JP2019044052A - Storage material and method for producing the same - Google Patents
Storage material and method for producing the same Download PDFInfo
- Publication number
- JP2019044052A JP2019044052A JP2017167750A JP2017167750A JP2019044052A JP 2019044052 A JP2019044052 A JP 2019044052A JP 2017167750 A JP2017167750 A JP 2017167750A JP 2017167750 A JP2017167750 A JP 2017167750A JP 2019044052 A JP2019044052 A JP 2019044052A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- resin porous
- storage material
- compound
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011232 storage material Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title description 12
- 229920005989 resin Polymers 0.000 claims abstract description 59
- 239000011347 resin Substances 0.000 claims abstract description 59
- 238000009826 distribution Methods 0.000 claims abstract description 8
- 239000011148 porous material Substances 0.000 claims description 56
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 claims description 25
- -1 aldehyde compound Chemical class 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 22
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 22
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000011240 wet gel Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 claims description 13
- 235000019192 riboflavin Nutrition 0.000 claims description 13
- 229960002477 riboflavin Drugs 0.000 claims description 13
- 239000002151 riboflavin Substances 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 6
- 125000001452 riboflavin group Chemical group 0.000 claims 1
- 239000003463 adsorbent Substances 0.000 abstract description 7
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 12
- 238000013268 sustained release Methods 0.000 description 11
- 239000012730 sustained-release form Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002304 perfume Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 239000003205 fragrance Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- IUNJCFABHJZSKB-UHFFFAOYSA-N 2,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C(O)=C1 IUNJCFABHJZSKB-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- NTCCNERMXRIPTR-UHFFFAOYSA-N 2-hydroxy-1-naphthaldehyde Chemical compound C1=CC=CC2=C(C=O)C(O)=CC=C21 NTCCNERMXRIPTR-UHFFFAOYSA-N 0.000 description 2
- IBGBGRVKPALMCQ-UHFFFAOYSA-N 3,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1O IBGBGRVKPALMCQ-UHFFFAOYSA-N 0.000 description 2
- IAVREABSGIHHMO-UHFFFAOYSA-N 3-hydroxybenzaldehyde Chemical compound OC1=CC=CC(C=O)=C1 IAVREABSGIHHMO-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920006167 biodegradable resin Polymers 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- JVTZFYYHCGSXJV-UHFFFAOYSA-N isovanillin Chemical compound COC1=CC=C(C=O)C=C1O JVTZFYYHCGSXJV-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- JJVNINGBHGBWJH-UHFFFAOYSA-N ortho-vanillin Chemical compound COC1=CC=CC(C=O)=C1O JJVNINGBHGBWJH-UHFFFAOYSA-N 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OITQDWKMIPXGFL-UHFFFAOYSA-N 1-hydroxy-2-naphthaldehyde Chemical compound C1=CC=C2C(O)=C(C=O)C=CC2=C1 OITQDWKMIPXGFL-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- JODRRPJMQDFCBJ-UHFFFAOYSA-N 2-Hydroxy-4-methylbenzaldehyde Chemical compound CC1=CC=C(C=O)C(O)=C1 JODRRPJMQDFCBJ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PKZJLOCLABXVMC-UHFFFAOYSA-N 2-Methoxybenzaldehyde Chemical compound COC1=CC=CC=C1C=O PKZJLOCLABXVMC-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- RZKNKVRCIXKLBQ-UHFFFAOYSA-N 2-hydroxy-3,5-dimethoxybenzaldehyde Chemical compound COC1=CC(OC)=C(O)C(C=O)=C1 RZKNKVRCIXKLBQ-UHFFFAOYSA-N 0.000 description 1
- PCYGLFXKCBFGPC-UHFFFAOYSA-N 3,4-Dihydroxy hydroxymethyl benzene Natural products OCC1=CC=C(O)C(O)=C1 PCYGLFXKCBFGPC-UHFFFAOYSA-N 0.000 description 1
- NUDSREQIJYWLRA-UHFFFAOYSA-N 4-[9-(4-hydroxy-3-methylphenyl)fluoren-9-yl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(O)=CC=2)=C1 NUDSREQIJYWLRA-UHFFFAOYSA-N 0.000 description 1
- JRHHJNMASOIRDS-UHFFFAOYSA-N 4-ethoxybenzaldehyde Chemical compound CCOC1=CC=C(C=O)C=C1 JRHHJNMASOIRDS-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- MHACZKPSBRLNTA-UHFFFAOYSA-N OC1=C(C=O)C=CC=C1OC.OC1=CC=C(C=O)C=C1 Chemical compound OC1=C(C=O)C=CC=C1OC.OC1=CC=C(C=O)C=C1 MHACZKPSBRLNTA-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004849 alkoxymethyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 150000003935 benzaldehydes Chemical class 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
本発明は、吸蔵材及びその製造方法に関する。 The present invention relates to a storage material and a method of manufacturing the same.
従来、内部に空孔が形成されている多孔質材料は、軽量、断熱性、遮音性など、優れた特性を有し、極めて広範な分野で利用されている。 BACKGROUND ART Conventionally, porous materials having pores formed therein have excellent properties such as light weight, heat insulation and sound insulation, and are used in a very wide range of fields.
また、任意の吸蔵対象分子を、吸着材としての多孔質材料に担持させた吸蔵材が提案されており、さらに、それらを徐放することで効果を持続させる徐放性材料が提案されている。例えば、特許文献1には、親水性多孔質体の細孔内に、液体香料と疎水性物質とを混練させて細孔内に吸蔵させた徐放性香料が開示されている。また、特許文献2には、表層及び/又はその内部にOH基を有する被担持体樹脂粒子に液体香料を担持させた徐放性香料担持樹脂粒子が開示されている。特許文献3には、所定の分子量を有し、ランダム又はブロック共重合ポリエステルからなる生分解性樹脂に、溶融混練、浸漬等で香料を含有させた香料含有徐放性生分解性樹脂組成物が開示されている。 In addition, occluding materials in which any occluding target molecules are supported on a porous material as an adsorbent have been proposed, and further, sustained release materials have been proposed in which the effects are sustained by sustained release of them. . For example, Patent Document 1 discloses a sustained release perfume in which a liquid perfume and a hydrophobic substance are kneaded in pores of a hydrophilic porous body and occluded in the pores. Further, Patent Document 2 discloses a sustained release fragrance-supporting resin particle in which a liquid fragrance is supported on a supported resin particle having an OH group in the surface layer and / or the inside thereof. Patent Document 3 discloses a fragrance-containing sustained release biodegradable resin composition in which a fragrance is contained in a biodegradable resin having a predetermined molecular weight and made of a random or block copolymer polyester by melt-kneading, immersion or the like. It is disclosed.
しかしながら、特許文献1又は特許文献2に記載されている方法では、香料の担持量が不充分であるという問題があった。また、長期間に亘って香料を一定の速度で放出させることができず、放出させる香料濃度(香気の強さ)が時間とともに低下するという問題があった。特許文献3の方法では、香料の放出が極端に遅かったり、内部に存在する香料が十分に放出されず、放出が途中で止まったりするという問題があった。 However, in the method described in Patent Document 1 or Patent Document 2, there is a problem that the loading amount of the perfume is insufficient. In addition, there has been a problem that the perfume can not be released at a constant rate over a long period of time, and the concentration (fragrance of aroma) of the perfume to be released decreases with time. In the method of Patent Document 3, there is a problem that the release of the flavor is extremely delayed, or the flavor present inside is not sufficiently released, and the release stops halfway.
本発明は、吸着材としての樹脂多孔質体に吸蔵対象分子が好適に担持された、吸蔵材及びその製造方法を提供することを目的とする。 An object of the present invention is to provide an occluding material in which a molecule to be occluded is suitably supported on a resin porous body as an adsorbent, and a method for producing the same.
本発明者らは、上記課題を解決するため、空孔径が任意の大きさに制御され、更に、BET比表面積も所定の範囲に制御された樹脂多孔質体に吸蔵対象分子を担持させた吸蔵材が、吸蔵能において優れていることを見出し、本発明を完成させるに至った。 In order to solve the above problems, the inventors of the present invention perform occlusion by controlling the pore diameter to an arbitrary size, and further supporting the occlusion target molecule on the resin porous body in which the BET specific surface area is also controlled to a predetermined range. It has been found that the material is excellent in storage capacity, and the present invention has been completed.
本発明は、第1の態様として、樹脂多孔質体と、樹脂多孔質体の空孔内に担持された吸蔵対象分子と、を備え、樹脂多孔質体のBET比表面積が200m2/g以上であり、0.1〜400nmの範囲で測定された樹脂多孔質体の空孔径分布がピークを示す空孔径が、2nm以上60nm以下である、吸蔵材を提供する。 A first aspect of the present invention is a resin porous body, and a storage target molecule supported in pores of the resin porous body, wherein the BET specific surface area of the resin porous body is 200 m 2 / g or more. The occluding material is provided, wherein the pore diameter distribution of the resin porous body measured in the range of 0.1 to 400 nm shows a peak at 2 to 60 nm.
空孔は、好ましくは連通性を有する。 The pores are preferably in communication.
吸蔵材は、好ましくは、フェノール性水酸基を有する化合物とアルデヒド化合物との重縮合体を含む。 The storage material preferably contains a polycondensate of a compound having a phenolic hydroxyl group and an aldehyde compound.
吸蔵対象分子は、好ましくは、リボフラビンである。 The storage target molecule is preferably riboflavin.
本発明は、第2の態様として、フェノール性水酸基を有する化合物と、アルデヒド化合物と、吸蔵対象分子とを含む溶媒中で、フェノール性水酸基を有する化合物とアルデヒド化合物とを重縮合させて湿潤ゲルを得る工程と、湿潤ゲルから溶媒を除去して、樹脂多孔質体及び樹脂多孔質体の空孔内に担持された吸蔵対象分子を有する吸蔵材を得る工程と、を備える、吸蔵材の製造方法を提供する。 In a second aspect of the present invention, a wet gel is obtained by polycondensation of a compound having a phenolic hydroxyl group and an aldehyde compound in a solvent containing a compound having a phenolic hydroxyl group, an aldehyde compound, and a molecule to be occluded. Method of producing an occluding material, comprising the steps of: obtaining, and removing the solvent from the wet gel to obtain an occluding material having occluding target molecules supported in pores of the resin porous body and the resin porous body I will provide a.
従来、吸着材のような被担持物質に任意の吸蔵対象分子を担持させる場合、混練溶融、あるいは浸漬によって多孔質材料に担持させる方法が一般的である。しかし、この手法では任意の物質を担持材中に均一に分散させることが難しい。さらに、徐放を目的としている場合には、長期間に亘って吸蔵対象分子を一定の速度で放出させることができず、放出させる被担持物質の濃度が時間とともに低下してしまうという問題点がある。また、吸蔵材の製造においては、被担持物質を作製後に別途担持工程が必要であるため、製造コストが増加する。加えて、被担持物質を長期間使用することなく保管する場合、紫外線の影響で被担持物質が劣化するという問題もある。上記の方法によれば、このような問題を回避することができる。 Heretofore, in the case where a substance to be supported, such as an adsorbent, is made to carry an arbitrary occluding target molecule, it is common to carry it on a porous material by kneading, melting or immersion. However, in this method, it is difficult to uniformly disperse any substance in the carrier. Furthermore, in the case of sustained release, the target molecule can not be released at a constant rate over a long period of time, and the concentration of the substance to be released decreases with time. is there. In addition, in the production of the storage material, a separate carrying step is required after the production of the substance to be carried, which increases the production cost. In addition, there is also a problem that when the supported material is stored without being used for a long time, the supported material is deteriorated by the influence of ultraviolet light. According to the above method, such a problem can be avoided.
本発明によれば、吸着材としての樹脂多孔質体に吸蔵対象分子が好適に担持された、吸蔵材及びその製造方法を提供することができる。 According to the present invention, it is possible to provide an occluding material in which a molecule to be occluded is suitably supported on a resin porous body as an adsorbent, and a method for producing the same.
以下、本発明の実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments.
一実施形態に係る吸蔵材は、樹脂多孔質体と、樹脂多孔質体の空孔内に担持された吸蔵対象分子と、を備える。樹脂多孔質体は、吸蔵対象分子を担持する吸着材の役割を有する。 The storage material according to one embodiment includes a resin porous body and a storage target molecule supported in pores of the resin porous body. The resin porous body has a role of an adsorbent that carries a storage target molecule.
樹脂多孔質体は、空孔が形成された樹脂により形成されている。樹脂多孔質体は、好ましくは、フェノール性水酸基を有する化合物とアルデヒド化合物との重縮合体を含む。 The resin porous body is formed of a resin in which pores are formed. The resin porous body preferably contains a polycondensate of a compound having a phenolic hydroxyl group and an aldehyde compound.
フェノール性水酸基を有する化合物としては、特に限定されないが、例えば、ヒドロキノン、カテコール、レゾルシノール、ジヒドロキシナフタレン、ビスフェノールA、ビスフェノールF、ビフェノール、ビスフェノールフルオレン、ビスクレゾールフルオレン、及びこれらのヒドロキシメチル化合物又はアルコキシメチル化合物からから選ばれる1種以上を用いることができる。 The compound having a phenolic hydroxyl group is not particularly limited, and examples thereof include hydroquinone, catechol, resorcinol, dihydroxynaphthalene, bisphenol A, bisphenol F, biphenol, bisphenol fluorene, biscresol fluorene, and hydroxymethyl compounds or alkoxymethyl compounds thereof. One or more selected from the above can be used.
アルデヒド化合物としては、特に限定されないが、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、へキシルアルデヒド、グルタルアルデヒド等のアルキルアルデヒド、サリチルアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド、2−ヒドロキシ−4−メチルベンズアルデヒド、2,4−ジヒドロキシベンズアルデヒド、3,4−ジヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド、2−ヒドロキシ−3−メトキシベンズアルデヒド、3−ヒドロキシ−4−メトキシベンズアルデヒド、4−ヒドロキシ−3−メトキシベンズアルデヒド、3−エトキシ−4−ヒドロキシベンズアルデヒド、4−ヒドロキシ−3,5−ジメトキシベンズアルデヒド等のヒドロキシ基とアルコキシ基の両方を有するベンズアルデヒド、メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド、1−ヒドロキシ−2−ナフトアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、6−ヒドロキシ−2−ナフトアルデヒド等のヒドロキシナフトアルデヒド、ブロムベンズアルデヒド等のハロゲン化ベンズアルデヒド、フルフラールからから選ばれる1種以上を用いることができる。 Examples of aldehyde compounds include, but are not limited to, formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, isobutyraldehyde, pentylaldehyde, hexyl aldehyde, alkyl aldehydes such as glutaraldehyde, salicylaldehyde, 3-hydroxybenzaldehyde, 4- Hydroxybenzaldehyde such as hydroxybenzaldehyde, 2-hydroxy-4-methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxybenzaldehyde Hydroxy-3-methoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, 4 Benzaldehyde having both a hydroxy group and an alkoxy group such as hydroxy-3,5-dimethoxybenzaldehyde, alkoxybenzaldehyde such as methoxybenzaldehyde and ethoxybenzaldehyde, 1-hydroxy-2-naphthaldehyde, 2-hydroxy-1-naphthaldehyde, 6 It is possible to use one or more selected from hydroxynaphthaldehyde such as -hydroxy-2-naphthaldehyde, halogenated benzaldehyde such as brom benzaldehyde, and furfural.
樹脂多孔質体のBET比表面積は、200m2/g以上である。BET比表面積は、樹脂多孔質体に吸蔵対象分子をより好適に担持させる観点から、好ましくは300m2/g以上であり、より好ましくは400m2/g以上であり、更に好ましくは500m2/g以上であり、特に好ましくは600m2/g以上である。BET比表面積はできる限り大きい方がよいが、例えば、2500m2/g以下であってよい。BET比表面積は、BET法により算出できる比表面積のことをいう。 The BET specific surface area of the resin porous body is 200 m 2 / g or more. The BET specific surface area is preferably 300 m 2 / g or more, more preferably 400 m 2 / g or more, and still more preferably 500 m 2 / g, from the viewpoint of allowing the porous resin to support the storage target molecule more suitably. It is the above, Especially preferably, it is 600 m < 2 > / g or more. The BET specific surface area should be as large as possible, but may be, for example, 2500 m 2 / g or less. The BET specific surface area refers to the specific surface area that can be calculated by the BET method.
樹脂多孔質体の内部には複数の空孔が形成されている。細孔分析装置を用いることにより、樹脂多孔質体に形成されている空孔の空孔径分布を得ることができる。本実施形態に係る樹脂多孔質体について、空孔径が0.1〜400nmの範囲で測定された空孔径分布がピークを示す空孔径は、2nm以上60nm以下である。以下、「空孔径が0.1〜400nmの範囲で測定された空孔径分布がピークを示す空孔径」を、単に「空孔径ピーク」と呼ぶことがある。空孔径ピークは、2nm以上50nm未満であってもよく、好ましくは2nm以上40nm未満、より好ましくは3nm以上30nm未満、更に好ましくは10nm以上30nm未満である。 A plurality of pores are formed inside the resin porous body. By using the pore analyzer, the pore size distribution of the pores formed in the resin porous body can be obtained. About the resin porous body which concerns on this embodiment, the hole diameter which the hole diameter distribution measured in the range whose hole diameter is 0.1-400 nm shows a peak is 2 nm or more and 60 nm or less. Hereinafter, "a pore diameter whose pore diameter distribution measured in a range of 0.1 to 400 nm exhibits a peak" may be simply referred to as "a pore diameter peak". The pore diameter peak may be 2 nm or more and less than 50 nm, preferably 2 nm or more and less than 40 nm, more preferably 3 nm or more and less than 30 nm, and still more preferably 10 nm or more and less than 30 nm.
樹脂多孔質体の空孔について、2nm未満の径を有する空孔を「ミクロ孔」、2nm以上50nm未満の径を有する空孔を「メソ孔」、50nm以上の径を有する空孔を「マクロ孔」と呼ぶことがある。本実施形態に係る樹脂多孔質体は、ミクロ孔、メソ孔、マクロ孔のいずれの空孔が形成されていてもよいが、メソ孔が主として形成されている樹脂多孔質体であることが好ましい。 Regarding the pores of the resin porous body, the pores having a diameter of less than 2 nm are "micropores", the pores having a diameter of 2 nm or more and less than 50 nm are "mesospores", and the pores having a diameter of 50 nm or more are "macro" Sometimes called "hole". The resin porous body according to the present embodiment may be formed with any of micropores, mesopores and macropores, but is preferably a resin porous body in which mesopores are mainly formed. .
細孔分析装置を用いることにより、樹脂多孔質体の空孔容積を求めることもできる。樹脂多孔質体において、メソ孔又は2nm以上60nm以下の径を有する空孔の容積はできる限り大きい方がよく、好ましくは0.05cc/g以上であり、より好ましくは0.4cc/g以上であり、更に好ましくは0.6cc/g以上である。空孔径が1〜100nmの空孔容積に対する、メソ孔の容積(以下、「メソ孔容積比率」ともいう。)又は2nm以上60nm以下の径を有する空孔の容積はできる限り大きい方がよく、好ましくは10体積%以上であり、より好ましくは20体積%以上であり、更に好ましくは50体積%以上である。 The pore volume of the resin porous body can also be determined by using a pore analyzer. In the resin porous body, the volume of the mesopores or the pores having a diameter of 2 nm to 60 nm should be as large as possible, preferably 0.05 cc / g or more, more preferably 0.4 cc / g or more. And more preferably 0.6 cc / g or more. The volume of mesopores (hereinafter also referred to as “mesopore volume ratio”) or the volume of pores having a diameter of 2 nm to 60 nm with respect to the pore volume of 1 to 100 nm is preferably as large as possible, Preferably it is 10 volume% or more, More preferably, it is 20 volume% or more, More preferably, it is 50 volume% or more.
樹脂多孔質体において、ミクロ孔の容積はできる限り小さい方がよく、好ましくは0.5cc/g以下であり、より好ましくは0.4cc/g以下であり、更に好ましくは0.3cc/g以下である。空孔径が1〜100nmの空孔容積に対するミクロ孔の容積(以下、「ミクロ孔容積比率」ともいう。)はできる限り小さい方がよく、好ましくは50体積%以下であり、より好ましくは30体積%以下であり、更に好ましくは20体積%以下である。 In the resin porous body, the micropore volume should be as small as possible, preferably 0.5 cc / g or less, more preferably 0.4 cc / g or less, and still more preferably 0.3 cc / g or less It is. The volume of micropores (hereinafter also referred to as “micropore volume ratio”) to the pore volume with a pore diameter of 1 to 100 nm is preferably as small as possible, preferably 50 volume% or less, more preferably 30 volumes % Or less, more preferably 20% by volume or less.
樹脂多孔質体には、連通性を有する空孔が形成されていることが好ましい。本明細書における連通性を有する空孔とは、空孔同士が連なることにより、樹脂多孔質体が液体(例えば、水)を通過させることができるように形成された空孔をいう。樹脂多孔質体においては、必ずしも全ての空孔が連通している必要はなく、一部独立した空孔が形成されていてもよく、樹脂多孔質体全体として液体を通過させることができればよい。 It is preferable that pores having communication properties be formed in the resin porous body. The pores having the communication property in the present specification mean pores formed such that the resin porous body can pass a liquid (for example, water) by connecting the pores. In the resin porous body, it is not necessary for all the pores to be in communication, and some independent pores may be formed as long as a liquid can be allowed to pass as the whole resin porous body.
樹脂多孔質体の形状は、特に限定されないが、塊状、板状、膜状、粉体状などであってよい。比表面積を増大させる観点から、好ましくは粉体状である。 The shape of the resin porous body is not particularly limited, but may be massive, plate-like, membrane-like, powder-like, or the like. From the viewpoint of increasing the specific surface area, it is preferably in the form of powder.
吸蔵対象分子は、特に限定されず、リボフラビン、メチレンブルー、銅フタロシアニン等の色素、香料、医薬品系化合物、蛋白質、糖質、脂質等の天然由来化合物、金属類、塩類、イオン化物類からなる群より選ばれる1種以上を用いることができる。吸蔵対象分子は、好ましくは可溶性の物質である。吸蔵対象分子が可溶性であることで、樹脂多孔質体の重縮合体作製時に添加する溶媒に溶解させて配合することができるため、より均一に樹脂多孔質体に担持させることができる。 The storage target molecule is not particularly limited, and is selected from the group consisting of dyes such as riboflavin, methylene blue and copper phthalocyanine, flavors, pharmaceutical compounds, naturally derived compounds such as proteins, carbohydrates and lipids, metals, salts, and ions. One or more selected can be used. The storage target molecule is preferably a soluble substance. Since the molecules to be occluded are soluble, they can be dissolved and blended in the solvent added at the time of preparation of the polycondensate of the resin porous body, and therefore the resin porous body can be more uniformly supported.
本実施形態の吸蔵材は、吸蔵対象分子が安定に、また、均一に担持されている。また、吸蔵材を構成する吸着材としての樹脂多孔質体は紫外線吸収能を有するため、吸蔵材の長期間の保管中における紫外線曝露から吸蔵対象分子を保護することができる。さらに、樹脂多孔質体に形成されている空孔が連通性を有していると、吸蔵対象分子と樹脂多孔質体が相溶しないため、徐放性に優れる吸蔵材となる。 In the storage material of the present embodiment, storage target molecules are stably and uniformly supported. In addition, since the resin porous body as the adsorbent constituting the storage material has an ultraviolet absorbing ability, it is possible to protect the storage target molecule from ultraviolet exposure during long-term storage of the storage material. Furthermore, when the pores formed in the resin porous body have the communication property, the occluding target molecule and the resin porous body are not compatible with each other, and hence the storage material is excellent in sustained release.
次に、吸蔵材の製造方法を説明する。一実施形態に係る吸蔵材の製造方法は、フェノール性水酸基を有する化合物と、アルデヒド化合物と、吸蔵対象分子とを含む溶媒中で、フェノール性水酸基を有する化合物と前記アルデヒド化合物とを重縮合させて湿潤ゲルを得る第1の工程と、湿潤ゲルから溶媒を除去する第2の工程と、を備える。 Next, a method of manufacturing the storage material will be described. In the method of manufacturing the storage material according to one embodiment, the compound having a phenolic hydroxyl group and the aldehyde compound are polycondensed in a solvent containing a compound having a phenolic hydroxyl group, an aldehyde compound, and a molecule to be stored. A first step of obtaining a wet gel, and a second step of removing the solvent from the wet gel.
第1の工程は、例えば、以下のように行うことができる。まず、フェノール性水酸基を有する化合物と、アルデヒド化合物と、吸蔵対象分子とを溶媒に添加し、撹拌する。次に、触媒を添加してから、加熱することにより、フェノール性水酸基を有する化合物と、アルデヒド化合物とを重縮合させ、湿潤ゲルを得る。加熱の前には、必要に応じて酸を添加し、撹拌する工程を更に備えてもよい。 The first step can be performed, for example, as follows. First, a compound having a phenolic hydroxyl group, an aldehyde compound, and a storage target molecule are added to a solvent and stirred. Next, a catalyst is added and the mixture is heated to polycondense the compound having a phenolic hydroxyl group with the aldehyde compound to obtain a wet gel. Before heating, an acid may be added, if necessary, and the step of stirring may further be provided.
溶媒は、特に限定されないが、水、有機溶剤、又はこれらの混合溶媒であってよい。溶媒は、好ましくは、フェノール性水酸基を有する化合物、アルデヒド化合物、触媒の溶解性が高い溶媒を任意に選択することができ、これにより、未反応原料が少ない湿潤ゲルを、短時間で作製することができる。 The solvent is not particularly limited, but may be water, an organic solvent, or a mixed solvent thereof. As the solvent, preferably, a compound having a phenolic hydroxyl group, an aldehyde compound, and a solvent having high solubility of a catalyst can be optionally selected, whereby a wet gel with few unreacted raw materials can be produced in a short time. Can.
溶媒に用いられる有機溶剤は、プロパノール、ブタノール、オクタノール、エチレングリコール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類等であってよい。 Organic solvents used for the solvent include propanol, butanol, octanol, ethylene glycol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, alcohols such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone and the like Ketones, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, esters such as propylene glycol monomethyl ether acetate, and the like.
触媒は、特に限定されないが、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、アンモニア、アミン類等の塩基性触媒であってよい。このうち、無機塩基性触媒は、安価かつ取り扱いが容易であるため、より有用である。 Although the catalyst is not particularly limited, basic catalysts such as sodium carbonate, potassium carbonate, ammonium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, ammonia, amines, etc. It may be. Among these, inorganic basic catalysts are more useful because they are inexpensive and easy to handle.
溶媒に対する吸蔵対象分子の添加量は用途に依存し、特に限定されないが、溶媒の重量に対して、好ましくは0.0001〜50質量%であり、より好ましくは0.001〜20質量%である。吸蔵対象分子がこの範囲で配合されることで、樹脂多孔質体の重合反応を阻害せず、収率を高めることができる。 The addition amount of the occluding target molecule to the solvent depends on the application and is not particularly limited, but preferably 0.0001 to 50% by mass, more preferably 0.001 to 20% by mass with respect to the weight of the solvent . By blending the storage target molecules in this range, the yield can be increased without inhibiting the polymerization reaction of the resin porous body.
フェノール性水酸基を有する化合物(P)とアルデヒド化合物(A)とのモル比(P/A)は、好ましくは0.1〜2.0であり、より好ましくは0.2〜1.5であり、更に好ましくは0.2〜1.0である。これにより、未反応のアルデヒド化合物の含有量が少ない湿潤ゲルを好適に得ることができる。 The molar ratio (P / A) of the compound (P) having a phenolic hydroxyl group to the aldehyde compound (A) is preferably 0.1 to 2.0, and more preferably 0.2 to 1.5. More preferably, it is 0.2 to 1.0. Thereby, a wet gel having a low content of unreacted aldehyde compounds can be suitably obtained.
フェノール性水酸基を有する化合物(P)と、触媒(B)とのモル比(P/B)は、好ましくは1〜50000であり、より好ましくは10〜30000であり、更に好ましくは20〜20000である。これにより、未反応原料の少ない湿潤ゲルを、短時間で得ることができる。 The molar ratio (P / B) of the compound (P) having a phenolic hydroxyl group to the catalyst (B) is preferably 1 to 50,000, more preferably 10 to 30,000, and still more preferably 20 to 20,000. is there. Thereby, the wet gel with few unreacted materials can be obtained in a short time.
フェノール性水酸基を有する化合物(P)と、溶媒(S)との重量比(P/S)は、好ましくは0.01〜4であり、より好ましくは0.05〜1であり、更に好ましくは0.1〜0.8である。これにより、未反応原料の少ない湿潤ゲルを、短時間で得ることができる。 The weight ratio (P / S) of the compound (P) having a phenolic hydroxyl group to the solvent (S) is preferably 0.01 to 4, more preferably 0.05 to 1, and still more preferably 0.1 to 0.8. Thereby, the wet gel with few unreacted materials can be obtained in a short time.
第1の工程では、フェノール性水酸基を有する化合物とアルデヒド化合物とを、例えば、加熱により重縮合させることができる。加熱条件は、好ましくは40℃〜90℃の温度下で4時間〜480時間であり、より好ましくは50℃〜90℃の温度下で5時間〜300時間であり、更に好ましくは60℃〜80℃の温度下で6時間〜200時間である。これにより、未反応原料の少ない湿潤ゲルを、短時間で好適に得ることができる。 In the first step, the compound having a phenolic hydroxyl group and the aldehyde compound can be polycondensed, for example, by heating. The heating conditions are preferably 4 hours to 480 hours under a temperature of 40 ° C. to 90 ° C., more preferably 5 hours to 300 hours under a temperature of 50 ° C. to 90 ° C., still more preferably 60 ° C. to 80 C. for 6 hours to 200 hours. Thereby, the wet gel with few unreacted materials can be suitably obtained in a short time.
第2の工程において、溶媒を除去する方法は、例えば、常圧乾燥、ピンホール乾燥、加熱乾燥、減圧乾燥、加熱減圧乾燥、真空凍結乾燥、超臨界乾燥などであってよい。このうち、真空凍結乾燥あるいは超臨界乾燥は、乾燥後の体積収縮、空孔の破壊を防げることから好適である。 In the second step, the method of removing the solvent may be, for example, atmospheric pressure drying, pinhole drying, heat drying, reduced pressure drying, heat reduced pressure drying, vacuum freeze drying, supercritical drying and the like. Among these, vacuum lyophilization or supercritical drying is preferable because it can prevent volumetric shrinkage after drying and breakage of pores.
溶媒の揮発速度を効率よく制御できる観点から、溶媒を除去する方法は、第1の工程で得られた湿潤ゲル中の溶媒を他の溶媒に置換する溶媒置換工程と、溶媒置換された湿潤ゲルから置換後の溶媒を揮発させる乾燥工程と、を含んでいてもよい。 From the viewpoint of being able to efficiently control the evaporation rate of the solvent, the method of removing the solvent is a solvent substitution step of replacing the solvent in the wet gel obtained in the first step with another solvent, and a solvent-substituted wet gel And evaporating the solvent after substitution.
本実施形態では、フェノール性水酸基を有する化合物と、アルデヒド化合物と、吸蔵対象分子とを溶媒に添加した状態で、フェノール性水酸基を有する化合物と、アルデヒド化合物とを重縮合させ、湿潤ゲルを得たが、他の実施形態として、フェノール性水酸基を有する化合物と、アルデヒド化合物とを重縮合させて樹脂多孔質体を得た後に、吸蔵対象分子を樹脂多孔質体に担持させる方法であってもよい。 In this embodiment, the compound having a phenolic hydroxyl group is polycondensed with the aldehyde compound in a state in which the compound having a phenolic hydroxyl group, the aldehyde compound, and the storage target molecule are added to a solvent, to obtain a wet gel. However, as another embodiment, after the compound having a phenolic hydroxyl group is polycondensed with an aldehyde compound to obtain a resin porous body, the method may be a method of supporting the storage object molecule on the resin porous body .
本実施形態に係る製造方法によれば、水溶液中、有機溶剤中、あるいはこれらの混合溶媒中で樹脂多孔質体をポリマー化できるため、樹脂多孔質体の空孔径又は比表面積といった多孔構造を制御しやすくなり、紫外線吸収能を付与することもできる。また、多孔構造を制御することで、吸蔵対象分子の担持量を制御したり、吸蔵対象分子の選択性を付与したりすることができる。また、吸蔵材に徐放性を付与することができ、更に、徐放速度を制御することもできる。加えて、吸蔵対象分子を混合溶媒中に溶解させることにより、吸蔵対象分子を樹脂多孔質体中に均一に担持させることができるほか、別途の担持工程を必要としないので、製造コストを削減できる。 According to the manufacturing method of the present embodiment, since the resin porous body can be polymerized in an aqueous solution, an organic solvent, or a mixed solvent thereof, the porous structure such as the pore diameter or specific surface area of the resin porous body is controlled. It is easy to do, and it is also possible to impart ultraviolet absorbing ability. In addition, by controlling the porous structure, it is possible to control the loading amount of the storage target molecule or to impart selectivity of the storage target molecule. In addition, sustained release can be imparted to the storage material, and furthermore, the sustained release rate can be controlled. In addition, by dissolving the storage target molecule in the mixed solvent, the storage target molecule can be uniformly supported in the resin porous body, and since a separate loading step is not required, the manufacturing cost can be reduced. .
以下、本発明の構成と効果を具体的に示す実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although the example which shows the composition and effect of the present invention concretely is described, the present invention is not limited to the following examples.
[実施例1]
50mLのラボランスクリュー管に撹拌子を入れ、レゾルシノール4.80g、リボフラビン2.8mg、超純水14.55gを加えて室温で撹拌した後、35−38%ホルムアルデヒド水溶液7.18gを加え、再度室温で撹拌した。更に5%炭酸ナトリウム水溶液0.09gを添加し、ポリプロピレン容器に移して密閉し、静置した状態で60℃で5日間加熱を行った。加熱後、容器から取り出し、tert−ブチルアルコール50mLに浸漬させ、室温で1日静置後、上澄みをデカンテーションにより除去する操作を合計3回行った。その後、−20℃の冷凍庫で1時間凍結し、デシケータ内に移して、室温下、ダイアフラムポンプで3日間以上真空乾燥することによってtert−ブチルアルコールを除去して、リボフラビンを担持させた吸蔵材を作製した。
Example 1
Add a stirrer to a 50-mL labran screw tube, add 4.80 g of resorcinol, 2.8 mg of riboflavin and 14.55 g of ultrapure water, stir at room temperature, add 7.18 g of a 35-38% aqueous formaldehyde solution, and Stir at room temperature. Furthermore, 0.09g of 5% sodium carbonate aqueous solution was added, it transferred to the polypropylene container, sealed, and it heated at 60 degreeC for 5 days in the state which stood still. After heating, the container was removed from the container, immersed in 50 mL of tert-butyl alcohol, allowed to stand at room temperature for 1 day, and the supernatant was removed by decantation three times in total. Then, it is frozen in a freezer at -20 ° C for 1 hour, transferred to a desiccator, and vacuum-dried with a diaphragm pump at room temperature for 3 days or more to remove tert-butyl alcohol to remove riboflavin-loaded storage material. Made.
[実施例2]
50mLのラボランスクリュー管に撹拌子を入れ、レゾルシノール4.80g、リボフラビン2.8mg、超純水13.76gを加えて室温で撹拌した後、35−38%ホルムアルデヒド水溶液7.18gを加え、再度室温で撹拌した。更に5%炭酸ナトリウム水溶液0.92gを添加し、ポリプロピレン容器に移して密閉し、静置した状態で60℃で5日間加熱を行った。加熱後、容器から取り出し、tert−ブチルアルコール50mLに浸漬させ、室温で1日静置後、上澄みをデカンテーションにより除去する操作を合計3回行った。その後、−20℃の冷凍庫で1時間凍結し、デシケータ内に移して、室温下、ダイアフラムポンプで3日間以上真空乾燥することによってtert−ブチルアルコールを除去して、リボフラビンを担持させた吸蔵材を作製した。
Example 2
Add a stir bar to a 50 mL laboratory screw, add 4.80 g of resorcinol, 2.8 mg of riboflavin and 13.76 g of ultrapure water, stir at room temperature, add 7.18 g of a 35-38% aqueous formaldehyde solution and add again Stir at room temperature. Further, 0.92 g of a 5% aqueous solution of sodium carbonate was added, transferred to a polypropylene container, sealed, and heated at 60 ° C. for 5 days in a state of standing still. After heating, the container was removed from the container, immersed in 50 mL of tert-butyl alcohol, allowed to stand at room temperature for 1 day, and the supernatant was removed by decantation three times in total. Then, it is frozen in a freezer at -20 ° C for 1 hour, transferred to a desiccator, and vacuum-dried with a diaphragm pump at room temperature for 3 days or more to remove tert-butyl alcohol to remove riboflavin-loaded storage material. Made.
[空孔径ピーク・BET比表面積の測定]
実施例1〜2の吸蔵材について、リボフラビンを添加せずに樹脂多孔質体を作製し、比表面積及び空孔径分布を、細孔分析装置(Quantachrome製、AutoSorb iQ)を用いて測定した。前処理として、試料管(φ9mm)に50mgの試料を採取し、100℃で1.5〜2時間真空加熱乾燥することで、試料表面の吸着物質を除去した。測定中は液体窒素を用いて試料を冷却し、不活性ガスとしてヘリウム、吸着ガスとして窒素を用いた。単分子吸着量Wm(g)を、測定結果から得られるBETプロットからBET式を用いて算出し、全表面積Stotal(m2)及び比表面積SBET(m2/g)を求めた。また、空孔径分布はKelvin式と脱着等温線を利用したBJH法を用いて求め、空孔径ピークΦpeak(nm)を求めた。同時に、2nm未満の径を有する空孔の容積であるミクロ孔容積Vmic(cc/g)、2nm以上50nm未満の径を有する空孔の容積であるメソ孔容積Vmeso(cc/g)、100nm以下の細孔容積V(cc/g)を算出し、100nm以下の空孔容積におけるメソ孔容積比率Vmeso/V(%)を算出した。結果を表1に示す。
[Measurement of pore size peak / BET specific surface area]
With respect to the storage materials of Examples 1 and 2, a resin porous body was prepared without addition of riboflavin, and the specific surface area and the pore size distribution were measured using a pore analyzer (AutoSorb iQ manufactured by Quantachrome). As pretreatment, a 50 mg sample was collected in a sample tube (φ 9 mm) and vacuum heat dried at 100 ° C. for 1.5 to 2 hours to remove the adsorbed substance on the sample surface. During the measurement, the sample was cooled using liquid nitrogen, and helium was used as an inert gas, and nitrogen was used as an adsorption gas. The single molecule adsorption amount Wm (g) was calculated from the BET plot obtained from the measurement result using a BET equation, and the total surface area S total (m 2 ) and the specific surface area S BET (m 2 / g) were determined. Further, the pore size distribution was determined using the Kelvin equation and the BJH method using a desorption isotherm, and the pore size peak求 めpeak (nm) was determined. At the same time, micropore volume V mic (cc / g) which is a volume of pores having a diameter of less than 2 nm, mesopore volume V meso (cc / g) which is a volume of pores having a diameter of 2 nm or more and less than 50 nm The pore volume V (cc / g) of 100 nm or less was calculated, and the mesopore volume ratio V meso / V (%) in the pore volume of 100 nm or less was calculated. The results are shown in Table 1.
[樹脂多孔質体の紫外線吸収能の評価]
実施例2と同じ作製条件で、リボフラビンを添加せずに、光路長さ1cmの石英セル中で樹脂多孔質体を作成し、その平行透過率を吸光度計を用いて測定した。結果を図1に示す。その結果、樹脂多孔質体が紫外線を透過しにくいことがわかった。
[Evaluation of UV Absorbability of Resin Porous Material]
Under the same preparation conditions as Example 2, a resin porous body was prepared in a quartz cell with an optical path length of 1 cm without adding riboflavin, and the parallel transmittance was measured using an absorbance meter. The results are shown in FIG. As a result, it was found that the resin porous body hardly transmits ultraviolet light.
[吸蔵状態、徐放性の評価]
実施例1〜2の吸蔵材を、直径9mm、高さ3mmの円柱状に切り出し、アセトン7mLに浸漬させて所定の時間経過後、上澄みから3mLを光路長1cmの石英セルに採取し、吸光度計((株)日立ハイテクノロジーズ製、UV−2900)を用いてリボフラビン由来の吸光度(446nm)を観測した。結果を図2に示す。その結果、吸蔵材がリボフラビンを担持していることが確認でき、時間の経過とともにリボフラビンを徐放することがわかった。
[Evaluation of occlusion state, sustained release]
The storage material of Examples 1 and 2 is cut out in a cylindrical shape with a diameter of 9 mm and a height of 3 mm, immersed in 7 mL of acetone, and after a predetermined time elapsed, 3 mL is collected from the supernatant in a quartz cell of 1 cm in optical path length, and an absorbance meter The absorbance (446 nm) derived from riboflavin was observed using (UV-2900 manufactured by Hitachi High-Technologies Corporation). The results are shown in FIG. As a result, it was confirmed that the storage material carried riboflavin, and it was found that the riboflavin was released over time.
本発明によれば、吸蔵対象分子を安定して担持させることができ、かつ、吸蔵対象分子の徐放性に優れる吸蔵材を、別途の担持工程を設けることなく得ることができる。これにより、製造コストの削減が見込まれる。 According to the present invention, the storage target molecule can be stably supported, and the storage material excellent in sustained release of the storage target molecule can be obtained without providing a separate support step. This is expected to reduce manufacturing costs.
Claims (5)
前記樹脂多孔質体の空孔内に担持された吸蔵対象分子と、を備え、
前記樹脂多孔質体のBET比表面積が200m2/g以上であり、
0.1〜400nmの範囲で測定された前記樹脂多孔質体の空孔径分布がピークを示す空孔径が、2nm以上60nm以下である、吸蔵材。 A porous resin body,
And occluding target molecules supported in pores of the resin porous body,
The BET specific surface area of the resin porous body is 200 m 2 / g or more,
The storage material whose pore diameter which the pore diameter distribution of the said resin porous body measured in the range of 0.1-400 nm shows a peak is 2 nm or more and 60 nm or less.
前記湿潤ゲルから前記溶媒を除去して、樹脂多孔質体及び前記樹脂多孔質体の空孔内に担持された吸蔵対象分子を有する吸蔵材を得る工程と、を備える、吸蔵材の製造方法。
Obtaining a wet gel by polycondensing the compound having a phenolic hydroxyl group with the aldehyde compound in a solvent containing a compound having a phenolic hydroxyl group, an aldehyde compound, and a molecule to be occluded;
And removing the solvent from the wet gel to obtain an occlusion material having a resin porous body and an occlusion target molecule supported in pores of the resin porous body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017167750A JP2019044052A (en) | 2017-08-31 | 2017-08-31 | Storage material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017167750A JP2019044052A (en) | 2017-08-31 | 2017-08-31 | Storage material and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019044052A true JP2019044052A (en) | 2019-03-22 |
Family
ID=65815563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017167750A Pending JP2019044052A (en) | 2017-08-31 | 2017-08-31 | Storage material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019044052A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286196A (en) * | 2002-03-28 | 2003-10-07 | Enex Co Ltd | Sustained release porous fine particle and method for producing the same |
WO2004110930A1 (en) * | 2003-06-12 | 2004-12-23 | Matsushita Electric Industrial Co., Ltd. | Composite porous body containing nanoparticle and method for producing same |
-
2017
- 2017-08-31 JP JP2017167750A patent/JP2019044052A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286196A (en) * | 2002-03-28 | 2003-10-07 | Enex Co Ltd | Sustained release porous fine particle and method for producing the same |
WO2004110930A1 (en) * | 2003-06-12 | 2004-12-23 | Matsushita Electric Industrial Co., Ltd. | Composite porous body containing nanoparticle and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0994912B1 (en) | Low density open cell organic foams, low density open cell carbon foams, and methods for preparing same | |
Shaibuna et al. | Neoteric deep eutectic solvents: history, recent developments, and catalytic applications | |
Xie et al. | Effect of heat treatment on pervaporation separation of aqueous salt solution using hybrid PVA/MA/TEOS membrane | |
JP6760841B2 (en) | Method for producing porous cellulose medium | |
RU2485934C1 (en) | Device for hair removal | |
Zhang et al. | UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation | |
CN114656645B (en) | Preparation method of cyclodextrin metal organic framework stably existing in water phase | |
JP2005187320A (en) | Method for producing carbon material and tablet-like dried gel | |
JP6263189B2 (en) | Thermal insulating composition for organic monolith gels, its use and method for preparing it | |
KR101906799B1 (en) | Aerogel particle for adsorbent and manufacturing method thereof | |
Zhang et al. | Green materials with promising applications: cyclodextrin-based deep eutectic supramolecular polymers | |
EP3575352A1 (en) | Method for producing porous material of water-soluble polymer | |
Kołodziejek et al. | Relationship between surface properties determined by inverse gas chromatography and ibuprofen release from hybrid materials based on fumed silica | |
Xu et al. | Preparation of cellulose hydrogel dressing with evenly dispersed hydrophobic drugs by hydrogen bonding and encapsulation methods | |
Efe et al. | Synthesis of 4-acryloylmorpholine-based hydrogels and investigation of their drug release behaviors | |
Li et al. | Structure and property of porous polyvinylalcohol hydrogels for microorganism immobilization | |
JP2019044052A (en) | Storage material and method for producing the same | |
Guo et al. | Supermacroporous polydivinylbenzene cryogels with high surface area: Synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline | |
ES2538667T3 (en) | Rigid foams based on procyanidin or prodelfinidine tannins and their preparation procedure | |
Lie et al. | Molecularly imprinted mesoporous silica: Potential of the materials, synthesis and application in the active compound separation from natural product | |
JP2019044049A (en) | Resin porous body and carbonized product of the same, adsorbent, and method for producing resin porous body | |
CN109293975A (en) | A kind of method that solvent-free, feather weight prepares regular mesoporous phenolic resin | |
JP2020083661A (en) | Carbon porous body and method for producing carbon porous body | |
WO2011019033A1 (en) | Porous cured epoxy resin, water quality preserving material, antibacterial material, and process for production of the porous cured epoxy resin | |
ES2354782B1 (en) | PROCEDURE FOR OBTAINING ORGANIC XEROGELS OF CONTROLLED POROSITY. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210531 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211124 |