JP2019040890A - Positive electrode - Google Patents

Positive electrode Download PDF

Info

Publication number
JP2019040890A
JP2019040890A JP2018235478A JP2018235478A JP2019040890A JP 2019040890 A JP2019040890 A JP 2019040890A JP 2018235478 A JP2018235478 A JP 2018235478A JP 2018235478 A JP2018235478 A JP 2018235478A JP 2019040890 A JP2019040890 A JP 2019040890A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
containing layer
electrode active
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018235478A
Other languages
Japanese (ja)
Other versions
JP6661743B2 (en
Inventor
輝 吉川
Teru Yoshikawa
輝 吉川
栗山 和哉
Kazuya Kuriyama
和哉 栗山
秀郷 猿渡
Hidesato Saruwatari
秀郷 猿渡
政典 田中
Masanori Tanaka
政典 田中
哲郎 鹿野
Tetsuo Kano
哲郎 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Publication of JP2019040890A publication Critical patent/JP2019040890A/en
Application granted granted Critical
Publication of JP6661743B2 publication Critical patent/JP6661743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a nonaqueous electrolyte battery which can exhibit good charge/discharge cycle characteristics.SOLUTION: A nonaqueous electrolyte battery 1 is provided according to an embodiment hereof. The nonaqueous electrolyte battery 1 comprises: a positive electrode 6; a negative electrode 7; and a nonaqueous electrolyte. The positive electrode 6 includes: a positive electrode current collector 61; and a layer 62 of a positive electrode active material formed on the positive electrode current collector 61. The positive electrode active material-containing layer 62 includes at least, one kind of a lithium nickel composite oxide and a conducting agent. In a particle size distribution obtained by a laser diffractive scattering method, the positive electrode active material-containing layer 62 has an average particle diameter dwithin a range of 1 μm or more and 5.5 μm or less, a maximum particle size within a range of 10 μm or more and 100 μm or less, and a particle size dwithin a range of 0.5 μm or more and 3 μm or less when its cumulative frequency from a small particle size side becomes 10%; X is in a range of 0.5 or more and below 1, where X=(d-d)/d.SELECTED DRAWING: Figure 5

Description

本発明の実施形態は、正極に関する。   Embodiments of the present invention relate to a positive electrode.

非水電解質電池であるリチウムイオン二次電池は、スマートフォンやノート型パーソナルコンピューターなどの電子機器、並びにハイブリッド自動車、プラグインハイブリッド自動車及び電気自動車などの車両に導入され、普及している。リチウムイオン二次電池は、例えば、正極及び負極がセパレータを介して積層して形成された電極群又はこのようにして形成された積層体を捲回して得られる電極群を、アルミニウムやアルミニウム合金を材料として含む容器に収納し、この容器の中に、リチウムを含む電解塩を非水溶媒に溶解して調製した電解液を注入することによって作製することができる。   Lithium ion secondary batteries, which are non-aqueous electrolyte batteries, are introduced and popularized in electronic devices such as smartphones and notebook personal computers, and vehicles such as hybrid vehicles, plug-in hybrid vehicles, and electric vehicles. Lithium ion secondary batteries include, for example, an electrode group formed by laminating a positive electrode and a negative electrode through a separator, or an electrode group obtained by winding a laminate formed in this manner, using aluminum or an aluminum alloy. It can be produced by storing in a container containing the material and injecting an electrolyte prepared by dissolving an electrolytic salt containing lithium in a non-aqueous solvent into the container.

リチウムイオン二次電池は、高容量化と長寿命化とが重要課題であり、大容量で良好な充放電サイクル特性を示すことが望まれている。   Lithium ion secondary batteries have important issues of increasing capacity and extending their life, and it is desired that they have high capacity and good charge / discharge cycle characteristics.

リチウムイオン二次電池の高容量化の施策の1つとして、リチウムニッケル複合酸化物を正極活物質として用いることが挙げられる。しかしながら、リチウムニッケル複合酸化物は、電極上で副反応が起こりやすく、サイクルを重ねると容量が減少し得るという欠点を有する。   One measure for increasing the capacity of a lithium ion secondary battery is to use a lithium nickel composite oxide as a positive electrode active material. However, the lithium nickel composite oxide has a drawback that side reactions are likely to occur on the electrode, and the capacity can be reduced by repeated cycles.

特開2012−9276号公報JP 2012-9276 A 特開2002−141060号公報JP 2002-141060 A 特開2011−181387号公報JP 2011-181387 A

本発明が解決しようとする課題は、良好な充放電サイクル特性を示すことができる非水電解質電池を提供することにある。   The problem to be solved by the present invention is to provide a nonaqueous electrolyte battery capable of exhibiting good charge / discharge cycle characteristics.

実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、正極集電体とこの正極集電体上に形成された正極活物質含有層とを備える。正極活物質含有層は少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含む。導電剤の粒子径は、少なくとも1種のリチウムニッケル複合酸化物の平均粒子径よりも小さい。正極活物質含有層は、レーザー回折散乱法により得られる粒度分布において、平均粒子径d50が1μm以上5.5μm以下の範囲内にあり、最大粒子径が10μm以上100μm以下の範囲内にあり、小粒子径側からの累積頻度が10%となる粒子径d10が0.5μm以上3μm以下の範囲内にある。X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にある。 According to an embodiment, a non-aqueous electrolyte battery is provided. The nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector. The positive electrode active material-containing layer includes at least one lithium nickel composite oxide and a conductive agent. The particle diameter of the conductive agent is smaller than the average particle diameter of at least one lithium nickel composite oxide. In the particle size distribution obtained by the laser diffraction scattering method, the positive electrode active material-containing layer has an average particle diameter d 50 in the range of 1 μm to 5.5 μm and a maximum particle diameter in the range of 10 μm to 100 μm. The particle diameter d 10 at which the cumulative frequency from the small particle diameter side becomes 10% is in the range of 0.5 μm to 3 μm. X represented by X = (d 50 −d 10 ) / d 50 is in the range of 0.5 or more and less than 1.

図1は、実施形態に係る一例の非水電解質電池の概略切欠き斜視図である。FIG. 1 is a schematic cutaway perspective view of an example nonaqueous electrolyte battery according to an embodiment. 図2は、図1に示すA部の概略断面図である。FIG. 2 is a schematic cross-sectional view of a part A shown in FIG. 図3は、実施形態に係る一例の非水電解質電池が具備する正極の概略平面図である。FIG. 3 is a schematic plan view of a positive electrode included in an example nonaqueous electrolyte battery according to the embodiment. 図4は、実施形態に係る非水電解質電池が具備することができる電極群の一例の概略断面図である。FIG. 4 is a schematic cross-sectional view of an example of an electrode group that can be included in the nonaqueous electrolyte battery according to the embodiment. 図5は、実施例1及び比較例1の非水電解質電池が具備する正極の正極活物質含有層の粒度分布である。FIG. 5 is a particle size distribution of the positive electrode active material-containing layer of the positive electrode included in the nonaqueous electrolyte battery of Example 1 and Comparative Example 1.

以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解とを促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。   Hereinafter, embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. Each figure is a schematic diagram for encouraging explanation and understanding of the embodiment, and its shape, dimensions, ratio, etc. are different from the actual apparatus, but these are the following explanations and known techniques. In consideration of the above, the design can be changed as appropriate.

[実施形態]
実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、正極集電体とこの正極集電体上に形成された正極活物質含有層とを備える。正極活物質含有層は少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含む。正極活物質含有層は、レーザー回折散乱法により得られる粒度分布において、平均粒子径d50が1μm以上5.5μm以下の範囲内にあり、最大粒子径が10μm以上100μm以下の範囲内にあり、小粒子径側からの累積頻度が10%となる粒子径d10が0.5μm以上3μm以下の範囲内にある。X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にある。
[Embodiment]
According to an embodiment, a non-aqueous electrolyte battery is provided. The nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector. The positive electrode active material-containing layer includes at least one lithium nickel composite oxide and a conductive agent. In the particle size distribution obtained by the laser diffraction scattering method, the positive electrode active material-containing layer has an average particle diameter d 50 in the range of 1 μm to 5.5 μm and a maximum particle diameter in the range of 10 μm to 100 μm. The particle diameter d 10 at which the cumulative frequency from the small particle diameter side becomes 10% is in the range of 0.5 μm to 3 μm. X represented by X = (d 50 −d 10 ) / d 50 is in the range of 0.5 or more and less than 1.

リチウムニッケル複合酸化物は、正極で用いると、正極活物質として働くことができる。リチウムニッケル複合酸化物を正極活物質として用いる非水電解質電池は、優れた充放電容量を示すことができる。そのため、実施形態に係る非水電解質電池は、優れた充電容量を示すことができる。   When used in the positive electrode, the lithium nickel composite oxide can function as a positive electrode active material. A nonaqueous electrolyte battery using a lithium nickel composite oxide as a positive electrode active material can exhibit an excellent charge / discharge capacity. Therefore, the nonaqueous electrolyte battery according to the embodiment can exhibit an excellent charge capacity.

また、実施形態に係る非水電解質電池は、レーザー回折散乱法により得られる正極活物質含有層の粒度分布が上記条件を満たすおかげで、以下に説明する理由により、良好な充放電サイクル特性を示すことができる。   In addition, the nonaqueous electrolyte battery according to the embodiment exhibits good charge / discharge cycle characteristics for the reason described below because the particle size distribution of the positive electrode active material-containing layer obtained by the laser diffraction scattering method satisfies the above conditions. be able to.

まず、粒度分布において1μm以上5.5μm以下の範囲内にある平均粒子径d50には、正極活物質含有層に含まれる少なくとも1種のリチウムニッケル複合酸化物の粒子径が主に反映されている。また、平均粒子径d50には、正極活物質含有層中のリチウムニッケル複合酸化物の含有量の影響も受ける。すなわち、正極活物質含有層中のリチウムニッケル複合酸化物の含有量が多くなれば、正極活物質含有層についての平均粒子径d50は大きくなるし、当該リチウムニッケル複合酸化物の含有量が少なくなれば、正極活物質含有層についての平均粒子径d50は小さくなる。 First, in the particle size distribution, the average particle size d 50 in the range of 1 μm to 5.5 μm mainly reflects the particle size of at least one lithium nickel composite oxide contained in the positive electrode active material-containing layer. Yes. The average particle size d 50 is also affected by the content of the lithium nickel composite oxide in the positive electrode active material-containing layer. That is, when the content of the lithium nickel composite oxide in the positive electrode active material-containing layer is increased, the average particle diameter d 50 for the positive electrode active material-containing layer is increased, and the content of the lithium nickel composite oxide is decreased. if the average particle size d 50 of the positive electrode active material-containing layer is reduced.

また、粒度分布において10μm以上100μm以下の範囲内にある最大粒子径は、正極活物質含有層の粒度分布測定時に検出された最も大きい粒子径である。   Further, the maximum particle size in the range of 10 μm or more and 100 μm or less in the particle size distribution is the largest particle size detected when measuring the particle size distribution of the positive electrode active material-containing layer.

更に、粒度分布において0.5μm以上3μm以下の範囲内にある粒子径d10には、正極活物質含有層に含まれる導電剤のうち、小さい粒子径を有する導電剤の粒子径が主に反映されており、含有量の影響も受ける。 Further, the particle diameter d 10 in the range of 0.5 μm to 3 μm in the particle size distribution mainly reflects the particle diameter of the conductive agent having a small particle diameter among the conductive agents contained in the positive electrode active material-containing layer. It is also affected by the content.

そして、0.5以上1未満であるXは、X=(d50−d10)/d50で表される通り、正極活物質含有層についての粒度分布における平均粒子径d50と粒子径d10との差を平均粒子径d50で除したものである。すなわち、Xには、正極活物質含有層に含まれる導電剤と、正極活物質含有層に含まれるリチウムニッケル複合酸化物の粒子径が主に反映され、含有量の影響も受ける。 And X which is 0.5 or more and less than 1 is represented by X = (d 50 −d 10 ) / d 50 , and the average particle diameter d 50 and the particle diameter d in the particle size distribution for the positive electrode active material-containing layer. The difference from 10 is divided by the average particle size d 50 . That is, X mainly reflects the conductive agent contained in the positive electrode active material-containing layer and the particle diameter of the lithium nickel composite oxide contained in the positive electrode active material-containing layer, and is also affected by the content.

実施形態に係る非水電解質電池は、粒度分布が上記条件を満たすため、正極活物質含有層が、リチウムニッケル複合酸化物の粒子径よりも十分に小さな粒子径を有し且つ十分に分散されている導電剤を含んでいる。そのため、この正極活物質含有層では、リチウムニッケル複合酸化物が、小粒子の導電剤によってコーティングされている。このような小粒子の導電剤のコーティングの存在により、充放電の際の正極のリチウムニッケル複合酸化物の副反応を抑えることができ、サイクルに伴う充放電容量の減少を抑えることができる。   In the nonaqueous electrolyte battery according to the embodiment, since the particle size distribution satisfies the above conditions, the positive electrode active material-containing layer has a particle size sufficiently smaller than the particle size of the lithium nickel composite oxide and is sufficiently dispersed. Contains a conductive agent. Therefore, in the positive electrode active material-containing layer, the lithium nickel composite oxide is coated with a small particle conductive agent. By the presence of such a small particle conductive agent coating, side reactions of the positive electrode lithium nickel composite oxide during charging and discharging can be suppressed, and a decrease in charge and discharge capacity associated with the cycle can be suppressed.

また、実施形態に係る非水電解質電池では、リチウムニッケル複合酸化物をコーティングした小粒子の導電剤が優れた導電パスを形成することができる。   In the nonaqueous electrolyte battery according to the embodiment, a small conductive agent coated with a lithium nickel composite oxide can form an excellent conductive path.

これらの結果、実施形態に係る非水電解質電池は、良好な充放電サイクル特性を示すことができる。   As a result, the nonaqueous electrolyte battery according to the embodiment can exhibit good charge / discharge cycle characteristics.

正極活物質含有層についてのXの値が0.5未満であるということは、粒度分布における平均粒子径d50と粒子径d10との差が小さ過ぎることを意味する。粒度分布における平均粒子径d50と粒子径d10との差がこのように小さ過ぎる原因としては、以下の3つの理由が考えられるが、いずれの場合にも、先に説明したような良好な充放電サイクル特性を示すことはできない。 That the value of X for the positive electrode active material-containing layer is less than 0.5 means that the difference between the average particle diameter d 50 and the particle diameter d 10 in the particle size distribution is too small. The reason why the difference between the average particle diameter d 50 and the particle diameter d 10 in the particle size distribution is so small is considered to be the following three reasons. Charging / discharging cycle characteristics cannot be shown.

まず、導電剤の粒子径とリチウムニッケル複合酸化物の粒子径との差が小さ過ぎる、すなわち導電剤の粒子径がリチウムニッケル複合酸化物の粒子径に近いことが考えられる。リチウムニッケル複合酸化物の粒子をこれと同様の粒子径を有する導電剤粒子で被覆すると、粒子間に隙間が生じる可能性が高くなるため、導電剤による十分なコーティングを得ることができない。そのため、このような非水電解質電池は、充放電の際に、リチウムニッケル複合酸化物の副反応を抑制することができない。また、この場合、正極は良好な導電パスを有することができない。その結果、このような非水電解質電池は、サイクルを重ねると、充放電容量が低下する。   First, it is conceivable that the difference between the particle size of the conductive agent and the particle size of the lithium nickel composite oxide is too small, that is, the particle size of the conductive agent is close to the particle size of the lithium nickel composite oxide. When the particles of the lithium nickel composite oxide are coated with conductive agent particles having the same particle diameter as this, there is a high possibility that gaps will be formed between the particles, so that sufficient coating with the conductive agent cannot be obtained. Therefore, such a nonaqueous electrolyte battery cannot suppress a side reaction of the lithium nickel composite oxide during charging and discharging. In this case, the positive electrode cannot have a good conductive path. As a result, when such a nonaqueous electrolyte battery is cycled, the charge / discharge capacity decreases.

次に、リチウムニッケル複合酸化物の粒子径が小さ過ぎることが考えられる。リチウムニッケル複合酸化物は、粒子径が小さいほど、大きな表面積を有する。大きな表面積を有するリチウムニッケル複合酸化物は、充放電時に非水溶媒、及び電解質との副反応が促進される。このようなリチウムニッケル複合酸化物を正極に含む非水電解質電池は、サイクルを重ねると、充放電容量が低下する。   Next, it is conceivable that the particle diameter of the lithium nickel composite oxide is too small. The lithium nickel composite oxide has a larger surface area as the particle diameter is smaller. The lithium nickel composite oxide having a large surface area promotes side reactions with the nonaqueous solvent and the electrolyte during charging and discharging. A non-aqueous electrolyte battery including such a lithium nickel composite oxide in the positive electrode has a reduced charge / discharge capacity when repeated cycles.

そして、正極活物質含有層に含まれる小粒子の導電剤の量がリチウムニッケル複合酸化物の量に比して十分でないことが考えられる。この場合、小粒子の導電剤によるリチウムニッケル複合酸化物のコーティングは十分に得られず、非水電解質電池の充放電の際に、リチウムニッケル複合酸化物の副反応を抑制することができない。また、この場合、正極活物質含有層は良好な導電パスを有することができない。   And it is thought that the quantity of the small particle | grain electrically conductive agent contained in a positive electrode active material content layer is not enough compared with the quantity of lithium nickel complex oxide. In this case, the coating of the lithium nickel composite oxide with the small particle conductive agent cannot be sufficiently obtained, and the side reaction of the lithium nickel composite oxide cannot be suppressed during charge / discharge of the nonaqueous electrolyte battery. In this case, the positive electrode active material-containing layer cannot have a good conductive path.

このように、正極活物質含有層についてのXの値が0.5未満である非水電解質電池は、良好な充放電サイクル特性を示すことができない。   Thus, the nonaqueous electrolyte battery whose X value for the positive electrode active material-containing layer is less than 0.5 cannot exhibit good charge / discharge cycle characteristics.

なお、正極活物質含有層についての粒度分布における粒子径d50及び粒子径d10は共に正の値であり、d50は常にd10よりも大きい。そのため、正極活物質含有層についてのXは、1以上の値をとることはないし、負の値をとることもない。 Note that the particle size d 50 and the particle size d 10 in the particle size distribution of the positive electrode active material-containing layer are both positive values, and d 50 is always larger than d 10 . Therefore, X for the positive electrode active material-containing layer does not take a value of 1 or more and does not take a negative value.

正極活物質含有層の粒度分布における最大粒子径が100μmよりも大きいと、均一な品質の正極の製造が難しくなる。また、最大粒子径が10μmよりも小さいと、リチウムニッケル複合酸化物の表面積が大きくなる。先に説明したように、大きな表面積を有するリチウムニッケル複合酸化物を正極に含む非水電解質電池は、サイクルを重ねると、充放電容量が低下し得る。   If the maximum particle size in the particle size distribution of the positive electrode active material-containing layer is larger than 100 μm, it is difficult to produce a positive electrode having uniform quality. On the other hand, when the maximum particle size is smaller than 10 μm, the surface area of the lithium nickel composite oxide increases. As described above, the charge / discharge capacity of a nonaqueous electrolyte battery including a lithium nickel composite oxide having a large surface area in the positive electrode can be reduced when the cycle is repeated.

粒度分布における粒子径d10が3μmより大きな正極活物質含有層では、導電剤の粒子径が大き過ぎる、又は正極活物質含有層において導電剤粒子が十分に分散されておらず凝集していると考えられる。このような非水電解質電池では、小粒子の導電剤による十分なコーティングが得られないため、充放電の際に、リチウムニッケル複合酸化物の副反応を抑制することができないと共に、良好な導電パスを有することができない。 In the positive electrode active material-containing layer having a particle diameter d 10 in the particle size distribution larger than 3 μm, the particle diameter of the conductive agent is too large, or the conductive agent particles are not sufficiently dispersed and aggregated in the positive electrode active material-containing layer. Conceivable. In such a non-aqueous electrolyte battery, a sufficient coating with a small particle conductive agent cannot be obtained, so that side reactions of the lithium nickel composite oxide cannot be suppressed during charging and discharging, and a good conductive path is obtained. Can't have.

一方、粒度分布における粒子径d10が0.5μm未満である正極活物質含有層は、導電剤、活物質共に表面積が高くなり、非水溶媒、及び電解質との副反応性が上がるため、サイクルを重ねると充放電容量が低下し得る。 On the other hand, the positive electrode active material-containing layer having a particle size distribution with a particle diameter d 10 of less than 0.5 μm has a high surface area for both the conductive agent and the active material, and the side reactivity with the nonaqueous solvent and the electrolyte is increased. When charging is repeated, the charge / discharge capacity may be reduced.

粒度分布における平均粒子径d50が5.5μmより大きな正極活物質含有層では、リチウムニッケル複合酸化物の粒子径が大き過ぎる、又は正極活物質含有層においてリチウムニッケル複合酸化物粒子が十分に分散されておらず凝集していると考えられる。このような非水電解質電池では、導電剤でリチウムニッケル複合酸化物をコーティングすることによって得られる上記効果は得られないと共に、良好な導電パスを有することができない。 In the positive electrode active material-containing layer having an average particle diameter d 50 in the particle size distribution larger than 5.5 μm, the particle diameter of the lithium nickel composite oxide is too large, or the lithium nickel composite oxide particles are sufficiently dispersed in the positive electrode active material-containing layer. It is thought that it is not agglomerated. In such a non-aqueous electrolyte battery, the above effect obtained by coating the lithium nickel composite oxide with a conductive agent cannot be obtained, and a good conductive path cannot be obtained.

一方、粒度分布における平均粒子径d50が1μm未満である正極活物質含有層では、リチウムニッケル複合酸化物の粒子が小さ過ぎて副反応性が上がるため、サイクルを重ねると充放電容量が低下し得る。 On the other hand, in the positive electrode active material-containing layer having an average particle diameter d 50 in the particle size distribution of less than 1 μm, the lithium nickel composite oxide particles are too small and the side reactivity is increased. obtain.

正極活物質含有層が含むリチウムニッケル複合酸化物としては、例えば、Li−Ni−Al複合酸化物、Li−Ni−Co−Mn複合酸化物及びLi−Ni−Mn複合酸化物が挙げられる。好ましいリチウムニッケル複合酸化物としては、Li−Ni−Co−Mn複合酸化物であるLiNi7/10Co2/10Mn1/102を挙げることができる。正極活物質は、1種又は2種以上のリチウムニッケル複合酸化物を含むことができる。 Examples of the lithium nickel composite oxide included in the positive electrode active material-containing layer include a Li—Ni—Al composite oxide, a Li—Ni—Co—Mn composite oxide, and a Li—Ni—Mn composite oxide. As a preferable lithium nickel composite oxide, LiNi 7/10 Co 2/10 Mn 1/10 O 2 which is a Li—Ni—Co—Mn composite oxide can be mentioned. The positive electrode active material can include one or more lithium nickel composite oxides.

正極活物質含有層中のニッケル元素の含有量は、23重量%以上45重量%以下の範囲内にあることが好ましい。正極活物質含有層中のニッケル元素の含有量は、例えば、誘導結合プラズマ原子分光分析法(ICP分析)によって測定することができる。正極活物質含有層中のニッケル元素含有量が23重量%以上である実施形態に係る非水電解質電池は、より優れた充放電容量を示すことができると共に、上記サイクル特性向上の効果がより顕著に示すことができる。また、正極活物質含有層中のニッケル元素含有量が45重量%以下である実施形態に係る非水電解質電池は、充放電時の正極活物質含有層におけるニッケル元素とリチウム元素との置換を抑えることができ、正極活物質含有層の構造変化を抑えることができ、ひいてはより優れたサイクル特性を示すことができる。   The content of nickel element in the positive electrode active material-containing layer is preferably in the range of 23 wt% to 45 wt%. The content of nickel element in the positive electrode active material-containing layer can be measured, for example, by inductively coupled plasma atomic spectroscopy (ICP analysis). The nonaqueous electrolyte battery according to the embodiment in which the content of nickel element in the positive electrode active material-containing layer is 23% by weight or more can exhibit a more excellent charge / discharge capacity, and the effect of improving the cycle characteristics is more remarkable. Can be shown. In addition, the nonaqueous electrolyte battery according to the embodiment in which the content of nickel element in the positive electrode active material-containing layer is 45% by weight or less suppresses substitution of nickel element and lithium element in the positive electrode active material-containing layer during charge / discharge. The structure change of the positive electrode active material-containing layer can be suppressed, and as a result, more excellent cycle characteristics can be exhibited.

正極活物質含有層に含まれる導電剤は、カーボン材料を含むことが好ましい。カーボン材料を含む導電剤は、より優れた導電パスを提供することができる。   The conductive agent contained in the positive electrode active material-containing layer preferably contains a carbon material. A conductive agent containing a carbon material can provide a better conductive path.

正極活物質含有層は、2.4g/cm3以上3.6g/cm3以下の範囲内にある密度を有することが好ましい。正極活物質含有層の密度がこの範囲内にある実施形態に係る非水電解質電池は、より良好な充放電パスを形成することができ、リチウムニッケル複合酸化物の副反応を更に抑制することができる。また、正極活物質含有層の密度が上記範囲内にある実施形態に係る非水電解質電池は、正極活物質含有層における非水電解質の含浸性のばらつきをより抑えることができる。正極活物質含有層における非水電解質の含浸性にばらつきが生じると、正極活物質含有層中に印加電圧のばらつきが生じる。正極活物質含有層において他の部分よりも高電位が印加された部分では、副反応、特には非水電解質の分解が促進される。 The positive electrode active material-containing layer preferably has a density in the range of 2.4 g / cm 3 or more and 3.6 g / cm 3 or less. The nonaqueous electrolyte battery according to the embodiment in which the density of the positive electrode active material-containing layer is within this range can form a better charge / discharge path and further suppress the side reaction of the lithium nickel composite oxide. it can. Moreover, the nonaqueous electrolyte battery according to the embodiment in which the density of the positive electrode active material-containing layer is within the above range can further suppress variation in the impregnation property of the nonaqueous electrolyte in the positive electrode active material-containing layer. When the non-aqueous electrolyte impregnation in the positive electrode active material-containing layer varies, the applied voltage varies in the positive electrode active material-containing layer. In a portion where a higher potential is applied than the other portions in the positive electrode active material-containing layer, side reactions, in particular, decomposition of the nonaqueous electrolyte is promoted.

正極活物質含有層の密度は、正極の重量及び正極の体積を測定し、正極集電体の重量及び厚みを差し引くことで算出できる。   The density of the positive electrode active material-containing layer can be calculated by measuring the weight of the positive electrode and the volume of the positive electrode, and subtracting the weight and thickness of the positive electrode current collector.

次に、正極活物質含有層の粒度分布をレーザー回折散乱法によって得る手順の一例、及び、正極活物質含有層中のNi元素の含有量をICPによって分析する手順の一例を説明する。   Next, an example of a procedure for obtaining the particle size distribution of the positive electrode active material-containing layer by a laser diffraction scattering method and an example of a procedure for analyzing the content of Ni element in the positive electrode active material-containing layer by ICP will be described.

(1)正極活物質含有層の粒度分布をレーザー回折散乱法によって得る手順の一例
1.非水電解質電池の解体
まず、事前準備として、電極及び非水電解質に直接触れないように、手袋を着用する。
次に、電池の構成要素が解体時に大気成分や水分と反応することを防ぐために、非水電解質電池をアルゴン雰囲気のグローブボックスに入れる。
このようなグローブボックス内で、非水電解質電池を開く。例えば、正極集電タブ及び負極集電タブのそれぞれの周辺にあるヒートシール部を切断して、非水電解質電池を切り開くことができる。
切り開いた非水電解質電池から、電極群を取り出す。取り出した電極群が正極リード及び負極リードを含む場合は、正負極を短絡させないように注意しながら、正極リード及び負極リードを切断する。
次に、電極群を解体し、正極、負極及びセパレータに分解する。かくして得られた正極をエチルメチルカーボネートを溶媒として用いて洗浄する。
洗浄後、正極を真空乾燥に供する。或いは、アルゴン雰囲気下での自然乾燥に供しても良い。
(1) An example of a procedure for obtaining the particle size distribution of the positive electrode active material-containing layer by a laser diffraction scattering method. Disassembly of the non-aqueous electrolyte battery First, as a preliminary preparation, wear gloves so as not to directly touch the electrode and the non-aqueous electrolyte.
Next, in order to prevent the battery components from reacting with atmospheric components and moisture during disassembly, the nonaqueous electrolyte battery is placed in a glove box with an argon atmosphere.
A non-aqueous electrolyte battery is opened in such a glove box. For example, the non-aqueous electrolyte battery can be opened by cutting the heat seal portion around each of the positive electrode current collecting tab and the negative electrode current collecting tab.
An electrode group is taken out from the opened nonaqueous electrolyte battery. When the extracted electrode group includes the positive electrode lead and the negative electrode lead, the positive electrode lead and the negative electrode lead are cut while being careful not to short-circuit the positive and negative electrodes.
Next, the electrode group is disassembled and decomposed into a positive electrode, a negative electrode, and a separator. The positive electrode thus obtained is washed using ethyl methyl carbonate as a solvent.
After washing, the positive electrode is subjected to vacuum drying. Or you may use for the natural drying in argon atmosphere.

2.粒度分布測定
乾燥させた正極から、正極活物質含有層を、例えばスパチュラを用いて剥がす。
剥がした粉状の正極活物質含有層試料を、N−メチルピロリドンで満たした測定セル内に、測定可能濃度になるまで投入する。なお、粒度分布測定装置により、測定セルの容量及び測定可能濃度は異なる。
N−メチルピロリドン及びこれに溶解した正極活物質含有層試料を入れた測定セルに対し、超音波を5分間照射する。超音波の出力は、例えば、35W〜45Wの範囲内にする。例えば、溶媒としてN−メチルピロリドンを約50mlの量で用いた場合、測定サンプルを混合した溶媒に約40Wの出力の超音波を300秒照射する。このような超音波照射によると、導電剤粒子と活物質粒子との凝集を解くことができる。
超音波処理を行った測定セルをレーザー回折散乱法による粒度分布測定装置に装入し、粒度分布の測定を行う。粒度分布測定装置の例としては、Microtrac3100及びMicrotrac3000IIを挙げることができる。 かくして、正極活物質含有層の粒度分布を得ることができる。
2. Particle size distribution measurement The positive electrode active material-containing layer is peeled off from the dried positive electrode using, for example, a spatula.
The peeled powdered positive electrode active material-containing layer sample is put into a measurement cell filled with N-methylpyrrolidone until a measurable concentration is reached. In addition, the capacity | capacitance of a measurement cell and a measurable density | concentration differ with particle size distribution measuring apparatuses.
The measurement cell containing the N-methylpyrrolidone and the positive electrode active material-containing layer sample dissolved therein is irradiated with ultrasonic waves for 5 minutes. The output of the ultrasonic wave is set within a range of 35 W to 45 W, for example. For example, when N-methylpyrrolidone is used as a solvent in an amount of about 50 ml, an ultrasonic wave with an output of about 40 W is irradiated for 300 seconds to the solvent mixed with the measurement sample. By such ultrasonic irradiation, aggregation of the conductive agent particles and the active material particles can be solved.
The measurement cell that has been subjected to ultrasonic treatment is inserted into a particle size distribution measuring apparatus using a laser diffraction scattering method, and the particle size distribution is measured. Examples of the particle size distribution measuring apparatus include Microtrac 3100 and Microtrac 3000 II. Thus, the particle size distribution of the positive electrode active material-containing layer can be obtained.

(2)正極活物質含有層中のNi元素の含有量をICPによって分析する手順の一例
まず、粒度分布の測定時と同様の方法で非水電解質電池を解体し、正極を取り出す。
取り出した正極を、エチルメチルカーボネート(MEC)溶媒に20分間浸漬する。続いて、MECを取り替えて、その中に正極を再度20分間浸漬する。
MECから正極を取り出し、80℃で正極を1時間真空乾燥する。
以降の手順の説明では、分析に供する正極が、70mm×90mm程度の面積のものを1枚とした場合について説明する。
乾燥させた正極から正極活物質含有層をスパチュラで剥がして、正極活物質含有層試料を採取する。
(2) An example of a procedure for analyzing the content of Ni element in the positive electrode active material-containing layer by ICP First, the nonaqueous electrolyte battery is disassembled by the same method as that for measuring the particle size distribution, and the positive electrode is taken out.
The taken-out positive electrode is immersed in an ethyl methyl carbonate (MEC) solvent for 20 minutes. Subsequently, the MEC is replaced, and the positive electrode is immersed again in it for 20 minutes.
Remove the positive electrode from the MEC and vacuum dry the positive electrode at 80 ° C. for 1 hour.
In the following description of the procedure, a case will be described in which the number of positive electrodes used for analysis is one with an area of about 70 mm × 90 mm.
The positive electrode active material-containing layer is peeled off from the dried positive electrode with a spatula, and a positive electrode active material-containing layer sample is collected.

次に、正極活物質含有層試料をビーカーに入れ、このビーカーに水20mlを加える。その後、塩酸20mlを少量ずつ注意しながら加える。
次に、ビーカーを加熱して、正極活物質含有層試料を溶解させると共に、液量が半分くらいになるまで濃縮する。
濃縮後、ビーカーを冷却する。冷却後、ビーカーに塩酸20ml及び過酸化水素水1mlを加える。
次に、ビーカーを再度加熱して、溶け残った正極活物質含有層試料を完全に溶解させると共に、液量が10mlくらいになるまで濃縮する。
次に、液量が約50mlになるまでビーカーに水を加え、煮沸するまで加熱する。
冷却後、ビーカー内の液体をろ紙(グレード:5種C)を使用してろ過し、得られたろ液を水を用いて200mlの定容にする。このようにして定容した溶液を、試料溶液Aとする。
次に、試料溶液Aを、Ni濃度が5〜9μg/ml程度になるように、水で希釈する。この希釈によって得られた溶液を試料溶液Bとする。
一方で、市販のNi標準溶液(1000μg/ml)を希釈して、濃度が0μg/ml、5μg/ml及び10μg/mlの標準溶液をそれぞれ調製する。
ICP発光分析装置を用いて、標準溶液及び試料溶液Bの発光強度を測定する。標準溶液についての発光強度を用いて検量線を作成する。この検量線を用いて、試料溶液BにおけるNi濃度を検量線法で算出する。
算出した結果から、正極活物質含有層中のNi含有量を算出する。
Next, the positive electrode active material-containing layer sample is placed in a beaker, and 20 ml of water is added to the beaker. Then, carefully add 20 ml of hydrochloric acid little by little.
Next, the beaker is heated to dissolve the positive electrode active material-containing layer sample, and is concentrated until the liquid amount becomes about half.
After concentration, cool the beaker. After cooling, add 20 ml of hydrochloric acid and 1 ml of hydrogen peroxide to a beaker.
Next, the beaker is heated again to completely dissolve the undissolved positive electrode active material-containing layer sample, and is concentrated until the liquid volume becomes about 10 ml.
Next, add water to the beaker until the liquid volume is about 50 ml, and heat until boiling.
After cooling, the liquid in the beaker is filtered using a filter paper (grade: 5 types C), and the obtained filtrate is made up to a constant volume of 200 ml using water. The solution having a constant volume in this way is designated as sample solution A.
Next, the sample solution A is diluted with water so that the Ni concentration is about 5 to 9 μg / ml. Let the solution obtained by this dilution be the sample solution B.
Meanwhile, a commercially available Ni standard solution (1000 μg / ml) is diluted to prepare standard solutions having concentrations of 0 μg / ml, 5 μg / ml and 10 μg / ml, respectively.
The luminescence intensity of the standard solution and the sample solution B is measured using an ICP emission analyzer. A calibration curve is created using the luminescence intensity for the standard solution. Using this calibration curve, the Ni concentration in the sample solution B is calculated by the calibration curve method.
From the calculated result, the Ni content in the positive electrode active material-containing layer is calculated.

かくして、正極活物質含有層中のNi元素の含有量をICPによって分析することができる。   Thus, the content of Ni element in the positive electrode active material-containing layer can be analyzed by ICP.

次に、実施形態に係る非水電解質電池をより詳細に説明する。   Next, the nonaqueous electrolyte battery according to the embodiment will be described in more detail.

実施形態に係る非水電解質電池は、正極と、負極と、非水電解質とを具備する。   The nonaqueous electrolyte battery according to the embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.

正極は、正極集電体と、この正極集電体上に形成された正極活物質含有層とを備える。   The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector.

正極集電体は、表面に正極活物質含有層が形成されていない部分を含むことができ、この部分は正極リードとして働くことができる。   The positive electrode current collector can include a portion where the positive electrode active material-containing layer is not formed on the surface, and this portion can serve as a positive electrode lead.

正極集電体としては、例えば、アルミニウム、銅などの金属箔を使用することができる。   As the positive electrode current collector, for example, a metal foil such as aluminum or copper can be used.

正極活物質含有層は、少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含む。正極活物質含有層は、リチウムニッケル複合酸化物以外の活物質を含むこともできる。正極活物質含有層が含むことができる他の活物質としては、例えば、Li−Mn酸化物及びLi−Co酸化物を挙げることができる。   The positive electrode active material-containing layer includes at least one lithium nickel composite oxide and a conductive agent. The positive electrode active material-containing layer can also contain an active material other than the lithium nickel composite oxide. Examples of other active materials that can be included in the positive electrode active material-containing layer include Li—Mn oxide and Li—Co oxide.

正極活物層が含む導電剤は、先に説明したように、カーボン材料を含むことが好ましい。カーボン材料としては、例えば、アセチレンブラック、ケチェンブラック、ファーネスブラック、グラファイト、カーボンナノチューブなどを挙げることができる。正極活物質含有層は、上記カーボン材料の1種若しくは2種以上を含むことができるし、又は他の導電剤を更に含むこともできる。   As described above, the conductive agent included in the positive electrode active material layer preferably includes a carbon material. Examples of the carbon material include acetylene black, ketjen black, furnace black, graphite, and carbon nanotube. The positive electrode active material-containing layer can contain one or more of the above carbon materials, or can further contain another conductive agent.

また、正極活物質含有層は結着剤を更に含むこともできる。正極活物質層が含むことができる結着剤は、特に限定されない。例えば、結着剤として、スラリー調製用の混合用溶媒によく分散するポリマーを用いることができる。このようなポリマーとしては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン及びポリテトラフルオロエチレンなどが挙げられる。   In addition, the positive electrode active material-containing layer can further contain a binder. The binder that the positive electrode active material layer can contain is not particularly limited. For example, a polymer that is well dispersed in a mixing solvent for slurry preparation can be used as the binder. Examples of such a polymer include polyvinylidene fluoride, hexafluoropropylene, and polytetrafluoroethylene.

正極は、例えば、以下の方法によって作製することができる。まず、少なくとも1種のリチウムニッケル複合酸化物と、任意の他の活物質と、導電剤と、任意の結着剤とを適切な溶媒に投入して、混合物を得る。続いて、得られた混合物を撹拌機に投入する。この攪拌機において、混合物を撹拌して、スラリーを得る。かくして得られたスラリーを、上記正極集電体上に塗布し、これを乾燥させて、次いでプレスすることによって、正極を作製することができる。正極活物質含有層の粒度分布は、例えば、混合物の撹拌の条件、リチウムニッケル複合酸化物の粒径等を調整することにより、先に説明した条件に調整することができる。   The positive electrode can be produced, for example, by the following method. First, at least one lithium nickel composite oxide, any other active material, a conductive agent, and any binder are charged into a suitable solvent to obtain a mixture. Subsequently, the obtained mixture is put into a stirrer. In this stirrer, the mixture is stirred to obtain a slurry. The positive electrode can be produced by applying the slurry thus obtained onto the positive electrode current collector, drying the slurry, and then pressing the slurry. The particle size distribution of the positive electrode active material-containing layer can be adjusted to the conditions described above, for example, by adjusting the conditions for stirring the mixture, the particle diameter of the lithium nickel composite oxide, and the like.

なお、以上のようにして得られたスラリーにおけるリチウムニッケル複合酸化物粒子同士の凝集レベルと導電剤粒子同士の凝集レベルとは、先に説明した方法によって得られる正極活物質含有層についての粒度分布に反映される。   The aggregation level between the lithium nickel composite oxide particles and the aggregation level between the conductive agent particles in the slurry obtained as described above are the particle size distribution of the positive electrode active material-containing layer obtained by the method described above. It is reflected in.

負極は、負極集電体と、この負極集電体上に形成された負極活物質含有層とを備えることができる。負極集電体は、表面に負極活物質含有層が形成されていない部分を含むことができ、この部分は負極リードとして働くことができる。   The negative electrode can include a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector. The negative electrode current collector can include a portion where the negative electrode active material-containing layer is not formed on the surface, and this portion can serve as a negative electrode lead.

負極集電体としては、例えば、アルミニウム、銅などの金属箔を使用することができる。   As the negative electrode current collector, for example, a metal foil such as aluminum or copper can be used.

負極活物質含有層は、例えば、負極活物質と、導電剤と、結着剤とを含むことができる。   The negative electrode active material-containing layer can include, for example, a negative electrode active material, a conductive agent, and a binder.

負極活物質含有層が含むことができる負極活物質は、特に限定されない。例えば、負極活物質としては、黒鉛質材料若しくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)などを挙げることができる。   The negative electrode active material that can be included in the negative electrode active material-containing layer is not particularly limited. For example, as the negative electrode active material, graphite material or carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas phase carbonaceous material, resin fired body, etc.), chalcogen compound (for example, titanium disulfide, Molybdenum disulfide, niobium selenide, etc.), light metals (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium titanium oxide (eg, spinel type lithium titanate), and the like.

負極活物質含有層が含むことができる導電剤及び結着剤は、正極活物質含有層が含むことができるそれらと同様のものを用いることができる。   The conductive agent and the binder that can be included in the negative electrode active material-containing layer can be the same as those that can be included in the positive electrode active material-containing layer.

負極は、例えば、以下の手順により作製することができる。まず、負極活物質と、導電剤と、結着剤とを混合する。かくして得られた混合物を溶媒に投入してスラリーを調製する。このスラリーを負極集電体に塗布し、乾燥させ、次いでプレスする。かくして、負極を作製することができる。負極活物質含有層の密度は、正極活物質含有層の密度と同様にして測定することができる。   The negative electrode can be produced, for example, by the following procedure. First, a negative electrode active material, a conductive agent, and a binder are mixed. The mixture thus obtained is added to a solvent to prepare a slurry. This slurry is applied to the negative electrode current collector, dried, and then pressed. Thus, a negative electrode can be produced. The density of the negative electrode active material-containing layer can be measured in the same manner as the density of the positive electrode active material-containing layer.

正極及び負極は、正極活物質含有層と負極活物質含有層とを間にセパレータを介在させて対向させて、電極群を形成することができる。セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー、セルロースなどを挙げることができる。   The positive electrode and the negative electrode can be formed such that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other with a separator interposed therebetween. The separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.

このようにして形成される電極群の構造は、特に限定されない。例えば、電極体はスタック構造を有することができる。スタック構造は、先に説明した正極及び負極を間にセパレータを挟んで積層した構造を有する。或いは、電極群は捲回構造を有することができる。捲回構造は、先に説明した正極及び負極を間にセパレータを挟んで積層し、かくして得られた積層体を渦巻状に捲回した構造である。   The structure of the electrode group formed in this way is not particularly limited. For example, the electrode body can have a stack structure. The stack structure has a structure in which the positive electrode and the negative electrode described above are stacked with a separator interposed therebetween. Alternatively, the electrode group may have a wound structure. The wound structure is a structure in which the positive electrode and the negative electrode described above are stacked with a separator interposed therebetween, and the stacked body thus obtained is wound in a spiral shape.

非水電解質は、例えば、電極群に含浸され得る。   The nonaqueous electrolyte can be impregnated in the electrode group, for example.

非水電解質は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製することができる。   The non-aqueous electrolyte can be prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent.

非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more.

電解質は、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfonic acid. A lithium salt such as lithium (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more.

電解質の非水溶媒に対する溶解量は、0.5mol/L〜3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。   The amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 mol / L to 3 mol / L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not completely dissolve in the electrolyte.

実施形態に係る非水電解質電池は、上記電極群及び非水電解質を収納するための容器を更に具備することができる。   The nonaqueous electrolyte battery according to the embodiment may further include a container for housing the electrode group and the nonaqueous electrolyte.

容器としては、例えば、アルミニウム、アルミニウム合金、鉄(Fe)、アルミニウム含有ラミネートフィルム、ニッケル(Ni)めっきした鉄、ステンレス(SUS)などを用いることができる。   As the container, for example, aluminum, aluminum alloy, iron (Fe), aluminum-containing laminate film, nickel (Ni) plated iron, stainless steel (SUS), or the like can be used.

また、実施形態に係る非水電解質電池は、上記正極リードに電気的に接続された正極集電タブ、及び、上記負極リードに電気的に接続された負極集電タブを更に具備することもできる。正極集電タブ及び負極集電タブは、上記容器の外に引き出されて、正極端子及び負極端子として働くこともできる。或いは、正極集電タブ及び負極集電タブは、正極端子及び負極端子のそれぞれに接続することもできる。   In addition, the non-aqueous electrolyte battery according to the embodiment may further include a positive electrode current collecting tab electrically connected to the positive electrode lead and a negative electrode current collecting tab electrically connected to the negative electrode lead. . The positive electrode current collecting tab and the negative electrode current collecting tab can be pulled out of the container and serve as a positive electrode terminal and a negative electrode terminal. Or a positive electrode current collection tab and a negative electrode current collection tab can also be connected to each of a positive electrode terminal and a negative electrode terminal.

正極集電タブ、負極集電タブ、正極端子及び負極端子は、例えば、アルミニウムもしくはアルミニウム合金から形成することが望ましい。   The positive electrode current collecting tab, the negative electrode current collecting tab, the positive electrode terminal, and the negative electrode terminal are preferably formed from, for example, aluminum or an aluminum alloy.

次に、図1〜図3を参照しながら、実施形態に係る非水電解質電池の一例を更に詳細に説明する。   Next, an example of the nonaqueous electrolyte battery according to the embodiment will be described in more detail with reference to FIGS.

図1は、実施形態に係る一例の非水電解質電池の概略切欠き斜視図である。図2は、図1に示すA部の概略断面図である。図3は、実施形態に係る一例の非水電解質電池が具備する正極の概略平面図である。   FIG. 1 is a schematic cutaway perspective view of an example nonaqueous electrolyte battery according to an embodiment. FIG. 2 is a schematic cross-sectional view of a part A shown in FIG. FIG. 3 is a schematic plan view of a positive electrode included in an example nonaqueous electrolyte battery according to the embodiment.

図1〜図3に示す第1の例の非水電解質電池1は、図1及び図2に示す電極群2と、図1及び図2に示す容器3と、図1及び図2に示す正極集電タブ4と、図1に示す負極集電タブ5とを具備している。   A non-aqueous electrolyte battery 1 of the first example shown in FIGS. 1 to 3 includes an electrode group 2 shown in FIGS. 1 and 2, a container 3 shown in FIGS. 1 and 2, and a positive electrode shown in FIGS. A current collecting tab 4 and a negative electrode current collecting tab 5 shown in FIG. 1 are provided.

図1及び図2に示す電極群2は、複数の正極6と、複数の負極7と、1枚のセパレータ8とを備える。   The electrode group 2 shown in FIGS. 1 and 2 includes a plurality of positive electrodes 6, a plurality of negative electrodes 7, and a single separator 8.

正極6は、図2及び図3に示すように、正極集電体61と、この正極集電体61の両面に形成された正極活物質含有層62とを備えている。また、図2及び図3に示すように、正極集電体61は表面に正極活物質含有層62が形成されていない部分63を含んでおり、この部分63は正極リードとして働く。図3に示すように、正極リード63は、正極活物質含有層62よりも幅の狭い狭小部となっている。   As shown in FIGS. 2 and 3, the positive electrode 6 includes a positive electrode current collector 61 and a positive electrode active material-containing layer 62 formed on both surfaces of the positive electrode current collector 61. As shown in FIGS. 2 and 3, the positive electrode current collector 61 includes a portion 63 on the surface where the positive electrode active material-containing layer 62 is not formed, and this portion 63 serves as a positive electrode lead. As shown in FIG. 3, the positive electrode lead 63 is a narrow portion that is narrower than the positive electrode active material-containing layer 62.

負極7は、図2に示すように、負極集電体71と、この負極集電体71の両面に形成された負極活物質含有層72とを備えている。また、図示はしていないが、負極集電体71は表面に負極活物質含有層72が形成されていない部分を含んでおり、この部分は負極リードとして働く。   As shown in FIG. 2, the negative electrode 7 includes a negative electrode current collector 71 and negative electrode active material-containing layers 72 formed on both surfaces of the negative electrode current collector 71. Although not shown, the negative electrode current collector 71 includes a portion where the negative electrode active material-containing layer 72 is not formed on the surface, and this portion serves as a negative electrode lead.

図2に示すように、セパレータ8は九十九折にされている。九十九折にされたセパレータ8の互いに対向する面によって規定される空間には、正極6又は負極7がそれぞれ配置されている。それにより、正極6と負極7とは、図2に示すように、正極活物質含有層62と負極活物質含有層72とがセパレータ8を間に介在させて対向するように積層されている。かくして、電極群2が形成されている。   As shown in FIG. 2, the separator 8 has ninety nine folds. The positive electrode 6 or the negative electrode 7 is arranged in the space defined by the mutually facing surfaces of the separator 8 that is folded into ninety-nine folds. Thereby, as shown in FIG. 2, the positive electrode 6 and the negative electrode 7 are laminated so that the positive electrode active material-containing layer 62 and the negative electrode active material-containing layer 72 are opposed to each other with the separator 8 interposed therebetween. Thus, the electrode group 2 is formed.

電極群2の正極リード63は、図2に示すように、電極群2から延出している。これらの正極リード63は、図2に示すように、1つにまとめられて、正極集電タブ4に接続されている。また、図示はしていないが、電極群2の負極リードも電極群2から延出している。これらの負極リードは、図示していないが、1つにまとめられて、図1に示す負極集電タブ5に接続されている。   The positive electrode lead 63 of the electrode group 2 extends from the electrode group 2 as shown in FIG. As shown in FIG. 2, these positive electrode leads 63 are combined into one and connected to the positive electrode current collecting tab 4. Although not shown, the negative electrode lead of the electrode group 2 also extends from the electrode group 2. Although not shown, these negative electrode leads are combined into one and connected to the negative electrode current collecting tab 5 shown in FIG.

このような電極群2は、図1及び図2に示すように、容器3に収納されている。   Such an electrode group 2 is accommodated in a container 3 as shown in FIGS. 1 and 2.

容器3は、アルミニウム箔31とその両面に形成された樹脂フィルム32及び33とからなるアルミニウム含有ラミネートフィルムから形成されている。容器3を形成するアルミニウム含有ラミネートフィルムは、折り曲げ部3dを折り目として、樹脂フィルム32が内側を向くように折り曲げられて、電極群2を収納している。また、容器3は、図1及び図2に示すように、その周縁部3bにおいて、正極集電タブ4を挟み込んでいる。同様に、容器3は、周縁部3cにおいて、負極集電タブ5を挟み込んでいる。それにより、正極集電タブ4及び負極集電タブ5は、容器3から、互いに反対の向きに延出している。   The container 3 is formed of an aluminum-containing laminate film composed of an aluminum foil 31 and resin films 32 and 33 formed on both surfaces thereof. The aluminum-containing laminate film forming the container 3 accommodates the electrode group 2 by being bent so that the resin film 32 faces inward with the bent portion 3d as a fold. Moreover, as shown in FIG.1 and FIG.2, the container 3 has inserted | pinched the positive electrode current collection tab 4 in the peripheral part 3b. Similarly, the container 3 sandwiches the negative electrode current collecting tab 5 at the peripheral edge 3c. Accordingly, the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 extend from the container 3 in directions opposite to each other.

容器3は、正極集電タブ4及び負極集電タブ5を挟み込んだ部分を除くその周縁部3a、3b及び3cが、互いに対向した樹脂フィルム32の熱融着によりヒートシールされている。   In the container 3, its peripheral portions 3 a, 3 b, and 3 c except for a portion sandwiching the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 are heat sealed by heat-sealing resin films 32 facing each other.

また、非水電解質電池1では、正極集電タブ4と樹脂フィルム32との接合強度を向上させるために、図2に示すように、正極集電タブ4と樹脂フィルム32との間に絶縁フィルム9が設けられている。また、周縁部3bにおいて、正極集電タブ4と絶縁フィルム9とが熱融着によりヒートシールされており、樹脂フィルム32と絶縁フィルム9とが熱融着によりヒートシールされている。同様に、図示していないが、負極集電タブ5と樹脂フィルム32との間にも絶縁フィルム9が設けられている。また、周縁部3cにおいて、負極集電タブ5と絶縁フィルム9とが熱融着によりヒートシールされており、樹脂フィルム32と絶縁フィルム9とが熱融着によりヒートシールされている。すなわち、図1〜図3に示す非水電解質電池1では、容器3の周縁部3a、3b及び3cの全てが熱シールされている。   In the nonaqueous electrolyte battery 1, in order to improve the bonding strength between the positive electrode current collector tab 4 and the resin film 32, an insulating film is provided between the positive electrode current collector tab 4 and the resin film 32 as shown in FIG. 2. 9 is provided. Further, at the peripheral edge 3b, the positive electrode current collecting tab 4 and the insulating film 9 are heat-sealed by thermal fusion, and the resin film 32 and the insulating film 9 are heat-sealed by thermal fusion. Similarly, although not shown, an insulating film 9 is also provided between the negative electrode current collecting tab 5 and the resin film 32. Further, at the peripheral edge portion 3c, the negative electrode current collecting tab 5 and the insulating film 9 are heat sealed by heat fusion, and the resin film 32 and the insulating film 9 are heat sealed by heat fusion. That is, in the nonaqueous electrolyte battery 1 shown in FIGS. 1 to 3, all the peripheral portions 3 a, 3 b and 3 c of the container 3 are heat-sealed.

容器3は、図示していない非水電解質を更に収納している。非水電解質は、電極群2に含浸されている。   The container 3 further stores a nonaqueous electrolyte (not shown). The nonaqueous electrolyte is impregnated in the electrode group 2.

図1〜図3に示す非水電解質電池1では、図2に示すように、電極群2の最下層に複数の正極リード63をまとめている。同様に、図示していないが、電極群2の最下層に複数の負極リードをまとめている。しかしながら、例えば図4に示すように、電極群2の中段付近に複数の正極リード63及び複数の負極リード73を、それぞれ1つにまとめて、正極集電タブ4及び負極集電タブ5のそれぞれに接続することができる。   In the nonaqueous electrolyte battery 1 shown in FIGS. 1 to 3, a plurality of positive electrode leads 63 are collected in the lowermost layer of the electrode group 2 as shown in FIG. 2. Similarly, although not shown, a plurality of negative electrode leads are collected in the lowermost layer of the electrode group 2. However, as shown in FIG. 4, for example, a plurality of positive electrode leads 63 and a plurality of negative electrode leads 73 are combined in the vicinity of the middle stage of the electrode group 2, and each of the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 is combined. Can be connected to.

以上に説明した実施形態によると非水電解質電池が提供される。この非水電解質電池の少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含んだ正極活物質含有層の粒度分布は、先に説明した条件を満たしている。そのおかげで、実施形態に係る非水電解質電池は、良好な充放電サイクル特性を示すことができる。   According to the embodiment described above, a nonaqueous electrolyte battery is provided. The particle size distribution of the positive electrode active material-containing layer containing at least one lithium nickel composite oxide and a conductive agent of the nonaqueous electrolyte battery satisfies the conditions described above. Thanks to this, the nonaqueous electrolyte battery according to the embodiment can exhibit good charge / discharge cycle characteristics.

(実施例)
以下に実施例を説明する。
(Example)
Examples will be described below.

[実施例1]
実施例1では、以下の手順により、図1〜図3に示す非水電解質電池1を作製した。
[Example 1]
In Example 1, the nonaqueous electrolyte battery 1 shown in FIGS. 1 to 3 was produced by the following procedure.

[正極6の作製]
正極活物質として平均粒子径が6μmのLiNi7/10Co2/10Mn1/102を用いた。この活物質とアセチレンブラックとグラファイトとポリフッ化ビニリデンとを、以下の手順により100:8:5:3の割合で混合した。まず、ヘンシェルミキサーを使用し、活物質とアセチレンブラックとグラファイトとを乾式混合した。乾式混合した後、得られた乾式混合物にポリフッ化ビニリデン及びN−メチル−2−ピロリドンを投入し、プラネタリーミキサーにて湿式混合した。このようにして、上記割合で各材料を含んだ混合物を作製した。
[Preparation of Positive Electrode 6]
LiNi 7/10 Co 2/10 Mn 1/10 O 2 having an average particle diameter of 6 μm was used as the positive electrode active material. This active material, acetylene black, graphite, and polyvinylidene fluoride were mixed at a ratio of 100: 8: 5: 3 by the following procedure. First, an active material, acetylene black, and graphite were dry-mixed using a Henschel mixer. After dry mixing, polyvinylidene fluoride and N-methyl-2-pyrrolidone were added to the obtained dry mixture and wet-mixed with a planetary mixer. In this way, a mixture containing each material at the above ratio was prepared.

続いて、作製した混合物を自転・公転ミキサーであるTHINKY製錬太郎(ARE−250)に投入し、回転数を2000rpmとして30分間攪拌を行った。続いて、混合物を錬太郎から分散機であるアイメックス製4筒式サンドグラインダーに移し、直径0.7から1.0mmのガラスビーズを充填し、回転数を2000rpmとして30分間更に撹拌した。   Subsequently, the prepared mixture was charged into a THINKY Smelting Taro (ARE-250), which is a rotation / revolution mixer, and stirred at a rotation speed of 2000 rpm for 30 minutes. Subsequently, the mixture was transferred from Ryotaro to an imex 4-cylinder sand grinder as a disperser, filled with glass beads having a diameter of 0.7 to 1.0 mm, and further stirred for 30 minutes at a rotation speed of 2000 rpm.

撹拌後に得られた正極スラリーを、塗工装置で、単位面積当たりの塗布量が110g/m2となるように、厚さ20μmのアルミニウム箔61の両面に塗布した。この際、アルミニウム箔61に、スラリーを塗布しない部分63を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(正極活物質含有層62の密度)が2.6g/cm3となるように圧延した。最後に、スラリーを塗布しなかった部分63を打ち抜いて図3に示す正極リードとしての狭小部63を成形した。かくして、複数の正極6を作製した。 The positive electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil 61 having a thickness of 20 μm with a coating apparatus so that the coating amount per unit area was 110 g / m 2 . At this time, a portion 63 where the slurry was not applied was left on the aluminum foil 61. The obtained coating film was dried, and then rolled with a roll press so that the electrode density (density of the positive electrode active material-containing layer 62) was 2.6 g / cm 3 . Finally, the portion 63 where the slurry was not applied was punched out to form a narrow portion 63 as a positive electrode lead shown in FIG. Thus, a plurality of positive electrodes 6 were produced.

[負極7の作製]
負極活物質として、チタン酸リチウムLi4Ti512を用いた。この活物質とグラファイトとポリフッ化ビニリデンとを100:9:4の割合で混合した。続いて、この混合物を、N−メチル−2−ピロリドンを溶媒に用いて混練して混合物を得た。続いてこの混合物を攪拌することにより、負極スラリーを作製した。得られた負極スラリーを、塗工装置で、単位面積当たりの塗布量が110g/m2となるように、厚さ12μmのアルミニウム箔71に塗布した。この際、アルミニウム箔71に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(負極活物質含有層72の密度)が2.4g/cm3となるように圧延した。正極6と同じく、スラリーを塗布しなかった部分を打ち抜いて、図3に示す正極6と同様の負極リードとしての狭小部を形成した。かくして、複数の負極7を作製した。
[Preparation of negative electrode 7]
Lithium titanate Li 4 Ti 5 O 12 was used as the negative electrode active material. This active material, graphite, and polyvinylidene fluoride were mixed at a ratio of 100: 9: 4. Subsequently, this mixture was kneaded using N-methyl-2-pyrrolidone as a solvent to obtain a mixture. Subsequently, the mixture was stirred to prepare a negative electrode slurry. The obtained negative electrode slurry was applied to an aluminum foil 71 having a thickness of 12 μm with a coating apparatus so that the coating amount per unit area was 110 g / m 2 . At this time, a portion where the slurry was not applied was left on the aluminum foil 71. The obtained coating film was dried, and then rolled with a roll press so that the electrode density (density of the negative electrode active material-containing layer 72) was 2.4 g / cm 3 . As with the positive electrode 6, the portion where the slurry was not applied was punched out to form a narrow portion as a negative electrode lead similar to the positive electrode 6 shown in FIG. 3. Thus, a plurality of negative electrodes 7 were produced.

[電極群2の作製]
厚さが30μmの帯状の微多孔膜セパレータ8を準備した。このセパレータ8を九十九折にし、図2を参照しながら説明したように、正極6と負極7とセパレータ8とを積層した。この際、複数の正極リード63と複数の負極リードが積層体から互いに反対方向に延出するようにした。最後に、得られた積層体に対して図示していない巻き止めテープを貼り、電極群2とした。
[Production of electrode group 2]
A strip-shaped microporous membrane separator 8 having a thickness of 30 μm was prepared. The separator 8 was made into ninety-nine folds, and the positive electrode 6, the negative electrode 7, and the separator 8 were laminated as described with reference to FIG. At this time, the plurality of positive electrode leads 63 and the plurality of negative electrode leads were extended in opposite directions from the laminated body. Finally, a winding tape (not shown) was applied to the obtained laminate to form an electrode group 2.

[電極2への正極集電タブ4及び負極集電タブ5の接続]
正極集電タブ4と負極集電タブ5とをアルミニウムを用いて作製した。続いて、複数の正極6の正極リード63を1つにまとめて、正極集電タブ4に接続した。同様に、複数の負極7の負極リードを1つにまとめて、負極集電タブ5に接続した。このようにして、正極集電タブ4及び負極集電タブ5を、正極6と負極7とからの集電をそれぞれ簡便に行える様、電極群2から互いに反対の向きに延出するように設置した。
[Connection of Positive Current Collection Tab 4 and Negative Current Collection Tab 5 to Electrode 2]
The positive electrode current collection tab 4 and the negative electrode current collection tab 5 were produced using aluminum. Subsequently, the positive leads 63 of the plurality of positive electrodes 6 were combined and connected to the positive electrode current collecting tab 4. Similarly, the negative electrode leads of the plurality of negative electrodes 7 were combined into one and connected to the negative electrode current collecting tab 5. In this way, the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 are installed so as to extend in the opposite directions from the electrode group 2 so that current collection from the positive electrode 6 and the negative electrode 7 can be easily performed. did.

[容器3の作製]
容器3としてアルミニウム含有ラミネートフィルムを用いた。まず、アルミニウム含有ラミネートフィルム3を上記電極群2が納まる形状に成型した。このように成形したアルミニウム含有ラミネートフィルム3内に、図1及び図2を参照しながら先に説明したように電極群2を収納した。この際、図2に示すように、容器3の周縁部3bにおいて、樹脂フィルム32によって正極集電タブ4を挟み込んだ。同様に、図2には示していないが、容器3の周縁部3cにおいて、樹脂フィルム32によって負極集電タブ5を挟み込んだ。正極集電タブ4と樹脂フィルム32との間、及び、負極集電タブ5と樹脂フィルム32との間には、絶縁フィルム9を配した。
[Preparation of container 3]
An aluminum-containing laminate film was used as the container 3. First, the aluminum-containing laminate film 3 was molded into a shape that can accommodate the electrode group 2. The electrode group 2 was housed in the aluminum-containing laminate film 3 thus formed as described above with reference to FIGS. 1 and 2. At this time, as shown in FIG. 2, the positive electrode current collecting tab 4 was sandwiched by the resin film 32 at the peripheral edge 3 b of the container 3. Similarly, although not shown in FIG. 2, the negative electrode current collecting tab 5 is sandwiched between the resin film 32 at the peripheral edge 3 c of the container 3. The insulating film 9 was disposed between the positive electrode current collecting tab 4 and the resin film 32 and between the negative electrode current collecting tab 5 and the resin film 32.

続いて、周縁部3a、3b及び3cにおいて対向した樹脂フィルム32を一部を残して熱融着して固定した。同時に、周縁部3bにおいて、樹脂フィルム32とこれに対向した絶縁フィルム9とを熱融着して固定し、且つ正極集電タブ4とこれに対向した絶縁フィルム9とを熱融着して固定した。同様に、周縁部3cにおいて、樹脂フィルム32とこれに対向した絶縁フィルム9とを熱融着して固定し、且つ負極集電タブ5とこれに対向した絶縁フィルム9とを熱融着して固定した。かくして注液前セルを作製した。   Subsequently, the resin film 32 opposed at the peripheral edge portions 3a, 3b and 3c was fixed by heat fusion, leaving a part. At the same time, at the peripheral edge 3b, the resin film 32 and the insulating film 9 opposed thereto are thermally fused and fixed, and the positive electrode current collecting tab 4 and the insulating film 9 opposed thereto are thermally fused and fixed. did. Similarly, at the peripheral edge portion 3c, the resin film 32 and the insulating film 9 facing the resin film 32 are fixed by thermal fusion, and the negative electrode current collecting tab 5 and the insulating film 9 opposed thereto are thermally fused. Fixed. Thus, a cell before injection was prepared.

[非水電解質の注液]
非水電解質には、非水溶媒としてエチレンカーボネートとジメチルカーボネートとを1:1で混合したものを用い、電解質として2mol/lの6フッ化リン酸リチウムを用いた。この非水電解質を先に説明した注液前セルに注入した。非水電解質の注液は、容器3の周縁部のうち熱融着させずに残しておいた部分を介して行った。
[Nonaqueous electrolyte injection]
The non-aqueous electrolyte used was a mixture of ethylene carbonate and dimethyl carbonate 1: 1 as the non-aqueous solvent, and 2 mol / l lithium hexafluorophosphate as the electrolyte. This non-aqueous electrolyte was injected into the pre-injection cell described above. The non-aqueous electrolyte was injected through the portion of the peripheral portion of the container 3 that was left without being thermally fused.

[非水電解質電池1の作製]
最後に、容器3の周縁部のうち熱融着させずに残しておいた部分を熱融着させ、非水電解質電池1を作製した。
[Preparation of Nonaqueous Electrolyte Battery 1]
Finally, the portion of the peripheral portion of the container 3 that was left without being heat-sealed was heat-sealed to produce the nonaqueous electrolyte battery 1.

[評価]
このようにして作製した実施例1の非水電解質電池1の正極活物質含有層62の充放電サイクル特性と粒度分布とを以下の手順により測定した。
[Evaluation]
The charge / discharge cycle characteristics and particle size distribution of the positive electrode active material-containing layer 62 of the nonaqueous electrolyte battery 1 of Example 1 produced in this manner were measured by the following procedure.

(充放電サイクル特性)
実施例1の非水電解質電池1に対して、60℃の環境下で充放電を300回繰り返して行った。この際、充電及び放電共に2Cの電流値で行った。1サイクル(1回の充放電)目の容量と、300サイクル目の容量とを測定した。
(Charge / discharge cycle characteristics)
The nonaqueous electrolyte battery 1 of Example 1 was repeatedly charged and discharged 300 times in an environment of 60 ° C. At this time, both charging and discharging were performed at a current value of 2C. The capacity at the first cycle (one charge / discharge) and the capacity at the 300th cycle were measured.

かくして得られた300サイクル目の容量を1サイクル目の容量で割って得られた値を300サイクル後の容量維持率とした。   A value obtained by dividing the capacity at the 300th cycle thus obtained by the capacity at the first cycle was defined as a capacity retention ratio after 300 cycles.

実施例1の非水電解質電池1の300サイクル後の容量維持率は90%であった。   The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery 1 of Example 1 was 90%.

(正極活物質含有層62の粒度分布測定)
実施例1の非水電解質電池1について、レーザー回折散乱式の粒子径及び粒度分布測定装置において、先に説明した方法を用いて、粒度分布の測定を行った。得られた粒度分布を図5において実線で示す。
(Measurement of particle size distribution of positive electrode active material-containing layer 62)
For the nonaqueous electrolyte battery 1 of Example 1, the particle size distribution was measured using the laser diffraction scattering type particle diameter and particle size distribution measuring apparatus using the method described above. The obtained particle size distribution is shown by a solid line in FIG.

実施例1の非水電解質電池1の正極活物質含有層62の粒度分布において、平均粒子径d50は3.7μmであり、粒子径d10は1.00μmであり、最大粒子径は14.5μmであり、X=(d50−d10)/d50で表されるXの値は0.73であった。 In the particle size distribution of the positive electrode active material-containing layer 62 of the nonaqueous electrolyte battery 1 of Example 1, the average particle size d 50 is 3.7 μm, the particle size d 10 is 1.00 μm, and the maximum particle size is 14. The value of X represented by X = (d 50 −d 10 ) / d 50 was 0.73.

[実施例2]
実施例2では、サンドグラインダーの回転数を1000rpmとしたこと以外は、実施例1と同様の手順で非水電解質電池1を作製した。
[Example 2]
In Example 2, the nonaqueous electrolyte battery 1 was produced in the same procedure as in Example 1 except that the rotational speed of the sand grinder was 1000 rpm.

実施例2の非水電解質電池1について、実施例1と同様に、充放電サイクル特性及び粒度分布を評価した。   For the nonaqueous electrolyte battery 1 of Example 2, the charge / discharge cycle characteristics and the particle size distribution were evaluated in the same manner as in Example 1.

実施例2の非水電解質電池1の300サイクル後の容量維持率は85%であった。また、実施例2の非水電解質電池1についての粒度分布において、平均粒子径d50は3.9μmであり、粒子径d10は1.37μmであり、最大粒子径は15.4μmであり、Xの値は0.65であった。 The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery 1 of Example 2 was 85%. In the particle size distribution for the nonaqueous electrolyte battery 1 of Example 2, the average particle size d 50 is 3.9 μm, the particle size d 10 is 1.37 μm, and the maximum particle size is 15.4 μm. The value of X was 0.65.

[実施例3]
実施例3では、正極活物質として平均粒子径が5μmであるLiNi7/10Co2/10Mn1/102を用いたこと以外は、実施例1と同様の手順で非水電解質電池1を作製した。
[Example 3]
In Example 3, the nonaqueous electrolyte battery 1 was prepared in the same procedure as in Example 1 except that LiNi 7/10 Co 2/10 Mn 1/10 O 2 having an average particle diameter of 5 μm was used as the positive electrode active material. Was made.

実施例3の非水電解質電池1について、実施例1と同様に、充放電サイクル特性及び粒度分布を評価した。   For the nonaqueous electrolyte battery 1 of Example 3, the charge / discharge cycle characteristics and the particle size distribution were evaluated in the same manner as in Example 1.

実施例3の非水電解質電池1の300サイクル後の容量維持率は94%であった。また、実施例3の非水電解質電池1についての粒度分布において、平均粒子径d50は3.0μmであり、粒子径d10は0.90μmであり、最大粒子径は13.1μmであり、Xの値は0.70であった。 The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery 1 of Example 3 was 94%. In the particle size distribution of the nonaqueous electrolyte battery 1 of Example 3, the average particle size d 50 is 3.0 μm, the particle size d 10 is 0.90 μm, and the maximum particle size is 13.1 μm. The value of X was 0.70.

[実施例4]
実施例4では、正極活物質として平均粒子径が5μmであるLiNi7/10Co2/10Mn1/102を用いたこと、及び、サンドグラインダーの回転数を1000rpmとしたこと以外は、実施例1と同様の手順で非水電解質電池1を作製した。
[Example 4]
In Example 4, except that LiNi 7/10 Co 2/10 Mn 1/10 O 2 having an average particle diameter of 5 μm was used as the positive electrode active material, and the rotational speed of the sand grinder was 1000 rpm, A non-aqueous electrolyte battery 1 was produced in the same procedure as in Example 1.

実施例4の非水電解質電池1について、実施例1と同様に、充放電サイクル特性及び粒度分布を評価した。   For the nonaqueous electrolyte battery 1 of Example 4, the charge / discharge cycle characteristics and the particle size distribution were evaluated in the same manner as in Example 1.

実施例4の非水電解質電池1の300サイクル後の容量維持率は89%であった。また、実施例4の非水電解質電池1についての粒度分布において、平均粒子径d50は3.6μmであり、粒子径d10は1.51μmであり、最大粒子径は15.6μmであり、Xの値は0.58であった。 The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery 1 of Example 4 was 89%. Further, in the particle size distribution for the nonaqueous electrolyte battery 1 of Example 4, the average particle diameter d 50 is 3.6 μm, the particle diameter d 10 is 1.51 μm, and the maximum particle diameter is 15.6 μm. The value of X was 0.58.

[比較例1]
比較例1では、サンドグラインダーによるスラリーの攪拌を省略した以外は、実施例1と同様の手順で非水電解質電池を作製した。
[Comparative Example 1]
In Comparative Example 1, a nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the stirring of the slurry by the sand grinder was omitted.

比較例1の非水電解質電池について、実施例1と同様に、充放電サイクル特性及び粒度分布を評価した。   For the nonaqueous electrolyte battery of Comparative Example 1, the charge / discharge cycle characteristics and the particle size distribution were evaluated in the same manner as in Example 1.

比較例1の非水電解質電池1について得られた粒度分布を図5において破線で示す。   The particle size distribution obtained for the nonaqueous electrolyte battery 1 of Comparative Example 1 is shown by a broken line in FIG.

比較例1の非水電解質電池の300サイクル後の容量維持率は58%であった。また、比較例1の非水電解質電池についての粒度分布において、平均粒子径d50は4.5μmであり、粒子径d10は2.97μmであり、最大粒子径は14.3μmであり、Xの値は0.34であった。 The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery of Comparative Example 1 was 58%. In the particle size distribution of the nonaqueous electrolyte battery of Comparative Example 1, the average particle diameter d 50 is 4.5 μm, the particle diameter d 10 is 2.97 μm, the maximum particle diameter is 14.3 μm, The value of was 0.34.

[比較例2]
比較例2では、正極活物質として平均粒子径が10μmであるLiNi7/10 Co2/10Mn1/102を用いたこと以外は、実施例1と同様の手順で非水電解質電池を作製した。
[Comparative Example 2]
In Comparative Example 2, a nonaqueous electrolyte battery was prepared in the same procedure as in Example 1 except that LiNi 7/10 Co 2/10 Mn 1/10 O 2 having an average particle diameter of 10 μm was used as the positive electrode active material. Produced.

比較例2の非水電解質電池について、実施例1と同様に、充放電サイクル特性及び粒度分布を評価した。   For the nonaqueous electrolyte battery of Comparative Example 2, the charge / discharge cycle characteristics and the particle size distribution were evaluated in the same manner as in Example 1.

比較例2の非水電解質電池の300サイクル後の容量維持率は70%であった。また、比較例2の非水電解質電池についての粒度分布において、平均粒子径d50は7.0μmであり、粒子径d10は1.54μmであり、最大粒子径は13.8μmであり、Xの値は0.78であった。 The capacity retention rate after 300 cycles of the nonaqueous electrolyte battery of Comparative Example 2 was 70%. In the particle size distribution of the nonaqueous electrolyte battery of Comparative Example 2, the average particle diameter d 50 is 7.0 μm, the particle diameter d 10 is 1.54 μm, the maximum particle diameter is 13.8 μm, and X The value of was 0.78.

実施例1〜4並びに比較例1及び2の結果を、以下の表1及び2にまとめる。
The results of Examples 1 to 4 and Comparative Examples 1 and 2 are summarized in Tables 1 and 2 below.

[結果]
表1及び2に示したように、実施例1〜4の非水電解質電池1は、比較例1及び比較例2の非水電解質電池よりも、300サイクル後において優れた容量維持率を示した。これは、実施例1〜4の非水電解質電池1の正極活物質含有層62は、レーザー回折散乱法により得られる粒度分布において、平均粒子径d50が1μm以上5.5μm以下の範囲内にあり、最大粒子径が10μm以上100μm以下の範囲内にあり、粒子径d10が0.5μm以上3μm以下の範囲内にあり、X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にあったため、小粒子の導電剤の凝集が少なく、正極活物質であるリチウムニッケル複合酸化物の粒子が小粒子の導電剤によりコーティングされていたおかげで、充放電サイクルに伴う副反応を抑制することができたと共に、優れた導電パスを有することができたからである。
[result]
As shown in Tables 1 and 2, the non-aqueous electrolyte batteries 1 of Examples 1 to 4 exhibited a capacity retention rate superior after 300 cycles as compared with the non-aqueous electrolyte batteries of Comparative Examples 1 and 2. . This is because the positive electrode active material-containing layer 62 of the nonaqueous electrolyte battery 1 of Examples 1 to 4 has an average particle diameter d 50 in the range of 1 μm to 5.5 μm in the particle size distribution obtained by the laser diffraction scattering method. Yes, the maximum particle diameter is in the range of 10 μm to 100 μm, the particle diameter d 10 is in the range of 0.5 μm to 3 μm, and X = (d 50 −d 10 ) / d 50 Was within the range of 0.5 or more and less than 1, because the aggregation of the small-particle conductive agent was small, and the particles of the lithium nickel composite oxide as the positive electrode active material were coated with the small-particle conductive agent. This is because the side reaction accompanying the charge / discharge cycle can be suppressed and an excellent conductive path can be provided.

特に、実施例3の非水電解質電池1は、実施例1、2及び4よりも優れたサイクル特性を示した。これは、正極活物質含有層62の粒度分布における平均粒子径d50をより小さくすることで、導電剤がリチウムニッケル複合酸化物の粒子をコーティングする効果がより顕著に得られ、副反応を更に抑えることができたからである。 In particular, the nonaqueous electrolyte battery 1 of Example 3 exhibited cycle characteristics superior to those of Examples 1, 2, and 4. This is because the effect that the conductive agent coats the particles of the lithium nickel composite oxide can be obtained more significantly by making the average particle diameter d 50 in the particle size distribution of the positive electrode active material-containing layer 62 smaller, and the side reaction can be further increased. It was because it was able to be suppressed.

なお、実施例1及び実施例2の粒度分布の結果から、サンドグラインダーの回転数を下げると平均粒子径が大きくなり、X値が小さくなることが分かった。また、実施例3及び実施例4の粒度分布から、攪拌機の回転数を下げるとXの値が小さくなることが分かった。それでも、実施例2及び4の非水電解質電池1は、Xの値が0.5以上1未満であったため、優れたサイクル特性を示すことができた。   In addition, from the result of the particle size distribution of Example 1 and Example 2, it was found that when the rotational speed of the sand grinder was decreased, the average particle size was increased and the X value was decreased. Moreover, it turned out from the particle size distribution of Example 3 and Example 4 that the value of X becomes small when the rotation speed of the stirrer is lowered. Nevertheless, since the nonaqueous electrolyte battery 1 of Examples 2 and 4 had an X value of 0.5 or more and less than 1, it was possible to show excellent cycle characteristics.

一方、比較例1及び2の非水電解質電池は、300サイクル後の容量維持率が、実施例1〜4の非水電解質電池と比較して劣っていた。   On the other hand, the nonaqueous electrolyte batteries of Comparative Examples 1 and 2 were inferior in capacity retention rate after 300 cycles as compared with the nonaqueous electrolyte batteries of Examples 1 to 4.

特に、Xの値が0.34であった比較例1の非水電解質電池は、300サイクル後の容量維持率が実施例1〜4に比べて極めて劣っていた。これは、比較例1では、攪拌工程を省略したために、導電剤の粒子が不均一に凝集したからであると考えられる。このことは、図5において、実線で示す実施例1の粒度分布が小粒子径領域に広がるなだらかでブロードなピークを有しているのに対し、破線で示す比較例1の粒度分布は小粒子径領域にこのようなブロードなピークを有していないことから分かる。このように、比較例1の非水電解質電池では、導電剤の粒子が不均一に凝集したため、リチウムニッケル複合酸化物の粒子をコーティングする効果が得られず、充放電サイクルに伴う副反応により劣化してしまい、その結果、実施例1〜4の非水電解質電池1よりもサイクル特性が極めて劣っていたと考えられる。   In particular, the non-aqueous electrolyte battery of Comparative Example 1 in which the value of X was 0.34 was extremely inferior to Examples 1 to 4 in capacity retention after 300 cycles. This is presumably because, in Comparative Example 1, since the stirring step was omitted, the conductive agent particles aggregated non-uniformly. In FIG. 5, the particle size distribution of Example 1 indicated by a solid line has a gentle and broad peak extending in a small particle diameter region, whereas the particle size distribution of Comparative Example 1 indicated by a broken line is a small particle. It can be seen from the absence of such a broad peak in the radial region. As described above, in the nonaqueous electrolyte battery of Comparative Example 1, the conductive agent particles aggregated non-uniformly, so that the effect of coating the lithium nickel composite oxide particles cannot be obtained and deteriorated due to a side reaction accompanying the charge / discharge cycle. As a result, it is considered that the cycle characteristics were extremely inferior to those of the nonaqueous electrolyte batteries 1 of Examples 1 to 4.

また、比較例2の非水電解質電池は、Xの値は0.78であったが、正極活物質含有層62の粒径分布の平均粒径d50が7.0μmであり、5.5μmよりも大きかった。これは、比較例2の非水電解質電池では、リチウムニッケル複合酸化物の粒子が十分に分散されておらず、凝集していたと考えられる。そのせいで、比較例2の非水電解質電池は、充放電サイクルに伴う副反応により劣化してしまい、その結果、実施例1〜4の非水電解質電池1よりもサイクル特性が劣っていたと考えられる。 In the nonaqueous electrolyte battery of Comparative Example 2, the value of X was 0.78, but the average particle size d 50 of the particle size distribution of the positive electrode active material-containing layer 62 was 7.0 μm, which was 5.5 μm. It was bigger than. This is considered that in the nonaqueous electrolyte battery of Comparative Example 2, the lithium nickel composite oxide particles were not sufficiently dispersed and aggregated. Therefore, the nonaqueous electrolyte battery of Comparative Example 2 was deteriorated due to side reactions accompanying the charge / discharge cycle, and as a result, it was considered that the cycle characteristics were inferior to the nonaqueous electrolyte battery 1 of Examples 1 to 4. It is done.

なお、上記実施例では、錬太郎(ARE−250)を用いた。しかしながら、錬太郎の代わりにこれと同等の性能を有するミキサーを用いても、実施形態において説明した粒度分布を有する正極を製造することができる。   In the above examples, Rentaro (ARE-250) was used. However, the positive electrode having the particle size distribution described in the embodiment can be manufactured even if a mixer having equivalent performance is used instead of Rintaro.

すなわち、以上に説明した少なくとも1つの実施形態及び実施例に係る非水電解質電池では、X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にあるため、少なくとも1種のリチウムニッケル複合酸化物が小粒子の導電剤によりコーティングされている。そのおかげで、実施形態に係る非水電解質電池は、良好な充放電サイクル特性を示すことができる。 That is, in the nonaqueous electrolyte battery according to at least one embodiment and example described above, X represented by X = (d 50 −d 10 ) / d 50 is in the range of 0.5 or more and less than 1. For this reason, at least one lithium nickel composite oxide is coated with a small particle conductive agent. Thanks to this, the nonaqueous electrolyte battery according to the embodiment can exhibit good charge / discharge cycle characteristics.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
以下に、本願の出願当初の特許請求の範囲に記載していた発明を付記する。
[1]正極集電体と前記正極集電体上に形成された正極活物質含有層とを備え、前記正極活物質含有層が少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含んだ正極と、負極と、非水電解質とを具備し、前記正極活物質含有層は、レーザー回折散乱法により得られる粒度分布において、平均粒子径d50が1μm以上5.5μm以下の範囲内にあり、最大粒子径が10μm以上100μm以下の範囲内にあり、小粒子径側からの累積頻度が10%となる粒子径d10が0.5μm以上3μm以下の範囲内にあり、X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にあることを特徴とする非水電解質電池。
[2]前記正極活物質含有層中のニッケル元素の含有量が23重量%以上45重量%以下の範囲内にあることを特徴とする[1]に記載の非水電解質電池。
[3]前記導電剤がカーボン材料を含むことを特徴とする[2]に記載の非水電解質電池。
[4]前記正極活物質含有層の密度が2.4g/cm3以上3.6g/cm3以下の範囲内にあることを特徴とする[2]に記載の非水電解質電池。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
The invention described in the claims at the beginning of the filing of the present application will be appended.
[1] A positive electrode comprising a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector, wherein the positive electrode active material-containing layer contains at least one lithium nickel composite oxide and a conductive agent The positive electrode active material-containing layer has a mean particle diameter d 50 in the range of 1 μm or more and 5.5 μm or less in a particle size distribution obtained by a laser diffraction scattering method, and a negative electrode and a non-aqueous electrolyte. The maximum particle diameter is in the range of 10 μm to 100 μm, the particle diameter d 10 at which the cumulative frequency from the small particle diameter side is 10% is in the range of 0.5 μm to 3 μm, and X = (d 50 − A non-aqueous electrolyte battery characterized in that X represented by d 10 ) / d 50 is in a range of 0.5 or more and less than 1.
[2] The nonaqueous electrolyte battery according to [1], wherein the content of nickel element in the positive electrode active material-containing layer is in the range of 23 wt% to 45 wt%.
[3] The nonaqueous electrolyte battery according to [2], wherein the conductive agent includes a carbon material.
[4] The nonaqueous electrolyte battery according to [2], wherein the density of the positive electrode active material-containing layer is in a range of 2.4 g / cm 3 to 3.6 g / cm 3 .

1…非水電解質電池、2…電極群、3…容器、3a、3b及び3c…容器の周縁部、3d…容器の折り曲げ部、31…アルミニウム箔、32及び33…樹脂フィルム、4…正極集電タブ、5…負極集電タブ、6…正極、61…正極集電体、62…正極活物質含有層、63…正極リード、7…負極、71…負極集電体、72…負極活物質含有層、73…負極リード、8…セパレータ、9、絶縁フィルム。   DESCRIPTION OF SYMBOLS 1 ... Non-aqueous electrolyte battery, 2 ... Electrode group, 3 ... Container, 3a, 3b and 3c ... Periphery part of container, 3d ... Bending part of container, 31 ... Aluminum foil, 32 and 33 ... Resin film, 4 ... Positive electrode collection Electrical tab, 5 ... Negative current collector tab, 6 ... Positive electrode, 61 ... Positive current collector, 62 ... Positive electrode active material-containing layer, 63 ... Positive electrode lead, 7 ... Negative electrode, 71 ... Negative current collector, 72 ... Negative electrode active material Containing layer, 73 ... negative electrode lead, 8 ... separator, 9, insulating film.

Claims (7)

正極集電体と前記正極集電体上に形成された正極活物質含有層とを備え、
前記正極活物質含有層が少なくとも1種のリチウムニッケル複合酸化物及び導電剤を含み、前記導電剤の粒子径が前記少なくとも1種のリチウムニッケル複合酸化物の平均粒子径よりも小さく、
前記正極活物質含有層は、レーザー回折散乱法により得られる粒度分布において、平均粒子径d50が1μm以上5.5μm以下の範囲内にあり、最大粒子径が10μm以上100μm以下の範囲内にあり、小粒子径側からの累積頻度が10%となる粒子径d10が0.5μm以上3μm以下の範囲内にあり、X=(d50−d10)/d50で表されるXが0.5以上1未満の範囲内にある正極。
A positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector;
The positive electrode active material-containing layer contains at least one lithium nickel composite oxide and a conductive agent, and the particle size of the conductive agent is smaller than the average particle size of the at least one lithium nickel composite oxide,
The positive electrode active material-containing layer has an average particle diameter d 50 in the range of 1 μm to 5.5 μm and a maximum particle diameter in the range of 10 μm to 100 μm in the particle size distribution obtained by the laser diffraction scattering method. The particle diameter d 10 at which the cumulative frequency from the small particle diameter side is 10% is in the range of 0.5 μm to 3 μm, and X represented by X = (d 50 −d 10 ) / d 50 is 0. A positive electrode in the range of 5 or more and less than 1.
前記正極活物質含有層中のニッケル元素の含有量が23重量%以上45重量%以下の範囲内にある請求項1に記載の正極。   The positive electrode according to claim 1, wherein the content of nickel element in the positive electrode active material-containing layer is in the range of 23 wt% or more and 45 wt% or less. 前記導電剤がカーボン材料を含む請求項1又は2に記載の正極。   The positive electrode according to claim 1, wherein the conductive agent includes a carbon material. 前記カーボン材料が、アセチレンブラック、ケチェンブラック、ファーネスブラック、グラファイト及びカーボンナノチューブからなる群より選択される少なくとも1種である請求項3に記載の正極。   The positive electrode according to claim 3, wherein the carbon material is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, graphite, and carbon nanotubes. 前記リチウムニッケル複合酸化物は、Li−Ni−Al複合酸化物、Li−Ni−Co−Mn複合酸化物及びLi−Ni−Mn複合酸化物からなる群より選択される少なくとも1種を含む請求項1〜4の何れか1項に記載の正極。   The lithium nickel composite oxide includes at least one selected from the group consisting of a Li-Ni-Al composite oxide, a Li-Ni-Co-Mn composite oxide, and a Li-Ni-Mn composite oxide. The positive electrode of any one of 1-4. 前記正極活物質含有層の密度が2.4g/cm3以上3.6g/cm3以下の範囲内にある請求項1〜5の何れか1項に記載の正極。 The positive electrode according to claim 1, wherein the density of the positive electrode active material-containing layer is in a range of 2.4 g / cm 3 or more and 3.6 g / cm 3 or less. 前記正極活物質含有層は、結着剤を更に含み、
前記結着剤は、ポリフッ化ビニリデン、ヘキサフルオロプロピレン及びポリテトラフルオロエチレンからなる群より選択される少なくとも1種を含む請求項1〜6の何れか1項に記載の正極。
The positive electrode active material-containing layer further includes a binder,
The positive electrode according to claim 1, wherein the binder includes at least one selected from the group consisting of polyvinylidene fluoride, hexafluoropropylene, and polytetrafluoroethylene.
JP2018235478A 2013-09-18 2018-12-17 Positive electrode Active JP6661743B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013193475 2013-09-18
JP2013193475 2013-09-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014177776A Division JP6456630B2 (en) 2013-09-18 2014-09-02 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2019040890A true JP2019040890A (en) 2019-03-14
JP6661743B2 JP6661743B2 (en) 2020-03-11

Family

ID=65725766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235478A Active JP6661743B2 (en) 2013-09-18 2018-12-17 Positive electrode

Country Status (1)

Country Link
JP (1) JP6661743B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179367A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method of manufacturing electrode for battery
WO2008091028A1 (en) * 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179367A (en) * 2004-12-24 2006-07-06 Nissan Motor Co Ltd Method of manufacturing electrode for battery
WO2008091028A1 (en) * 2007-01-26 2008-07-31 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure

Also Published As

Publication number Publication date
JP6661743B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6456630B2 (en) Non-aqueous electrolyte battery
JP6470070B2 (en) Positive electrode and non-aqueous electrolyte battery
JP6100385B2 (en) Non-aqueous electrolyte battery positive electrode, non-aqueous electrolyte battery, battery pack and vehicle
JP5321847B2 (en) Active material and manufacturing method thereof, non-aqueous electrolyte battery and battery pack
JP7035167B2 (en) Electrode group and non-aqueous electrolyte battery
JP6416214B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte secondary battery active material
JP7055899B2 (en) Electrodes, batteries, and battery packs
JP2015084323A (en) Nonaqueous electrolyte battery
JP6250998B2 (en) Nonaqueous electrolyte battery and battery pack
JP2018045819A (en) Electrode and nonaqueous electrolyte battery
WO2017094163A1 (en) Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and battery pack
JP6081604B2 (en) Non-aqueous electrolyte battery, battery pack and automobile
JPWO2016038716A1 (en) Nonaqueous electrolyte secondary battery and battery pack provided with the same
JP7500871B2 (en) Electrodes, batteries, and battery packs
JPWO2020194385A1 (en) Electrodes, batteries and battery packs
JP6661743B2 (en) Positive electrode
JP6629402B2 (en) Positive electrode
WO2020194510A1 (en) Electrode, non-aqueous electrolyte battery, and battery pack
WO2019193635A1 (en) Electrode, non-aqueous electrolyte battery, and battery pack
WO2021084957A1 (en) Nonaqueous electrolyte secondary battery
WO2023242939A1 (en) Secondary battery and battery pack
WO2021084958A1 (en) Non-aqueous electrolyte secondary battery
JP5684334B2 (en) Active material and manufacturing method thereof, non-aqueous electrolyte battery and battery pack
JP2014241293A (en) Active material and production method thereof, nonaqueous electrolyte battery and battery pack
JP2015005426A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R151 Written notification of patent or utility model registration

Ref document number: 6661743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151