JP2019046746A5 - - Google Patents

Download PDF

Info

Publication number
JP2019046746A5
JP2019046746A5 JP2017171369A JP2017171369A JP2019046746A5 JP 2019046746 A5 JP2019046746 A5 JP 2019046746A5 JP 2017171369 A JP2017171369 A JP 2017171369A JP 2017171369 A JP2017171369 A JP 2017171369A JP 2019046746 A5 JP2019046746 A5 JP 2019046746A5
Authority
JP
Japan
Prior art keywords
electrolytic solution
lithium
lithium salt
mol
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017171369A
Other languages
Japanese (ja)
Other versions
JP6980256B2 (en
JP2019046746A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017171369A priority Critical patent/JP6980256B2/en
Priority claimed from JP2017171369A external-priority patent/JP6980256B2/en
Publication of JP2019046746A publication Critical patent/JP2019046746A/en
Publication of JP2019046746A5 publication Critical patent/JP2019046746A5/ja
Application granted granted Critical
Publication of JP6980256B2 publication Critical patent/JP6980256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

すなわち、本イオン液体としては、アニオンとしてのFSIと、カチオンとしてのイミダゾリウムまたはピロリジニウムとの塩が好ましく、具体的には、EMImFSI、およびMPPyrFSI等が挙げられる。 That is, as the ionic liquid, a salt of FSI as an anion and imidazolium or pyrrolidinium as a cation is preferable, and specific examples thereof include EMImFSI and MPPyr FSI.

中でも、(1)得られた電解液におけるイオン伝導性ならびに化学的および電気化学的な安定性が優れること、ならびに(2)当該電解液を有する蓄電デバイスにおける電気化学的特性が優れることから、LiFSIが好ましいAmong them, LiFS is excellent because (1) the ionic conductivity and chemical and electrochemical stability of the obtained electrolytic solution are excellent, and (2) the electrochemical characteristics of the power storage device having the electrolytic solution are excellent. I is preferred .

これに対して、発明者らは、電解液中に一定濃度のFSIアニオンが含まれる場合には、電解液中のリチウム塩の濃度を1.6mol/dm以上としたとき、イオン伝導度が低下せず、むしろ上昇することを見出した。さらに、発明者らは、電解液中に一定濃度以上(具体的には蓄電に利用されるリチウムイオン量よりも過剰量)のリチウムイオンが存在する場合には、特異的な電池特性を示すことを見出した(Yamagata et al.,Electrochim.Acta,110,181−190(2013))。 On the other hand, the inventors have stated that when the electrolytic solution contains a constant concentration of FSI anions, the ionic conductivity when the concentration of the lithium salt in the electrolytic solution is 1.6 mol / dm 3 or more. We found that did not decrease, but rather increased. Furthermore, the inventors show specific battery characteristics when a certain concentration or more (specifically, an excess amount of lithium ions is larger than the amount of lithium ions used for storage) is present in the electrolytic solution. Was found (Yamagata et al., Electrochim. Acta, 110, 181-190 (2013)).

最初に、イオン液体をEMImFSI、リチウム塩をLiFSIとした電解液中における、グラファイト負極の出力特性について、比較する。リチウム塩の濃度が本発明にて特定した濃度の範囲内である、実施例1および2は、一般的な有機電解液系を用いた比較例1、ならびにリチウム塩濃度が本発明の範囲外である、比較例2および3と比較して、高い出力特性が得られている。上述したように、一般的に、電解液に溶解するリチウム塩濃度が高いほど電解液のイオン伝導性が低下し、かつ、高粘性となる。そのため、電池性能(出力特性)はリチウム塩濃度の増加とともに低下する(よって通常、リチウム塩濃度は0.5〜1.5mol/dmとなっている)。表2を見ると、比較例2の方が実施例1、2よりも出力特性が高い場合があるが、不可逆容量成分を含み、かつ、大電流にすると出力特性が低下するために良い特性とは言えない。 First, the output characteristics of the graphite negative electrode in the electrolytic solution in which the ionic liquid is EMImFSI and the lithium salt is LiFSI are compared. Examples 1 and 2 in which the concentration of the lithium salt is within the range of the concentration specified in the present invention are Comparative Example 1 using a general organic electrolyte system, and the lithium salt concentration is outside the range of the present invention. Higher output characteristics are obtained as compared with certain Comparative Examples 2 and 3. As described above, in general, the higher the concentration of the lithium salt dissolved in the electrolytic solution, the lower the ionic conductivity of the electrolytic solution and the higher the viscosity. Therefore, the battery performance (output characteristics) decreases as the lithium salt concentration increases (therefore, the lithium salt concentration is usually 0.5 to 1.5 mol / dm 3 ). Looking at Table 2, Comparative Example 2 may have higher output characteristics than Examples 1 and 2, but it has good characteristics because it contains an irreversible capacitance component and the output characteristics deteriorate when a large current is applied. I can't say.

具体的には、TFSI系のイオン液体としてMPPyrTFSIを採用し、これにLiFSIを所定の濃度溶解させた電解液(LiFSI/MPPyrTFSI)を採用して評価した。充電および放電を1.0Cで行った場合の放電容量値は、電解液としてLiFSI/MPPyrTFSIを採用した実施例6、比較例11および12の中で、実施例6が圧倒的に高い。よって、電解液中のリチウム塩を、本発明において特定されている濃度の範囲内とすることによってもたらされる電池特性の特異性は、リチウム塩を溶解させるイオン液体を限定するものではないといえる。 Specifically, MPPyrTFSI was adopted as the TFSI-based ionic liquid, and an electrolytic solution (LiFSI / MPPyrTFSI ) in which LiFSI was dissolved at a predetermined concentration was adopted for evaluation. The discharge capacity value when charging and discharging are performed at 1.0 C is overwhelmingly higher in Example 6 among Examples 6 and Comparative Examples 11 and 12 in which LiFSI / MPPyrTFSI is adopted as the electrolytic solution. Therefore, it can be said that the specificity of the battery characteristics brought about by setting the lithium salt in the electrolytic solution within the concentration range specified in the present invention does not limit the ionic liquid that dissolves the lithium salt.

Claims (4)

イオン液体、およびリチウム塩を含む電解液であり、
上記電解液の総体積を基準として、上記リチウム塩を、1.6mol/dm 以上、3.0mol/dm 以下含み、
上記電解液の総体積を基準として、ビス(フルオロスルホニル)イミドアニオンを、1.6mol/dm以上含むことを特徴とする、電解液。
An electrolytic solution containing an ionic liquid and a lithium salt.
Based on the total volume of the electrolytic solution contains the lithium salt, 1.6 mol / dm 3 or more, 3.0 mol / dm 3 or less,
An electrolytic solution containing 1.6 mol / dm 3 or more of bis (fluorosulfonyl) imide anion based on the total volume of the electrolytic solution.
正極、負極、および請求項1に記載の電解液を含むことを特徴とする蓄電デバイス。 A power storage device comprising a positive electrode, a negative electrode, and the electrolytic solution according to claim 1. リチウムイオン二次電池、リチウム金属電池、リチウムイオンキャパシタ、およびリチウム空気電池からなる群より選ばれる1以上の蓄電デバイスであることを特徴とする、請求項2に記載の蓄電デバイス。 The power storage device according to claim 2, wherein the power storage device is one or more selected from the group consisting of a lithium ion secondary battery, a lithium metal battery, a lithium ion capacitor, and a lithium air battery. 前記イオン液体は、カチオンとしてイミダゾリウムまたはピロリジニウムを有する、請求項1に記載の電解液。The electrolytic solution according to claim 1, wherein the ionic liquid has imidazolium or pyrrolidinium as a cation.
JP2017171369A 2017-09-06 2017-09-06 Electrolyte and storage device using the electrolytic solution Active JP6980256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171369A JP6980256B2 (en) 2017-09-06 2017-09-06 Electrolyte and storage device using the electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171369A JP6980256B2 (en) 2017-09-06 2017-09-06 Electrolyte and storage device using the electrolytic solution

Publications (3)

Publication Number Publication Date
JP2019046746A JP2019046746A (en) 2019-03-22
JP2019046746A5 true JP2019046746A5 (en) 2020-10-08
JP6980256B2 JP6980256B2 (en) 2021-12-15

Family

ID=65814588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171369A Active JP6980256B2 (en) 2017-09-06 2017-09-06 Electrolyte and storage device using the electrolytic solution

Country Status (1)

Country Link
JP (1) JP6980256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099311B2 (en) * 2018-12-26 2022-07-12 Tdk株式会社 Electrolyte for lithium secondary battery and lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150679A1 (en) * 2009-06-23 2010-12-29 株式会社 村田製作所 Nonaqueous electrolyte secondary battery
US9225037B2 (en) * 2010-03-19 2015-12-29 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery using ionic liquid
JP5994966B2 (en) * 2011-09-07 2016-09-21 学校法人 関西大学 Non-aqueous gel electrolyte, production method thereof, and use thereof
JP2015011823A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Lithium battery
JP2015037024A (en) * 2013-08-12 2015-02-23 住友電気工業株式会社 Lithium ion secondary battery, charge-discharge system, and method for charge and discharge
US20160268064A1 (en) * 2015-03-09 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
EP3150747A1 (en) * 2015-09-29 2017-04-05 Universite De Nantes Functionalized current collector for electrochemical devices, with increased resistance to corrosion

Similar Documents

Publication Publication Date Title
Mogensen et al. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries
JP6195236B2 (en) Aluminum secondary battery
JP7103376B2 (en) Lithium ion capacitor
JP6827232B2 (en) Water-based secondary battery
JP6765857B2 (en) Lithium ion capacitor
JP4684006B2 (en) Fluorine-containing organic sulfonylimide salt electrolyte, electrolytic solution and electrochemical element using the same
JP6271275B2 (en) Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery
CN108933293B (en) Phosphonium-based ionic liquids for lithium metal-based batteries
WO2016111151A1 (en) Non-aqueous electrolytic solution and power storage device using the same
US7824800B1 (en) Lithium-ion cell with a wide operating temperature range
Kondo et al. Concentrated sodium bis (fluorosulfonyl) amide aqueous electrolyte solutions for electric double-layer capacitors
JP2019133914A (en) Aqueous electrolyte with bis(fluorosulfonyl)imide salt electrolyte and ionic liquid system, and battery using the electrolyte system
JP2019046746A5 (en)
JP2004134165A (en) Nonaqueous electrolyte, and electrochemical device
KR101628555B1 (en) An anode of litium-air battery
JP5987303B2 (en) Electrochemical device using negative electrode containing magnesium element
JP2016167476A (en) Power storage device
JP6449732B2 (en) Electric double layer capacitor
JP4678122B2 (en) Nonaqueous electrolytes and electrochemical devices
JP2016178199A (en) Nonaqueous electrolyte solution and power storage device
KR20160071200A (en) Glyme liquid electrolyte composition for lithium air rechargeable
Egashira Capacitance Degradation in Hydrogel Electrolyte Containing Magnesium-ion Conducting Water-in-Salt Solution
JP2002175948A (en) Electric double-layer capacitor and nonaqueous electrolytic solution
JP2016086153A (en) Electrochemical device
CN104701032A (en) Preparation method of boron ionic liquid containing super capacitor