孔性中空糸膜の引張破断伸度E1に相当する)が、初期値(洗浄工程前の膜の引張破断伸度E0に相当する)に対して80%以上で保持されていることが好ましく、より好ましくは85%以上、さらに好ましくは90%以上である。
また、上記初期値E0と、薬品洗浄工程などの洗浄工程をX回(Xは2〜100の整数である。)繰り返した後の膜の引張破断伸度EXとの関係は、EX/E0≧70%であることが好ましく、より好ましくはEX/E0≧75%、さらに好ましくはEX/E0≧80%である。
(Physical properties of porous membrane)
In the porous membrane, the relationship between the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking elongation E1 of the porous membrane after the washing step is E1 / E0 × 100 ≧ 80%. Some are preferred. In addition, the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking of the porous membrane after repeating the washing step X times (here, X is an integer of 2 to 100). It is preferable that the relationship with the elongation EX is EX / E0 × 100 ≧ 70%.
The initial value of the tensile elongation at break is preferably 60% or more, more preferably 80% or more, still more preferably 100% or more, and particularly preferably 120% or more. The measuring method of tensile elongation at break will be described later.
The resistance to a chemical (resistance to damage to a film) can be indicated by the retention of tensile elongation at break before and after immersion in a chemical (the retention of elongation after immersion in a chemical), specifically, 0.5 weight Tensile elongation at break after immersing in an aqueous solution containing 10% sodium hypochlorite and 4% by weight sodium hydroxide (corresponding to the tensile elongation at break E1 of the porous hollow fiber membrane after the washing step) Is preferably kept at 80% or more, more preferably 85% or more, still more preferably 90% or more with respect to the initial value (corresponding to the tensile elongation at break E0 of the membrane before the washing step). is there.
Further, the relationship between the initial value E0 and the tensile elongation at break EX of the film after repeating the cleaning process such as the chemical cleaning process X times (X is an integer of 2 to 100) is: EX / E00 The ratio is preferably 70%, more preferably EX / E0 / 75%, and still more preferably EX / E0 ≧ 80%.

また、実用上の観点から、多孔質膜の圧縮強度は0.2MPa以上が好ましく、より好ましくは0.3〜1.0MPa、更に好ましくは0.4〜1.0MPaである。   Moreover, from a practical viewpoint, the compressive strength of the porous membrane is preferably 0.2 MPa or more, more preferably 0.3 to 1.0 MPa, and still more preferably 0.4 to 1.0 MPa.

(多孔質膜の透水性能)
多孔質膜としては、ろ過工程前の多孔質膜のフラックスL0と、洗浄工程後の多孔質膜のフラックスL1との関係が、L1/L0×100≧95%であるものが好ましい。
また、多孔質膜としては、ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、LX/L0×100≧90%であるものが好ましい。
(Permeability of porous membrane)
As the porous membrane, one having a relationship between the flux L0 of the porous membrane before the filtration step and the flux L1 of the porous membrane after the washing step is preferably L1 / L0 × 100 ≧ 95%.
In addition, as the porous membrane, the flux L0 of the porous membrane before the filtration step and the porous membrane after repeating the cleaning step X times (here, X is an integer of 2 to 100) It is preferable that the relationship between the flux and the flux LX be such that LX / L0 × 100 ≧ 90%.

<多孔質膜の製造方法>
以下、多孔質中空糸膜の製造方法について説明する。但し、本実施形態の醤油の製造方法におけるろ過工程に用いる多孔質中空糸膜の製造方法は、以下の製造方法に限定されるものではない。
多孔質中空糸膜の製造方法は、(a)溶融混練物を準備する工程と、(b)溶融混練物を多重構造の紡糸ノズルに供給し、紡糸ノズルから溶融混練物を押し出すことによって中空糸膜を得る工程と、(c)可塑剤を中空糸膜から抽出する工程とを含むものであることができる。溶融混練物が添加剤を含む場合には、工程(c)の後に、(d)添加剤を中空糸膜から抽出する工程をさらに含んでもよい。
<Method of producing porous membrane>
Hereinafter, the manufacturing method of a porous hollow fiber membrane is demonstrated. However, the method for producing a porous hollow fiber membrane used in the filtration step in the method for producing soy sauce of the present embodiment is not limited to the following production method.
The method for producing a porous hollow fiber membrane comprises the steps of (a) preparing a melt-kneaded product, and (b) supplying the melt-kneaded product to a spinning nozzle having a multiple structure, and extruding the melt-kneaded product from the spinning nozzle. The method may include the steps of obtaining a membrane and (c) extracting the plasticizer from the hollow fiber membrane. When the melt-kneaded product contains an additive, the method may further include the step (d) of extracting the additive from the hollow fiber membrane after the step (c).

溶融混練物の熱可塑性樹脂の濃度は好ましくは20〜60質量%であり、より好ましくは25〜45質量%であり、更に好ましくは30〜45質量%である。この値が20質量%以上であれば、機械的強度を高くすることができ、他方、60質量%以下であれば、透水性能を高くすることができる。溶融混練物は添加剤を含んでもよい。
溶融混練物は、熱可塑性樹脂と溶剤の二成分からなるものであってもよく、熱可塑性樹脂、添加剤、及び溶剤の三成分からなるものであってもよい。溶剤は、後述するように、少なくとも非溶剤を含む。
工程(c)で使用する抽出剤としては、塩化メチレンや各種アルコールなど熱可塑性樹脂は溶けないが可塑剤と親和性が高い液体を使用することが好ましい。
添加剤を含まない溶融混練物を使用する場合には、工程(c)を経て得られる中空糸膜を多孔質中空糸膜として使用してもよい。添加剤を含む溶融混練物を使用して多孔質中空糸膜を製造する場合には、工程(c)後に、中空糸膜から(d)添加剤を抽出除去して多孔性中空糸膜を得る工程をさらに経ることが好ましい。工程(d)における抽出剤には、湯、又は酸、アルカリなど使用した添加剤を溶解できるが熱可塑性樹脂は溶解しない液体を使用することが好ましい。
The concentration of the thermoplastic resin of the melt-kneaded product is preferably 20 to 60% by mass, more preferably 25 to 45% by mass, and still more preferably 30 to 45% by mass. If this value is 20 mass% or more, mechanical strength can be increased, and if it is 60 mass% or less, water permeability can be increased. The melt-kneaded product may contain an additive.
The melt-kneaded product may be composed of two components of a thermoplastic resin and a solvent, or may be composed of three components of a thermoplastic resin, an additive and a solvent. The solvent contains at least a non-solvent as described later.
As the extractant used in step (c), it is preferable to use a liquid such as methylene chloride or various alcohols which does not dissolve the thermoplastic resin but which has a high affinity for the plasticizer.
When a melt-kneaded product containing no additive is used, the hollow fiber membrane obtained through the step (c) may be used as a porous hollow fiber membrane. When a porous hollow fiber membrane is produced using a melt-kneaded product containing additives, after step (c), the additive (d) is extracted and removed from the hollow fiber membrane to obtain a porous hollow fiber membrane It is preferable to go through the process further. As the extractant in the step (d), it is preferable to use a liquid which can dissolve the used additives such as hot water or an acid or an alkali but not the thermoplastic resin.

添加剤として無機物を使用してもよい。無機物は無機微粉が好ましい。溶融混練物に含まれる無機微粉の一次粒径は、好ましくは50nm以下であり、より好ましくは5nm以上30nm未満である。無機微粉の具体例としては、シリカ(微粉シリカを含む)、酸化チタン、塩化リチウム、塩化カルシウム、有機クレイ等が挙げられ、これらのうち、コストの観点から微粉シリカが好ましい。上述の「無機微粉の一次粒径」は電子顕微鏡写真の解析から求めた値を意味する。すなわち、まず無機微粉の一群をASTM D3849の方法によって前処理を行う。その後、透過型電子顕微鏡写真に写された3000〜5000個の粒子直径を測定し、これらの値を算術平均することで無機微粉の一次粒径を算出することができる。
多孔質中空糸膜内部の無機微粉について、蛍光X線等により存在する元素を同定することで、存在する無機微粉の素材(材料)を同定することができる。
添加剤として有機物を使用する場合、ポリビニルピロリドン、ポリエチレングリコールなどの親水性高分子を使用すると中空糸膜に親水性を付与することができる。また、グリセリン、エチレングリコールなど粘度の高い添加剤を使用すると溶融混練物の粘度をコントロールすることができる。
An inorganic substance may be used as an additive. The inorganic substance is preferably an inorganic fine powder. The primary particle diameter of the inorganic fine powder contained in the melt-kneaded product is preferably 50 nm or less, and more preferably 5 nm or more and less than 30 nm. Specific examples of the inorganic fine powder include silica (including fine powder silica), titanium oxide, lithium chloride, calcium chloride, organic clay and the like, and among these, fine powder silica is preferable from the viewpoint of cost. The above-mentioned "primary particle size of inorganic fine powder" means a value determined from analysis of an electron micrograph. That is, first, a group of inorganic fine powders is pretreated by the method of ASTM D3849. Thereafter, the particle diameters of 3000 to 5000 particles photographed in the transmission electron micrograph are measured, and the primary particle diameter of the inorganic fine powder can be calculated by arithmetically averaging these values.
About the inorganic fine powder inside a porous hollow fiber membrane, the raw material (material) of the inorganic fine powder which exists can be identified by identifying the element which exists by a fluorescent X ray etc.
When an organic substance is used as the additive, the hollow fiber membrane can be rendered hydrophilic by using a hydrophilic polymer such as polyvinyl pyrrolidone or polyethylene glycol. In addition, the viscosity of the melt-kneaded product can be controlled by using an additive having high viscosity such as glycerin and ethylene glycol.

次に、本実施形態の多孔質中空糸膜の製造方法における(a)溶融混練物を準備する工程について詳細に説明する。
本実施形態の多孔質中空糸膜の製造方法では、熱可塑性樹脂の非溶剤を、良溶剤又は貧溶剤に混合させる。混合後の混合溶媒は、使用する熱可塑性樹脂の非溶剤となる。このように膜の原材料として非溶剤を用いると、3次元網目構造を持つ多孔質中空糸膜が得られる。その作用機序は必ずしも明らかではないが、非溶剤を混合させて、より溶解性を低くした溶剤を用いた方がポリマーの結晶化が適度に阻害され、3次元網目構造になりやすいと考えられる。例えば、非溶剤、及び貧溶剤又は良溶剤は、フタル酸エステル、セバシン酸エステル、クエン酸エステル、アセチルクエン酸エステル、アジピン酸エステル、トリメリット酸エステル、オレイン酸エステル、パルミチン酸エステル、ステアリン酸エステル、リン酸エステル、炭素数6以上30以下の脂肪酸、エポキシ化植物油等の各種エステル等からなる群から選ばれる。
熱可塑性樹脂を常温で溶解させることができる溶剤を良溶剤、常温では溶解できないが高温にして溶解させることができる溶剤をその熱可塑性樹脂の貧溶剤、高温にしても溶解させることができない溶剤を非溶剤と呼ぶが、良溶剤、貧溶剤、及び非溶剤は、以下のようにして判定することができる。
試験管に2g程度の熱可塑性樹脂と8g程度の溶剤を入れ、試験管用ブロックヒーターにて10℃刻み程度でその溶剤の沸点まで加温し、スパチュラなどで試験管内を混合し、熱可塑性樹脂が溶解するものが良溶剤又は貧溶剤、溶解しないものが非溶剤である。100℃以下の比較的低温で溶解するものが良溶剤、100℃以上沸点以下の高温にしないと溶解しないものを貧溶剤と判定する。
例えば、熱可塑性樹脂としてポリフッ化ビニリデン(PVDF)を用い、溶剤としてアセチルクエン酸トリブチル(ATBC)、セバシン酸ジブチル又はアジピン酸ジブチルを用いると、200℃程度でPVDFはこれらの溶剤に均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)、アジピン酸ジイソノニル、又はセバシン酸ビス2エチルヘキシルを用いると温度を250℃まで上げても、PVDFはこれらの溶剤には溶解しない。
また、熱可塑性樹脂としてエチレン−テトラフルオロエチレン共重合体(ETFE)を用い、溶剤としてアジピン酸ジエチルを用いると、200℃程度でETFEは均一に混ざり合い溶解する。他方、溶剤としてアジピン酸ビス2−エチルヘキシル(DIBA)を用いると溶解しない。
また、熱可塑性樹脂としてエチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)を用い、溶剤としてクエン酸トリエチルを用いると200℃程度で均一に溶解し、トリフェニル亜リン酸(TPP)を用いると溶解しない。
Next, the step of preparing (a) the melt-kneaded product in the method for producing a porous hollow fiber membrane of the present embodiment will be described in detail.
In the method of manufacturing the porous hollow fiber membrane of the present embodiment, the non-solvent of the thermoplastic resin is mixed with the good solvent or the poor solvent. The mixed solvent after mixing becomes a non-solvent of the thermoplastic resin to be used. Thus, when a non-solvent is used as a raw material of the membrane, a porous hollow fiber membrane having a three-dimensional network structure can be obtained. The mechanism of action is not necessarily clear, but it is thought that crystallization of the polymer is appropriately inhibited and a three-dimensional network structure is more likely to be obtained if a solvent having a lower solubility is used by mixing a non-solvent. . For example, non-solvent and poor solvent or good solvent are phthalic acid ester, sebacic acid ester, citric acid ester, acetyl citric acid ester, adipic acid ester, trimellitic acid ester, oleic acid ester, palmitic acid ester, stearic acid ester It is selected from the group consisting of phosphate esters, fatty acids having 6 to 30 carbon atoms, and various esters such as epoxidized vegetable oil.
The solvent which can dissolve the thermoplastic resin at normal temperature is a good solvent. The solvent which can not dissolve at normal temperature but can be dissolved at high temperature can be a poor solvent of the thermoplastic resin. The solvent which can not dissolve even at high temperature. Although called non-solvent, good solvent, poor solvent, and non-solvent can be determined as follows.
Add about 2 g of thermoplastic resin and about 8 g of solvent in a test tube, heat to the boiling point of the solvent in 10 ° C increments with a test tube block heater, mix the inside of the test tube with a spatula, etc. What dissolves is a good solvent or a poor solvent, and what does not dissolve is a non-solvent. Those which are soluble at relatively low temperatures of 100 ° C. or less are judged as good solvents, and those which do not dissolve unless they are heated to a temperature of 100 ° C. or more and boiling points or less are judged as poor solvents.
For example, using polyvinylidene fluoride (PVDF) as a thermoplastic resin and tributyl acetyl citrate (ATBC), dibutyl sebacate or dibutyl adipate as a solvent, PVDF is uniformly mixed with these solvents at about 200 ° C. Dissolve. On the other hand, using bis (2-ethylhexyl) adipate (DOA), diisononyl adipate, or bis (2-ethylhexyl) sebacate as the solvent, PVDF does not dissolve in these solvents even if the temperature is raised to 250 ° C.
When ethylene-tetrafluoroethylene copolymer (ETFE) is used as the thermoplastic resin and diethyl adipate is used as the solvent, ETFE is uniformly mixed and dissolved at about 200 ° C. On the other hand, it does not dissolve when bis 2-ethylhexyl adipate (DIBA) is used as a solvent.
Also, when ethylene-monochlorotrifluoroethylene copolymer (ECTFE) is used as a thermoplastic resin and triethyl citrate is used as a solvent, it dissolves uniformly at about 200 ° C. When triphenylphosphorous acid (TPP) is used, it dissolves do not do.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。実施例、比較例における各物性値は以下の方法で各々求めた。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. Each physical property value in an Example and a comparative example was calculated by the following methods, respectively.

(1)多孔質中空糸膜の外径、内径
多孔質中空糸膜を、長さ方向に直交する断面でカミソリを使って薄くスライスし、100倍拡大鏡にて、外径と内径を測定した。一つのサンプルについて、長さ方法に30mm間隔で60箇所の切断面で測定を行い、平均値を中空糸膜の外径と内径とした。
(1) Outer diameter and inner diameter of porous hollow fiber membrane The porous hollow fiber membrane was thinly sliced using a razor in a cross section orthogonal to the length direction, and the outer diameter and inner diameter were measured with a 100-fold magnifying glass. . For one sample, measurement was performed on 60 cross sections at intervals of 30 mm in the length method, and the average value was taken as the outer diameter and the inner diameter of the hollow fiber membrane.

(2)電子顕微鏡撮影
多孔質中空糸膜を、長さ方向に直交する断面で円環状に裁断し、10%リンタングステン酸+四酸化オスミウム染色を実施し、エポキシ樹脂に包埋した。次いで、トリミング後、試料断面にBIB加工を施して平滑断面を作製し、導電処理し、検鏡試料を作製した。作製した検鏡試料を、HITACHI製電子顕微鏡SU8000シリーズを使用し、加速電圧1kVで膜の断面の電子顕微鏡(SEM)画像を5,000〜30,000倍で、膜厚(肉厚部)断面の内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域(図2〜5における丸1〜丸4)内で所定の視野で撮影した。平均孔径に応じて倍率を変えて測定することができ、具体的には、平均孔径が0.1μm以上の場合には、5000倍、平均孔径が0.05μm以上0.1μm未満の場合には、10,000倍、平均孔径が0.05μm未満の場合には、30,000倍とした。尚、視野のサイズは、2560×1920ピクセルとした。
画像処理には、ImageJを用い、撮影したSEM画像に対してThreshold処理(Image−Adjust−Treshold:大津法(Otsuを選択))を施すことより、孔の部分と樹脂部とで二値化した。
表面開口率:二値化画像の樹脂部と孔部との割合を算出することにより表面開口率を測定した。
樹脂部の面積分布:ImageJの「Analyze Particle」コマンド(Analyz Particle:Size0.10−Infinity)を使用し、撮影したSEM画像に含まれる二値化された粒状の樹脂部の大きさをそれぞれ計測した。SEM画像に含まれる全樹脂部の総面積をΣSとし、1μm以下の樹脂部の面積をΣS(<1μm)とした場合に、ΣS(<1μm)/ΣSを算出することによって、1μm以下の面積を有する樹脂部の面積割合を算出した。同様に、所定範囲の面積を有する樹脂部の面積割合を算出した。
尚、二値化処理を施す際のノイズ除去については、0.1μm未満の面積の樹脂部をノイズとして除去し、0.1μm以上の面積の樹脂部を分析対象とした。また、ノイズ除去は、メディアンフィルタ処理(Process−Filters−Median:Radius:3.0pixels)を施すことによって行った。
また、SEM画像の端で切れている粒状の樹脂部についても計測対象とした。また、「Incude Holes」(穴をうめる)の処理は行わなかった。また、「雪だるま」型を「扁平」型などに形状を補正する処理は行わなかった。
平均細孔孔径:ImageJの「Plugins−Bone J−Thickness」コマンドを使用して測定した。尚、空間サイズは空隙に入る最大の円サイズとして定義した。
(2) Electron Microscopy The porous hollow fiber membrane was cut in an annular shape in a cross section orthogonal to the length direction, 10% phosphotungstic acid + osmium tetraoxide staining was performed, and embedded in an epoxy resin. Then, after trimming, the sample cross section was subjected to BIB processing to produce a smooth cross section, and a conductive processing was performed to produce a speculum sample. Using the electron microscope SU8000 series manufactured by HITACHI, the produced microscope sample is an electron microscope (SEM) image of a cross section of the film at an acceleration voltage of 1 kV at 5,000 to 30,000 times a thickness (thick portion) cross section Within each of the four fields of view (circles 1 to 4 in FIGS. 2 to 5), the field of view including the inner surface of the field of view, the field of view including the outer surface of the film, and two fields of view taken at equal intervals between these fields of view. Taken with a given field of view. Depending on the average pore size, the magnification can be changed, and specifically, when the average pore size is 0.1 μm or more, 5000 times, and when the average pore size is 0.05 μm or more and less than 0.1 μm. And 10,000 times, and when the average pore diameter is less than 0.05 μm, 30,000 times. The size of the field of view was 2560 × 1920 pixels.
For image processing, ImageJ was used, and threshold processing (Image-Adjust-Treshold: Otsu method (select Otsu)) was performed on the photographed SEM image to binarize the hole portion and the resin portion. .
Surface aperture ratio: The surface aperture ratio was measured by calculating the ratio of the resin part and the hole part of the binarized image.
Area distribution of resin part: The size of the binarized granular resin part included in the photographed SEM image was measured using the "Analyze Particle" command (Analyse Particle: Size 0.10-Infinity) of ImageJ. . Assuming that the total area of all the resin parts contained in the SEM image is ΣS and the area of the resin part of 1 μm 2 or less is ΣS (<1 μm 2 ), 1 μm is calculated by calculating ΣS (<1 μm 2 ) / ΣS. The area ratio of the resin part having an area of 2 or less was calculated. Similarly, the area ratio of the resin part having an area in a predetermined range was calculated.
In addition, about the noise removal at the time of performing a binarization process, the resin part of the area less than 0.1 micrometer 2 was removed as a noise, and the resin part of the area 0.1 micrometer 2 or more was made into analysis object. Also, noise removal was performed by applying median filtering (Process-Filters-Median: Radius: 3.0 pixels).
In addition, the granular resin portion cut at the end of the SEM image was also measured. In addition, "Incude Holes" was not processed. In addition, no process was performed to correct the shape of the "snowman" type into a "flat" type or the like.
Average pore size: Measured using ImageJ's "Plugins-Bone J-Thickness" command. In addition, space size was defined as the largest circle size which enters an air gap.

(3)フラックス(透水性、初期純水フラックス)
多孔質中空糸膜をエタノールに浸漬した後、純水浸漬を数回繰り返した後、約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内に注射針を挿入し、25℃の環境下にて注射針から0.1MPaの圧力で25℃の純水を注入し、膜の外側表面から透過してくる純水量を測定し、下記式:
初期純水フラックス[L/m/h]=60×(透過水量[L])/{π×(膜外径[m])×(膜有効長[m])×(測定時間[min])}
により純水フラックスを決定し、透水性を評価した。
尚、「膜有効長」は、注射針が挿入されている部分を除いた、正味の膜長を指す。
(3) Flux (water permeability, initial pure water flux)
After immersing the porous hollow fiber membrane in ethanol, the pure water immersion is repeated several times, and then one end of the wet hollow fiber membrane of about 10 cm length is sealed, and the injection needle is inserted into the hollow portion at the other end, 25 Pure water of 25 ° C. is injected from the injection needle at a pressure of 0.1 MPa in an environment of 0 ° C., and the amount of pure water transmitted from the outer surface of the membrane is measured, and the following formula:
Initial pure water flux [L / m 2 / h] = 60 × (permeate flow rate [L]) / {π × (outer membrane diameter [m]) × (effective membrane length [m]) × (measurement time [min] )}
The pure water flux was determined by the following equation to evaluate the water permeability.
The "membrane effective length" refers to the net length of the membrane excluding the portion where the injection needle is inserted.

(4)実液(醤油)ろ過時の透水性能保持率
実液として生揚醤油原液を用いた。
実液のろ過時の透水性能保持率は、目詰まり(ファウリング)による透水性能劣化の程度を判断するための1指標である。エタノール浸漬した後、純水浸漬を数回繰り返した湿潤中空糸膜を、膜有効長11cmにて内圧方式によりろ過を行った。まず、純水を、膜内表面積1m当たり1日当たり10m透過するろ過圧力にてろ過を行って透過水を1分間採取し、初期純水透水量とした。
実液ろ過時の透水性能保持率の測定手順は、
(i)純水で透水量測定、(ii)実液ろ過、(iii)純水で水洗、(iv)温水洗浄、(v)薬液洗浄とした。(v)で透水量が初期透水量の70%未満であった場合、(vi)界面活性剤洗浄を実施することとした。
まず、(i)循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取し、初期透水量とした。
次いで、(ii)配管内の水を抜いた後、循環タンクに生揚醤油原液を投入し、ろ過側に90%回収するまで膜間差圧=0.15MPaになるように循環ろ過した。
次いで、(iii)配管の中の生揚醤油原液を抜いた後、循環タンクに純水を投入し、水洗後、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
次いで、(iv)配管の中の水を抜いた後、循環タンクに60℃の温水を投入し、30分循環ろ過を行って、温水洗浄を行った。温水洗後、膜間差圧=0.05MPaになるように循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
次いで、(v)配管の中の温水を抜いた後、循環タンクに調合した薬液を投入し、膜循環ろ過を行って30分薬液洗浄を行った。薬液には0.3%の次亜塩素酸ナトリウム、2%の苛性ソーダを混合させた水溶液を用いた。薬液洗浄後、配管の中の薬液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過を行い、出てきた透過水を10L/mのタイミングで繰り返し採取、透過水の塩素濃度が0.1ppm以下、かつ、pHが8.6以下になった時点で水洗を終了し、そのリンスの水量を記録した。また、引き続き同じ膜間差圧で循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
(v)で透水量が初期透水量の70%未満であった場合、次いで、(vi)配管の中の水を抜いた後、循環タンクに薬液を投入し、膜循環ろ過を行って30分薬液洗浄を行った。薬液には0.5%エコラボ社製ウルトラジール11水溶液を用いた。薬液洗浄後、配管の中の薬液を抜いた後、循環タンクに純水を投入し、膜間差圧=0.05MPaになるように循環ろ過で水洗を行い、また、引き続き同じ膜間差圧で循環ろ過を行って1分間透過水を採取、透水量とし、初期透水量と比較した。
実液ろ過時の透水性能保持率を、下記式:
実液ろ過時の透水性能保持率[%]=100×(各工程後の透水量[g])/(初期純水透水量[g])
により求めた。
尚、各パラメーターは、下記式で算出した:
膜間差圧ろ過圧力={(入圧)+(出圧)}/2
膜内外表面積[m]=π×(中空糸膜内外径[m])×(中空糸膜有効長[m])
膜面線速[m/s]=4×(循環水量[m/s])/π×(膜内径[m])2。また、操作は全て25℃、膜面線速1.0m/秒で行った。
(4) Permeability retention rate at the time of real liquid (soybean oil) filtration As a real liquid, a fresh soy sauce stock solution was used.
Permeability retention rate at the time of filtration of a real liquid is an index for judging the degree of permeability degradation due to clogging (fouling). After immersing in ethanol, the wet hollow fiber membrane, in which immersion in pure water was repeated several times, was filtered by an internal pressure method with an effective membrane length of 11 cm. First, pure water was filtered at a filtration pressure of 10 m 3 per day per 1 m 2 of surface area of the membrane, and permeated water was collected for 1 minute to obtain an initial pure water water permeability.
The measurement procedure of permeability retention rate at the time of real liquid filtration is
(I) Measurement of water permeability with pure water, (ii) real liquid filtration, (iii) washing with pure water, (iv) hot water washing, (v) chemical solution washing. When the water permeability was less than 70% of the initial water permeability in (v), it was decided to carry out (vi) surfactant washing.
First, (i) pure water was introduced into the circulation tank, circulation filtration was performed so that the pressure difference between the membranes was 0.05 MPa, and permeated water was collected for 1 minute to obtain an initial water permeability.
Next, (ii) after draining the water in the piping, the fresh soy sauce stock solution was charged into the circulation tank, and circulation filtration was performed so as to obtain a transmembrane pressure difference of 0.15 MPa until 90% recovery was made on the filtration side.
Next, after (iii) draining the uncooked soy sauce stock solution in the piping, add pure water to the circulation tank, wash it with water, carry out circulation filtration so that the pressure difference between membranes is 0.05 MPa, and permeate for 1 minute Collected water permeability was compared with the initial water permeability.
Next, (iv) after draining the water in the piping, warm water at 60 ° C. was charged into the circulation tank, circulation filtration was performed for 30 minutes, and hot water washing was performed. After warm water washing, circulation filtration was carried out so that the transmembrane pressure difference would be 0.05 MPa, the permeated water was collected for 1 minute, and the water permeation amount was compared with the initial water permeation amount.
Next, after (v) hot water in the pipe was removed, the prepared chemical solution was charged into the circulation tank, and membrane circulation filtration was performed to perform chemical solution cleaning for 30 minutes. As a chemical solution, an aqueous solution in which 0.3% sodium hypochlorite and 2% caustic soda were mixed was used. After chemical solution cleaning, after removing the chemical solution in the piping, pure water is put into the circulation tank, circulation filtration is performed so that the pressure difference between the membranes = 0.05 MPa, and the permeated water coming out is 10 L / m 2 The sampling was repeated repeatedly, and when the chlorine concentration of the permeate water was 0.1 ppm or less and the pH was 8.6 or less, the water washing was ended, and the amount of water in the rinse was recorded. In addition, circulation filtration was performed with the same transmembrane differential pressure to collect the permeated water for 1 minute, and the water permeability was determined and compared with the initial water permeability.
If the water permeability is less than 70% of the initial water permeability in (v), then (vi) drain the water in the piping, then charge the chemical solution into the circulation tank and perform membrane circulation filtration for 30 minutes. Chemical cleaning was performed. For the drug solution, Ultra Zeal 11 aqueous solution made by 0.5% Ecolab was used. After chemical solution cleaning, after removing the chemical solution in the pipe, pure water is put into the circulation tank, and water washing is performed by circulation filtration so that the pressure difference between membranes is 0.05 MPa, and then the same pressure difference between membranes is continued. Circulating filtration was performed to collect permeated water for 1 minute, and the amount of water permeation was regarded as the amount of water permeation, and was compared with the initial amount of water permeation.
Permeability retention rate during real liquid filtration, the following formula:
Permeability retention ratio during actual liquid filtration [%] = 100 × (water permeability after each step [g]) / (initial pure water water permeability [g])
Determined by
Each parameter was calculated by the following equation:
Transmembrane differential pressure filtration pressure = {(input pressure) + (output pressure)} / 2
Transmembrane surface area [m 2 ] = π × (Hollow fiber membrane outer diameter [m]) × (Hollow fiber membrane effective length [m])
Membrane surface linear velocity [m / s] = 4 × (circulating water volume [m 3 / s]) / π × (inner diameter of membrane [m]) 2 Moreover, all the operations were performed at 25 ° C. and a film surface linear velocity of 1.0 m / sec.

[実施例1]
熱可塑性樹脂としてPVDF樹脂(クレハ社製、KF−W#1000)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアセチルクエン酸トリブチル(ATBC, 沸点343℃)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとATBCを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、ろ過時の透水性保持率は75%であり、連通性の高い膜であった。
また、薬液浸漬後引張破断伸度保持率は80%であり、10サイクル繰り返し薬液洗浄後の引張破断伸度保持率70%と高かった。さらに、薬液浸漬後透水量保持率は99%であり、10サイクル繰り返し薬液洗浄後の透水量保持率は95%であり、透水量を維持でき、かつ、薬液劣化による膜の大孔径化も見られなかった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後、以下の表1に示す洗浄条件下で、中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は66%であった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したところ、透水保持率は87%と高い洗浄回復性を示した。
Example 1
40% by mass of PVDF resin (Kureha KF-W # 1000) as a thermoplastic resin, 23% by mass of finely powdered silica (primary particle diameter: 16 nm), and bis 2-ethylhexyl adipate (DOA) as a non-solvent. A melt-kneaded product was prepared using 9% by mass and tributyl acetyl citrate (ATBC, boiling point 343 ° C.) 4.1% by mass as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove DOA and ATBC, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in a 20 mass% aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the flux (water permeability) was high, the permeability retention during filtration was 75%, and the membrane had high communication.
In addition, the tensile rupture elongation retention after chemical immersion was 80%, and the tensile rupture elongation retention after chemical cycle cleaning repeatedly for 10 cycles was as high as 70%. Furthermore, the retention of water permeability after immersion in chemical solution is 99%, the retention of water permeability after repeated chemical cycle cleaning is 95%, the water permeability can be maintained, and the large pore diameter of the membrane due to chemical solution deterioration is also seen It was not done.
After filtering 27 L (90% recovery) of 30 L of deep-opening raw soy sauce with a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours, hollow fiber under the washing conditions shown in Table 1 below The permeability retention when the membrane was washed with hot water at a temperature of about 60 ° C. was 66%. Then, when it wash | cleaned in 30 degreeC aqueous solution containing 0.3 weight% sodium hypochlorite and 2 weight% sodium hydroxide for 30 minutes, the water permeation retention showed a high washing | cleaning recovery property as 87%.

[実施例2]
熱可塑性樹脂としてETFE樹脂(旭硝子社製、TL−081)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)32.9質量%と、貧溶剤としてアジピン酸ジイソブチル(DIBA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてDOAとDIBAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、ろ過時の透水性保持率は70%であり、連通性の高い膜であった。
また、薬液浸漬後引張破断伸度保持率は98%であり、10サイクル繰り返し薬液洗浄後の引張破断伸度保持率90%と高かった。さらに、薬液浸漬後透水量保持率は100%であり、10サイクル繰り返し薬液洗浄後の透水量保持率は96%であり、透水量を維持でき、かつ、薬液劣化による膜の大孔径化も見られなかった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後、以下の表1に示す洗浄条件下で、中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は57%であった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したところ、透水保持率は87%と高い洗浄回復性を示した。
Example 2
40% by mass of ETFE resin (manufactured by Asahi Glass Co., Ltd., TL-081) as a thermoplastic resin, 23% by mass of finely powdered silica (primary particle diameter: 16 nm), 32.9% by mass of bis-2-ethylhexyl adipate (DOA) as a non-solvent A melt-kneaded product was prepared using% and 4.1% by mass of diisobutyl adipate (DIBA) as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove DOA and DIBA, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in a 20 mass% aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the flux (water permeability) was high, the permeability retention during filtration was 70%, and the membrane had high communication.
In addition, the tensile rupture elongation retention after chemical immersion was 98%, and the tensile rupture elongation retention after chemical cycle cleaning repeated 10 cycles was as high as 90%. Furthermore, the retention of water permeability after immersion in chemical solution is 100%, the retention of water permeability after chemical cycle cleaning is 96% after repeated chemical solution cleaning, and the water permeability can be maintained, and the large pore diameter of the film due to chemical solution deterioration is also seen It was not done.
After filtering 27 L (90% recovery) of 30 L of deep-opening raw soy sauce with a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours, hollow fiber under the washing conditions shown in Table 1 below The permeability retention when the membrane was washed with hot water at a temperature of about 60 ° C. was 57%. Then, when it wash | cleaned in 30 degreeC aqueous solution containing 0.3 weight% sodium hypochlorite and 2 weight% sodium hydroxide for 30 minutes, the water permeation retention showed a high washing | cleaning recovery property as 87%.

[実施例3]
熱可塑性樹脂として熱可塑性樹脂としてECTFE樹脂(ソルベイスペシャルティポリマーズ社製、Halar901)40質量%と、微粉シリカ(一次粒径:16nm)23質量%と、非溶剤としてトリフェニル亜リン酸(TPP)32.9質量%と、貧溶剤としてアジピン酸ビス2−エチルヘキシル(DOA)4.1質量%とを用いて、溶融混練物を調製した。得られた溶融混連物の温度は240℃であった。得られた溶融混連物を2重管構造の紡糸ノズルを用い、中空糸状押出し物を120mmの空走距離を通した後、30℃の水中で固化させ、熱誘起相分離法により多孔質構造を発達させた。得られた中空糸状押出し物を、5m/分の速度で引き取り、かせに巻き取った。巻き取った中空糸状押出し物をイソプロピルアルコール中に浸漬させてTPPとDOAを抽出除去し、次いで、水中に30分間浸漬し、中空糸膜を水置換し、次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、更に水洗を繰り返して微粉シリカを抽出除去して、多孔質中空糸膜を作製した。
得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、3次元網目構造を有していた。また、フラックス(透水性)が高く、ろ過時の透水性保持率は80%であり、連通性の高い膜であった。
また、薬液浸漬後引張破断伸度保持率は97%であり、10サイクル繰り返し薬液洗浄後の引張破断伸度保持率95%と高かった。さらに、薬液浸漬後透水量保持率は98%であり、10サイクル繰り返し薬液洗浄後の透水量保持率は95%であり、薬液劣化も見られなかった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後、以下の表1に示す洗浄条件下で、中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は60%であった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したところ、透水保持率は86%と高い洗浄回復性を示した。
[Example 3]
40% by mass of ECTFE resin (manufactured by Solvay Specialty Polymers, Halar 901) as thermoplastic resin and 23% by mass of finely divided silica (primary particle diameter: 16 nm) and triphenylphosphorous acid (TPP) 32 as non-solvent A melt-kneaded product was prepared using 9% by mass and bis-2-ethylhexyl adipate (DOA) 4.1% by mass as a poor solvent. The temperature of the obtained molten mixture was 240.degree. The resulting melt-blended material is passed through a free running distance of 120 mm using a double tube structure spinning nozzle, and then solidified in water at 30 ° C., and a porous structure is obtained by heat induced phase separation method. Developed. The resulting hollow fiber extrudates were pulled at a speed of 5 m / min and wound on a skein. The wound hollow fiber extrudate is immersed in isopropyl alcohol to extract and remove TPP and DOA, and then immersed in water for 30 minutes to replace the hollow fiber membrane with water, and then to 70% in 20% by weight aqueous NaOH solution. C. for 1 hour, and then repeated washing with water to extract and remove finely divided silica, thereby producing a porous hollow fiber membrane.
Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a three-dimensional network structure. In addition, the flux (water permeability) was high, the permeability retention during filtration was 80%, and the membrane had high communication.
Moreover, the tensile rupture elongation retention after chemical immersion was 97%, and the tensile rupture elongation retention after chemical cycle cleaning repeated 10 cycles was as high as 95%. Further, the retention of water permeability after immersion in a chemical solution was 98%, the retention of water permeability after repeated chemical cycle cleaning for 10 cycles was 95%, and no chemical degradation was observed.
After filtering 27 L (90% recovery) of 30 L of deep-opening raw soy sauce with a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours, hollow fiber under the washing conditions shown in Table 1 below The permeability retention when the membrane was washed with hot water at a temperature of about 60 ° C. was 60%. Thereafter, the plate was washed with an aqueous solution at 30 ° C. containing 0.3% by weight sodium hypochlorite and 2% by weight sodium hydroxide for 30 minutes, and the water retention rate showed a high washing recovery property of 86%.

[比較例1]
溶剤をATBCのみとしたこと以外は、実施例1と同様にして製膜し、比較例1の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスが低く、連通性の低い膜であり、薬液浸漬後破断伸度保持率も30%と低かった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後、以下の表1に示す洗浄条件下で、中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は3%と低かった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したが、透水保持率は23%と低い洗浄回復性を示した。
Comparative Example 1
A hollow fiber membrane of Comparative Example 1 was obtained in the same manner as in Example 1 except that the solvent was changed to ATBC only. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the film had a low flux and low communication, and the retention of elongation at break after immersion in a chemical solution was also low at 30%.
After filtering 27 L (90% recovery) of 30 L of deep-opening raw soy sauce with a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours, hollow fiber under the washing conditions shown in Table 1 below When the membrane was washed with hot water at a temperature of about 60 ° C., the water permeability retention rate was as low as 3%. Thereafter, the plate was washed with an aqueous solution of 0.3% by weight sodium hypochlorite and 2% by weight sodium hydroxide at 30 ° C. for 30 minutes, but the retention of water permeability was as low as 23%.

[比較例2]
微粉シリカを0%とし、溶剤をγ-ブチロラクトンのみとしたこと以外は、実施例1と同様にして製膜し、比較例2の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であり、薬液浸漬後破断伸度保持率は30%と低かった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後の中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は5%と低かった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したが、透水保持率は35%と低い洗浄回復性を示した。
Comparative Example 2
A hollow fiber membrane of Comparative Example 2 was obtained in the same manner as in Example 1 except that the amount of finely divided silica was 0% and the solvent was only γ-butyrolactone. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the flux was low and the membrane was low in communication, and the retention of elongation at break after immersion in a chemical solution was as low as 30%.
The hollow fiber membrane was washed with hot water at a temperature of about 60 ° C. after filtering 27 liters (recovery rate 90%) of 30 liters of concentrated fresh raw soy sauce having a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours. Permeability retention rate was as low as 5%. Thereafter, the plate was washed with an aqueous solution of 0.3% by weight sodium hypochlorite and 2% by weight sodium hydroxide at 30 ° C. for 30 minutes, but the water retention was as low as 35% and showed a washing recovery property.

[比較例3]
溶剤をDOAのみとした以外は、実施例3と同様にして製膜し、比較例3の中空糸膜を得た。得られた多孔質膜の配合組成及び製造条件並びに各種物性を以下の表1示す。得られた多孔質中空糸膜は、球晶構造を有していた。また、フラックスは低く、連通性の低い膜であり、薬液浸漬後破断伸度保持率も30%と低かった。
粘度3.6mPa・s、濁度21.8NTU、Brix35.1%の濃口生揚醤油30Lを約14時間かけて27L(回収率90%)ろ過した後の中空糸膜を温度60℃程度の湯で洗浄した際の透水保持率は5%と低かった。その後、0.3重量%次亜塩素酸ナトリウム及び2重量%水酸化ナトリウムを含む30℃の水溶液で30分間洗浄したが、透水保持率は41%と低い洗浄回復性を示した。
Comparative Example 3
A hollow fiber membrane of Comparative Example 3 was obtained in the same manner as in Example 3, except that the solvent was only DOA. Table 1 below shows the composition and manufacturing conditions of the obtained porous membrane and various physical properties. The obtained porous hollow fiber membrane had a spherulite structure. In addition, the flux was low and the membrane was low in communication, and the retention of elongation at break after immersion in a chemical solution was as low as 30%.
The hollow fiber membrane was washed with hot water at a temperature of about 60 ° C. after filtering 27 liters (recovery rate 90%) of 30 liters of concentrated fresh raw soy sauce having a viscosity of 3.6 mPa · s, turbidity 21.8 NTU, and Brix 35.1% over about 14 hours. Permeability retention rate was as low as 5%. Thereafter, the plate was washed with an aqueous solution of 0.3% by weight sodium hypochlorite and 2% by weight sodium hydroxide at 30 ° C. for 30 minutes, but the retention of water permeability was as low as 41%.

[比較例4]
醤油ろ過後、洗浄条件を代えた以外は、実施例1と同様に実施した。1次洗浄液としての25℃の水洗浄後の透水量保持率は27%であり、3000ppm次亜塩素酸ナトリウム及び2%水酸化ナトリウム含有水溶液による洗浄後の透水量保持率は60%であったため、界面活性剤含有水溶液による更なる洗浄を実施したが、界面活性剤含有水溶液洗浄後の透水量は84%に留まった。
Comparative Example 4
It carried out like Example 1 except having changed washing | cleaning conditions after soy sauce filtration. The water permeability retention after washing with water at 25 ° C. as the primary washing liquid was 27%, and the water permeability retention after washing with an aqueous solution containing 3000 ppm sodium hypochlorite and 2% sodium hydroxide was 60%. Further washing with a surfactant-containing aqueous solution was carried out, but the water permeability after washing with the surfactant-containing aqueous solution remained at 84%.

以上の結果から、連通性が良好な膜は、薬液耐性、ろ過性能に優れ、高寿命であることが分かった。   From the above results, it was found that the membrane having good communication was excellent in resistance to a chemical solution, filtration performance, and had a long life.

本発明に係る醤油の製造方法におけるろ過工程は、多孔質ろ過膜の(被処理液側である膜の内側からろ液側である膜の外側に至る細孔の連通性が良好な膜を使用するため、洗浄工程で使用する洗浄液(薬液)として、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液を使用した場合に、膜の劣化を最小限に抑えることができ、薬液耐性、ろ過性能に優れ、高寿命であり、さらに界面活性剤含有洗浄剤により洗浄を不要とすることができる。   The filtration step in the method for producing soy sauce according to the present invention uses a membrane having good communication of pores extending from the inside of the membrane on the liquid side to the outside of the membrane on the filtrate side of the porous filtration membrane Therefore, as the cleaning solution (chemical solution) used in the cleaning step, the hot water of 50 ° C. or more and 90 ° C. or less as the primary cleaning water, and the next of 0.05% by weight or more and 0.5% by weight or less as the secondary cleaning water When using an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium chlorite and 0.4 wt% or more and 4 wt% or less of sodium hydroxide, deterioration of the film can be minimized and chemical resistance It is excellent in filtration performance and has a long life, and furthermore, the surfactant-containing detergent can eliminate the need for cleaning.

Claims (16)

以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
The following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields.
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
The following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 10 μm 2 or more is 15% or less of the total area of the resin part in each area of a total of four visual fields of visual field, and
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
以下の工程:
3次元網目構造の樹脂から構成される多孔質膜に、澱成分を含有する醤油を通過させて、該澱成分からろ液を分離するろ過工程;及び
該多孔質膜に洗浄液を通過又は浸漬させて、該多孔質膜の内部を洗浄する洗浄工程;
を含む醤油の製造方法であって、
該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm以下の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して70%以上であり、かつ、10μm以上の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下であり、かつ、
該洗浄液が、1次洗浄水としての50℃以上90℃以下の湯、及び2次洗浄水としての0.05重量%以上0.5重量%以下の次亜塩素酸ナトリウム及び0.4重量%以上4重量%以下の水酸化ナトリウムを含有する15℃以上35℃以下の水溶液であり、該洗浄工程において、該1次洗浄水としての湯で洗浄した後に、該2次洗浄水としての水溶液で洗浄する、
ことを特徴とする前記醤油の製造方法。
The following steps:
A filtration step of passing a soy sauce containing a sediment component through a porous membrane composed of a resin having a three-dimensional network structure to separate a filtrate from the sediment component; and passing or immersing a cleaning solution in the porous membrane Washing the inside of the porous membrane;
A method of producing soy sauce containing
A field of view including the inner surface, a field of view including the outer surface of the film, and an equal distance between the fields of the SEM image of the cross section in the film thickness direction orthogonal to the inner surface of the porous membrane 2 The total area of the resin part having an area of 1 μm 2 or less is 70% or more with respect to the total area of the resin part in each area of a total of four visual fields, and a resin having an area of 10 μm 2 or more The total area of the part is 15% or less of the total area of the resin part, and
The cleaning solution comprises hot water of 50 ° C. to 90 ° C. as primary washing water, and 0.05 wt% to 0.5 wt% of sodium hypochlorite and 0.4 wt% as secondary washing water It is an aqueous solution of 15 ° C. or more and 35 ° C. or less containing sodium hydroxide of 4% by weight or less, and after washing with hot water as the primary washing water in the washing step, an aqueous solution as the secondary washing water To wash,
The manufacturing method of the said soy sauce characterized by the above-mentioned.
前記多孔質膜は、該多孔質膜の内側表面に直交する膜厚方向における膜断面のSEM画像における、該内側表面を含む視野、該膜の外側表面を含む視野、及びこれらの視野の間を等間隔で撮影した2視野の合計4視野の各領域において、1μm超10μm未満の面積を有する樹脂部の面積の合計が、該樹脂部の総面積に対して15%以下である、請求項1〜3のいずれか1項に記載の方法。 The porous membrane is a field of view including the inner surface, a field of view including the outer surface of the membrane, and a field of view in the SEM image of the cross section of the membrane in the thickness direction orthogonal to the inner surface of the porous membrane. in each area of a total of four field of 2 field taken at regular intervals, the total area of the resin portion having an area of less than 1 [mu] m 2 ultra 10 [mu] m 2 is 15% or less relative to the total area of the resin portion, wherein The method according to any one of Items 1 to 3. 前記多孔質膜の表面開口率は25〜60%である、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the surface open area ratio of the porous membrane is 25 to 60%. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程後の前記多孔質膜の引張破断伸度E1との関係が、E1/E0×100≧80%である、請求項1〜5のいずれか1項に記載の方法。   The relationship between the tensile breaking elongation E0 of the porous membrane before the washing step and the tensile breaking elongation E1 of the porous membrane after the washing step is E1 / E0 × 100 ≧ 80%. The method according to any one of 1 to 5. 前記洗浄工程前の前記多孔質膜の引張破断伸度E0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜の引張破断伸度EXとの関係が、EX/E0×100≧70%である、請求項1〜5のいずれか1項に記載の方法。   Tensile breaking elongation E0 of the porous membrane before the washing step, and tensile breaking elongation of the porous membrane after repeating the washing step X times (where X is an integer of 2 to 100) The method according to any one of claims 1 to 5, wherein the relationship with the degree EX is EX / E0 x 100 70 70%. 前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程後の前記多孔質膜のフラックスL1との関係が、L1/L0×100≧95%である、請求項1〜7のいずれか1項に記載の方法。   The relationship between the flux L0 of the porous membrane before the filtration step and the flux L1 of the porous membrane after the washing step is L1 / L0 × 100 ≧ 95%. Method according to paragraph 1. 前記ろ過工程前の前記多孔質膜のフラックスL0と、前記洗浄工程をX回(ここで、Xは2〜100の整数である。)繰り返した後の前記多孔質膜のフラックスLXとの関係が、LX/L0×100≧90%である、請求項1〜7のいずれか1項に記載の方法。   The relationship between the flux L0 of the porous membrane before the filtration step and the flux LX of the porous membrane after repeating the cleaning step X times (where X is an integer of 2 to 100) is The method according to any one of claims 1 to 7, wherein LX / L0 x 100 90 90%. 前記多孔質膜は中空糸膜である、請求項1〜9のいずれか1項に記載の方法。   The method according to any one of claims 1 to 9, wherein the porous membrane is a hollow fiber membrane. 前記多孔質膜を構成する樹脂は熱可塑性樹脂である、請求項1〜10のいずれか1項に記載の方法。   The method according to any one of claims 1 to 10, wherein the resin constituting the porous membrane is a thermoplastic resin. 前記熱可塑性樹脂はフッ素樹脂である、請求項11に記載の方法。   The method according to claim 11, wherein the thermoplastic resin is a fluorocarbon resin. 前記フッ素樹脂は、フッ化ビニリデン樹脂(PVDF)、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン樹脂、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−モノクロロトリフルオロエチレン共重合体(ECTFE)、ヘキサフルオロプロピレン樹脂、及びこれら樹脂の混合物からなる群から選ばれる、請求項12に記載の方法。   The fluorine resin is vinylidene fluoride resin (PVDF), chlorotrifluoroethylene resin, tetrafluoroethylene resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-monochlorotrifluoroethylene copolymer (ECTFE), hexamer The method according to claim 12, selected from the group consisting of fluoropropylene resins, and mixtures of these resins. 前記洗浄工程は、前記洗浄液による洗浄を行う洗浄液工程と、その後、残存する洗浄液成分を除去するためのリンス水による濯ぎを行うリンス工程とを含む、請求項1〜13のいずれか1項に記載の方法。   14. The method according to claim 1, wherein the washing step includes a washing step of washing with the washing solution and a rinsing step of rinsing with rinse water to remove the remaining washing liquid component. the method of. 前記リンス工程で使用するリンス水の量は、前記多孔質膜の単位面積当たり100L/m以下である、請求項14に記載の方法。 The method according to claim 14, wherein the amount of rinse water used in the rinse step is 100 L / m 2 or less per unit area of the porous membrane. 前記リンス工程後に前記ろ過工程を再開した後のろ液中の塩素濃度が0.1ppm以下であり、かつ、該ろ過液のpHが8.6以下である、請求項14又は15に記載の方法。   The method according to claim 14 or 15, wherein the chlorine concentration in the filtrate after resuming the filtration step after the rinse step is 0.1 ppm or less, and the pH of the filtrate is 8.6 or less. .
JP2018164436A 2017-09-07 2018-09-03 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE Active JP7204382B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017171946 2017-09-07
JP2017171946 2017-09-07

Publications (2)

Publication Number Publication Date
JP2019047779A true JP2019047779A (en) 2019-03-28
JP7204382B2 JP7204382B2 (en) 2023-01-16

Family

ID=65904639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164436A Active JP7204382B2 (en) 2017-09-07 2018-09-03 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE

Country Status (1)

Country Link
JP (1) JP7204382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047781A (en) * 2017-09-07 2019-03-28 旭化成株式会社 Method for producing soy sauce using porous film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726560A (en) * 1980-07-21 1982-02-12 Kuraray Co Ltd Filtration of soysauce sediment
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2009095808A (en) * 2007-10-19 2009-05-07 Toyobo Co Ltd Hollow fiber membrane for liquid processing
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP2012040461A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Method for manufacturing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filter using porous hollow fiber membrane, and water-treating method using porous hollow fiber membrane
JP2013075294A (en) * 2006-04-19 2013-04-25 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same
JP2016196004A (en) * 2013-09-18 2016-11-24 三菱レイヨン株式会社 Porous hollow fiber membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726560A (en) * 1980-07-21 1982-02-12 Kuraray Co Ltd Filtration of soysauce sediment
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2013075294A (en) * 2006-04-19 2013-04-25 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane, method for manufacturing the same, and washing method and filtering method using the membrane
JP2009095808A (en) * 2007-10-19 2009-05-07 Toyobo Co Ltd Hollow fiber membrane for liquid processing
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP2012040461A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Method for manufacturing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filter using porous hollow fiber membrane, and water-treating method using porous hollow fiber membrane
JP2016196004A (en) * 2013-09-18 2016-11-24 三菱レイヨン株式会社 Porous hollow fiber membrane
JP2015073916A (en) * 2013-10-04 2015-04-20 旭化成ケミカルズ株式会社 Porous hollow fiber membrane, and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047781A (en) * 2017-09-07 2019-03-28 旭化成株式会社 Method for producing soy sauce using porous film
JP7182960B2 (en) 2017-09-07 2022-12-05 旭化成株式会社 SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE

Also Published As

Publication number Publication date
JP7204382B2 (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US20190022601A1 (en) Porous hollow fiber membrane, method for producing the same, and filtration method
JP6839766B2 (en) Filtration method using a porous membrane
US11110402B2 (en) Porous hollow fiber membrane, method for producing porous hollow fiber membrane and filtration method
JP7204382B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP7169129B2 (en) Method for producing saccharified liquid using porous membrane
JP7165000B2 (en) Method for producing tea beverage using porous membrane
JP7082681B2 (en) Filtration method using a porous membrane
JP6839765B2 (en) Filtration method using a porous membrane
JP2018144006A (en) Porous hollow fiber membrane and manufacturing method of the same
JP6832440B2 (en) Method of producing brewed liquor using a porous membrane
JP7105654B2 (en) Method for filtration of culture broth using porous membrane
JP7182960B2 (en) SOY SAUCE MANUFACTURING METHOD USING POROUS MEMBRANE
JP2019042736A (en) Porous hollow membrane, method for producing porous hollow membrane, and filtration method
JP2019042735A (en) Method for producing porous hollow membrane containing separation layer, porous hollow membrane and filtration method
JP2018144005A (en) Porous hollow fiber membrane and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150