JP2019043190A - Vehicle control device - Google Patents
Vehicle control device Download PDFInfo
- Publication number
- JP2019043190A JP2019043190A JP2017165242A JP2017165242A JP2019043190A JP 2019043190 A JP2019043190 A JP 2019043190A JP 2017165242 A JP2017165242 A JP 2017165242A JP 2017165242 A JP2017165242 A JP 2017165242A JP 2019043190 A JP2019043190 A JP 2019043190A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- travel route
- speed
- target
- obstacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
本発明は、車両制御装置に係り、特に、走行中に障害物を回避するのに適した車両制御装置に関する。 The present invention relates to a vehicle control device, and more particularly to a vehicle control device suitable for avoiding an obstacle while traveling.
障害物の緊急回避時において、その際の車速に応じて制動回避(ブレーキ操作のみ)と操舵回避(ステリング操作のみ)のいずれかを選択し、最適化処理を用いて目標走行経路計算をする技術が提案されている(例えば、特許文献1参照)。この技術では、制動回避が選択されると、縦方向(車両前後方向)の運動のみに計算条件が簡略化される。また、操舵回避が選択されると、横方向(車両幅方向)の運動のみに計算条件が簡略化される。このように、この技術では、緊急時において計算負荷が軽減されるため、高い計算精度を確保しつつ、計算時間を短くすることができるようになっている。 During emergency avoidance of an obstacle, either braking avoidance (only brake operation) or steering avoidance (only steering operation) is selected according to the vehicle speed at that time, and the target travel route is calculated using optimization processing Has been proposed (see, for example, Patent Document 1). In this technique, when the braking avoidance is selected, the calculation conditions are simplified only to the movement in the longitudinal direction (the vehicle longitudinal direction). In addition, when the steering avoidance is selected, the calculation condition is simplified only to the movement in the lateral direction (the vehicle width direction). As described above, in this technology, since the calculation load is reduced in an emergency, it is possible to shorten the calculation time while securing high calculation accuracy.
しかしながら、緊急回避時において制動又は操舵のみによる障害物回避が行われると、ブレーキシステム又はステアリングシステムが急操作されるため、運転者に違和感を与えるおそれがあった。 However, when obstacle avoidance is performed only by braking or steering at the time of emergency avoidance, the brake system or the steering system is rapidly operated, which may cause the driver to feel uncomfortable.
本発明は、このような問題を解決するためになされたものであり、緊急時及び通常時における障害物回避において、運転者に違和感を与えることのない目標走行経路を計算可能な車両制御装置を提供することを目的とする。 The present invention has been made to solve such a problem, and provides a vehicle control device capable of calculating a target travel route that does not give the driver a sense of discomfort in obstacle avoidance in emergency and normal times. Intended to be provided.
上記の目的を達成するために、本発明は、車両の目標走行経路を計算する目標走行経路計算部を備えた車両制御装置であって、目標走行経路計算部は、障害物が検出された場合に、この障害物を回避するように目標走行経路を補正する走行経路補正処理を実行し、目標走行経路計算部は、走行経路補正処理において、少なくとも障害物から車両に向けて、障害物に対する車両の相対速度の許容上限値の分布を規定する速度分布領域を設定し、速度分布領域内において障害物に対する車両の相対速度が許容上限値を超えないように、目標走行経路を補正して複数の補正走行経路を算出し、目標走行経路に対して複数の補正走行経路を、複数の評価ファクタを含む所定の評価関数によって評価し、その評価に応じて1つの補正走行経路を算出する、ように構成されており、複数の評価ファクタは、車両縦方向の挙動に関する評価ファクタと、車両横方向の挙動に関する評価ファクタを含む。 In order to achieve the above object, the present invention is a vehicle control device including a target travel route calculation unit that calculates a target travel route of a vehicle, and the target travel route calculation unit is configured to detect an obstacle. To execute the travel route correction processing for correcting the target travel route so as to avoid the obstacle, and the target travel route calculation unit determines that the vehicle for the obstacle is at least directed from the obstacle toward the vehicle in the travel route correction processing. Speed distribution region that defines the distribution of the allowable upper limit value of the relative velocity of the vehicle, and the target travel route is corrected so that the relative velocity of the vehicle with respect to the obstacle does not exceed the allowable upper limit in the velocity distribution region. A correction travel route is calculated, a plurality of correction travel routes with respect to the target travel route are evaluated by a predetermined evaluation function including a plurality of evaluation factors, and one correction travel route is calculated according to the evaluation. Is configured as a plurality of evaluation factors, including the evaluation factors on the behavior of the vehicle longitudinal direction, the evaluation factor on the behavior of the vehicle transverse direction.
このように構成された本発明によれば、車両制御装置は、障害物と車両との間に速度分布領域を規定し、この速度分布領域によって規定される相対速度の許容上限値を超えない範囲で、目標走行経路を補正して、補正走行経路を算出することができる。そして、この走行経路補正処理では、車両の縦方向及び横方向の挙動に関する評価ファクタを含む評価関数を用いて走行経路候補を評価することにより、1つの補正走行経路が算出される。したがって、本発明では、速度分布領域、及び、縦横両方向の評価ファクタを含む評価関数を用いることにより、補正走行経路が運転者に与える違和感を低減することができる。 According to the present invention thus configured, the vehicle control device defines a velocity distribution region between the obstacle and the vehicle, and does not exceed the allowable upper limit of the relative velocity defined by the velocity distribution region. Then, the target travel route can be corrected to calculate a corrected travel route. Then, in this travel route correction processing, one correction travel route is calculated by evaluating the travel route candidate using an evaluation function including an evaluation factor related to the behavior of the vehicle in the longitudinal direction and the lateral direction. Therefore, in the present invention, by using the evaluation function including the speed distribution region and the evaluation factor in both the vertical and horizontal directions, it is possible to reduce the sense of discomfort that the corrected travel route gives to the driver.
また、本発明において、好ましくは、目標走行経路計算部は、走行経路補正処理において、車両の挙動を制限する所定の制約条件を満たすように補正走行経路を算出する。このように構成された本発明によれば、走行経路補正処理の計算時間を短縮することが可能となる。 In the present invention, preferably, the target travel route calculation unit calculates a corrected travel route so as to satisfy a predetermined constraint that restricts the behavior of the vehicle in the travel route correction processing. According to the present invention configured as described above, it is possible to shorten the calculation time of the travel route correction processing.
また、本発明において、好ましくは、目標走行経路計算部は、走行経路補正処理において、車両の物理的な運動を規定する所定の車両モデルを用いて補正走行経路を算出する。このように構成された本発明によれば、違和感の少ない補正走行経路を算出することができると共に、評価関数による最適化処理を早期に収束させることができる。 Further, in the present invention, preferably, in the travel path correction process, the target travel path calculation unit calculates a corrected travel path using a predetermined vehicle model that defines physical motion of the vehicle. According to the present invention configured as described above, it is possible to calculate a corrected traveling route with less discomfort, and to make the optimization process by the evaluation function converge early.
また、本発明において、好ましくは、評価関数は、目標走行経路と補正走行経路との間の各評価ファクタに関する物理量の差に関する合計値で表され、目標走行経路計算部は、走行経路補正処理において、合計値が最も小さな補正走行経路を選択する。このように構成された本発明によれば、速度分布領域による相対速度の許容上限値を超えない範囲で、目標走行経路との差が最も小さい補正走行経路を算出することができる。 Further, in the present invention, preferably, the evaluation function is represented by a total value of differences in physical quantities related to each evaluation factor between the target travel route and the correction travel route, and the target travel route calculation unit , Select the correction travel route with the smallest total value. According to the present invention configured as described above, it is possible to calculate a correction traveling route with the smallest difference from the target traveling route within the range not exceeding the allowable upper limit value of the relative velocity by the velocity distribution region.
また、本発明において、具体的には、車両縦方向の挙動に関する評価ファクタは、車両縦方向速度又は車両縦方向加速度を少なくとも含み、車両横方向の挙動に関する評価ファクタは、車両横方向速度,車両横方向加速度,ヨーレートのいずれか1つを少なくとも含む。 Further, in the present invention, specifically, the evaluation factor related to the behavior in the longitudinal direction of the vehicle includes at least the longitudinal speed or the acceleration in the longitudinal direction of the vehicle, and the evaluation factor related to the behavior in the lateral direction of the vehicle At least one of lateral acceleration and yaw rate is included.
また、本発明において、具体的には、制約条件は、速度,加速度,加速度変化量,操舵角,操舵角速度,ヨーレートの少なくとも1つを含む。 Further, in the present invention, specifically, the constraint conditions include at least one of speed, acceleration, acceleration change amount, steering angle, steering angular velocity, and yaw rate.
また、本発明において、好ましくは、補正走行経路上を走行するように、車両の速度制御及び/又は操舵制御を含む走行挙動制御処理を実行する走行挙動制御部を更に備える。このように構成された本発明によれば、補正走行経路が設定されると、速度制御,操作制御により補正走行経路上を走行するように車両を制御することが可能である。 In the present invention, preferably, the vehicle further includes a traveling behavior control unit that executes traveling behavior control processing including speed control and / or steering control of the vehicle so as to travel on the corrected traveling route. According to the present invention configured as described above, when the corrected traveling route is set, it is possible to control the vehicle to travel on the corrected traveling route by speed control and operation control.
本発明によれば、緊急時及び通常時における障害物回避において、運転者に違和感を与えることのない目標走行経路を計算可能な車両制御装置を提供することができる。 According to the present invention, it is possible to provide a vehicle control device capable of calculating a target travel route that does not give a sense of discomfort to the driver in obstacle avoidance in emergency and normal times.
以下、添付図面を参照して、本発明の実施形態による車両制御システムについて説明する。まず、図1を参照して、車両制御システムの構成について説明する。図1は、車両制御システムの構成図である。 Hereinafter, a vehicle control system according to an embodiment of the present invention will be described with reference to the attached drawings. First, the configuration of a vehicle control system will be described with reference to FIG. FIG. 1 is a block diagram of a vehicle control system.
本実施形態の車両制御システム100は、車両1(図2等参照)に対して複数の運転支援モードにより、それぞれ異なる運転支援制御を提供するように構成されている。運転者は、複数の運転支援モードから所望の運転支援モードを選択可能である。
The
図1に示すように、車両制御システム100は、車両1に搭載されており、車両制御装置(ECU)10と、複数のセンサ及びスイッチと、複数の制御システムと、運転支援モードについてのユーザ入力を行うための運転者操作部35を備えている。複数のセンサ及びスイッチには、車載カメラ21,ミリ波レーダ22,車両の挙動を検出する複数の挙動センサ(車速センサ23,加速度センサ24,ヨーレートセンサ25)及び複数の挙動スイッチ(操舵角センサ26,アクセルセンサ27,ブレーキセンサ28),測位システム29,ナビゲーションシステム30が含まれる。また、複数の制御システムには、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33が含まれる。
As shown in FIG. 1, a
運転者操作部35は、運転者が操作可能なように車両1の車室内に設けられており、複数の運転支援モードから所望の運転支援モードを選択するためのモード選択スイッチ36と、選択された運転支援モードに応じて設定車速を入力するための設定車速入力部37を備えている。運転者がモード選択スイッチ36を操作することにより、選択された運転支援モードに応じた運転支援モード選択信号が出力される。また、運転者が設定車速入力部37を操作することにより、設定車速信号が出力される。
The
ECU10は、CPU,各種プログラムを記憶するメモリ,入出力装置等を備えたコンピュータにより構成される。ECU10は、運転者操作部35から受け取った運転支援モード選択信号や設定車速信号、及び、複数のセンサ及びスイッチから受け取った信号に基づき、エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33に対して、それぞれエンジンシステム,ブレーキシステム,ステアリングシステムを適宜に作動させるための要求信号を出力可能に構成されている。
The ECU 10 is constituted by a computer provided with a CPU, a memory for storing various programs, an input / output device and the like. The ECU 10 controls the
車載カメラ21は、車両1の周囲を撮像し、撮像した画像データを出力する。ECU10は、画像データに基づいて対象物(例えば、車両、歩行者、道路、区画線(車線境界線、白線、黄線)、交通信号、交通標識、停止線、交差点、障害物等)を特定する。なお、ECU10は、交通インフラや車々間通信等によって、車載通信機器を介して外部から対象物の情報を取得してもよい。
The on-
ミリ波レーダ22は、対象物(特に、先行車、駐車車両、歩行者、障害物等)の位置及び速度を測定する測定装置であり、車両1の前方へ向けて電波(送信波)を送信し、対象物により送信波が反射されて生じた反射波を受信する。そして、ミリ波レーダ22は、送信波と受信波に基づいて、車両1と対象物との間の距離(例えば、車間距離)や車両1に対する対象物の相対速度を測定する。なお、本実施形態において、ミリ波レーダ22に代えて、レーザレーダや超音波センサ等を用いて対象物との距離や相対速度を測定するように構成してもよい。また、複数のセンサを用いて、位置及び速度測定装置を構成してもよい。
The
車速センサ23は、車両1の絶対速度を検出する。
加速度センサ24は、車両1の加速度(前後方向の縦加速度、横方向の横加速度)を検出する。なお、加速度は、増速側(正)及び減速側(負)を含む。
ヨーレートセンサ25は、車両1のヨーレートを検出する。
操舵角センサ26は、車両1のステアリングホイールの回転角度(操舵角)を検出する。
アクセルセンサ27は、アクセルペダルの踏み込み量を検出する。
ブレーキセンサ28は、ブレーキペダルの踏み込み量を検出する。
The
The
The
The
The
The
測位システム29は、GPSシステム及び/又はジャイロシステムであり、車両1の位置(現在車両位置情報)を検出する。
ナビゲーションシステム30は、内部に地図情報を格納しており、ECU10へ地図情報を提供することができる。ECU10は、地図情報及び現在車両位置情報に基づいて、車両1の周囲(特に、進行方向前方)に存在する道路、交差点、交通信号、建造物等を特定する。地図情報は、ECU10内に格納されていてもよい。
The
The
エンジン制御システム31は、車両1のエンジンを制御するコントローラである。ECU10は、車両1を加速又は減速させる必要がある場合に、エンジン制御システム31に対して、エンジン出力の変更を要求するエンジン出力変更要求信号を出力する。
The
ブレーキ制御システム32は、車両1のブレーキ装置を制御するためのコントローラである。ECU10は、車両1を減速させる必要がある場合に、ブレーキ制御システム32に対して、車両1への制動力の発生を要求するブレーキ要求信号を出力する。
The
ステアリング制御システム33は、車両1のステアリング装置を制御するコントローラである。ECU10は、車両1の進行方向を変更する必要がある場合に、ステアリング制御システム33に対して、操舵方向の変更を要求する操舵方向変更要求信号を出力する。
The
次に、本実施形態による車両制御システム100が備える運転支援モードについて説明する。本実施形態では、運転支援モードとして、4つのモード(先行車追従モード、自動速度制御モード、速度制限モード、基本制御モード)が備えられている。
Next, a driving support mode provided in the
<先行車追従モード>
先行車追従モードは、基本的に、車両1と先行車との間に車速に応じた所定の車間距離を維持しつつ、車両1を先行車に追従走行させるモードであり、車両制御システム100による自動的なステアリング制御,速度制御(エンジン制御,ブレーキ制御),障害物回避制御(速度制御及びステアリング制御)を伴う。
<Preceding vehicle tracking mode>
The preceding vehicle follow-up mode is basically a mode in which the
先行車追従モードでは、車線両端部の検出の可否、及び、先行車の有無に応じて、異なるステアリング制御及び速度制御が行われる。ここで、車線両端部とは、車両1が走行する車線の両端部(白線等の区画線,道路端,縁石,中央分離帯,ガードレール等)であり、隣接する車線や歩道等との境界である。走行路端部検出部としてのECU10は、この車線両端部を車載カメラ21により撮像された画像データから検出する。また、ナビゲーションシステム30の地図情報から車線両端部を検出してもよい。しかしながら、例えば、車両1が整備された道路ではなく、車線が存在しない平原を走行する場合や、車載カメラ21からの画像データの読取り不良等の場合に車線両端部が検出できない場合が生じ得る。
In the preceding vehicle follow-up mode, different steering control and speed control are performed depending on whether or not detection of both ends of the lane is possible, and whether there is a preceding vehicle. Here, both ends of the lane are both ends of the lane on which the
なお、上記実施形態では、ECU10を走行路端部検出部としているが、これに限らず、走行路端部検出部としての車載カメラ21が車線両端部を検出してもよいし、走行路端部検出部としての車載カメラ21とECU10が協働して車線両端部を検出してもよい。
In the above embodiment, the
また、本実施形態では、先行車検出部としてのECU10は、車載カメラ21による画像データ及びミリ波レーダ22による測定データにより、先行車を検出する。具体的には、車載カメラ21による画像データにより前方を走行する他車両を走行車として検出する。更に、本実施形態では、ミリ波レーダ22による測定データにより、車両1と他車両との車間距離が所定距離(例えば、400〜500m)以下である場合に、当該他車両が先行車として検出される。
Further, in the present embodiment, the
なお、上記実施形態では、ECU10を先行車検出部としているが、これに限らず、先行車検出部としての車載カメラ21が前方を走行する他車両を検出してもよく、ECU10に加えて車載カメラ21及びミリ波レーダ22が先行車両検出部の一部を構成してもよい。
In the above embodiment, the
(先行車追従モード:車線検出可能)
まず、車線両端部が検出される場合、車両1は、車線の中央付近を走行するようにステアリング制御され、設定車速入力部37を用いて運転者によって又は所定の処理に基づいてシステム100によって予め設定された設定車速(一定速度)を維持するように速度制御される。なお、設定車速が制限車速(速度標識やカーブの曲率に応じて規定される制限速度)よりも大きい場合は制限車速が優先され、車両1の車速は制限車速に制限される。カーブの曲率に応じて規定される制限速度は、所定の計算式により計算され、カーブの曲率が大きい(曲率半径が小さい)ほど低速度に設定される。
(Advanced vehicle tracking mode: lane detection is possible)
First, when both ends of the lane are detected, the
なお、車両1の設定車速が先行車の車速よりも大きい場合は、車両1は、車速に応じた車間距離を維持しながら先行車に追従するように速度制御される。また、追従していた先行車が車線変更等により、車両1の前方に存在しなくなると、車両1は、再び設定車速を維持するように速度制御される。
When the set vehicle speed of the
(先行車追従モード:車線検出不可、先行車有り)
また、車線両端部が検出されない場合であって、且つ、先行車が存在する場合、車両1は、先行車の走行軌跡を追従するようにステアリング制御され、且つ、先行車の走行軌跡上の速度に追従するように速度制御される。
(Preceding car following mode: lane detection not possible, preceding car present)
In addition, when both ends of the lane are not detected, and there is a preceding vehicle, the
(先行車追従モード:車線検出不可、先行車無し)
また、車線両端部が検出されない場合であって、且つ、先行車も存在しない場合、走行路上での走行位置を特定できない(区画線等検出不可、先行車追従不可)。この場合、現在の走行挙動(操舵角、ヨーレート、車速、加速度等)を運転者の意思により維持又は変更するように、運転者がステアリングホイール,アクセルペダル,ブレーキペダルを操作することにより、ステアリング制御及び速度制御を実行する。
(Advanced vehicle follow-up mode: no lane detection, no preceding vehicle)
In addition, when both ends of the lane are not detected and there is no preceding vehicle, the traveling position on the traveling road can not be identified (division line can not be detected, etc. can not be followed). In this case, the steering control is performed by the driver operating the steering wheel, the accelerator pedal, and the brake pedal such that the current driving behavior (steering angle, yaw rate, vehicle speed, acceleration, etc.) is maintained or changed by the driver's intention. And execute speed control.
なお、先行車追従モードでは、先行車の有無、車線両端部の検出の可否にかかわらず、後述する障害物回避制御(速度制御及びステアリング制御)が更に自動的に実行される。 In the following vehicle follow-up mode, obstacle avoidance control (speed control and steering control) described later is further automatically executed regardless of the presence or absence of the preceding vehicle and whether or not both ends of the lane can be detected.
<自動速度制御モード>
また、自動速度制御モードは、運転者によって又はシステム100によって予め設定された所定の設定車速(一定速度)を維持するように速度制御するモードであり、車両制御システム100による自動的な速度制御(エンジン制御,ブレーキ制御),障害物回避制御(速度制御)を伴うが、ステアリング制御は行われない。この自動速度制御モードでは、車両1は、設定車速を維持するように走行するが、運転者によるアクセルペダルの踏み込みにより設定車速を超えて増速され得る。また、運転者がブレーキ操作を行った場合には、運転者の意思が優先され、設定車速から減速される。また、先行車に追いついた場合には、車速に応じた車間距離を維持しながら先行車に追従するように速度制御され、先行車が存在しなくなると、再び設定車速に復帰するように速度制御される。
<Automatic speed control mode>
The automatic speed control mode is a mode in which speed control is performed so as to maintain a predetermined set vehicle speed (constant speed) preset by the driver or by the
<速度制限モード>
また、速度制限モードは、車両1の車速が速度標識による制限速度又は運転者によって設定された設定速度を超えないように、速度制御するモードであり、車両制御システム100による自動的な速度制御(エンジン制御)を伴う。制限速度は、車載カメラ21により撮像された速度標識や路面上の速度表示の画像データをECU10が画像認識処理することにより特定してもよいし、外部からの無線通信により受信してもよい。速度制限モードでは、運転者が制限速度を超えるようにアクセルペダルを踏み込んだ場合であっても、車両1は制限速度までしか増速されない。
<Speed limit mode>
The speed limit mode is a mode in which speed control is performed so that the vehicle speed of the
<基本制御モード>
また、基本制御モードは、運転者操作部35により、運転支援モードが選択されていないときのモード(オフモード)であり、車両制御システム100による自動的なステアリング制御及び速度制御は行われない。ただし、自動衝突防止制御は実行されるように構成されており、この制御において、車両1が先行車等に衝突する可能性がある場合には自動的にブレーキ制御が実行され、衝突が回避される。また、自動衝突防止制御は、先行車追従モード,自動速度制御,速度制限モードにおいても同様に実行される。
<Basic control mode>
Further, the basic control mode is a mode (off mode) when the driving support mode is not selected by the
また、自動速度制御モード、速度制限モード、及び基本制御モードにおいても、後述する障害物回避制御(速度制御のみ、又は、速度制御及びステアリング制御)が更に実行される。 Also, in the automatic speed control mode, the speed limit mode, and the basic control mode, obstacle avoidance control (speed control only or speed control and steering control) described later is further executed.
次に、図2〜図4を参照して、本実施形態による車両制御システム100において計算される複数の走行経路について説明する。図2〜図4は、それぞれ第1走行経路〜第3走行経路の説明図である。本実施形態では、ECU10が、以下の第1走行経路R1〜第3走行経路R3を時間的に繰返し計算するように構成されている(例えば、0.1秒毎)。本実施形態では、ECU10は、センサ等の情報に基づいて、現時点から所定期間(例えば、3秒)が経過するまでの間の走行経路を計算する。走行経路Rx(x=1,2,3)は、走行経路上の車両1の目標位置(Px_k)及び目標速度(Vx_k)により特定される(k=0,1,2,・・・,n)。更に、各目標位置において、目標速度以外に複数の変数(加速度、加速度変化量、ヨーレート、操舵角、車両角度等)について目標値が特定される。
Next, with reference to FIGS. 2 to 4, a plurality of travel routes calculated in the
なお、図2〜図4における走行経路(第1走行経路〜第3走行経路)は、車両1が走行する走行路上又は走行路周辺の障害物(駐車車両、歩行者等を含む)に関する障害物情報を考慮せずに、走行路の形状,先行車の走行軌跡,車両1の走行挙動,及び設定車速に基づいて計算される。このように、本実施形態では、障害物情報が計算に考慮されないので、これら複数の走行経路の全体的な計算負荷を低く抑えることができる。
In addition, the travel route (the first travel route to the third travel route) in FIGS. 2 to 4 is an obstacle related to an obstacle (including a parked vehicle, a pedestrian, etc.) on the travel road on which the
以下では、理解の容易のため、車両1が直線区間5a,カーブ区間5b,直線区間5cからなる道路5を走行する場合において計算される各走行経路について説明する。道路5は、左右の車線5L,5Rからなる。現時点において、車両1は、直線区間5aの車線5L上を走行しているものとする。
In the following, for easy understanding, each travel route calculated when the
(第1走行経路)
図2に示すように、第1走行経路R1は、道路5の形状に即して車両1に走行路である車線5L内の走行を維持させるように所定期間分だけ設定される。詳しくは、第1走行経路R1は、直線区間5a,5cでは車両1が車線5Lの中央付近の走行を維持するように設定され、カーブ区間5bでは車両1が車線5Lの幅方向中央よりも内側又はイン側(カーブ区間の曲率半径Lの中心O側)を走行するように設定される。
(First travel route)
As shown in FIG. 2, the first travel route R1 is set for a predetermined period so as to keep the
ECU10は、車載カメラ21により撮像された車両1の周囲の画像データの画像認識処理を実行し、車線両端部6L,6Rを検出する。車線両端部は、上述のように、区画線(白線等)や路肩等である。更に、ECU10は、検出した車線両端部6L,6Rに基づいて、車線5Lの車線幅W及びカーブ区間5bの曲率半径Lを算出する。また、ナビゲーションシステム30の地図情報から車線幅W及び曲率半径Lを取得してもよい。更に、ECU10は、画像データから速度標識Sや路面上に表示された制限速度を読み取る。なお、上述のように、制限速度を外部からの無線通信により取得してもよい。
The
ECU10は、直線区間5a,5cでは、車線両端部6L,6Rの幅方向の中央部を車両1の幅方向中央部(例えば、重心位置)が通過するように、第1走行経路R1の複数の目標位置P1_kを設定する。
ECU10 is
一方、ECU10は、カーブ区間5bでは、カーブ区間5bの長手方向の中央位置P1_cにおいて、車線5Lの幅方向中央位置からイン側への変位量Wsを最大に設定する。この変位量Wsは、曲率半径L,車線幅W,車両1の幅寸法D(ECU10のメモリに格納された規定値)に基づいて計算される。そして、ECU10は、カーブ区間5bの中央位置P1_cと直線区間5a,5cの幅方向中央位置とを滑らかにつなぐように第1走行経路R1の複数の目標位置P1_kを設定する。なお、カーブ区間5bへの進入前後においても、直線区間5a,5cのイン側に第1走行経路R1を設定してもよい。
Meanwhile,
第1走行経路R1の各目標位置P1_kにおける目標速度V1_kは、原則的に、運転者が運転者操作部35の設定車速入力部37によって又はシステム100によって予め設定された所定の設定車速(一定速度)に設定される。しかしながら、この設定車速が、速度標識S等から取得された制限速度、又は、カーブ区間5bの曲率半径Lに応じて規定される制限速度を超える場合、走行経路上の各目標位置P1_kの目標速度V1_kは、2つの制限速度のうち、より低速な制限速度に制限される。さらに、ECU10は、車両1の現在の挙動状態(即ち、車速,加速度,ヨーレート,操舵角,横加速度等)に応じて、目標位置P1_k,目標車速V1_kを適宜に補正する。例えば、現車速が設定車速から大きく異なっている場合は、車速を設定車速に近づけるように目標車速が補正される。
The target speed V1_k at each target position P1_k of the first travel route R1 is, in principle, a predetermined set vehicle speed preset by the driver by the set vehicle
(第2走行経路)
また、図3に示すように、第2走行経路R2は、先行車3の走行軌跡を追従するように所定期間分だけ設定される。ECU10は、車載カメラ21による画像データ,ミリ波レーダ22による測定データ,車速センサ23による車両1の車速に基づいて、車両1の走行する車線5L上の先行車3の位置及び速度を継続的に計算して、これらを先行車軌跡情報として記憶し、この先行車軌跡情報に基づいて、先行車3の走行軌跡を第2走行経路R2(目標位置P2_k、目標速度V2_k)として設定する。
(Second travel route)
Further, as shown in FIG. 3, the second traveling route R2 is set for a predetermined period so as to follow the traveling locus of the preceding vehicle 3. The
(第3走行経路)
また、図4に示すように、第3走行経路R3は、運転者による車両1の現在の運転状態に基づいて所定期間分だけ設定される。即ち、第3走行経路R3は、車両1の現在の走行挙動から推定される位置及び速度に基づいて設定される。
ECU10は、車両1の操舵角,ヨーレート,横加速度に基づいて、所定期間分の第3走行経路R3の目標位置P3_kを計算する。ただし、ECU10は、車線両端部が検出される場合、計算された第3走行経路R3が車線端部に近接又は交差しないように、目標位置P3_kを補正する。
(Third travel route)
Further, as shown in FIG. 4, the third travel route R3 is set for a predetermined period based on the current driving state of the
The
また、ECU10は、車両1の現在の車速,加速度に基づいて、所定期間分の第3走行経路R3の目標速度V3_kを計算する。なお、目標速度V3_kが速度標識S等から取得された制限速度を超えてしまう場合は、制限速度を超えないように目標速度V3_kを補正してもよい。
Further, the
次に、本実施形態による車両制御システム100における運転支援モードと走行経路との関係について説明する。本実施形態では、運転者がモード選択スイッチ36を操作して1つの運転支援モードを選択すると、ECU10が、センサ等による測定データに応じて、第1走行経路R1〜第3走行経路R3のうち、いずれか1つを選択するように構成されている。
Next, the relationship between the driving support mode and the travel route in the
先行車追従モードの選択時には、車線両端部が検出されていると、先行車の有無にかかわらず、第1走行経路が適用される。この場合、設定車速入力部37によって設定された設定車速が目標速度となる。
一方、先行車追従モードの選択時において、車線両端部が検出されず、先行車が検出された場合、第2走行経路が適用される。この場合、目標速度は、先行車の車速に応じて設定される。また、先行車追従モードの選択時において、車線両端部が検出されず、先行車も検出されない場合、第3走行経路が適用される。
When the preceding vehicle follow-up mode is selected, when both ends of the lane are detected, the first travel route is applied regardless of the presence or absence of the preceding vehicle. In this case, the set vehicle speed set by the set vehicle
On the other hand, when the preceding vehicle follow-up mode is selected, the second travel route is applied when the both ends of the lane are not detected and the preceding vehicle is detected. In this case, the target speed is set in accordance with the vehicle speed of the preceding vehicle. Further, at the time of selection of the preceding vehicle follow-up mode, the third travel route is applied when both ends of the lane are not detected and no preceding vehicle is also detected.
また、自動速度制御モードの選択時には、第3走行経路が適用される。自動速度制御モードは、上述のように速度制御を自動的に実行するモードであり、設定車速入力部37によって設定された設定車速が目標速度となる。また、運転者によるステアリングホイールの操作に基づいてステアリング制御が実行される。
Further, at the time of selection of the automatic speed control mode, the third travel route is applied. The automatic speed control mode is a mode for automatically executing speed control as described above, and the set vehicle speed set by the set vehicle
また、速度制限モードの選択時にも第3走行経路が適用される。速度制限モードも、上述のように速度制御を自動的に実行するモードであり、目標速度は、制限速度以下の範囲で、運転者によるアクセルペダルの踏み込み量に応じて設定される。また、運転者によるステアリングホイールの操作に基づいてステアリング制御が実行される。 The third travel route is also applied when the speed limit mode is selected. The speed limit mode is also a mode in which the speed control is automatically executed as described above, and the target speed is set in a range equal to or less than the speed limit in accordance with the depression amount of the accelerator pedal by the driver. In addition, steering control is performed based on the operation of the steering wheel by the driver.
また、基本制御モード(オフモード)の選択時には、第3走行経路が適用される。基本制御モードは、基本的に、速度制限モードにおいて制限速度が設定されない状態と同様である。 Further, at the time of selection of the basic control mode (off mode), the third travel route is applied. The basic control mode is basically the same as the state in which the speed limit is not set in the speed limit mode.
次に、図5〜図8を参照して、本実施形態による車両制御システム100において実行される障害物回避制御及びこれに伴う走行経路補正処理について説明する。図5は障害物回避制御の説明図、図6は障害物回避制御における障害物と車両との間のすれ違い速度の許容上限値とクリアランスとの関係を示す説明図、図7は走行経路補正処理の説明図、図8は車両モデルの説明図である。
図5では、車両1は走行路(車線)7上を走行しており、走行中又は停車中の車両3とすれ違って、車両3を追い抜こうとしている。
Next, obstacle avoidance control executed in the
In FIG. 5, the
一般に、道路上又は道路付近の障害物(例えば、先行車、駐車車両、歩行者等)とすれ違うとき(又は追い抜くとき)、車両1の運転者は、進行方向に対して直交する横方向において、車両1と障害物との間に所定のクリアランス又は間隔(横方向距離)を保ち、且つ、車両1の運転者が安全と感じる速度に減速する。具体的には、先行車が急に進路変更したり、障害物の死角から歩行者が出てきたり、駐車車両のドアが開いたりするといった危険を回避するため、クリアランスが小さいほど、障害物に対する相対速度は小さくされる。
Generally, when passing (or overtaking) an obstacle on the road or in the vicinity of the road (for example, a preceding vehicle, a parked vehicle, a pedestrian, etc.), the driver of the
また、一般に、後方から先行車に近づいているとき、車両1の運転者は、進行方向に沿った車間距離(縦方向距離)に応じて速度(相対速度)を調整する。具体的には、車間距離が大きいときは、接近速度(相対速度)が大きく維持されるが、車間距離が小さくなると、接近速度は低速にされる。そして、所定の車間距離で両車両の間の相対速度はゼロとなる。これは、先行車が駐車車両であっても同様である。
In general, when approaching the preceding vehicle from the rear, the driver of the
このように、運転者は、障害物と車両1との間の距離(横方向距離及び縦方向距離を含む)と相対速度との関係を考慮しながら、危険を回避するように車両1を運転している。
In this manner, the driver drives the
そこで、本実施形態では、図5に示すように、車両1は、車両1から検知される障害物(例えば、駐車車両3)に対して、障害物の周囲に(横方向領域、後方領域、及び前方領域にわたって)又は少なくとも障害物と車両1との間に、車両1の進行方向における相対速度についての許容上限値を規定する2次元分布(速度分布領域40)を設定するように構成されている。速度分布領域40では、障害物の周囲の各点において、相対速度の許容上限値Vlimが設定されている。本実施形態では、すべての運転支援モードにおいて、障害物に対する車両1の相対速度が速度分布領域40内の許容上限値Vlimを超えることを防止するための障害物回避制御が実施される。
Therefore, in the present embodiment, as shown in FIG. 5, with respect to the obstacle detected from the vehicle 1 (for example, the parked vehicle 3), the
図5から分かるように、速度分布領域40は、原則的に、障害物からの横方向距離及び縦方向距離が小さくなるほど(障害物に近づくほど)、相対速度の許容上限値が小さくなるように設定される。また、図5では、理解の容易のため、同じ許容上限値を有する点を連結した等相対速度線が示されている。等相対速度線a,b,c,dは、それぞれ許容上限値Vlimが0km/h,20km/h,40km/h,60km/hに相当する。本例では、各等相対速度領域は、略矩形に設定されている。 As can be seen from FIG. 5, in principle, the lower the lateral distance and the vertical distance from the obstacle (the closer to the obstacle), the smaller the upper limit of the relative speed becomes. It is set. Also, in FIG. 5, equal relative velocity lines are shown in which points having the same allowable upper limit value are connected for easy understanding. The equal relative speed lines a, b, c, d correspond to 0 km / h, 20 km / h, 40 km / h, and 60 km / h, respectively, of the allowable upper limit value V lim . In this example, each equal relative velocity area is set to be substantially rectangular.
なお、速度分布領域40は、必ずしも障害物の全周にわたって設定されなくてもよく、少なくとも障害物の後方、及び、車両1が存在する障害物の横方向の一方側(図5では、車両3の右側領域)に設定されればよい。
The
図6に示すように、車両1がある絶対速度で走行するときにおいて、障害物の横方向に設定される許容上限値Vlimは、クリアランスXがD0(安全距離)までは0(ゼロ)km/hであり、D0以上で2次関数的に増加する(Vlim=k(X−D0)2。ただし、X≧D0)。即ち、安全確保のため、クリアランスXがD0以下では車両1は相対速度がゼロとなる。一方、クリアランスXがD0以上では、クリアランスが大きくなるほど、車両1は大きな相対速度ですれ違うことが可能となる。
As shown in FIG. 6, when the
図6の例では、障害物の横方向における許容上限値は、Vlim=f(X)=k(X−D0)2で定義されている。なお、kは、Xに対するVlimの変化度合いに関連するゲイン係数であり、障害物の種類等に依存して設定される。また、D0も障害物の種類等に依存して設定される。 In the example of FIG. 6, the allowable upper limit value in the lateral direction of the obstacle is defined by V lim = f (X) = k (X−D 0 ) 2 . Here, k is a gain coefficient related to the degree of change of V lim with respect to X, and is set depending on the type of obstacle or the like. Further, D 0 is also set depending on the type of obstacle or the like.
なお、本実施形態では、VlimがXの2次関数となるように定義されているが、これに限らず、他の関数(例えば、一次関数等)で定義されてもよい。また、図6を参照して、障害物の横方向の許容上限値Vlimについて説明したが、障害物の縦方向を含むすべての径方向について同様に設定することができる。その際、係数k、安全距離D0は、障害物からの方向に応じて設定することができる。 In the present embodiment, V lim is defined to be a quadratic function of X. However, the present invention is not limited to this and may be defined by another function (for example, a linear function or the like). Further, although the allowable upper limit value V lim in the lateral direction of the obstacle has been described with reference to FIG. 6, the same may be applied to all radial directions including the longitudinal direction of the obstacle. At that time, the coefficient k and the safety distance D 0 can be set according to the direction from the obstacle.
なお、速度分布領域40は、種々のパラメータに基づいて設定することが可能である。パラメータとして、例えば、車両1と障害物の相対速度、障害物の種類、車両1の進行方向、障害物の移動方向及び移動速度、障害物の長さ、車両1の絶対速度等を考慮することができる。即ち、これらのパラメータに基づいて、係数k及び安全距離D0を選択することができる。
The
また、本実施形態において、障害物は、車両,歩行者,自転車,崖,溝,穴,落下物等を含む。更に、車両は、自動車,トラック,自動二輪で区別可能である。歩行者は、大人,子供,集団で区別可能である。 Further, in the present embodiment, the obstacle includes a vehicle, a pedestrian, a bicycle, a cliff, a ditch, a hole, a falling object and the like. Furthermore, vehicles can be distinguished by cars, trucks, and motorcycles. Pedestrians are distinguishable among adults, children and groups.
図5に示すように、車両1が走行路7上を走行しているとき、車両1のECU10は、車載カメラ21から画像データに基づいて障害物(車両3)を検出する。このとき、障害物の種類(この場合は、車両、歩行者)が特定される。
As shown in FIG. 5, when the
また、ECU10は、ミリ波レーダ22の測定データ及び車速センサ23の車速データに基づいて、車両1に対する障害物(車両3)の位置及び相対速度並びに絶対速度を算出する。なお、障害物の位置は、車両1の進行方向に沿ったx方向位置(縦方向距離)と、進行方向と直交する横方向に沿ったy方向位置(横方向距離)が含まれる。
Further, the
ECU10は、検知したすべての障害物(図5の場合、車両3)について、それぞれ速度分布領域40を設定する。そして、ECU10は、車両1の速度が速度分布領域40の許容上限値Vlimを超えないように障害物回避制御を行う。このため、ECU10は、障害物回避制御に伴い、運転者の選択した運転支援モードに応じて適用された目標走行経路を補正する。
The
即ち、目標走行経路を車両1が走行すると、ある目標位置において目標速度が速度分布領域40によって規定された許容上限値を超えてしまう場合には、目標位置を変更することなく目標速度を低下させるか(図5の経路Rc1)、目標速度を変更することなく目標速度が許容上限値を超えないように迂回経路上に目標位置を変更するか(図5の経路Rc3)、目標位置及び目標速度の両方が変更される(図5の経路Rc2)。
That is, when the
例えば、図5は、計算されていた目標走行経路Rが、走行路7の幅方向の中央位置(目標位置)を60km/h(目標速度)で走行する経路であった場合を示している。この場合、前方に駐車車両3が障害物として存在するが、上述のように、目標走行経路Rの計算段階においては、計算負荷の低減のため、この障害物は考慮されていない。
For example, FIG. 5 shows a case where the calculated target travel route R travels at a central position (target position) in the width direction of the
目標走行経路Rを走行すると、車両1は、速度分布領域40の等相対速度線d,c,c,dを順に横切ることになる。即ち、60km/hで走行する車両1が等相対速度線d(許容上限値Vlim=60km/h)の内側の領域に進入することになる。したがって、ECU10は、目標走行経路Rの各目標位置における目標速度を許容上限値Vlim以下に制限するように目標走行経路Rを補正して、補正後の目標走行経路Rc1を生成する。即ち、補正後の目標走行経路Rc1では、各目標位置において目標車速が許容上限値Vlim以下となるように、車両3に接近するに連れて目標速度が徐々に40km/h未満に低下し、その後、車両3から遠ざかるに連れて目標速度が元の60km/hまで徐々に増加される。
When traveling on the target traveling route R, the
また、目標走行経路Rc3は、目標走行経路Rの目標速度(60km/h)を変更せず、このため等相対速度線d(相対速度60km/hに相当)の外側を走行するように設定された経路である。ECU10は、目標走行経路Rの目標速度を維持するため、目標位置が等相対速度線d上又はその外側に位置するように目標位置を変更するように目標走行経路Rを補正して、目標走行経路Rc3を生成する。したがって、目標走行経路Rc3の目標速度は、目標走行経路Rの目標速度であった60km/hに維持される。
Further, the target travel route Rc3 is set so as to travel outside the equal relative speed line d (corresponding to a relative velocity of 60 km / h) without changing the target velocity (60 km / h) of the target travel route R. Route. The
また、目標走行経路Rc2は、目標走行経路Rの目標位置及び目標速度の両方が変更された経路である。目標走行経路Rc2では、目標速度は、60km/hには維持されず、車両3に接近するに連れて徐々に低下し、その後、車両3から遠ざかるに連れて元の60km/hまで徐々に増加される。 Further, the target travel route Rc2 is a route in which both the target position and the target speed of the target travel route R have been changed. In the target travel route Rc2, the target speed is not maintained at 60 km / h, and gradually decreases as the vehicle 3 is approached, and then gradually increases up to the original 60 km / h as the distance from the vehicle 3 Be done.
目標走行経路Rc1のように、目標走行経路Rの目標位置を変更せず、目標速度のみを変更する補正は、速度制御を伴うが、ステアリング制御を伴わない運転支援モードに適用することができる(例えば、自動速度制御モード、速度制限モード、基本制御モード)。
また、目標走行経路Rc3のように、目標走行経路Rの目標速度を変更せず、目標位置のみを変更する補正は、ステアリング制御を伴う運転支援モードに適用することができる(例えば、先行車追従モード)。
また、目標走行経路Rc2のように、目標走行経路Rの目標位置及び目標速度を共に変更する補正は、速度制御及びステアリング制御を伴う運転支援モードに適用することができる(例えば、先行車追従モード)。
The correction that changes only the target speed without changing the target position of the target travel route R like the target travel route Rc1 can be applied to a driving support mode that involves speed control but does not involve steering control ( For example, automatic speed control mode, speed limit mode, basic control mode).
Further, as in the target travel route Rc3, the correction for changing only the target position without changing the target speed of the target travel route R can be applied to the driving support mode with steering control (for example, following vehicle mode).
Further, as in the target travel route Rc2, a correction that changes both the target position and the target speed of the target travel route R can be applied to the driving support mode with speed control and steering control (for example, the following vehicle follow-up mode ).
次に、図7に示すように、ECU10は、目標走行経路計算部10aとして機能し、上述のセンサ情報等に基づいて、目標走行経路Rを計算する。そして、障害物検出時には、ECU10(目標走行経路計算部10a)は、走行経路補正処理により、運転支援モード等に応じて、補正走行経路R1〜R3を計算する。本実施形態では、この走行経路補正処理は、評価関数Jを用いた最適化処理である。
Next, as shown in FIG. 7, the
ECU10は、評価関数J、制約条件及び車両モデルをメモリ内に記憶している。ECU10は、走行経路補正処理において、制約条件及び車両モデルを満たす範囲で、評価関数Jが最小になる補正走行経路を算出する(最適化処理)。
The
評価関数Jは、複数の評価ファクタを有する。本例の評価ファクタは、例えば、速度(縦方向及び横方向)、加速度(縦方向及び横方向)、加速度変化量(縦方向及び横方向)、ヨーレート、車線中心に対する横位置、車両角度、操舵角、その他ソフト制約について、目標走行経路と補正走行経路との差を評価するための関数である。 The evaluation function J has a plurality of evaluation factors. The evaluation factors in this example are, for example, velocity (longitudinal and lateral), acceleration (longitudinal and lateral), acceleration variation (longitudinal and lateral), yaw rate, lateral position relative to lane center, vehicle angle, steering It is a function for evaluating the difference between the target travel route and the correction travel route with respect to corners and other soft constraints.
評価ファクタには、車両1の縦方向の挙動に関する評価ファクタ(縦方向評価ファクタ:縦方向の速度、加速度、加速度変化量等)と、車両1の横方向の挙動に関する評価ファクタ(横方向評価ファクタ:横方向の速度、加速度、加速度変化量、ヨーレート、車線中心に対する横位置、車両角度、操舵角等)が含まれる。 The evaluation factors include an evaluation factor related to the longitudinal behavior of the vehicle 1 (longitudinal evaluation factor: longitudinal velocity, acceleration, acceleration change amount, etc.) and an evaluation factor related to the lateral behavior of the vehicle 1 (horizontal evaluation factor) : Lateral velocity, acceleration, acceleration change amount, yaw rate, lateral position with respect to lane center, vehicle angle, steering angle, etc. are included.
具体的には、評価関数Jは、以下の式で記述される。
Specifically, the evaluation function J is described by the following equation.
式中、Wk(Xk−Xrefk)2は評価ファクタ、Xkは補正走行経路の評価ファクタに関する物理量、Xrefkは目標走行経路(補正前)の評価ファクタに関する物理量、Wkは評価ファクタの重み値(例えば、0≦Wk≦1)である(但し、k=1〜n)。したがって、本実施形態の評価関数Jは、n個の評価ファクタの物理量について、障害物が存在しないと仮定して計算された目標走行経路(補正前)の物理量に対する補正走行経路の物理量の差の2乗の和を重み付けして、所定期間(例えば、N=3秒)の走行経路長にわたって合計した値に相当する。 Where Wk (Xk-Xrefk) 2 is an evaluation factor, Xk is a physical quantity related to the evaluation factor of the corrected travel route, Xrefk is a physical quantity related to the evaluation factor of the target travel route (before correction), Wk is a weight value of the evaluation factor (for example, It is 0 <= Wk <= 1) (however, k = 1-n). Therefore, the evaluation function J of this embodiment is the difference between the physical quantity of the corrected travel path and the physical quantity of the target travel path (before correction) calculated on the assumption that no obstacle exists for the physical quantities of n evaluation factors. The sum of the squares is weighted, which corresponds to a value summed over the traveling path length for a predetermined period (for example, N = 3 seconds).
制約条件は、車両1の挙動を制限する少なくとも1つの制約ファクタを含む。各制約ファクタは、いずれかの評価ファクタと直接的又は間接的に関連している。したがって、制約条件により車両1の挙動(即ち、評価ファクタの物理量)が制限されることにより、評価関数Jによる最適化処理を早期に収束させることが可能となり、計算時間を短縮することができる。なお、制約条件は、運転支援モードに応じて異なって設定される。
The constraints include at least one constraint factor that limits the behavior of the
本例の制約ファクタには、例えば、速度(縦方向及び横方向)、加速度(縦方向及び横方向)、加速度変化量(縦方向及び横方向)、車速時間偏差、中心位置に対する横位置、車間距離時間偏差、操舵角、操舵角速度、操舵トルク、操舵トルクレート、ヨーレート、車両角度が含まれる。これら制約ファクタには、許容される数値範囲がそれぞれ設定されている(例えば、−4m/s2≦縦加速度≦3m/s2、−5m/s2≦横加速度≦5m/s2)。例えば、乗り心地に大きな影響を及ぼす縦方向及び横方向の加速度が制約条件によって制限されることにより、補正走行経路での縦G及び横Gの最大値を制限することができる。 Constraint factors in this example include, for example, speed (longitudinal and lateral), acceleration (longitudinal and lateral), acceleration variation (longitudinal and lateral), vehicle speed time deviation, lateral position relative to center position, inter-vehicle distance The distance time deviation, the steering angle, the steering angular velocity, the steering torque, the steering torque rate, the yaw rate, and the vehicle angle are included. These constraints factors, numerical range permitted is set, respectively (e.g., -4m / s 2 ≦ longitudinal acceleration ≦ 3m / s 2, -5m / s 2 ≦ lateral acceleration ≦ 5m / s 2). For example, it is possible to limit the maximum values of longitudinal G and lateral G on the corrected travel path by limiting the longitudinal and lateral accelerations that greatly affect the ride comfort by the constraint condition.
車両モデルは、車両1の物理的な運動を規定するものであり、以下の運動方程式で記述される。この車両モデルは、本例では図8に示す2輪モデルである。車両モデルにより車両1の物理的な運動が規定されることにより、走行時の違和感が低減された補正走行経路を算出することができると共に、評価関数Jによる最適化処理を早期に収束させることができる。
The vehicle model defines the physical motion of the
図8及び式中、mは車両1の質量、Iは車両1のヨーイング慣性モーメント、lはホイールベース、lfは車両重心点と前車軸間の距離、lrは車両重心点と後車軸間の距離、Kfは前輪1輪あたりのタイヤコーナリングパワー、Krは後輪1輪あたりのタイヤコーナリングパワー、Vは車両1の車速、δは前輪の実舵角、βは車両重心点の横すべり角、rは車両1のヨー角速度、θは車両1のヨー角、yは絶対空間に対する車両1の横変位、tは時間である。
In FIG. 8 and the formula, m is the mass of the
ECU10は、目標走行経路、制約条件、車両モデル、障害物情報等に基づいて、多数の補正走行経路の中から、評価関数Jが最小になる補正走行経路を算出する。即ち、走行経路補正処理において、ECU10は、最適化問題の解を出力するソルバーとして機能する。したがって、最適解として算出される補正走行経路は、障害物に対して適度な距離と相対速度を確保しつつ、補正前の目標走行経路に最も沿う(近い)ものが選択される。
The
次に、図9〜図11を参照して、本実施形態の車両制御システム100における運転支援制御の処理フローを説明する。図9は運転支援制御の処理フローであり、図10は走行経路計算処理の処理フロー、図11は走行経路補正処理の処理フローである。
Next, with reference to FIGS. 9-11, the processing flow of the driving assistance control in the
ECU10は、図9の処理フローを所定時間(例えば、0.1秒)ごとに繰り返して実行している。まず、ECU10は、情報取得処理を実行する(S11)。情報取得処理において、ECU10は、測位システム29及びナビゲーションシステム30から、現在車両位置情報及び地図情報を取得し(S11a)、車載カメラ21,ミリ波レーダ22,車速センサ23,加速度センサ24,ヨーレートセンサ25,運転者操作部35等からセンサ情報を取得し(S11b)、操舵角センサ26,アクセルセンサ27,ブレーキセンサ28等からスイッチ情報を取得する(S11c)。
The
次に、ECU10は、情報取得処理(S11)において取得した各種の情報を用いて所定の情報検出処理を実行する(S12)。情報検出処理において、ECU10は、現在車両位置情報及び地図情報並びにセンサ情報から、車両1の周囲及び前方エリアにおける走行路形状に関する走行路情報(直線区間及びカーブ区間の有無,各区間長さ,カーブ区間の曲率半径,車線幅,車線両端部位置,車線数,交差点の有無,カーブ曲率で規定される制限速度等)、走行規制情報(制限速度、赤信号等)、先行車軌跡情報(先行車の位置及び速度)を検出する(S12a)。
Next, the
また、ECU10は、スイッチ情報から、運転者による車両操作に関する車両操作情報(操舵角,アクセルペダル踏み込み量,ブレーキペダル踏み込み量等)を検出し(S12b)、更に、スイッチ情報及びセンサ情報から、車両1の挙動に関する走行挙動情報(車速、縦加速度、横加速度、ヨーレート等)を検出する(S12c)。
Further, the
次に、ECU10は、計算により得られた情報に基づいて、走行経路計算処理を実行する(S13)。走行経路計算処理では、上述のように、第1走行経路,第2走行経路,又は第3走行経路が計算される。
Next, the
更に、ECU10は、目標走行経路の補正処理を実行する(S14)。この走行経路補正処理では、ECU10は、障害物情報(例えば、図5に示した駐車車両3)に基づいて、目標走行経路を補正する。走行経路補正処理では、原則的に選択されている運転支援モードに応じて、速度制御及び/又はステアリング制御により、車両1に障害物を回避させるように、走行経路が補正される。
Furthermore, the
次に、ECU10は、選択されている運転支援モードに応じて、車両1が最終的に算出された走行経路上を走行するように、該当する制御システム(エンジン制御システム31,ブレーキ制御システム32,ステアリング制御システム33)へ要求信号を出力する(S15)。具体的には、ECU10は、走行挙動制御部として、算出された目標走行経路(補正走行経路)によって特定されるエンジン,ブレーキ,操舵の目標制御量に応じて、要求信号を生成して出力する。
Next, the
次に、図10を参照して、図9の走行経路計算処理(S13)の詳細な処理フローを説明する。
まず、ECU10は、モード選択スイッチ36から受け取っている運転支援モード選択信号に基づいて、運転者が先行車追従モードを選択しているか否かを判定する(S21)。
Next, with reference to FIG. 10, the detailed processing flow of the travel route calculation process (S13) of FIG. 9 will be described.
First, the
先行車追従モードが選択されている場合(S21;Yes)、ECU10は、センサ情報等に基づいて、車線両端部位置が検出されているか否かを判定する(S22)。車線両端部位置が検出されている場合(S22;Yes)、第1走行経路を目標走行経路として計算する(S23)。なお、先行車が検出されている場合は、先行車車速が目標車速として用いられ、先行車が検出されていない場合は、設定車速が目標車速として用いられる。
When the preceding vehicle follow-up mode is selected (S21; Yes), the
第1走行経路の計算処理では、ECU10は、設定車速,車線両端部,車線幅,制限速度,車速,縦加速度,ヨーレート,操舵角,横加速度等に基づいて、所定期間分(例えば、3秒)の走行経路R1を計算する。走行経路R1の目標位置は、直線区間では車線中央付近を走行するように、カーブ区間では旋回半径が大きくなるようにカーブのイン側を走行するように設定される。また、走行経路R1の目標速度は、設定車速,交通標識による制限車速,及びカーブ曲率により規定される制限車速のうち最も低速な速度を上限速度とするように設定される。
In the calculation process of the first travel route, the
また、車線両端部位置が検出されていない場合(S22;No)、ECU10は、センサ情報等に基づいて、先行車が検出されているか否かを判定する(S24)。
車線両端部位置は検出されていないが、先行車が検出されている場合(S24;Yes)、ECU10は、第2走行経路を目標走行経路として計算する(S25)。第2走行経路の計算処理では、ECU10は、センサ情報等から取得した先行車の先行車軌跡情報(位置及び速度)から、先行車と車両1との間に所定の車間距離を維持しつつ、車間距離を走行する時間分だけ遅れて先行車の挙動(位置及び速度)に追従するように、所定期間分の走行経路R2を計算する。
In addition, when the position at both ends of the lane is not detected (S22; No), the
Although the positions at both ends of the lane have not been detected, if the preceding vehicle has been detected (S24; Yes), the
また、先行車追従モードが選択されていない場合(S21;No)、及び、先行車追従モード選択時において車線両端部位置及び先行車が共に検出されていない場合(S24;No)、ECU10は、第3走行経路を目標走行経路として計算する(S26)。第3走行経路の計算処理では、ECU10は、車両操作情報,走行挙動情報等に基づいて、現在の車両1の挙動から推定される所定期間分の走行経路R3を計算する。
Further, when the preceding vehicle follow-up mode is not selected (S21; No), and when the both ends of the lane and the preceding vehicle are not detected at the time of selecting the following vehicle follow-up mode (S24; No), the
次に、図11を参照して、図9の走行経路補正処理(S14)の詳細な処理フローを説明する。
まず、ECU10は、情報取得処理(S11)において取得した各種の情報を用いて障害物情報(先行車や障害物の有無,位置,速度等)を取得する(S31)。
そして、ECU10は、障害物情報に基づいて、障害物が検出されていないと判定すると(S32;No)、処理を終了するが、障害物が検出されていると判定すると(S32;Yes)、障害物情報や車両1の走行挙動情報等から速度分布領域(図5参照)を設定する(S33)。
Next, with reference to FIG. 11, the detailed processing flow of the travel route correction process (S14) of FIG. 9 will be described.
First, the
Then, if the
次に、ECU10は、センサ/スイッチ情報(例えば、運転支援モード選択信号)に応じて、評価関数J,制約条件,車両モデルを読み込む(S34)。そして、ECU10は、走行経路計算処理(S13)にて算出した目標走行経路,速度分布領域(S33),評価関数J,制約条件,車両モデル,センサ/スイッチ情報等に基づき、評価関数Jを用いて補正走行経路の最適化処理を実行する(S35)。この最適化処理では、最適化された補正走行経路が算出されるまで繰り返し複数の補正走行経路候補について評価関数Jの評価値が計算される。この評価値が最小となる補正走行経路が出力される。
Next, the
次に、本実施形態の車両制御装置の作用について説明する。
本実施形態は、車両1の目標走行経路Rを計算する目標走行経路計算部10aを備えた車両制御装置(ECU)10である。目標走行経路計算部10aは、障害物(例えば、車両3)が検出された場合に、この障害物を回避するように目標走行経路Rを補正する走行経路補正処理(S14;S31−S35)を実行する。目標走行経路計算部10aは、走行経路補正処理において、少なくとも障害物から車両1に向けて、障害物に対する車両1の相対速度の許容上限値Vlimの分布を規定する速度分布領域40を設定し、速度分布領域40内において障害物に対する車両1の相対速度が許容上限値Vlimを超えないように、目標走行経路Rを補正して複数の補正走行経路を算出し、目標走行経路Rに対して複数の補正走行経路を、複数の評価ファクタを含む評価関数Jによって評価し、その評価に応じて1つの補正走行経路を算出する、ように構成されている。複数の評価ファクタは、車両1の縦方向の挙動に関する評価ファクタ(x方向の速度、加速度、加速度変化量等)と、車両1の横方向の挙動に関する評価ファクタ(y方向の速度、加速度、加速度変化量、ヨーレート、車線中心に対する横位置、車両角度、操舵角等)を含む。
Next, the operation of the vehicle control device of the present embodiment will be described.
The present embodiment is a vehicle control device (ECU) 10 including a target travel
このように本実施形態のECU10は、障害物と車両1との間に速度分布領域40を規定し、この速度分布領域40によって規定される相対速度の許容上限値Vlimを超えない範囲で、目標走行経路を補正して、補正走行経路を算出することができる。そして、この走行経路補正処理では、車両1の縦方向及び横方向の挙動に関する評価ファクタを含む評価関数Jを用いて走行経路候補を評価することにより、1つの補正走行経路が算出される。したがって、本実施形態では、速度分布領域40、及び、縦横両方向の評価ファクタを含む評価関数Jを用いることにより、補正走行経路が運転者に与える違和感を低減することができる。
As described above, the
また、本実施形態では、目標走行経路計算部10aは、走行経路補正処理において、車両1の挙動を制限する制約条件を満たすように補正走行経路を算出する。これにより本実施形態では、走行経路補正処理の計算時間を短縮することが可能となる。
Further, in the present embodiment, the target travel
また、本実施形態では、目標走行経路計算部10aは、走行経路補正処理において、車両1の物理的な運動を規定する車両モデルを用いて補正走行経路を算出する。これにより本実施形態では、違和感の少ない補正走行経路を算出することができると共に、評価関数Jによる最適化処理を早期に収束させることができる。
Further, in the present embodiment, the target travel
また、本実施形態では、評価関数Jは、目標走行経路と補正走行経路との間の各評価ファクタに関する物理量の差に関する合計値で表され、目標走行経路計算部10aは、走行経路補正処理において、合計値が最も小さな補正走行経路を選択する。これにより本実施形態では、速度分布領域による相対速度の許容上限値を超えない範囲で、目標走行経路との差が最も小さい補正走行経路を算出することができる。
Further, in the present embodiment, the evaluation function J is represented by a total value of the difference in physical quantity related to each evaluation factor between the target travel route and the correction travel route, and the target travel
また、本実施形態では、具体的には、車両縦方向の挙動に関する評価ファクタは、車両縦方向速度又は車両縦方向加速度を少なくとも含み、車両横方向の挙動に関する評価ファクタは、車両横方向速度,車両横方向加速度,ヨーレートのいずれか1つを少なくとも含む。
また、本実施形態では、具体的には、制約条件は、速度,加速度,加速度変化量,操舵角,操舵角速度,ヨーレートの少なくとも1つを含む。
Further, in the present embodiment, specifically, the evaluation factor related to the behavior in the vehicle longitudinal direction includes at least the vehicle longitudinal speed or the vehicle longitudinal acceleration, and the evaluation factor related to the behavior in the vehicle lateral direction is the vehicle lateral speed, At least one of vehicle lateral acceleration and yaw rate is included.
Further, in the present embodiment, specifically, the constraint conditions include at least one of the velocity, the acceleration, the acceleration change amount, the steering angle, the steering angular velocity, and the yaw rate.
また、本実施形態では、補正走行経路上を走行するように、車両1の速度制御及び/又は操舵制御を含む走行挙動制御処理(図9のS15)を実行する走行挙動制御部を更に備える。これにより本実施形態では、補正走行経路が設定されると、速度制御,操作制御により補正走行経路上を走行するように車両1を制御することが可能である。
Further, in the present embodiment, a traveling behavior control unit is further provided which executes traveling behavior control processing (S15 in FIG. 9) including speed control and / or steering control of the
1 車両
3 車両
5 道路
5a,5c 直線区間
5b カーブ区間
5L,5R 車線
6L,6R 車線両端部
7 走行路
40 速度分布領域
a,b,c,d 等相対速度線
Vlim 許容上限値
100 車両制御システム
D 幅寸法
D0 安全距離
R 目標走行経路
R1 第1走行経路
R2 第2走行経路
R3 第3走行経路
Rc1,Rc2,Rc3 補正走行経路
X クリアランス
1 Vehicle 3 Vehicle 5
Claims (7)
前記目標走行経路計算部は、障害物が検出された場合に、この障害物を回避するように前記目標走行経路を補正する走行経路補正処理を実行し、
前記目標走行経路計算部は、前記走行経路補正処理において、
少なくとも前記障害物から前記車両に向けて、前記障害物に対する前記車両の相対速度の許容上限値の分布を規定する速度分布領域を設定し、
前記速度分布領域内において前記障害物に対する前記車両の相対速度が前記許容上限値を超えないように、前記目標走行経路を補正して複数の補正走行経路を算出し、
前記目標走行経路に対して複数の前記補正走行経路を、複数の評価ファクタを含む所定の評価関数によって評価し、その評価に応じて1つの補正走行経路を算出する、ように構成されており、
前記複数の評価ファクタは、車両縦方向の挙動に関する評価ファクタと、車両横方向の挙動に関する評価ファクタを含む、車両制御装置。 A vehicle control apparatus comprising a target travel route calculation unit that calculates a target travel route of a vehicle, comprising:
The target travel route calculation unit executes a travel route correction process for correcting the target travel route so as to avoid the obstacle, when the obstacle is detected.
The target travel route calculation unit is configured to, in the travel route correction process,
Setting a velocity distribution area that defines the distribution of the allowable upper limit of the relative velocity of the vehicle with respect to the obstacle, from at least the obstacle toward the vehicle;
The target travel route is corrected to calculate a plurality of corrected travel routes so that the relative speed of the vehicle with respect to the obstacle does not exceed the allowable upper limit in the speed distribution region.
The plurality of correction travel routes with respect to the target travel route are evaluated by a predetermined evaluation function including a plurality of evaluation factors, and one correction travel route is calculated according to the evaluation.
The vehicle control device according to claim 1, wherein the plurality of evaluation factors include an evaluation factor related to a longitudinal vehicle behavior and an evaluation factor related to a lateral vehicle behavior.
前記目標走行経路計算部は、前記走行経路補正処理において、前記合計値が最も小さな補正走行経路を選択する、請求項1〜3のいずれか1項に記載の車両制御装置。 The evaluation function is represented by a total value of the difference in physical quantity for each evaluation factor between the target travel route and the correction travel route,
The vehicle control device according to any one of claims 1 to 3, wherein the target travel route calculation unit selects a correction travel route having the smallest total value in the travel route correction processing.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165242A JP6572948B2 (en) | 2017-08-30 | 2017-08-30 | Vehicle control device |
PCT/JP2018/031084 WO2019044641A1 (en) | 2017-08-30 | 2018-08-23 | Vehicle control device |
CN201880055111.9A CN111032468A (en) | 2017-08-30 | 2018-08-23 | Vehicle control device |
EP18852069.6A EP3666612A4 (en) | 2017-08-30 | 2018-08-23 | Vehicle control device |
US16/641,998 US20200180614A1 (en) | 2017-08-30 | 2018-08-23 | Vehicle control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017165242A JP6572948B2 (en) | 2017-08-30 | 2017-08-30 | Vehicle control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019043190A true JP2019043190A (en) | 2019-03-22 |
JP6572948B2 JP6572948B2 (en) | 2019-09-11 |
Family
ID=65813419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017165242A Active JP6572948B2 (en) | 2017-08-30 | 2017-08-30 | Vehicle control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6572948B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192942A (en) * | 2019-05-30 | 2020-12-03 | 日産自動車株式会社 | Traveling support method and traveling support device |
JP2021160658A (en) * | 2020-04-02 | 2021-10-11 | マツダ株式会社 | Vehicle control device |
JP2021160659A (en) * | 2020-04-02 | 2021-10-11 | マツダ株式会社 | Vehicle control device |
JP2021172095A (en) * | 2020-04-17 | 2021-11-01 | マツダ株式会社 | Vehicle control device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010247585A (en) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | Vehicle controller |
JP2015230547A (en) * | 2014-06-04 | 2015-12-21 | 株式会社デンソー | System and method for generating driving maneuvers |
WO2016024318A1 (en) * | 2014-08-11 | 2016-02-18 | 日産自動車株式会社 | Travel control device and method for vehicle |
-
2017
- 2017-08-30 JP JP2017165242A patent/JP6572948B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010247585A (en) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | Vehicle controller |
JP2015230547A (en) * | 2014-06-04 | 2015-12-21 | 株式会社デンソー | System and method for generating driving maneuvers |
WO2016024318A1 (en) * | 2014-08-11 | 2016-02-18 | 日産自動車株式会社 | Travel control device and method for vehicle |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020192942A (en) * | 2019-05-30 | 2020-12-03 | 日産自動車株式会社 | Traveling support method and traveling support device |
JP7208106B2 (en) | 2019-05-30 | 2023-01-18 | 日産自動車株式会社 | Driving support method and driving support device |
JP2021160658A (en) * | 2020-04-02 | 2021-10-11 | マツダ株式会社 | Vehicle control device |
JP2021160659A (en) * | 2020-04-02 | 2021-10-11 | マツダ株式会社 | Vehicle control device |
JP7409204B2 (en) | 2020-04-02 | 2024-01-09 | マツダ株式会社 | Vehicle control device |
JP7454122B2 (en) | 2020-04-02 | 2024-03-22 | マツダ株式会社 | Vehicle control device |
JP2021172095A (en) * | 2020-04-17 | 2021-11-01 | マツダ株式会社 | Vehicle control device |
US11719549B2 (en) | 2020-04-17 | 2023-08-08 | Mazda Motor Corporation | Vehicle control apparatus |
JP7391293B2 (en) | 2020-04-17 | 2023-12-05 | マツダ株式会社 | Vehicle control device |
Also Published As
Publication number | Publication date |
---|---|
JP6572948B2 (en) | 2019-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6525402B2 (en) | Vehicle control device | |
JP6573224B2 (en) | Vehicle control device | |
JP6573223B2 (en) | Vehicle control device | |
JP6573222B2 (en) | Vehicle control device | |
JP6525401B2 (en) | Vehicle control device | |
JP6525413B1 (en) | Vehicle control device | |
JP2019123377A (en) | Vehicle controller | |
JP6647681B2 (en) | Vehicle control device | |
WO2019044641A1 (en) | Vehicle control device | |
JP6572950B2 (en) | Vehicle control device | |
JP6572948B2 (en) | Vehicle control device | |
JP6572949B2 (en) | Vehicle control device | |
JP6525415B1 (en) | Vehicle control device | |
JP7397408B2 (en) | Vehicle control device | |
JP2021126979A (en) | Vehicle control device | |
JP2021160659A (en) | Vehicle control device | |
JP7186952B2 (en) | vehicle controller | |
JP6525417B1 (en) | Vehicle control device | |
JP6525414B1 (en) | Vehicle control device | |
JP6525416B1 (en) | Vehicle control device | |
JP2021126980A (en) | Vehicle control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181203 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6572948 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |