JP2019046775A - Fuel cell module and fuel cell device - Google Patents

Fuel cell module and fuel cell device Download PDF

Info

Publication number
JP2019046775A
JP2019046775A JP2017190577A JP2017190577A JP2019046775A JP 2019046775 A JP2019046775 A JP 2019046775A JP 2017190577 A JP2017190577 A JP 2017190577A JP 2017190577 A JP2017190577 A JP 2017190577A JP 2019046775 A JP2019046775 A JP 2019046775A
Authority
JP
Japan
Prior art keywords
fuel cell
oxygen
containing gas
plate member
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017190577A
Other languages
Japanese (ja)
Other versions
JP7011434B2 (en
Inventor
光博 中村
Mitsuhiro Nakamura
光博 中村
嶌田 光隆
Mitsutaka Touden
光隆 嶌田
亨祐 山内
Kyosuke Yamauchi
亨祐 山内
貴之 丸山
Takayuki Maruyama
貴之 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Dainichi Co Ltd
Original Assignee
Kyocera Corp
Dainichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Dainichi Co Ltd filed Critical Kyocera Corp
Publication of JP2019046775A publication Critical patent/JP2019046775A/en
Application granted granted Critical
Publication of JP7011434B2 publication Critical patent/JP7011434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a fuel cell module in which heat exchange between an oxygen-containing gas and a high-temperature area is efficiently performed in an oxygen-containing gas introduction member, and a fuel cell device with high power generation efficiency using the same.SOLUTION: A fuel cell module 10 comprises: a cell stack 4 that has a plurality of fuel cells arranged; a storage container 1 that stores the cell stack 4; and a hollow oxygen-containing gas introduction member 2 that supplies an oxygen-containing gas to lower parts of the fuel cells. The oxygen-containing gas introduction member 2 includes a first plate member 21 that faces a high-temperature area in the storage container 1, and a second plate member 22 that faces the first plate member with a hollow part (oxygen-containing gas channel 33) therebetween; on any cross section in the vertical direction of the fuel cells, at least part of the first plate member 21 has a curved shape, and the total length in the vertical direction of an outer surface 21a toward the cell stack 4 of the first plate member 21 is longer than the total length in the vertical direction of an outer surface 22a toward the storage container 1 of the second plate member 22.SELECTED DRAWING: Figure 2

Description

本発明は、燃料電池モジュールおよび燃料電池装置に関する。   The present invention relates to a fuel cell module and a fuel cell device.

近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルが複数配列されたセルスタック装置を、収納容器内に収納してなる燃料電池モジュールや、この燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が、種々提案されている(たとえば特許文献1を参照)。   In recent years, a cell stack device in which a plurality of fuel cells capable of obtaining electric power using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) as next-generation energy is housed in a storage container. Various fuel cell modules and fuel cell devices in which the fuel cell module is housed in an outer case have been proposed (see, for example, Patent Document 1).

燃料電池モジュールは、収納容器内の収納室内にセルスタック装置が収納された構成であり、セルスタック装置に酸素含有ガスを供給するための流路、および、外部へと排ガスを排出するための流路が、収納容器内に形成されている。酸素含有ガスと排ガスとは、互いに隣接する流路を流れることで、酸素含有ガスと排ガスの間で、効率よく熱交換を行っている。   The fuel cell module has a configuration in which a cell stack device is stored in a storage chamber in a storage container, and a flow path for supplying an oxygen-containing gas to the cell stack device and a flow for discharging exhaust gas to the outside. A passage is formed in the storage container. The oxygen-containing gas and the exhaust gas flow through the flow paths adjacent to each other to perform heat exchange efficiently between the oxygen-containing gas and the exhaust gas.

また、燃料電池モジュール内において、酸素含有ガスは、前述の排ガスとの熱交換部位を経由した後、2枚の板の間の空間(流路)に流過させることができる、酸素含有ガス導入部材を介して、各燃料電池セルの下方にある柱状の根元部または基部に導入される。なお、酸素含有ガス導入部材を流過する酸素含有ガスは、燃料電池モジュール内の比較的高温の流体と熱交換することで、セルスタック装置に供給される酸素含有ガスを、より高温としている。   Further, in the fuel cell module, the oxygen-containing gas can flow through the space (flow path) between the two plates after passing through the heat exchange site with the above-mentioned exhaust gas, It is introduced into a columnar root or base below each fuel cell. The oxygen-containing gas flowing through the oxygen-containing gas introduction member exchanges heat with a relatively high temperature fluid in the fuel cell module to make the oxygen-containing gas supplied to the cell stack device a higher temperature.

特開2012−28099号公報JP 2012-28099 A

ところで、上述する酸素含有ガス導入部材の2枚の板のうち一方側の板と対向する領域が、他方側の板と対向する領域より高温である場合に、いずれの板も同様の構造であると、酸素含有ガスと燃料電池モジュール内の高温領域との間で、効率良く熱交換を行うことができないおそれがあった。   By the way, in the case where the region facing the plate on one side of the two plates of the oxygen-containing gas introducing member described above has a higher temperature than the region facing the plate on the other side, all the plates have the same structure. In addition, there is a possibility that heat exchange can not be performed efficiently between the oxygen-containing gas and the high temperature region in the fuel cell module.

本発明の目的は、酸素含有ガス導入部材において、酸素含有ガスと高温領域との熱交換が効率的に行われる燃料電池モジュール、および、それを用いた発電効率の高い燃料電池装置を提供することである。   An object of the present invention is to provide a fuel cell module in which heat exchange between an oxygen-containing gas and a high temperature region is efficiently performed in an oxygen-containing gas introduction member, and a fuel cell device with high power generation efficiency using the same. It is.

本開示の燃料電池モジュールは、酸素含有ガスと燃料ガスとを用いて発電を行なう燃料電池セルを複数個配列してなるセルスタックと、前記セルスタックを収納する収納室を有する収納容器と、酸素含有ガスを各燃料電池セルの下方に供給する中空状の酸素含有ガス導入部材であって、前記収納室の上方より垂下し、高温領域と対向する第一板部材と、該第一板部材に対して酸素含有ガスの流路となる中空部を挟んで対向する第二板部材とを有する酸素含有ガス導入部材と、を備え、
前記燃料電池セルの上下方向でかつ該燃料電池セルの配列方向と直交する方向、における任意の断面において、
前記第一板部材の少なくとも一部は湾曲形状であり、かつ、前記第一板部材における外表面に沿った全長が、前記第二板部材における外表面に沿った全長より長いことを特徴とする。
A fuel cell module according to the present disclosure includes a cell stack formed by arranging a plurality of fuel cells that perform power generation using an oxygen-containing gas and a fuel gas, a storage container having a storage chamber for storing the cell stack, and oxygen A hollow oxygen-containing gas introducing member for supplying a contained gas to the lower side of each fuel cell, which is a first plate member suspended from above the storage chamber and facing a high temperature region, and the first plate member And an oxygen-containing gas introducing member having a second plate member opposed to the hollow portion serving as a flow path of the oxygen-containing gas.
In any cross section in the vertical direction of the fuel cell and in the direction orthogonal to the arrangement direction of the fuel cell,
At least a part of the first plate member has a curved shape, and the total length along the outer surface of the first plate member is longer than the total length along the outer surface of the second plate member. .

また、本開示の燃料電池装置は、燃料電池モジュールと、前記燃料電池モジュールの運転を行なうための補機と、前記燃料電池モジュールと前記補機とを収納する外装ケースと、を備える。   In addition, a fuel cell device of the present disclosure includes a fuel cell module, an accessory for operating the fuel cell module, and an outer case housing the fuel cell module and the accessory.

本開示の燃料電池モジュールによれば、酸素含有ガス導入部材の中を流過して燃料電池セルに供給される酸素含有ガスと高温領域との熱交換を効率的に行うことができ、モジュールの発電効率の低下を抑制することができる。   According to the fuel cell module of the present disclosure, heat exchange between the oxygen-containing gas supplied to the fuel cell and the high-temperature region can be efficiently performed by passing through the oxygen-containing gas introduction member. It is possible to suppress a decrease in power generation efficiency.

また、本開示の燃料電池装置によれば、上記の燃料電池モジュールを備えることで、発電効率を向上させることができる。   Further, according to the fuel cell device of the present disclosure, the power generation efficiency can be improved by including the above-described fuel cell module.

実施形態の燃料電池モジュールの分解斜視図である。It is a disassembled perspective view of the fuel cell module of embodiment. 実施形態の燃料電池モジュールの内部構成を示す縦方向の断面図である。It is a longitudinal section showing the internal configuration of the fuel cell module of an embodiment. (a)は燃料電池モジュール内部の酸素含有ガス導入部材の形状を示す半断面図(カットモデル)であり、(b)は酸素含有ガス導入部材が接合される天板の開口部の形状と、第1の熱電対挿入部材のフランジ部の係止状態とを示す平面図である。(A) is a half sectional view (cut model) showing the shape of the oxygen-containing gas introduction member inside the fuel cell module, and (b) the shape of the opening of the top plate to which the oxygen-containing gas introduction member is joined; It is a top view which shows the locked state of the flange part of a 1st thermocouple insertion member. (a)燃料電池モジュール内部の酸素含有ガス導入部材をセルスタック方向から見た正面図であり、(b)は酸素含有ガス導入部材を構成する金属板材料が巻回されている様子を示す説明図である。(A) It is the front view which looked at the oxygen containing gas introduction member inside a fuel cell module from the cell stack direction, and (b) is a description which shows a metal plate material which comprises an oxygen containing gas introduction member being wound. FIG. 熱電対の挿入に用いる第1および第2の熱電対挿入部材の構成を説明する断面図である。It is sectional drawing explaining the structure of the 1st and 2nd thermocouple insertion member used for insertion of a thermocouple. 熱電対の挿入に用いる第1の熱電対挿入部材の(a)正面図と(b)側面図である。They are (a) front view and (b) side view of the 1st thermocouple insertion member used for insertion of a thermocouple. 実施形態の燃料電池装置の概略構成図である。It is a schematic block diagram of the fuel cell apparatus of embodiment.

実施形態の燃料電池モジュール10は、固体酸化物形燃料電池(SOFC)の燃料電池モジュールであり、図1の分解斜視図に示すように、収納容器1の内側に、セルスタック4,マニホールド5および改質器6からなるセルスタック装置Sと、酸素含有ガス導入部材2(空気導入板)、酸素含有ガスの流路形成用の板状部材(天板3)、および、内部断熱部材7(7A,7B,7C等)を収容して、収納容器1の開口を蓋体8で密閉した構成をとる。   The fuel cell module 10 according to the embodiment is a fuel cell module of a solid oxide fuel cell (SOFC), and as shown in the exploded perspective view of FIG. Cell stack device S comprising reformer 6, oxygen-containing gas introduction member 2 (air introduction plate), plate-like member (top plate 3) for flow path formation of oxygen-containing gas, and internal heat-insulating member 7 (7A) , 7B, 7C, etc.), and the opening of the storage container 1 is sealed by a lid 8.

その内部には、図2の縦方向の断面図に示すように、底部断熱材(台座)7Cおよび側部断熱材7A,7B等からなる中央の内部空間が、収納室11として形成され、この収納室11に、セルスタック装置Sが収容される。図2で示す一実施形態においては、酸素含有ガス導入部材2は収納室11に隣接して配置されており、酸素含有ガス導入部材2より収納室11側を高温領域とする。一方、酸素含有ガス導入部材2の収納室11側と反対側には断熱部材(側部断熱材7A)が配置されており、酸素含有ガス導入部材2より側部断熱材7A側を低温領域とする。   As shown in the longitudinal cross-sectional view of FIG. 2, a central internal space composed of a bottom heat insulator (base) 7C, side heat insulators 7A, 7B, etc. is formed as the storage chamber 11 inside thereof. The cell stack device S is accommodated in the accommodation room 11. In the embodiment shown in FIG. 2, the oxygen-containing gas introduction member 2 is disposed adjacent to the storage chamber 11, and the storage chamber 11 side of the oxygen-containing gas introduction member 2 is a high temperature region. On the other hand, the heat insulating member (side heat insulating material 7A) is disposed on the opposite side of the oxygen containing gas introduction member 2 to the storage chamber 11 side, and the side heat insulating material 7A side from the oxygen containing gas introduction member 2 is a low temperature region. Do.

また、収納容器1の開口を密閉する蓋体8側(図2の図示左側)には、セルスタック4に酸素含有ガスを供給するための酸素含有ガス流路31,32等と、燃焼室11Bで発生する高温の排ガスを、上述の酸素含有ガスと熱交換した後、燃料電池モジュール10外部に向けて排出するための排ガス流路41,42等と、が設けられている。なお、ガス流路を形成するために用いられる各部材を総称して、流路形成部材9と呼ぶ。   In addition, on the lid 8 side (left side in FIG. 2) that seals the opening of the storage container 1, oxygen-containing gas flow paths 31 and 32 for supplying oxygen-containing gas to the cell stack 4 and the combustion chamber 11 B After heat exchange with the above-described oxygen-containing gas, the high temperature exhaust gas generated in the above is provided with exhaust gas flow paths 41, 42 and the like for discharging the fuel cell module 10 to the outside. In addition, each member used in order to form a gas flow path is named generically, and it calls the flow-path formation member 9. As shown in FIG.

セルスタック4に供給される酸素含有ガス(外部の空気)は、まず、蓋体8に設けられた導入口である空気導入管9Dから取り入れられ、蓋体8と蓋体8の外面側(図示左側)に配設された第1流路部材9Aとの間に形成された第1酸素含有ガス流路31内を、上方に向けて流過する。上端に達した酸素含有ガスは、蓋体8に設けられたスリット状の流入口8aから、収納容器1内部の上部(天井部)に配置された天板3(第2流路部材)と収納容器1の内面(天面)との間に形成された第2酸素含有ガス流路32(空気溜まり)内に、流入する。   The oxygen-containing gas (external air) supplied to the cell stack 4 is first taken in from the air introduction pipe 9D, which is an inlet provided to the lid 8, and the lid 8 and the outer surface side of the lid 8 (shown The first oxygen-containing gas flow path 31 formed between it and the first flow path member 9A disposed on the left side is flowed upward. The oxygen-containing gas that has reached the upper end is stored from the slit-like inlet 8 a provided in the lid 8 with the top plate 3 (second flow path member) disposed in the upper part (ceiling part) inside the storage container 1 It flows into the second oxygen-containing gas channel 32 (air pool) formed between the inner surface (the top surface) of the container 1 and the inner surface.

ついで、酸素含有ガスは、第2酸素含有ガス流路32の下面(底面)に形成された、接合部2aである開口部3aから、その下側でかつ収納室11内のセルスタック4と側部断熱材7Aとの間に配設された酸素含有ガス導入部材2内の第3酸素含有ガス流路33に流入して、下端まで流過する。下端まで達した酸素含有ガスは、酸素含有ガス導入部材2の下端側面のセルスタック4側に、水平方向に複数設けられた吐出口2bから、セルスタック4を構成する柱状の各燃料電池セルの間の根元部または基部に供給される。   Next, the oxygen-containing gas is formed on the lower surface (bottom surface) of the second oxygen-containing gas flow channel 32 from the opening 3a which is the bonding part 2a, and the cell stack 4 and the side in the storage chamber 11 below. It flows into the third oxygen-containing gas passage 33 in the oxygen-containing gas introduction member 2 disposed between the heat insulator 7A and the heat insulator 7A, and flows to the lower end. The oxygen-containing gas that has reached the lower end is formed from the plurality of discharge ports 2 b provided horizontally in the horizontal direction on the cell stack 4 side of the lower end side surface of the oxygen-containing gas introduction member 2. Supplied to the root or base between them.

なお、各燃料電池セル間に供給された酸素含有ガスは、各セル間を上昇しながら発電に寄与した後、上端にまで達し、各燃料電池セルの反対側の隙間を上昇してきた、余剰の燃料ガス(水素含有ガス)と混合されて着火され、燃焼する。燃焼による高温は、燃焼室11B内に配設された改質器6(図2参照)の水気化用熱源および改質用熱源として利用された後、高温を保ったまま、燃焼排気ガスとして、排ガス流路41,42を通じて排出される。   The oxygen-containing gas supplied between the fuel cells contributes to the power generation while rising between the cells, and then reaches the upper end and rises in the gap on the opposite side of each fuel cell. It is mixed with fuel gas (hydrogen-containing gas), ignited and burned. After being used as a heat source for water vaporization and a heat source for reforming of the reformer 6 (see FIG. 2) disposed in the combustion chamber 11B, the high temperature due to the combustion is maintained as the combustion exhaust gas while maintaining the high temperature. It is discharged through the exhaust gas flow paths 41 and 42.

燃焼室11Bから排出される排ガスは、まず、燃焼室11B上部に設けられた排出口11cから、蓋体8と蓋体8の内面側(図示右側)に配設された第3流路部材9Bとの間に形成された第1排ガス流路41内に流入し、下方に向けて流過する。下端に達した排ガスは、蓋体8に配設された排出管9Fを介して、先述の第1流路部材9Aのさらに外側に配設された第4流路部材9Cの中に形成された、第2排ガス流路42へと流出する。そして、蓋体8の最外面(図示左側)に位置する第2排ガス流路42内を、上端まで流過した排ガスは、接続管9Eを介して燃料電池モジュール10外部へ排出される。   The exhaust gas discharged from the combustion chamber 11B is, first, the third flow passage member 9B disposed on the lid 8 and the inner surface side (right side in the drawing) of the lid 8 and the lid 8 from the exhaust port 11c provided in the upper portion of the combustion chamber 11B. And flows into the first exhaust gas channel 41 formed between the two and flows downward. The exhaust gas reaching the lower end is formed in the fourth flow path member 9C disposed further outside of the first flow path member 9A described above via the discharge pipe 9F disposed in the lid 8 And the second exhaust gas flow path 42. Then, the exhaust gas having flowed up to the upper end in the second exhaust gas flow path 42 located on the outermost surface (the left side in the drawing) of the lid 8 is discharged to the outside of the fuel cell module 10 through the connection pipe 9E.

この時、蓋体8の周囲では、外部から流入した低温(室温)の空気が、第1酸素含有ガス流路31内を上方に向かって流れる一方、金属製等の部材を挟んでその左右両側に配設された第1排ガス流路41内および第2排ガス流路42内を、高温の排ガスが流れるようになっている。このように、実施形態の燃料電池モジュール10における、収納容器1の蓋体8側(図2における左側)では、低温の空気と高温の排ガスとの間で熱交換が行われ、燃料電池セルに供給される空気が暖められて、燃料電池の発電効率を高めることができるように構成されている。   At this time, around the lid 8, low-temperature (room temperature) air flowing from the outside flows upward in the first oxygen-containing gas channel 31, and both left and right sides of a member made of metal etc. A high temperature exhaust gas flows in the first exhaust gas flow path 41 and the second exhaust gas flow path 42 disposed in the first and second directions. Thus, heat exchange is performed between the low temperature air and the high temperature exhaust gas on the lid 8 side (left side in FIG. 2) of the storage container 1 in the fuel cell module 10 of the embodiment, and the fuel cell is The air supplied is warmed so that the power generation efficiency of the fuel cell can be enhanced.

これに対して、収納容器1内においてセルスタック装置Sを挟んで蓋体8に対向する、収納容器1の凹箱形状の底部側(図2における右側の側壁1a寄り)の構成においては、セルスタック4と側部断熱材7Aとの間に配設された酸素含有ガス導入部材2の構造により、燃料電池の発電効率を高める工夫が種々なされている。   On the other hand, in the configuration of the concave box-shaped bottom portion side (closer to the side wall 1a in the right side in FIG. 2) of the storage container 1 facing the lid 8 across the cell stack device S in the storage container 1 With the structure of the oxygen-containing gas introduction member 2 disposed between the stack 4 and the side heat insulating material 7A, various measures are made to enhance the power generation efficiency of the fuel cell.

すなわち、実施形態の燃料電池モジュール10における酸素含有ガス導入部材2は、図2に示すように、セルスタック4側(高温領域側)に位置する板状部材(第一板部材21)と、側部断熱材7A側(低温領域側)に配置され、第一板部材21に対して酸素含有ガスの流路となる中空部を挟んで対向する板状部材(第二板部材22)と、を備えている。これら第一板部材21と第二板部材22とは、それぞれセルの配列方向に平行に、かつ、互いに対向するように配設されており、間に形成される上下方向の隙間(中空部)が、先に述べた第3酸素含有ガス流路33になっている。板状部材は金属製であってもよい。   That is, as shown in FIG. 2, the oxygen-containing gas introducing member 2 in the fuel cell module 10 of the embodiment is a plate-like member (first plate member 21) located on the cell stack 4 side (high temperature region side) A plate member (second plate member 22) disposed on the side of the heat insulator 7A (the low temperature region side) and facing the first plate member 21 with the hollow portion serving as the flow path of the oxygen-containing gas interposed therebetween; Have. The first plate member 21 and the second plate member 22 are disposed parallel to each other in the arrangement direction of the cells so as to face each other, and a vertical gap (hollow portion) formed between them Is the third oxygen-containing gas channel 33 described above. The plate-like member may be made of metal.

ここで、図2で示すように、燃料電池セルの上下方向かつ燃料電池セルの配列方向と直交する方向、における任意の断面において、高温領域である燃焼室11B側に位置する第一板部材21の少なくとも一部は湾曲形状である。加えて、第一板部材21における外表面21aに沿った全長が、第二板部材22における外表面22aに沿った全長より長い。なお、第二板部材22も湾曲していてもよい。   Here, as shown in FIG. 2, the first plate member 21 located on the side of the combustion chamber 11B which is a high temperature region in an arbitrary cross section in the vertical direction of the fuel cell and the direction orthogonal to the arrangement direction of the fuel cells. At least a portion of is curved. In addition, the total length along the outer surface 21 a of the first plate member 21 is longer than the total length along the outer surface 22 a of the second plate member 22. The second plate member 22 may also be curved.

すなわち、第一板部材21におけるセルスタック4に対向する面21a(セルスタック4側の外表面21a)の湾曲に沿った全長と、第二板部材22における側部断熱材7Aに対向する面22a(側部断熱材7A側の外表面22a)に沿った全長とを比較すると、第一板部材21の外表面21aの全長(L21a)は、第二板部材22の外表面22aの全長(L22a)より長くなっている(L21a > L22a)。   That is, the entire length along the curve of the surface 21a (the outer surface 21a on the cell stack 4 side) facing the cell stack 4 in the first plate member 21 and the surface 22a facing the side heat insulating material 7A in the second plate member 22 Comparing with the total length along the outer surface 22a on the side heat insulating material 7A side, the total length (L21a) of the outer surface 21a of the first plate member 21 is the total length (L22a) of the outer surface 22a of the second plate member 22. ) Longer (L21a> L22a).

第一板部材21における外表面21aに沿った全長とは、上下方向における直線的な全長ではなく、湾曲形状に沿った全長をいう。第二板部材22が第一板部材21と同様に湾曲している場合には、第二板部材22における外表面22aに沿った全長とは、第一板部材21と同様、湾曲形状に沿った全長をいう。なお、湾曲形状とは、一方向のみに突出するように湾曲していてもよく、また、いずれの一方向に突出する部分および他方向に突出する部分のいずれをも有する波形状であってもよい。波形状である場合においては、第一板部材21における外表面21aに沿った全長を、より長くすることができる。   The total length along the outer surface 21 a of the first plate member 21 is not a linear total length in the vertical direction but an entire length along a curved shape. When the second plate member 22 is curved in the same manner as the first plate member 21, the total length of the second plate member 22 along the outer surface 22 a is the same as the first plate member 21 in the curved shape. Total length. The curved shape may be curved so as to protrude in only one direction, or it may be a wave shape having any of a portion protruding in any one direction and a portion protruding in the other direction. Good. In the case of the corrugated shape, the total length along the outer surface 21 a of the first plate member 21 can be made longer.

この構成により、高温領域側と対向する第一板部材21の外表面21aの表面積を大きくすることができるため、酸素含有ガスと高温領域との熱交換を効率的に行うことができる。その結果、実施形態の燃料電池モジュール10は、燃料電池セルに供給される酸素含有ガスが充分に加温され、発電効率の低下が抑えられている。したがって、上述の構成の燃料電池モジュール10を使用した燃料電池装置は、その発電効率を向上させることができる。   With this configuration, the surface area of the outer surface 21a of the first plate member 21 facing the high temperature region side can be increased, so that heat exchange between the oxygen-containing gas and the high temperature region can be efficiently performed. As a result, in the fuel cell module 10 according to the embodiment, the oxygen-containing gas supplied to the fuel cell is sufficiently heated, and the decrease in the power generation efficiency is suppressed. Therefore, the fuel cell device using the fuel cell module 10 of the above configuration can improve its power generation efficiency.

図2は、燃料電池モジュール10を、燃料電池セルの配列方向における中央部で切断した縦断面図である。燃料電池セルの配列方向のなかでも、より高温である中央部の高温領域側と対向する第一板部材21の外表面21aの表面積を大きくすることで、さらに効率的に酸素含有ガスと高温領域との熱交換を行うことができる。燃料電池セルの配列方向における中央部とは、燃料電池セルの配列方向の全長を5等分したうちの中央の3つの区画部分をいう。   FIG. 2 is a vertical cross-sectional view of the fuel cell module 10 taken along the central portion in the arrangement direction of the fuel cells. By increasing the surface area of the outer surface 21a of the first plate member 21 facing the high temperature region side of the central portion which is higher temperature also in the arrangement direction of the fuel cells, the oxygen containing gas and the high temperature region can be more efficiently Heat exchange with The central portion in the arrangement direction of the fuel cells refers to the central three divisions of the entire length in the arrangement direction of the fuel cells divided into five equal parts.

さらに、図3(a)のカットモデルに示すように、セルスタック4側の第一板部材21と側部断熱材7A側の第二板部材22とは、共に、横断面においても、燃料電池セルの配列方向における中央部が、高温領域である燃焼室11Bにより近づく湾曲形状になっていてもよい。なお、図3(a)は、図2のX−X線矢視断面図に相当するものである。   Furthermore, as shown in the cut model of FIG. 3 (a), both the first plate member 21 on the cell stack 4 side and the second plate member 22 on the side heat insulating material 7A side are also fuel cells in the cross section. The central portion in the cell arrangement direction may have a curved shape closer to the combustion chamber 11B which is a high temperature region. FIG. 3A corresponds to a cross-sectional view taken along the line X-X in FIG.

なお、前述の第一板部材21の外表面21a〔図4(a)〕は、それ以外の酸素含有ガス導入部材2の表面、たとえば第一板部材21の内表面21b、第二板部材22の外表面22a,内表面22b等より、面粗度の高い粗面であってもよい。これにより、外表面21aの表面積がさらに増大するため、第一板部材21の外表面21aの外の高温領域(燃焼室11)と、外表面21aの内側を流れる酸素含有ガスとの熱交換効率を向上できる。   The outer surface 21a (FIG. 4A) of the first plate member 21 described above is the other surface of the oxygen-containing gas introduction member 2, for example, the inner surface 21b of the first plate member 21 and the second plate member 22. It may be a rough surface having a higher surface roughness than the outer surface 22a, the inner surface 22b, and the like. Thereby, the surface area of the outer surface 21a is further increased, so the heat exchange efficiency between the high temperature region (combustion chamber 11) outside the outer surface 21a of the first plate member 21 and the oxygen-containing gas flowing inside the outer surface 21a. Can be improved.

したがって、この構成によっても、酸素含有ガスと高温領域との熱交換を効率的に行うことができる。なお、第一板部材21の外表面21aがそれ以外の酸素含有ガス導入部材2の表面より面粗度が高い、とは第一板部材21の外表面21aがそれ以外の酸素含有ガス導入部材2の表面より算術平均粗さRaが大きいことを意味する。   Therefore, also with this configuration, heat exchange between the oxygen-containing gas and the high temperature region can be efficiently performed. The outer surface 21a of the first plate member 21 is higher in surface roughness than the other surfaces of the oxygen-containing gas introduction member 2 because the outer surface 21a of the first plate member 21 is other than the oxygen-containing gas introduction member It means that arithmetic mean roughness Ra is larger than the surface of 2.

さらに、上述の酸素含有ガス導入部材2上端の接合部2aと、第2酸素含有ガス流路32の下面に形成された天板3の開口部3aとは、溶接により気密状に接続されており、この天板3の開口部3aは、図3(b)に示すように、角部の丸い矩形に形成されている。この開口部3aの縁部形状は、角部からの亀裂やひび等の発生を防止するためのものである。   Furthermore, the joint portion 2a at the upper end of the oxygen-containing gas introduction member 2 described above and the opening 3a of the top plate 3 formed on the lower surface of the second oxygen-containing gas passage 32 are connected in an airtight manner by welding. The opening 3a of the top 3 is formed in a rectangular shape with rounded corners, as shown in FIG. 3 (b). The edge shape of the opening 3 a is for preventing the occurrence of a crack or a crack from a corner.

これにより、酸素含有ガス導入部材2およびこれを使用する燃料電池モジュール10の、製品寿命を延ばすことができる。なお、開口部3aの縁部形状は、たとえば長孔形や楕円形等、角部が鋭角や尖った形状でない、亀裂の発生の原因とならない形状であれば、どのような形状でもよい。   Thereby, the product life of the oxygen-containing gas introduction member 2 and the fuel cell module 10 using the same can be extended. The edge shape of the opening 3a may be any shape as long as it is a shape such as a long hole shape or an oval shape that does not cause an occurrence of a crack, which is not a sharp angle or a sharp shape.

なお、酸素含有ガス導入部材2は、内部を流過する酸素含有ガスを整流させるために、第一板部材21と第二板部材22がそれぞれ中空部側に向かって凸状部を形成し、これらを当接させることで酸素含有ガス導入部材2内部の中空部を潰して流路を形成する「整流部」を備えていてもよい。   In the oxygen-containing gas introducing member 2, the first plate member 21 and the second plate member 22 each form a convex portion toward the hollow portion side in order to rectify the oxygen-containing gas flowing through the inside, By bringing these into contact with each other, a “rectifier” may be provided which collapses the hollow portion inside the oxygen-containing gas introduction member 2 to form a flow path.

第一板部材21におけるセルスタック4側の外表面21aのうち、セルスタック4の上端より上方の、高温領域のなかでも比較的温度が高い燃焼室11Bと対向する部分は、上下方向に沿った平坦な部位(平坦部)であってもよい。平坦部とは、上述する整流部などのように、第一板部材21と第二板部材22との間の中空部が潰れている部分が存在しない面であることを意味しており、当該平坦部は湾曲していてもよい。   Of the outer surface 21a of the first plate member 21 on the cell stack 4 side, a portion of the high temperature region above the upper end of the cell stack 4 that faces the combustion chamber 11B having a relatively high temperature is along the vertical direction It may be a flat portion (flat portion). The flat portion means that there is no portion where the hollow portion between the first plate member 21 and the second plate member 22 is crushed, as in the straightening portion described above, The flat portion may be curved.

この構成により、高温領域のなかでも比較的温度が高いセルスタックの上端より上方と対向する部分においては、第一板部材21と第二板部材22との間の中空部が潰れている部分がないので、内部を流過する酸素含有ガスと高温領域との間で熱交換させる面を多く確保することができるため、より効率良く酸素含有ガスと高温領域とで熱交換を行うことができようになる。   With this configuration, the hollow portion between the first plate member 21 and the second plate member 22 is crushed in the high temperature region at a portion facing above the upper end of the cell stack having a relatively high temperature. Because there is no heat exchange between the oxygen-containing gas and the high-temperature area, more heat exchange can be performed because it is possible to secure many heat exchange surfaces between the oxygen-containing gas flowing inside and the high-temperature area. become.

実施形態の燃料電池モジュール10においては、酸素含有ガス導入部材2における、セルスタック4に対向する第一板部材21が、図2のように燃料電池モジュール10に内蔵された際、燃料電池モジュール10の水平方向に対応する方向(図4における黒塗り矢印方向)に、予め圧延加工された金属板を用いて形成されていてもよい。   In the fuel cell module 10 of the embodiment, when the first plate member 21 facing the cell stack 4 in the oxygen-containing gas introduction member 2 is incorporated in the fuel cell module 10 as shown in FIG. It may be formed using a metal plate which has been subjected to a rolling process in advance in the direction corresponding to the horizontal direction (black arrow direction in FIG. 4).

すなわち、第一板部材21は、金属板の製造ラインにおいて図4(b)に示す黒塗り矢印方向に圧延加工され、そのまま、黒塗り矢印方向を長手方向としてロール状に巻回され、このロールから巻き出された方向(黒塗り矢印方向)が、図4(a)に示した第一板部材21における黒塗り矢印方向と合致するように打ち抜き加工等を行った板部材を用いて製造することができる。   That is, the first plate member 21 is rolled in the direction of the solid arrow shown in FIG. 4 (b) in the production line of the metal plate, and wound as it is in the form of a roll with the solid arrow direction as the longitudinal direction. It manufactures using the plate member which carried out the punching process etc. so that the direction (black arrow direction) unrolled from this may correspond with the black arrow direction in the 1st plate member 21 shown in Drawing 4 (a). be able to.

以上の構成により、第一板部材21には、圧延加工された方向に応力が内在するため、図2で示すような一実施形態のように、上下方向において第一板部材21を湾曲させる場合に、その湾曲形状が上下方向において経時的に変形することを抑制できる。   According to the above configuration, since stress is inherent in the direction in which the first plate member 21 is rolled, in the case where the first plate member 21 is curved in the vertical direction as in the embodiment shown in FIG. In addition, it is possible to suppress that the curved shape is deformed with time in the vertical direction.

以上、本発明の実施形態について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。   As mentioned above, although the embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment, and various change, improvement, etc. are possible in the range which does not deviate from the gist of the present invention. is there.

たとえば、酸素含有ガス導入部材2は、セルスタック4の配列方向のどちら側(図2における右側または左側)に配設してもよく、両側に配設してもよい。また、酸素含有ガス導入部材2に酸素含有ガス(空気)を導入する流路も、酸素含有ガス導入部材2の配置に適合させて、どのようにでも構成することが可能である。   For example, the oxygen-containing gas introduction member 2 may be disposed on either side (right side or left side in FIG. 2) of the cell stack 4 in the arrangement direction, or may be disposed on both sides. Further, the flow path for introducing the oxygen-containing gas (air) into the oxygen-containing gas introduction member 2 can also be configured in any way by adapting to the arrangement of the oxygen-containing gas introduction member 2.

また、セルスタック4を複数列備えるセルスタック装置であってもよい。すなわち、セルスタック4の配列方向において温度分布を有する複数のセルスタック4の間に酸素含有ガス導入部材2を配設してもよい。   In addition, the cell stack device may be provided with a plurality of rows of cell stacks 4. That is, the oxygen-containing gas introduction member 2 may be disposed between a plurality of cell stacks 4 having a temperature distribution in the arrangement direction of the cell stacks 4.

つぎに、実施形態の燃料電池モジュール10は、図2の断面図に示すように、酸素含有ガス導入部材2の内部温度を測定するためのシース形のThermoCouple(TC)である熱電対12が、収納容器外の第2の熱電対挿入部材14に挿通されて、収納容器1の外壁の上面に設けられた第1の貫通孔1bを通過し、天板3(第2流路部材)の開口部3aから下方に配設された第1の熱電対挿入部材13に挿通されて、酸素含有ガス導入部材2の第一板部材21と第二板部材22との間に挿入されている。   Next, as shown in the cross-sectional view of FIG. 2, in the fuel cell module 10 of the embodiment, the thermocouple 12 which is a sheath-shaped ThermoCouple (TC) for measuring the internal temperature of the oxygen-containing gas introduction member 2. The second thermocouple insertion member 14 outside the storage container is inserted and passes through the first through hole 1 b provided on the upper surface of the outer wall of the storage container 1 to open the top plate 3 (second flow path member) It is inserted into the first thermocouple insertion member 13 disposed downward from the portion 3 a, and is inserted between the first plate member 21 and the second plate member 22 of the oxygen-containing gas introduction member 2.

図5は、第1の熱電対挿入部材13および第2の熱電対挿入部材14の構成を示す断面図である。第2の熱電対挿入部材14は、筒状部材である中空管14Aと、中空管14Aの下端14cに接続された基台14Bとから構成されている。   FIG. 5 is a cross-sectional view showing the configuration of the first thermocouple insertion member 13 and the second thermocouple insertion member 14. The second thermocouple insertion member 14 is composed of a hollow tube 14A which is a cylindrical member, and a base 14B connected to the lower end 14c of the hollow tube 14A.

基台14Bは、略円板状の平板部材であり、その中央部または中心には、熱電対12を挿通可能な第2の貫通孔14eが設けられている。基台14Bと中空管14Aとは、第2の貫通孔14eと、中空管14Aの中空部が同心状に連通するように、その間が溶接等によって接続されている。熱電対12は、中空管14A内に挿通され、中空管14Aの上端14dとシース形熱電対12との間が、ロウ付け等により密封固定される。   The base 14B is a substantially disk-shaped flat plate member, and a second through hole 14e through which the thermocouple 12 can be inserted is provided at a central portion or center of the base 14B. The base 14B and the hollow tube 14A are connected by welding or the like so that the second through hole 14e and the hollow portion of the hollow tube 14A communicate concentrically. The thermocouple 12 is inserted into the hollow tube 14A, and the upper end 14d of the hollow tube 14A and the sheathed thermocouple 12 are sealed and fixed by brazing or the like.

また、基台14Bは、この基台14Bの第2の貫通孔14eと同形の貫通孔15aを有するシール部材(パッキン15)を介して、図5のように、収納容器1の第1の貫通孔1bと同心となる位置に載置されている。この基台14Bと収納容器1とはネジ止めなどにより固定される。   Further, as shown in FIG. 5, the base 14B penetrates the first through hole of the storage container 1 via a seal member (packing 15) having a through hole 15a having the same shape as the second through hole 14e of the base 14B. It is placed at a position concentric with the hole 1b. The base 14B and the storage container 1 are fixed by screwing or the like.

上記した中空管14Aと熱電対12との固定および基台14Bと収納容器1との固定により、熱電対12の抜け止めと収納容器1内部の密封とが同時になされる。また、中空管14Aと熱電対12とのロウ付け部を、中空管14Aの長さ分だけ収納容器1から離間させているので、ロウ付け部が高温に晒されることを防いで耐久性を保持することができる。さらに、熱電対12の先端部12aから所定の長さの位置に基台14Bを配設することで、収納容器1内部に熱電対12を挿入する長さを決めることができる。これにより、熱電対12の先端部12aを、酸素含有ガス導入部材2の第一板部材21と第二板部材22との間の所定位置に確実に配設させることができ、組立性が向上する。   By fixing the hollow tube 14A and the thermocouple 12 and fixing the base 14B and the storage container 1 as described above, the retention of the thermocouple 12 and the sealing of the storage container 1 are simultaneously achieved. In addition, since the brazed portion of the hollow tube 14A and the thermocouple 12 is separated from the storage container 1 by the length of the hollow tube 14A, the brazed portion is prevented from being exposed to high temperature, and durability is achieved. Can be held. Furthermore, by arranging the base 14B at a position of a predetermined length from the tip end portion 12a of the thermocouple 12, it is possible to determine the length for inserting the thermocouple 12 inside the storage container 1. As a result, the tip end portion 12a of the thermocouple 12 can be reliably disposed at a predetermined position between the first plate member 21 and the second plate member 22 of the oxygen-containing gas introduction member 2, thereby improving the assemblability. Do.

第1の熱電対挿入部材13は、収納容器1の内面(下面)と天板3との間に形成された第2酸素含有ガス流路32を挟んで、前述の第1の貫通孔1bの鉛直直下に相当する位置に取り付けられている。その形状は、真上から見ると、図3(b)に示すように、第1の貫通孔1bの真下に相当する中央位置に、熱電対12を鉛直下方に向かって挿通することのできる案内隙間(ガイドスペースG)が形成されている。   The first thermocouple insertion member 13 has the second oxygen-containing gas flow path 32 formed between the inner surface (lower surface) of the storage container 1 and the top plate 3 in the first through hole 1b. It is attached at a position corresponding to the position just below the vertical. When viewed from directly above, as shown in FIG. 3 (b), the shape is a guide that allows the thermocouple 12 to be inserted vertically downward at a central position corresponding to directly below the first through hole 1b. A gap (guide space G) is formed.

図6は、第1の熱電対挿入部材13を、酸素含有ガス導入部材2の第一板部材21の幅方向から見た(a)正面図と、セルスタック4の配列方向から見た(b)側面図である。この図に示すように、第1の熱電対挿入部材13は、図示下方に向かって二股状に分岐する2つの部材13A,13Bを接合して構成されており、図6(a)のように正面側から見た場合、下部の各二股状部位13c,13cの間には、熱電対12の先端部12aを挿通可能なガイドスペースGが形成されている。   FIG. 6A is a front view of the first thermocouple insertion member 13 as viewed from the width direction of the first plate member 21 of the oxygen-containing gas introduction member 2, and FIG. ) Is a side view. As shown in this figure, the first thermocouple insertion member 13 is configured by joining two members 13A and 13B branched in a bifurcated shape toward the lower side in the drawing, as shown in FIG. 6A. When viewed from the front side, a guide space G through which the distal end 12a of the thermocouple 12 can be inserted is formed between the lower bifurcated portions 13c and 13c.

また、第1の熱電対挿入部材13の上端部は、図6(b)および図3(b)に示すように、それぞれ、天板3の開口部3aの幅方向に突出するフランジ部13dが延設されており、第1の熱電対挿入部材13が第一板部材21と第二板部材22との間に挿入された場合に、これらフランジ部13d,13dが、開口部3aの縁部に係止されて、位置決めと落下防止の機能を果たすようになっている。   Further, as shown in FIGS. 6B and 3B, the upper end portion of the first thermocouple insertion member 13 has a flange portion 13d which protrudes in the width direction of the opening 3a of the top plate 3 respectively. When the first thermocouple insertion member 13 is inserted between the first plate member 21 and the second plate member 22, these flange portions 13 d and 13 d are the edge portions of the opening 3 a. It is locked to perform positioning and fall prevention functions.

以上の構成により、酸素含有ガス導入部材2の内部温度を測定する熱電対12を、第一板部材21と第二板部材22との間の所定位置まで、簡単に挿通させ固定することができる。特に、酸素含有ガス導入部材2が、図2,図3(a)で示したような、第一板部材21の少なくとも一部が湾曲形状である酸素含有ガス導入部材であっても、熱電対12を容易に挿通させることができる。   With the above configuration, the thermocouple 12 for measuring the internal temperature of the oxygen-containing gas introducing member 2 can be easily inserted and fixed to a predetermined position between the first plate member 21 and the second plate member 22. . In particular, even if the oxygen-containing gas introduction member 2 is an oxygen-containing gas introduction member in which at least a portion of the first plate member 21 has a curved shape as shown in FIG. 2 and FIG. 12 can be easily inserted.

なお、第一板部材21と第二板部材22との間に挿入される第1の熱電対挿入部材13は、先に述べた、第一板部材21の上下方向の湾曲形状の経時変形を、より抑制できる。   The first thermocouple insertion member 13 inserted between the first plate member 21 and the second plate member 22 causes the temporal deformation of the curved shape of the first plate member 21 described above. , Can be more suppressed.

また、上述した、収納容器外の第2の熱電対挿入部材14および収納容器内の第1の熱電対挿入部材13は、酸素含有ガス導入部材(空気導入板)が湾曲していない燃料電池モジュールおよび燃料電池装置にも適用することができる。   In addition, the above-described second thermocouple insertion member 14 outside the storage container and the first thermocouple insertion member 13 inside the storage container are fuel cell modules in which the oxygen-containing gas introduction member (air introduction plate) is not curved. And fuel cell devices.

つぎに、図7は、本実施形態の燃料電池装置100の一例を示す透過斜視図である。
燃料電池装置100は、前述の燃料電池モジュール10と、燃料電池モジュール10を動作させるための補機と、燃料電池モジュール10および補機を収納する外装ケース50とを備えている。なお、図7においては一部構成を省略して示している。
Next, FIG. 7 is a transparent perspective view showing an example of the fuel cell device 100 of the present embodiment.
The fuel cell device 100 includes the fuel cell module 10 described above, an accessory for operating the fuel cell module 10, and an outer case 50 for containing the fuel cell module 10 and the accessory. In FIG. 7, the configuration is partially omitted.

燃料電池装置100は、図7に示すように、各支柱51と外装板(図示省略)から構成される外装ケース内に、上記実施形態の燃料電池モジュール10を収容したものである。この外装ケース内には、図示した燃料電池モジュール10の他、蓄熱用のタンク、発電した電力を外部に供給するためのパワーコンディショナ、ポンプやコントローラ等の補機類が配設される。   As shown in FIG. 7, the fuel cell apparatus 100 accommodates the fuel cell module 10 of the above-described embodiment in an outer case formed of each support 51 and an outer plate (not shown). In the exterior case, in addition to the illustrated fuel cell module 10, a tank for heat storage, a power conditioner for supplying generated electric power to the outside, and accessories such as a pump and a controller are disposed.

本実施形態の燃料電池装置100によれば、燃料電池モジュール10を備えることにより、発電効率を向上させることができる。   According to the fuel cell device 100 of the present embodiment, the power generation efficiency can be improved by providing the fuel cell module 10.

1 収納容器
1b 第1の貫通孔
2 酸素含有ガス導入部材
2a 接合部
2b 吐出部
3 天板(第2流路部材)
3a 開口部
4 セルスタック
7 内部断熱部材
7A,7B 側部断熱材
10 燃料電池モジュール
11 収納室
11A 発電室
11B 燃焼室
12 熱電対(TC)
13 第1の熱電対挿入部材
13c 二股状部位
13d フランジ部
14 第2の熱電対挿入部材
14A 中空管(筒状部材)
14B 基台
14e 第2の貫通孔
21 第一板部材
21a 外表面
21b 内表面
22 第二板部材
22a 外表面
22b 内表面
31 第1酸素含有ガス流路
32 第2酸素含有ガス流路
33 第3酸素含有ガス流路
100 燃料電池装置
S セルスタック装置
G ガイドスペース(案内空間)
DESCRIPTION OF SYMBOLS 1 Storage container 1b 1st through-hole 2 oxygen containing gas introduction member 2a junction part 2b discharge part 3 top plate (2nd flow path member)
3a Opening 4 Cell stack 7 Internal heat insulating member 7A, 7B Side heat insulating material 10 Fuel cell module 11 Storage room 11A Power generation room 11B Combustion room 12 Thermocouple (TC)
13 first thermocouple insertion member 13c bifurcated portion 13d flange portion 14 second thermocouple insertion member 14A hollow tube (cylindrical member)
14B base 14e second through hole 21 first plate member 21a outer surface 21b inner surface 22 second plate member 22a outer surface 22b inner surface 31 first oxygen-containing gas channel 32 second oxygen-containing gas channel 33 third Oxygen-containing gas flow path 100 Fuel cell device S Cell stack device G Guide space (guide space)

Claims (11)

酸素含有ガスと燃料ガスとを用いて発電を行なう燃料電池セルを複数個配列してなるセルスタックと、
前記セルスタックを収納する収納室を有する収納容器と、
酸素含有ガスを各燃料電池セルの下方に供給する中空状の酸素含有ガス導入部材であって、前記収納室の上方より垂下し、高温領域と対向する第一板部材と、該第一板部材に対して酸素含有ガスの流路となる中空部を挟んで対向する第二板部材とを有する酸素含有ガス導入部材と、を備え、
前記燃料電池セルの上下方向でかつ該燃料電池セルの配列方向と直交する方向、における任意の断面において、
前記第一板部材の少なくとも一部は湾曲形状であり、かつ、
前記第一板部材における外表面に沿った全長が、前記第二板部材における外表面に沿った全長より長いことを特徴とする燃料電池モジュール。
A cell stack formed by arranging a plurality of fuel cells that perform power generation using an oxygen-containing gas and a fuel gas;
A storage container having a storage room for storing the cell stack;
A hollow oxygen-containing gas introduction member for supplying an oxygen-containing gas to the lower side of each fuel cell, which is a first plate member suspended from above the storage chamber and facing a high temperature region, and the first plate member And an oxygen-containing gas introduction member having a second plate member opposed to the hollow portion serving as a flow path for the oxygen-containing gas.
In any cross section in the vertical direction of the fuel cell and in the direction orthogonal to the arrangement direction of the fuel cell,
At least a portion of the first plate member is curved and
A fuel cell module characterized in that the total length along the outer surface of the first plate member is longer than the total length along the outer surface of the second plate member.
前記任意の断面は、前記燃料電池セルの配列方向における中央部の断面である、請求項1に記載の燃料電池モジュール。   The fuel cell module according to claim 1, wherein the arbitrary cross section is a cross section of a central portion in the arrangement direction of the fuel cells. 前記酸素含有ガス導入部材は、前記第一板部材の外表面が、該第一板部材の外表面以外の面より面粗度の高い粗面である、請求項1または2に記載の燃料電池モジュール。   The fuel cell according to claim 1 or 2, wherein the oxygen-containing gas introduction member is a rough surface having a surface roughness higher than the surface other than the outer surface of the first plate member. module. 前記収納容器は、前記収納室の天板を有しており、
該天板は、前記酸素含有ガス導入部材が挿通される開口部を含んでおり、
前記酸素含有ガス導入部材の上端と前記天板とが接合された接合部の形状が、角部の丸い矩形、長孔形、楕円形のいずれかである、請求項1〜3のいずれか1つに記載の燃料電池モジュール。
The storage container has a top plate of the storage room,
The top plate includes an opening through which the oxygen-containing gas introduction member is inserted,
The shape of a joint portion where the upper end of the oxygen-containing gas introduction member and the top plate are joined is any one of a rectangular, a long hole, and an oval having rounded corners. The fuel cell module according to claim 1.
前記酸素含有ガス導入部材における、少なくとも前記セルスタックに対向する第一板部材が、モジュール水平方向に対応する方向に圧延加工された金属板で構成されている、請求項1〜4のいずれか1つに記載の燃料電池モジュール。   5. The oxygen-containing gas introduction member according to claim 1, wherein at least a first plate member facing the cell stack is formed of a metal plate rolled in a direction corresponding to a module horizontal direction. The fuel cell module according to claim 1. 前記第一板部材における、前記セルスタックの上端より上方と対向する部分は平坦部である、請求項1〜5のいずれか1つに記載の燃料電池モジュール。   The fuel cell module according to any one of claims 1 to 5, wherein a portion of the first plate member facing above the upper end of the cell stack is a flat portion. 前記酸素含有ガス導入部材の内部温度を測定する熱電対と、
前記酸素含有ガス導入部材の前記第一板部材と前記第二板部材との間に位置する第1の熱電対挿入部材と、を備える請求項4に記載の燃料電池モジュール。
A thermocouple for measuring the internal temperature of the oxygen-containing gas introduction member;
The fuel cell module according to claim 4, further comprising: a first thermocouple insertion member positioned between the first plate member and the second plate member of the oxygen-containing gas introduction member.
前記第1の熱電対挿入部材の下部は、2つの部位に分かれて垂下する二股状である、請求項7に記載の燃料電池モジュール。   The fuel cell module according to claim 7, wherein a lower portion of the first thermocouple insertion member is bifurcated into two parts and hanging down. 前記第1の熱電対挿入部材は、前記天板に係止する係止用フランジ部を有する、請求項7または8に記載の燃料電池モジュール。   The fuel cell module according to claim 7, wherein the first thermocouple insertion member has a locking flange that locks to the top plate. 前記収納容器の外壁は、前記熱電対を挿入する第1の貫通孔を有し、
前記第1の貫通孔につながり、前記熱電対を挿入する第2の熱電対挿入部材を備え、
前記第2の熱電対挿入部材は、
筒状部材と、前記筒状部材の一端とつながる第2の貫通孔を有する基台と、を含み、
前記第2の熱電対挿入部材は、前記収納容器の外壁の前記第1の貫通孔と、前記第2の貫通孔とが同心になるように、前記基台が前記収納容器の外壁に載置され、
前記熱電対は、前記筒状部材の他端と接合されている、請求項7〜9のいずれか1つに記載の燃料電池モジュール。
The outer wall of the storage container has a first through hole into which the thermocouple is inserted;
A second thermocouple insertion member connected to the first through hole and inserting the thermocouple;
The second thermocouple insertion member is
A tubular member, and a base having a second through hole connected to one end of the tubular member,
The base is placed on the outer wall of the storage container such that the first through hole in the outer wall of the storage container and the second through hole are concentric with each other in the second thermocouple insertion member. And
The fuel cell module according to any one of claims 7 to 9, wherein the thermocouple is joined to the other end of the cylindrical member.
請求項1〜10のいずれか1つに記載の燃料電池モジュールと、
前記燃料電池モジュールの運転を行なうための補機と、
前記燃料電池モジュールと前記補機とを収納する外装ケースと、
を備える燃料電池装置。
The fuel cell module according to any one of claims 1 to 10.
An auxiliary machine for operating the fuel cell module;
An exterior case for housing the fuel cell module and the accessory;
A fuel cell device comprising:
JP2017190577A 2017-08-31 2017-09-29 Fuel cell module and fuel cell device Active JP7011434B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168067 2017-08-31
JP2017168067 2017-08-31

Publications (2)

Publication Number Publication Date
JP2019046775A true JP2019046775A (en) 2019-03-22
JP7011434B2 JP7011434B2 (en) 2022-02-10

Family

ID=65816530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190577A Active JP7011434B2 (en) 2017-08-31 2017-09-29 Fuel cell module and fuel cell device

Country Status (1)

Country Link
JP (1) JP7011434B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096929A (en) * 2011-11-04 2013-05-20 Daido Steel Co Ltd Temperature measuring section structure for heating furnace
JP2015087394A (en) * 2013-10-31 2015-05-07 ゼネラル・エレクトリック・カンパニイ Thermocouple assembly
JP2017045644A (en) * 2015-08-27 2017-03-02 京セラ株式会社 Module and module housing device
WO2017038782A1 (en) * 2015-08-31 2017-03-09 京セラ株式会社 Fuel cell module and fuel cell device
JP2017098146A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Module and module housing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096929A (en) * 2011-11-04 2013-05-20 Daido Steel Co Ltd Temperature measuring section structure for heating furnace
JP2015087394A (en) * 2013-10-31 2015-05-07 ゼネラル・エレクトリック・カンパニイ Thermocouple assembly
JP2017045644A (en) * 2015-08-27 2017-03-02 京セラ株式会社 Module and module housing device
WO2017038782A1 (en) * 2015-08-31 2017-03-09 京セラ株式会社 Fuel cell module and fuel cell device
JP2017098146A (en) * 2015-11-26 2017-06-01 京セラ株式会社 Module and module housing device

Also Published As

Publication number Publication date
JP7011434B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP5137361B2 (en) Cell stack device and fuel cell module
JP5712334B2 (en) Fuel cell
JP2008034205A (en) Fuel battery
JP6949182B2 (en) Manufacturing method of fuel cell module, fuel cell device and fuel cell module
JP5339719B2 (en) Fuel cell device
JP6867401B2 (en) Fuel cell module and fuel cell device
JP2020004726A (en) Solid oxide fuel cell module
JP2019046775A (en) Fuel cell module and fuel cell device
JP6809884B2 (en) Fuel cell module and fuel cell device
WO2017217433A1 (en) Reformer, cell stack device, fuel cell module and fuel cell device
JP5361227B2 (en) Fuel cell device
JP5398214B2 (en) Fuel cell device
JP5159077B2 (en) Fuel cell
US9406965B2 (en) Fuel cell module
JP6941998B2 (en) Fuel cell module and fuel cell device
US20150171458A1 (en) Fuel cell module, fuel cell, manufacturing method of fuel cell module, and method for supplying oxidant to fuel cell module
JP2012186041A (en) Solid oxide fuel battery
JP5896199B2 (en) Solid oxide fuel cell device
JP5510772B2 (en) Cell assembly unit and fuel cell including the same.
JP5132379B2 (en) Fuel cell device
JP6684022B2 (en) Fuel cell module
JP6203627B2 (en) Fuel cell oxidant supply header, fuel cell, and method for supplying oxidant to fuel cell
JP2022170336A (en) Fuel cell module and fuel cell device
JP2021036488A (en) Fuel battery module
JP2018125096A (en) Fuel cell module and fuel cell device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7011434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150