JP2019039030A - Surface treatment method and surface treatment apparatus - Google Patents

Surface treatment method and surface treatment apparatus Download PDF

Info

Publication number
JP2019039030A
JP2019039030A JP2017160602A JP2017160602A JP2019039030A JP 2019039030 A JP2019039030 A JP 2019039030A JP 2017160602 A JP2017160602 A JP 2017160602A JP 2017160602 A JP2017160602 A JP 2017160602A JP 2019039030 A JP2019039030 A JP 2019039030A
Authority
JP
Japan
Prior art keywords
processed
electrolytic solution
voltage
oxide film
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017160602A
Other languages
Japanese (ja)
Other versions
JP6558649B2 (en
Inventor
文昭 石榑
Fumiaki Ishigure
文昭 石榑
稲吉 さかえ
Sakae Inayoshi
さかえ 稲吉
藤田 勝博
Katsuhiro Fujita
勝博 藤田
洋志 佐藤
Hiroshi Sato
洋志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Ulvac Techno Ltd
Original Assignee
Ulvac Inc
Ulvac Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Ulvac Techno Ltd filed Critical Ulvac Inc
Priority to JP2017160602A priority Critical patent/JP6558649B2/en
Priority to KR1020180096586A priority patent/KR102469728B1/en
Priority to CN201810966182.6A priority patent/CN109423674B/en
Publication of JP2019039030A publication Critical patent/JP2019039030A/en
Application granted granted Critical
Publication of JP6558649B2 publication Critical patent/JP6558649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

To provide a surface treatment method that can form an oxide film on a large-area to-be-treated object by an anode oxidation treatment including a micro-arc oxidation treatment even when a power supply with small current density and a simple cooling mechanism with electrolyte are used.SOLUTION: A plurality of processing sections A, B, C,...N are set in accordance with the processing frequency when the to-be-treated surface of a to-be-treated object 11 is processed by an oxidation treatment continuously or intermittently. In a Mth process (M is an integer of 2 or greater), a voltage Vis held lower than the maximum voltage Vprovided in an anode oxidation treatment including a micro-arc oxidation treatment so that an electric current is a predetermined current I, and the anode oxidation treatment is performed to the plurality of processing sections A, B, C,...N in order. The Mth process is repeatedly performed in such a manner that the voltage Vis increased toward the maximum voltage Vso as to be a predetermined value. As a result, the oxide film with a desired thickness in total is formed by a surface treatment method of the present invention.SELECTED DRAWING: Figure 3

Description

本発明は、被処理体に表面処理を行う表面処理方法及び表面処理装置に係る。より詳細には、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等のバルブ金属からなる被処理体の被処理面に酸化被膜を形成する表面処理方法及び表面処理装置に関する。なお、バルブ金属は、バルブメタルあるいは弁金属とも呼称される。   The present invention relates to a surface treatment method and a surface treatment apparatus for performing a surface treatment on an object to be treated. More specifically, a surface treatment method and a surface treatment apparatus for forming an oxide film on a surface to be processed made of a valve metal such as aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. About. The valve metal is also called a valve metal or a valve metal.

図7に示すように、小面積の被処理体111に対してマイクロアーク酸化処理を含むアノード酸化処理を行うことにより、被処理体の表面に酸化被膜を形成する表面処理方法が公知である。図7において、符号121は電解液槽を、符号122は電解液を、それぞれ表わしている。被処理体111が小面積の場合には、被処理体111の全体を電解液122の中に浸漬することにより酸化被膜を形成してもよい。しかしながら、被処理体111が大面積になるに連れて、図7に示す手法、すなわち、高電圧、高電流密度を必要とするマイクロアーク酸化処理を含むアノード酸化処理では、電源、チラー等の設備が大きくなり、大面積の被処理体を処理するのは困難になる。   As shown in FIG. 7, a surface treatment method is known in which an oxide film is formed on the surface of a target object by performing an anodic oxidation process including a micro-arc oxidation process on a target object 111 having a small area. In FIG. 7, reference numeral 121 represents an electrolytic solution tank, and reference numeral 122 represents an electrolytic solution. When the object to be processed 111 has a small area, an oxide film may be formed by immersing the entire object to be processed 111 in the electrolytic solution 122. However, as the object to be processed 111 becomes a large area, in the method shown in FIG. 7, that is, in the anodic oxidation process including the micro arc oxidation process that requires high voltage and high current density, facilities such as a power source and a chiller are provided. Becomes large, and it becomes difficult to process a large-scale object to be processed.

この課題を解消するために、大面積の被処理体の表面を分割して複数回に分けてマイクロアーク酸化処理を含むアノード酸化処理を行うことにより、被処理体の表面全体に酸化被膜を形成する表面処理方法を、本発明者は先に提案している(特許文献1)。ここで、マイクロアーク酸化処理(火花放電を伴うアノード酸化処理)とは、アノード酸化処理の一種であり、優れた酸化被膜を形成することが可能な表面処理方法を意味する。しかし、特許文献1に開示された方法では、電解液から被処理体を引き上げてマスク材を除去する工程があるため作業効率が悪いという課題があった。   In order to solve this problem, an oxide film is formed on the entire surface of the target object by dividing the surface of the target object with a large area and performing anodization including micro-arc oxidation in several steps. The present inventor has previously proposed a surface treatment method (Patent Document 1). Here, the micro-arc oxidation treatment (anodic oxidation treatment with spark discharge) is a kind of anodizing treatment and means a surface treatment method capable of forming an excellent oxide film. However, the method disclosed in Patent Document 1 has a problem that work efficiency is poor because there is a step of pulling up the object to be processed from the electrolytic solution and removing the mask material.

特許文献1の方法における課題を解決するため、マスクを用いず表面処理する方法を、本発明者はさらに提案している(特許文献2)。これにより、マスク材を除去する工程が不要となり、作業効率が改善された。しかし、特許文献2に開示された方法では、被処理体の処理面に縞模様が残存し、処理面の外観の改善が求められていた。   In order to solve the problem in the method of Patent Document 1, the present inventor has further proposed a method of performing surface treatment without using a mask (Patent Document 2). Thereby, the process of removing the mask material becomes unnecessary, and the work efficiency is improved. However, in the method disclosed in Patent Document 2, a striped pattern remains on the processing surface of the object to be processed, and an improvement in the appearance of the processing surface has been demanded.

そこで、本発明者は大面積の被処理体の表面を分割すること無く、数mの被処理体に対してマイクロアーク酸化処理する方法を検討した。マイクロアーク酸化処理(火花放電を伴うアノード酸化処理)の場合、火花放電を伴わない通常のアノード酸化処理と比較して、高い電流密度、かつ高電圧で処理を行う。このため、マイクロアーク酸化処理によって、処理面積が大きな被処理体に対して酸化被膜を形成する場合、大規模な電源設備や、大型の電解液冷却機構などが必要となり、設備面でコストがかかるという課題があった。 In view of this, the present inventor has studied a method of performing micro-arc oxidation treatment on a workpiece of several m 2 without dividing the surface of the workpiece having a large area. In the case of micro-arc oxidation treatment (anodic oxidation treatment with spark discharge), the treatment is performed at a higher current density and high voltage as compared with normal anodic oxidation treatment without spark discharge. For this reason, when an oxide film is formed on an object to be processed having a large processing area by micro arc oxidation treatment, a large-scale power supply facility, a large-scale electrolyte cooling mechanism, etc. are required, which is expensive in terms of facilities. There was a problem.

特許第4836921号公報Japanese Patent No. 4836921 特許第5770575号公報Japanese Patent No. 5770575

本発明は、上記事情に鑑みてなされたものであって、小電流の電源装置で、かつ簡易な電解液の冷却機構であっても、マイクロアーク酸化処理を含むアノード酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な、表面処理方法および表面処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even with a low-current power supply device and a simple electrolyte cooling mechanism, a large area is covered by anodic oxidation treatment including micro-arc oxidation treatment. It is an object to provide a surface treatment method and a surface treatment apparatus capable of intermittently forming an oxide film on a treatment body.

上記課題を解決するために、本発明は次のような表面処理方法および表面処理装置を提供した。すなわち、
請求項1に記載の発明は、バルブ金属からなる被処理体の被処理面に、複数の処理区画を設定し、各処理区画ごとに断続的に電解液に浸漬してアノード酸化処理を行い、前記被処理面に酸化被膜を形成する表面処理方法であって、
前記アノード酸化処理は、第M(Mは2以上の整数)工程から構成され、
前記第M工程は、
前記被処理体のうち第一処理区画のみを前記電解液に浸漬させて、マイクロアーク酸化処理を含むアノード酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとなるように、前記被処理体の第一処理区画に所望の酸化被膜を形成する第Ma工程と、
前記第Ma工程を終えた被処理体を、前記第一処理区画に隣接する第二処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記二処理区画に所望の酸化被膜を形成する第Mb工程と、
前記第Mb工程を終えた被処理体を、第n処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記n処理区画に所望の酸化被膜を形成し、前記被処理面の全域に亘って酸化被膜を形成するする第Mn工程(nは1以上の整数)とを備え、
前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値とし、前記第M工程を繰り返し行うことにより、合計膜厚が所望の厚さからなる前記酸化被膜を形成する、
ことを特徴とする。
In order to solve the above problems, the present invention provides the following surface treatment method and surface treatment apparatus. That is,
The invention according to claim 1 sets a plurality of processing sections on the processing surface of the target object made of a valve metal, performs an anodic oxidation treatment by intermittently immersing each processing section in an electrolytic solution, A surface treatment method for forming an oxide film on the surface to be treated,
The anodizing treatment is composed of an Mth step (M is an integer of 2 or more),
The Mth step includes
Said only the first processing compartment of the object to be processed is immersed in the electrolyte solution, and held at the maximum voltage V max voltage lower than V M of the anode oxidation process comprising micro-arc oxidation process, a predetermined current I 1 A Ma step of forming a desired oxide film on the first processing section of the object to be processed;
The object to be processed that has finished the Ma process is immersed in the electrolytic solution up to a second process section adjacent to the first process section, and a desired oxide film is applied to the two process sections under the same conditions as in the Ma process. Forming the Mb step;
The object to be processed that has finished the Mb step is immersed in the electrolytic solution up to the nth processing section, and a desired oxide film is formed on the n processing section under the same conditions as in the Ma process. A Mn-th step (n is an integer of 1 or more) for forming an oxide film over the entire area,
The voltage of V M increased in order in the direction of the highest voltage V max is a predetermined number, by repeating the first M step to form the oxide film total thickness is composed of a desired thickness,
It is characterized by that.

請求項2に記載の発明は、請求項1において、前記アノード酸化処理は、前記nが1であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を連続的または断続的に前記電解液に浸漬する、ことを特徴とする。
請求項3に記載の発明は、請求項2において、前記第Mb工程、・・・前記第Mn工程における所定の電流の値が、前記第Ma工程における所定の電流Iと同じであることを特徴とする。
請求項4に記載の発明は、請求項1において、前記被処理体における前記第一処理区画、前記第二処理区画、・・前記第n区画を順に前記電解液に浸漬させる際には、該電解液の深さ方向へ該被処理体が進行するか、または停止するように、前記電解液の液面に対する前記被処理体の位置を制御する、ことを特徴とする。
請求項5に記載の発明は、請求項4において、前記電解液の液面に対する前記被処理体の位置を制御するために、前記電解液の液面の高さ位置を固定し、前記電解液の液面に対して前記被処理体の高さ位置を調整する、ことを特徴とする。
請求項6に記載の発明は、請求項4において、前記電解液の液面に対する前記被処理体の位置を制御するために、前記被処理体の高さ位置を固定し、前記被処理体の高さ位置に対して前記電解液の液面の高さを調整する、ことを特徴とする。
請求項7に記載の発明は、請求項1における最後の第M工程に続けて、前記最後の第M工程が行われた前記電圧Vよりも低い電圧VM−まで、所定の時間で連続的又は断続的に電圧を降下させて、前記アノード酸化処理を行う工程Pと、前記電圧VM−で定電圧処理を行う工程Qとを順に、さらに備えることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the anodic oxidation treatment is such that the n is 1, and the Mth step, the Ma step, the Mb step,. The Mn process is characterized in that the object to be treated is immersed in the electrolytic solution continuously or intermittently.
Invention according to claim 3, in claim 2, wherein said Mb step, the value of the predetermined current in ... the first Mn step, that is the same as the predetermined current I 1 in the first Ma step Features.
According to a fourth aspect of the present invention, in the first aspect, when the first processing section, the second processing section, and the nth section of the object to be processed are sequentially immersed in the electrolytic solution, The position of the object to be processed with respect to the liquid surface of the electrolyte is controlled so that the object to be processed advances or stops in the depth direction of the electrolyte.
According to a fifth aspect of the present invention, in the fourth aspect, in order to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution, a height position of the liquid surface of the electrolytic solution is fixed, and the electrolytic solution The height position of the object to be processed is adjusted with respect to the liquid level.
In order to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution, the height of the object to be processed is fixed, and the invention described in claim 6 fixes the height of the object to be processed. The height of the electrolyte surface is adjusted with respect to the height position.
The invention according to claim 7, continuous claims following the end of the M step in claim 1, wherein the final low voltage V to M- than the M step the voltage V M made a predetermined time The method further includes a step P for performing the anodic oxidation treatment by dropping the voltage periodically or intermittently, and a step Q for performing the constant voltage treatment at the voltage VM− .

請求項8に記載の発明は、バルブ金属からなる被処理体を電解液に浸漬してアノード酸化処理を行い、前記被処理体に酸化被膜を形成する表面処理装置であって、
前記被処理体の被処理面上にアノード酸化処理によって前記酸化被膜を形成するための陽極手段と、
前記電解液を収納し、かつ、該電解液に対する前記陽極手段の浸漬を可能とする開口部を備えた電解液槽と、
前記電解液中において前記陽極手段と対向して配置された陰極手段と、
前記陽極手段と前記陰極手段が前記電解液に浸漬された状態において、前記陽極手段と前記陰極手段との間に電流を発生させて、前記アノード酸化処理を行うための電源手段と、
前記被処理体のうち特定の処理区画までを前記電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、前記特定の処理区画までが前記電解液に浸漬された位置に前記被処理体を静止させる機能を備えた被処理体の移動手段と、を含み、
前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成されている、ことを特徴とする。
The invention according to claim 8 is a surface treatment apparatus for performing an anodic oxidation treatment by immersing a workpiece made of a valve metal in an electrolytic solution, and forming an oxide film on the workpiece.
An anode means for forming the oxide film by anodic oxidation on the surface to be processed of the object to be processed;
An electrolytic bath containing the electrolytic solution and having an opening that allows the anode means to be immersed in the electrolytic solution;
Cathode means disposed opposite to the anode means in the electrolyte solution;
In the state where the anode means and the cathode means are immersed in the electrolytic solution, a power supply means for generating an electric current between the anode means and the cathode means to perform the anodization treatment;
In order to immerse the object to be treated up to a specific processing section in the electrolytic solution, the object to be processed is moved in the depth direction of the electrolytic solution, and up to the specific processing section is in the electrolytic solution. A moving means of the object to be processed having a function of stopping the object to be processed in an immersed position,
The moving means applies a predetermined voltage over the entire area of the object to be processed, and each time a series of anodic oxidation processes is completed, from the electrolyte solution to a position where the entire area of the object to be exposed is exposed. The anode means is configured to move in a direction in which the object to be processed is pulled up from the electrolytic solution.

本発明に係る表面処理方法によれば、被処理体の被処理面が、断続的な酸化処理(マイクロアーク酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとする条件下で)、酸化被膜によって覆われるように、前述した第M(Mは2以上の整数)工程を行う。また、前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値とし、前記第M工程を繰り返し行うことにより、最終的な膜厚が所望の厚さからなる前記酸化被膜を形成する。これにより、本発明は、小電流密度の電源装置で、かつ簡易な電解液の冷却機構であっても、マイクロアーク酸化処理を含むアノード酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な、表面処理方法の提供に貢献する。
また、本発明の表面処理方法による被処理体の被処理面は、酸化被膜の形成時に最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとしたことにより、断続的に処理を行っても、処理面に色彩的な模様が残ることが無い。このため、処理面の外観の均質性に優れた酸化被膜を得ることが可能になる。
なお、本発明の表面処理方法において、前記アノード酸化処理は、前記nが1であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を連続的または断続的に前記電解液に浸漬する、こともできる。その際には、前記第Mb工程、・・・前記第Mn工程における所定の電流の値が、前記第Ma工程における所定の電流Iと同じ数値とされる。
According to the surface treatment method according to the present invention, the treated surface of the object to be processed is, intermittent oxidation (maintained at a low voltage V M than the maximum voltage V max of the micro-arc oxidation process, a predetermined current I 1 The above-described Mth step (M is an integer of 2 or more) is performed so as to be covered with the oxide film. Further, said voltage V M is increased in order in the direction of the highest voltage V max is a predetermined number, by repeating the first M step, the oxide film final thickness consists of desired thickness Form. As a result, the present invention provides a power supply device with a small current density and a simple electrolytic solution cooling mechanism. This contributes to the provision of a surface treatment method capable of forming an oxide film.
Moreover, the treated surface of the object to be processed by the surface treatment method of the present invention, by holding to a low voltage V M than the maximum voltage V max during formation of the oxide film, and a predetermined current I 1, intermittently Even if the processing is performed, a colored pattern does not remain on the processing surface. For this reason, it becomes possible to obtain an oxide film excellent in the homogeneity of the appearance of the treated surface.
In the surface treatment method of the present invention, in the anodic oxidation treatment, the n is 1, and the Mth step, the Mth step, the Mn step, the Mth step, The object to be treated may be immersed in the electrolytic solution continuously or intermittently. At that time, the second Mb step, the value of the predetermined current in ... the first Mn step is the same value as the predetermined current I 1 in the first Ma step.

本発明に係る表面処理装置は、被処理体のうち特定の処理区画までを電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、前記特定の処理区画までが前記電解液に浸漬された位置に前記被処理体を静止させる機能を備えた被処理体の移動手段を備えている。そして、前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成されている。これにより、本発明によれば、マイクロアーク酸化処理を含むアノード酸化処理時の電流を所定の電流I以下に保持することが可能であるため、大容量の電源が不要となる。更に、全ての酸化皮膜の形成過程の発熱を積極的に下げることができるので、処理系の冷却するためのシステムを従来と比べて小さくすることができる。
ゆえに、本発明は、小電流密度の電源装置で、かつ簡易な電解液の冷却機構であっても、マイクロアーク酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な表面処理装置をもたらす。
また、本発明の表面処理装置は、上述した陽極手段を備えているので、大面積の被処理物に対して、自動的に被処理物を覆うように所望の膜厚からなる酸化被膜を形成できる。
The surface treatment apparatus according to the present invention moves the object to be treated in the depth direction of the electrolytic solution in order to immerse the object to be treated up to a specific treatment section in the electrolytic solution. An object to be processed is provided with a function of stopping the object to be processed at a position where the section is immersed in the electrolytic solution. The moving means applies a predetermined voltage over the entire area of the object to be processed and exposes the entire area of the object to be processed from the electrolytic solution every time a series of anodic oxidation processes are completed. The anode means is moved to a position in a direction to pull up the object to be processed from the electrolytic solution. Thus, according to the present invention, since it is possible to retain the current at the anode oxidation process comprising micro-arc oxidation process in a predetermined current I 1 or less, large-capacity power supply is not required. Furthermore, since the heat generation during the formation process of all oxide films can be actively reduced, the system for cooling the processing system can be made smaller than the conventional system.
Therefore, the present invention can form an oxide film intermittently on an object to be processed having a large area by micro arc oxidation treatment even with a power supply device with a small current density and a simple electrolyte cooling mechanism. Resulting in a surface treatment device capable of
In addition, since the surface treatment apparatus of the present invention includes the above-described anode means, an oxide film having a desired film thickness is formed on a large-area workpiece to automatically cover the workpiece. it can.

本発明に係る表面処理装置を示すブロック図。The block diagram which shows the surface treatment apparatus which concerns on this invention. 本発明に係る表面処理方法を示すフローチャート。The flowchart which shows the surface treatment method which concerns on this invention. 本発明に係る表面処理方法を示す説明図。Explanatory drawing which shows the surface treatment method which concerns on this invention. 電圧および電流と処理時間との関係を示すグラフであり、本発明の方法で処理した場合の電圧電流曲線。It is a graph which shows the relationship between voltage and electric current, and processing time, and is the voltage-current curve at the time of processing by the method of this invention. 電圧および電流と処理時間との関係を示すグラフであり、一括で処理した場合の電圧電流曲線。一括処理とは、被処理体の表面全域(全体)を同時に電解液に浸漬させ処理する方法である。It is a graph which shows the relationship between a voltage and an electric current, and processing time, and is a voltage-current curve at the time of processing collectively. The batch treatment is a method in which the entire surface of the object to be treated (whole) is immersed in an electrolytic solution at the same time. 浸漬する方向における被処理体の位置と処理時間との関係を示すグラフ。The graph which shows the relationship between the position of to-be-processed object in the direction to immerse, and processing time. 従来の表面処理方法を示す説明図。Explanatory drawing which shows the conventional surface treatment method.

以下、本発明に係る表面処理装置および表面処理方法の最良の形態について、図面に基づき説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。   Hereinafter, the best mode of a surface treatment apparatus and a surface treatment method according to the present invention will be described with reference to the drawings. The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1は、本発明に係る表面処理装置を示すブロック図である。
図1に示すように、本発明の表面処理装置は、アルミニウムまたはアルミニウム合金からなる被処理体11を電解液22に浸漬してアノード酸化処理を行い、前記被処理体に酸化被膜を形成する表面処理装置である。
この表面処理装置において、アノード酸化処理によって酸化被膜が形成される前記被処理体11が陽極手段として機能する。
FIG. 1 is a block diagram showing a surface treatment apparatus according to the present invention.
As shown in FIG. 1, the surface treatment apparatus of the present invention is a surface on which an object to be treated 11 made of aluminum or an aluminum alloy is immersed in an electrolytic solution 22 for anodic oxidation to form an oxide film on the object to be treated. It is a processing device.
In this surface treatment apparatus, the object 11 on which an oxide film is formed by anodic oxidation functions as an anodic means.

この表面処理装置において、電解液22を収納する電解液槽21は、該電解液に対する陽極手段(被処理体11)の浸漬を可能とする開口部を備えている。
電解液22の中には、浸漬された状態にある陽極手段(被処理体11)と対向する位置に、陰極手段17が配置されている。
本発明の表面処理装置は、前記アノード酸化処理を行うための電源手段30を備えている。この電源手段30は、陽極手段(被処理体11)と陰極手段17が電解液22に浸漬された状態において、陽極手段(被処理体11)と陰極手段17との間に電流を発生させて、前記アノード酸化処理を行う。
In this surface treatment apparatus, the electrolytic solution tank 21 that stores the electrolytic solution 22 has an opening that allows the anode means (the object 11 to be treated) to be immersed in the electrolytic solution.
In the electrolytic solution 22, the cathode means 17 is disposed at a position facing the anode means (the object to be processed 11) that is immersed.
The surface treatment apparatus of the present invention includes power supply means 30 for performing the anodic oxidation treatment. The power source means 30 generates a current between the anode means (object 11) and the cathode means 17 in a state where the anode means (object 11) and the cathode means 17 are immersed in the electrolytic solution 22. The anodizing treatment is performed.

本発明の表面処理装置は、被処理体11の移動手段(たとえば、アクチュエータ)40を備える。移動手段40は、第一支持部41と第二支持部42を介して被処理体11を保持する。この移動手段40は、被処理体11のうち特定の処理区画までを電解液22に浸漬させるために、被処理体11を電解液22の深さ方向(Z方向)へ移動させる機能と、前記特定の処理区画までが電解液22に浸漬された位置に被処理体11を静止させる機能とを備える。   The surface treatment apparatus of the present invention includes a moving means (for example, an actuator) 40 for the object 11 to be processed. The moving means 40 holds the workpiece 11 via the first support part 41 and the second support part 42. The moving means 40 has a function of moving the object to be processed 11 in the depth direction (Z direction) of the electrolyte solution 22 in order to immerse the object to be processed 11 up to a specific processing section in the electrolyte solution 22. And a function of causing the object to be processed 11 to stand still at a position immersed in the electrolytic solution 22 up to a specific processing section.

つまり、移動手段40は、上下動可能とされた第一支持部41と、この第一支持部41の他端と被処理体11の上端とを繋ぎ、被処理体11を釣り下げた状態に保つ第二支持部42を備える。これにより、被処理体11は、その全域(被処理体11が電解液22に浸漬される方向(Z方向)の全ての領域)に亘って、所定の電圧を印加して一連のアノード酸化処理を行うことができる。また、移動手段40は、前記一連のアノード酸化処理が終了する毎に、電解液22の中から被処理体11の全域が露呈する位置まで、被処理体11を電解液22から引き上げる方向へ前記陽極手段(被処理体11)を移動させるように構成されている。   That is, the moving means 40 connects the first support part 41 that can be moved up and down, the other end of the first support part 41 and the upper end of the object to be processed 11, and hangs the object 11 to be processed. The 2nd support part 42 to keep is provided. As a result, the object 11 is subjected to a series of anodizing treatments by applying a predetermined voltage over the entire region (all areas in the direction (Z direction) in which the object 11 is immersed in the electrolytic solution 22). It can be performed. Further, each time the series of anodic oxidation processes is completed, the moving means 40 moves the object to be processed 11 from the electrolyte 22 to a position where the entire area of the object 11 is exposed from the electrolyte 22. The anode means (object 11) is configured to move.

移動手段40の上下動は、シーケンサー50を介して情報処理装置60から制御される。情報処理装置60は、通信回線を通して、電源手段30から陽極手段(被処理体11)および陰極手段17に印加する情報(電圧、電流)を制御する。図1には、シーケンサー50と情報処理装置60が分割して配置される構成例を示しているが、これらを統合した制御装置としてもよい(不図示)。この制御装置が備える制御部は、上述した所定の電流の値と処理電流の値とを比較する機能を備えた比較部を有することが好ましい。   The vertical movement of the moving means 40 is controlled from the information processing device 60 via the sequencer 50. The information processing device 60 controls information (voltage, current) applied from the power supply means 30 to the anode means (object 11) and the cathode means 17 through the communication line. Although FIG. 1 shows a configuration example in which the sequencer 50 and the information processing device 60 are divided and arranged, a control device that integrates them may be used (not shown). The control unit included in the control device preferably includes a comparison unit having a function of comparing the predetermined current value and the processing current value.

図2は、本発明に係る表面処理方法を示すフローチャートである。図3は、本発明に係る表面処理方法を示す説明図である。以下の図3に基づく説明においては、前記アノード酸化処理は、前記nが「3以上」であり、前記第M工程(Mは2以上の整数)を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を「断続的」に前記電解液に浸漬する場合について詳述する。
本発明に係る表面処理方法は、アルミニウムまたはアルミニウム合金からなる被処理体11の被処理面に、複数の処理区画A、B、C、・・Nを設定[図3(a)]し、各処理区画ごとに断続的に電解液に浸漬してアノード酸化処理を行い、前記被処理面に酸化被膜を形成する。ここで、「断続的」とは、最初に処理区画Aを、次に処理区画Bまでを、その次に処理区画Cまでを、・・最後に処理区画Nまでを(すなわち、被処理体11の被処理面の全域を)、順に電解液に浸漬してアノード酸化処理を行うことを意味する。
図3(a)において、x1は被処理体11の幅を、x2は被処理体11の高さを、x3は被処理体11の厚さ、おのおの表わしている。
FIG. 2 is a flowchart showing the surface treatment method according to the present invention. FIG. 3 is an explanatory view showing a surface treatment method according to the present invention. In the description based on FIG. 3 below, in the anodizing treatment, the nth is “3 or more” and the Mth step (M is an integer of 2 or more) constitutes the Mth step, the Mbth step. Steps: The case where the Mn step immerses the object to be processed “intermittently” in the electrolytic solution will be described in detail.
In the surface treatment method according to the present invention, a plurality of treatment sections A, B, C,... N are set on the surface to be treated 11 of aluminum or an aluminum alloy [FIG. Anodizing treatment is performed by intermittently immersing in the electrolytic solution for each processing section, and an oxide film is formed on the surface to be processed. Here, “intermittent” means that the processing section A is first, then the processing section B, then the processing section C, and finally the processing section N (that is, the object 11 to be processed). The entire surface to be treated) is immersed in an electrolyte solution in order, and the anodic oxidation treatment is performed.
In FIG. 3A, x1 represents the width of the object 11 to be processed, x2 represents the height of the object 11 to be processed, and x3 represents the thickness of the object 11 to be processed.

本発明の表面処理方法におけるアノード酸化処理は、後述する第M(Mは2以上の整数)工程からなる。すなわち、
前記第M(Mは2以上の整数)工程は、以下に説明する第Ma工程、第Mb工程、第Mc工程、・・・第Mn工程から構成される。
The anodic oxidation treatment in the surface treatment method of the present invention comprises the Mth step (M is an integer of 2 or more) described later. That is,
The M-th (M is an integer of 2 or more) process includes a Ma process, an Mb process, an Mc process,.

第Ma工程は、被処理体11をZ方向へ距離Δaだけ移動する。これにより、被処理体11のうち第一処理区画Aのみを電解液22に浸漬した状態とする。この浸漬した状態を保ちながら、マイクロアーク酸化処理を含むアノード酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとなるように、被処理体11の第一処理区画Aに所望の酸化被膜を形成する[図3(b)→図3(c):第Ma工程]。図3(b)、図3(c)において、符号Δaは第一処理区画AのZ方向の幅である。図3(c)において、符号15a1は第一処理区画Aに形成された酸化被膜である。ここで、所定の電流は、オペレーターが、この電流値を入力するものである。本発明の表面処理装置(図1)は、所定の電流値の入力部も備えている。 In the Ma step, the workpiece 11 is moved in the Z direction by a distance Δa. Thereby, only the 1st process division A among the to-be-processed bodies 11 is made into the state immersed in the electrolyte solution 22. As shown in FIG. While maintaining this immersed state, as held in the maximum voltage V max low voltage V M than the anodic oxidation process including micro-arc oxidation process, a predetermined current I 1, a first processing of the object 11 A desired oxide film is formed in the section A [FIG. 3 (b) → FIG. 3 (c): Step Ma]. In FIG. 3B and FIG. 3C, the symbol Δa is the width of the first processing section A in the Z direction. In FIG. 3C, reference numeral 15a1 denotes an oxide film formed in the first processing section A. Here, the predetermined current is one in which the operator inputs this current value. The surface treatment apparatus (FIG. 1) of the present invention also includes an input unit for a predetermined current value.

次に、前記第Ma工程を終えた被処理体11をZ方向へ距離Δbだけ移動する。これにより、被処理体11が第一処理区画Aとともに、該第一処理区画Aに隣接する第二処理区画Bまで電解液22に浸漬した状態とする。この浸漬した状態を保ちながら、第Ma工程と同一条件で第二処理区画Bに所望の酸化被膜を形成する[図3(d):第Mb工程]。その際、第一処理区画Aには酸化被膜は殆ど形成されない。図3(d)において、符号Δbは第二処理区画BのZ方向の幅である。図3(d)において、符号15b1は第二処理区画Bに形成された酸化被膜である。   Next, the workpiece 11 that has finished the Ma process is moved by a distance Δb in the Z direction. Thereby, let the to-be-processed object 11 be the state immersed in the electrolyte solution 22 to the 2nd process area B adjacent to this 1st process area A with the 1st process area A. While maintaining this immersed state, a desired oxide film is formed in the second processing section B under the same conditions as in the Ma process [FIG. 3 (d): Mb process]. At that time, almost no oxide film is formed in the first processing section A. In FIG. 3D, the symbol Δb is the width of the second processing section B in the Z direction. In FIG. 3D, reference numeral 15b1 is an oxide film formed in the second processing section B.

次いで、前記第Mb工程を終えた被処理体11をZ方向へ距離Δcだけ移動する。これにより、被処理体11が第一処理区画Aおよび第二処理区画Bとともに、該第二処理区画Bに隣接する第三処理区画Cまで電解液22に浸漬した状態とする。この浸漬した状態を保ちながら、第Ma工程と同一条件で第三処理区画Cに所望の酸化被膜を形成する[図3(e):第Mc工程]。その際、第一処理区画Aと第二処理区画Bには酸化被膜は殆ど形成されない。図3(e)において、符号Δcは第三処理区画CのZ方向の幅である。図3(e)において、符号15c1は第三処理区画Cに形成された酸化被膜である。   Next, the workpiece 11 that has completed the Mb step is moved by a distance Δc in the Z direction. Thereby, let the to-be-processed object 11 be the state immersed in the electrolyte solution 22 to the 3rd process area C adjacent to this 2nd process area B with the 1st process area A and the 2nd process area B. While maintaining this immersed state, a desired oxide film is formed in the third treatment section C under the same conditions as in the Ma process [FIG. 3 (e): Mc process]. At that time, almost no oxide film is formed in the first processing section A and the second processing section B. In FIG. 3E, the symbol Δc is the width of the third processing section C in the Z direction. In FIG. 3 (e), reference numeral 15 c 1 is an oxide film formed in the third processing section C.

第三処理区画C以降も同様に、被処理体11をZ方向へ所定距離だけ移動させて、順に隣接する処理区画まで電解液22に浸漬した状態とする。この浸漬した状態を保ちながら、第Ma工程と同一条件で隣接する処理区画に所望の酸化被膜を形成する。
このように、Mb工程、Mc工程と同様の工程を順に繰り返し、被処理体11の最後の処理区画Nまで(すなわち、被処理体11の全ての被処理面が)電解液22に浸漬した状態とする。この浸漬した状態を保ちながら、第Ma工程と同一条件で最後の処理区画Nに所望の酸化被膜を形成する[図3(f):第Mn工程]。その際、第一処理区画A〜最後の処理区画Nの一つ手前の処理区画には酸化被膜は殆ど形成されない。これにより、被処理体11の被処理面の全域に亘って酸化被膜が形成された状態が得られる。図3(f)において、符号Δnは最後の処理区画NのZ方向の幅である。図3(e)において、符号15n1は最後の処理区画Nに形成された酸化被膜である。
Similarly, after the third processing section C, the workpiece 11 is moved by a predetermined distance in the Z direction, and is sequentially immersed in the electrolytic solution 22 to the adjacent processing sections. While maintaining this immersed state, a desired oxide film is formed in the adjacent processing section under the same conditions as in the Ma step.
Thus, the process similar to Mb process and Mc process is repeated in order, and the state which was immersed in the electrolyte solution 22 (namely, all the to-be-processed surfaces of the to-be-processed object 11) was immersed to the last process division N of the to-be-processed object 11. And While maintaining this soaked state, a desired oxide film is formed in the last processing section N under the same conditions as in the Ma process [FIG. 3 (f): Mn process]. At that time, almost no oxide film is formed in the processing section immediately before the first processing section A to the last processing section N. Thereby, the state by which the oxide film was formed over the whole to-be-processed surface of the to-be-processed object 11 is obtained. In FIG. 3F, the symbol Δn is the width of the last processing section N in the Z direction. In FIG. 3E, reference numeral 15n1 denotes an oxide film formed in the last processing section N.

以上の第M工程(第Ma工程〜第Mn工程)により、所定の電圧Vに保持して酸化被膜を形成する一連の工程は終了する。その後、酸化被膜が形成された被処理体11を電解液22に浸漬した状態から引き上げ(−Z方向に移動し)、被処理体11が電解液22から露呈した状態とする。 Through the above first M step (a Ma step, second Mn step), a series of steps of forming an oxide film and held to a predetermined voltage V M is completed. Thereafter, the object 11 on which the oxide film is formed is pulled up (moved in the −Z direction) from the state where it is immersed in the electrolyte 22, and the object 11 is exposed from the electrolyte 22.

そして、先に設定した所定の電圧Vより高い電圧であって、マイクロアーク酸化処理の最高電圧Vmaxよりも低い電圧VM+1(V<VM+1<Vmax)に保持し、所定の電流Iとなるように管理しながら、被処理体11の第一処理区画Aに所望の酸化被膜を形成する。以下、上述した電圧Vの場合と同様に、一連の工程(第Ma工程〜第Mn工程)を行う。これにより、被処理体11の被処理面の全域に亘って、所定の電圧Vにおいて形成された酸化被膜の上に、所定の電圧VM+1において形成された酸化被膜が形成された状態が得られる。 Then, it is maintained at a voltage V M + 1 (V M <V M + 1 <V max ) that is higher than the predetermined voltage V M set earlier and lower than the maximum voltage V max of the micro arc oxidation treatment, and a predetermined current while managing so that I 1, to form the desired oxide film on the first processing compartment a of the object to be processed 11. Hereinafter, similarly to the case of the voltage V M as described above, a series of steps (a Ma step, second Mn step). Thus, over the entire surface to be processed of the workpiece 11, obtained on the oxide film formed at a predetermined voltage V M, the state in which the oxide film formed at a predetermined voltage V M + 1 is formed It is done.

前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値(V<VM+1<VM+2<VM+3<・・<VM+n<Vmax)とし、前記第M工程(第Ma工程〜第Mn工程)を繰り返し行うことにより、合計膜厚が所望の厚さからなる前記酸化被膜を、被処理体11の被処理面の全域に亘って形成することができる。 Said voltage V M is increased in order in the direction of the highest voltage V max is a predetermined numerical (V M <V M + 1 <V M + 2 <V M + 3 <·· <V M + n <V max), wherein the M step (a By repeatedly performing the (Ma process to Mn-th process), the oxide film having a desired total thickness can be formed over the entire surface of the object 11 to be processed.

つまり、本発明に係る表面処理方法は、被処理体の被処理面が、断続的な酸化処理(マイクロアーク酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとする条件下で)、酸化被膜によって覆われるように、前述した第M工程を行う。また、前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値とし、前記第M工程を繰り返し行うことにより、合計膜厚が所望の厚さからなる前記酸化被膜を形成する。 That is, the surface treatment method according to the present invention, the treated surface of the object to be processed is intermittent oxidation (maintained at a low voltage V M than the maximum voltage V max of the micro-arc oxidation process, a predetermined current I 1 The above-described Mth step is performed so as to be covered with the oxide film. Further, said voltage V M is increased in order in the direction of the highest voltage V max is a predetermined number, by repeating the first M step to form the oxide film total thickness is composed of desired thickness .

以上、図3に基づき、アノード酸化処理において、前記nが「3以上」であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を「断続的」に前記電解液に浸漬する場合について説明したが、本発明はこれに限定されるものではない。
前記nは「1又は2」であっても構わない。また、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を「断続的」に前記電解液に浸漬する代わりに、前記被処理体を「連続的」に前記電解液に浸漬する方法を採用してもよい。
すなわち、アノード酸化処理において、前記nが「1」であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を「連続的」または「断続的」に前記電解液に浸漬することもできる。その際には、前記第Mb工程、・・・前記第Mn工程における所定の電流の値が、前記第Ma工程における所定の電流Iと同じ数値とされることが好ましい。
As described above, based on FIG. 3, in the anodic oxidation process, the n is “3 or more”, and the M-th process, the M-th process, the M-b process,. Although the case where the object to be processed is “intermittently” immersed in the electrolytic solution has been described, the present invention is not limited to this.
The n may be “1 or 2”. In addition, the Ma process, the Mb process,... The Mn process, which constitute the M process, are not intermittently immersed in the electrolytic solution. You may employ | adopt the method of immersing a process body in the said electrolyte solution "continuously".
That is, in the anodic oxidation process, the n is “1”, and the Mth process, the Mb process,... The Mn process constitute the Mth process. It is also possible to immerse in the electrolyte solution in a “target” or “intermittent” manner. At that time, the second Mb step, the value of the predetermined current in ... the first Mn step is preferably set to the same numerical value as the predetermined current I 1 in the first Ma step.

以下では、統合した制御装置が備える制御部を採用した場合、第M工程(Mは2以上の整数)の前記第Ma工程、前記第Mb工程、・・・前記第Mn工程において、前記被処理体を前記電解液に浸漬する際に「断続的」に制御する為に利用する、「目標値、現在値、操作量、移動量」の典型的な対応について述べる。
目標値はオペレーターが入力した所定の電流値である。
現在値は処理電流(アノード酸化処理時の電流)である。
操作量は被処理物を浸漬する速度である。なお、この浸漬速度は典型的にはオペレーターが入力する固定された速度であるが、目標値と現在値との差分に比例定数を乗じた値の速度としてもよい。後者の場合はより短時間での表面処理を行うことが可能となる。
Hereinafter, in the case where the control unit included in the integrated control device is employed, in the Mth step (M is an integer of 2 or more), the Mth step, the Mb step,. A typical correspondence of “target value, current value, operation amount, movement amount” used for “intermittent” control when the body is immersed in the electrolytic solution will be described.
The target value is a predetermined current value input by the operator.
The current value is the processing current (current during anodic oxidation).
The operation amount is the speed at which the workpiece is immersed. This immersion speed is typically a fixed speed input by the operator, but may be a speed obtained by multiplying the difference between the target value and the current value by a proportional constant. In the latter case, the surface treatment can be performed in a shorter time.

移動量は被処理物のZ方向への移動距離である。移動量は図示しないセンサ等によって制御部に取り込まれる。この時、ある処理区画までの浸漬とは、当初位置から次の処理区画に対応する移動量に一致するまでZ方向へ移動する事と同義である。
または、操作量を時間積分した値を移動量とし、センサ不要として、次の処理区画に対応する移動量に一致するまでZ方向へ移動することとしてもよい。ここで処理区画に対応する移動量の定義はオペレーターが入力する任意の値となるが、制御部の制御周期時間に対応する値を設定することが望ましい。この設定を行うことで最小の処理区画を実現可能となるためである。
The movement amount is the movement distance of the workpiece in the Z direction. The movement amount is taken into the control unit by a sensor or the like (not shown). At this time, the immersion to a certain processing section is synonymous with moving in the Z direction from the initial position until the movement amount corresponding to the next processing section is reached.
Alternatively, a value obtained by integrating the operation amount over time may be used as the movement amount, and the sensor may not be necessary, and the movement amount may be moved in the Z direction until it matches the movement amount corresponding to the next processing section. Here, the definition of the movement amount corresponding to the processing section is an arbitrary value input by the operator, but it is desirable to set a value corresponding to the control cycle time of the control unit. This is because the minimum processing section can be realized by performing this setting.

制御部は、ある処理区画までの浸漬が完了したことを、「移動量」と「処理区画に対応する移動量」とを比較することによって検知し、次に「目標値」と「現在値」の比較を行う。この比較の結果、所定の電流値以下であれば停止する必要がないため、次の処理区画に対応する移動を許可する。
なお、所定の電流値を超える場合は、浸漬を停止させる処理、すなわち操作量をゼロとする。しかしながら、被処理物が微小に逆方向へ移動する事は実機の調整範囲内として許容可能である。
上述したように、本発明においては、制御部はこの一連の処理を複数回繰り返し実行することで、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程の処理を行う。つまり、目標値と現在値とを比較した結果次第で、「断続的な処理」となったり、「一部が連続的な処理」となったり、「全てが連続的な処理」となる場合がある。
The control unit detects that the immersion to a certain processing section is completed by comparing the “movement amount” with the “movement amount corresponding to the processing section”, and then “target value” and “current value”. Make a comparison. As a result of this comparison, if it is equal to or less than a predetermined current value, it is not necessary to stop, so movement corresponding to the next processing section is permitted.
In addition, when exceeding a predetermined electric current value, the process which stops immersion, ie, an operation amount, is made into zero. However, a slight movement of the workpiece in the reverse direction is acceptable within the adjustment range of the actual machine.
As described above, in the present invention, the control unit performs the processes of the Ma process, the Mb process,. In other words, depending on the result of comparing the target value with the current value, it may be “intermittent processing”, “partly continuous processing”, or “all continuous processing”. is there.

図2(a)は、上述した本発明に係る表面処理方法を示すフローチャートであり、第M工程(第Ma工程〜第Mn工程)を繰り返し行うことを表わしている。図2(b)は、図3(b)と図3(f)に相当する、被処理体11と電解液22との位置関係を模式的に示した図である。
つまり、図2(a)は、アノード酸化処理時の電流値Iと所定の電流Iとの関係が、「I≧I」を満たす場合に、YESの方向へ進むことを表わしている。
なお、「I≧I」を満たす場合でも、アクチュエータ−位置をZ<Zにしても構わない。この条件を満たす際は、第M工程を構成する「第Ma工程〜第Mn工程」は、おのおの区分されずに、連続した1つの工程と見なされる。ここで、Zは基板の前側面が液面に接した状態における基板の後側面の位置(高さ)、Zはアノード酸化処理時の基板の後側面の位置(高さ)、をおのおの表わす[図2(b)]。
FIG. 2A is a flowchart showing the surface treatment method according to the present invention described above, and represents that the Mth step (Math to Mnth steps) is repeated. FIG. 2B is a diagram schematically showing the positional relationship between the object to be processed 11 and the electrolytic solution 22 corresponding to FIGS. 3B and 3F.
That is, FIG. 2 (a), the relationship between the current value I and the predetermined current I 1 during anodic oxidation treatment, if they meet the 'I 1 ≧ I "represents that the process proceeds in the direction of YES.
Even when “I 1 ≧ I” is satisfied, the actuator position may be Z 1 <Z. When this condition is satisfied, the “Mth process to Mn process” constituting the Mth process is regarded as one continuous process without being divided. Here, Z 1 represents the position (height) of the rear side surface of the substrate when the front side surface of the substrate is in contact with the liquid surface, and Z represents the position (height) of the rear side surface of the substrate during the anodic oxidation treatment. [FIG. 2 (b)].

ゆえに、本発明は、小電流密度の電源装置で、かつ簡易な電解液の冷却機構であっても、マイクロアーク酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な、表面処理方法をもたらす。   Therefore, the present invention can form an oxide film intermittently on an object to be processed having a large area by micro arc oxidation treatment even with a power supply device with a small current density and a simple electrolyte cooling mechanism. Resulting in a surface treatment method.

また、本発明の表面処理方法による被処理体の被処理面は、断続的な酸化処理によって形成された酸化被膜の多層構造によって覆われる。酸化被膜の形成時に最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとしたことにより、断続的に処理を行っても、処理面に色彩的な模様が残ることが無い。このため、本発明は、処理面の外観の均質性に優れた酸化被膜の提供に寄与する。 In addition, the surface to be processed of the object to be processed by the surface treatment method of the present invention is covered with a multilayer structure of oxide films formed by intermittent oxidation treatment. Maintained at a low voltage V M than the maximum voltage V max during formation of the oxide film, by which a predetermined current I 1, even if the intermittent processing, it is never remain chromatic patterns on treated surface . For this reason, this invention contributes to provision of the oxide film excellent in the homogeneity of the external appearance of the processing surface.

図4は、酸化被膜の形成時に印加する電圧および電流と処理時間との関係を示すグラフであり、本発明の方法で処理した場合の電圧電流曲線である。図4において、実線が電圧を、点線が電流を、おのおの表わしている。
図4より、本発明の表面処理方法においては、酸化被膜の形成時に最高電圧Vmaxよりも低い電圧Vに保持した際に、所定の電流Iを保つように制御されていることが分かる。また本発明では、図4に示すように、前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値(V<VM+1<VM+2<VM+3<・・<VM+n<Vmax)とし、前記第M工程(第Ma工程〜第Mn工程)を行った場合でも、所定の電流Iを保つように制御されている。
FIG. 4 is a graph showing the relationship between the voltage and current applied during the formation of the oxide film and the treatment time, and is a voltage-current curve when the treatment is performed by the method of the present invention. In FIG. 4, the solid line represents the voltage, and the dotted line represents the current.
From FIG. 4, in the surface treatment method of the present invention, when held at a low voltage V M than the maximum voltage V max during formation of the oxide film, it can be seen that are controlled so as to maintain a predetermined current I 1 . In the present invention also as shown in FIG. 4, said voltage V M is increased in order in the direction of the highest voltage V max predetermined value (V M <V M + 1 <V M + 2 <V M + 3 <·· <V M + n <and V max), even when subjected to the first M step (a Ma step, second Mn step), and is controlled so as to maintain a predetermined current I 1.

さらには、図4に示すように、最後の第M工程(第Ma工程〜第Mn工程)に続けて、前記最後の第M工程が行われた前記電圧Vよりも低い電圧VM−まで、所定の時間で連続的又は断続的に電圧を降下させて、前記アノード酸化処理を行う工程Pと、前記電圧VM−で定電圧処理を行う工程Qとを順に、さらに備えてもよい。
これにより、後者の電圧(VM−)では絶縁破壊されないが、後者の電圧(VM−)よりも高い前者の電圧(V)では絶縁破壊されるような、弱い部分を十分に修復し、より高い耐電圧、耐食性を有する酸化被膜を得ることが可能になる。
このような、前者の電圧(V)と後者の電圧(VM−)の間の電圧変化を複数回繰り返すことにより、膜の修復をより確実に行うことが好ましい。
Furthermore, as shown in FIG. 4, following the end of the M step (a Ma step, second Mn step), a low voltage V to M- than the last of the voltage V M to the M step is performed A step P for performing the anodic oxidation treatment by continuously or intermittently dropping the voltage at a predetermined time and a step Q for carrying out the constant voltage treatment at the voltage V M− may be further provided.
Thus, without the latter voltage (V M-) In breakdown, as higher the former voltage (V M) in breakdown than the latter voltage (V M-), fully repair the weak It becomes possible to obtain an oxide film having higher withstand voltage and corrosion resistance.
It is preferable to repair the film more reliably by repeating such a voltage change between the former voltage (V M ) and the latter voltage (V M− ) a plurality of times.

図5は、酸化被膜の形成時に印加する電圧および電流と処理時間との関係を示すグラフであり、一括で処理した場合の電圧電流曲線である。図5において、実線が電圧を、点線が電流を、おのおの表わしている。
図4と図5を比較することにより、一括処理を行うと、処理時間は本発明の方法で処理した場合の1/3であるが、処理電流は本発明の方法で処理した場合の3倍必要になることが分かる。これより、本発明に係る連続処理は、処理電流を抑えることができ、小さな設備で大面積な被処理体を処理できることが明らかとなった。
FIG. 5 is a graph showing the relationship between the voltage and current applied during the formation of the oxide film and the treatment time, and is a voltage-current curve when the treatment is performed in a lump. In FIG. 5, the solid line represents the voltage, and the dotted line represents the current.
By comparing FIG. 4 and FIG. 5, when batch processing is performed, the processing time is 1/3 of the case of processing by the method of the present invention, but the processing current is three times that of processing by the method of the present invention. I understand that it is necessary. From this, it has been clarified that the continuous processing according to the present invention can suppress a processing current and can process a large-sized object to be processed with a small facility.

図6は、浸漬する方向における被処理体の位置と処理時間との関係を示すグラフである。
図6より、処理電圧が低い場合には、試料全体が浸漬されて、その電圧における処理が完了するまでの時間が短いことが分かる。一方、処理電圧が高い場合には、試料全体が浸漬されて、その電圧における処理が完了するまでの時間が長いことが分かる。
FIG. 6 is a graph showing the relationship between the position of the object to be treated and the treatment time in the immersion direction.
FIG. 6 shows that when the processing voltage is low, the entire sample is immersed and the time until the processing at that voltage is completed is short. On the other hand, when the treatment voltage is high, it can be seen that the entire sample is immersed and the time until the treatment at that voltage is completed is long.

本発明の表面処理方法においては、前記被処理体における前記第一処理区画、前記第二処理区画、・・前記第n区画を順に前記電解液に浸漬させる際には、該電解液の深さ方向へ該被処理体が進行するか、または停止するように、前記電解液の液面に対する前記被処理体の位置を制御することが好ましい。
これにより、被処理体11の被処理面のうち、未だ膜が形成されていない領域が、電解液22の液面に対して、出たり入ったりするような動作を防ぐことができる。ゆえに、絶縁破壊の現象が発生しにくい状態で、酸化被膜の形成を安定して行うことが可能となる。
In the surface treatment method of the present invention, when the first treatment section, the second treatment section, and the n-th section in the object to be treated are immersed in the electrolyte solution in order, the depth of the electrolyte solution It is preferable to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution so that the object to be processed advances or stops in the direction.
Thereby, the operation | movement where the area | region in which the film | membrane is not yet formed among the to-be-processed surfaces of the to-be-processed object 11 comes in and out with respect to the liquid level of the electrolyte solution 22 can be prevented. Therefore, it is possible to stably form the oxide film in a state where the phenomenon of dielectric breakdown is unlikely to occur.

このように、電解液22の液面に対する被処理体11の位置を制御する方法としては、以下に述べる2通りの手法が挙げられる。
第一の手法は、前記電解液の液面の高さ位置を固定し、前記電解液の液面に対して前記被処理体の高さ位置を調整する方法である。
第二の手法は、前記被処理体の高さ位置を固定し、前記被処理体の高さ位置に対して前記電解液の液面の高さを調整する方法である。
いずれの手法においても、電解液22の液面に対する被処理体11の位置を制御することができる。被処理体11が小さい(処理面積が狭い)場合には、いずれの手法を選択しても構わない。しかし、被処理体11が大きい(処理面積が広い)場合には、電解液22を収納する電解槽21も大容量となるので、第一の手法が好適である。
As described above, as a method for controlling the position of the workpiece 11 with respect to the liquid surface of the electrolytic solution 22, there are two methods described below.
The first method is a method of fixing the height position of the liquid surface of the electrolytic solution and adjusting the height position of the object to be processed with respect to the liquid surface of the electrolytic solution.
The second method is a method of fixing the height position of the object to be processed and adjusting the height of the electrolytic solution with respect to the height position of the object to be processed.
In any method, the position of the workpiece 11 with respect to the liquid surface of the electrolytic solution 22 can be controlled. When the object 11 is small (the processing area is small), any method may be selected. However, when the object 11 is large (the processing area is wide), the electrolytic cell 21 for storing the electrolytic solution 22 also has a large capacity, and therefore the first method is suitable.

本発明の表面処理装置として、図1に示すような表面処理装置が挙げられる。すなわち、
本発明に係る表面処理装置は、被処理体のうち特定の処理区画までを電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、前記特定の処理区画までが前記電解液に浸漬された位置に前記被処理体を静止させる機能を備えた被処理体の移動手段を備えている。そして、前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成されている。
An example of the surface treatment apparatus of the present invention is a surface treatment apparatus as shown in FIG. That is,
The surface treatment apparatus according to the present invention moves the object to be treated in the depth direction of the electrolytic solution in order to immerse the object to be treated up to a specific treatment section in the electrolytic solution. An object to be processed is provided with a function of stopping the object to be processed at a position where the section is immersed in the electrolytic solution. The moving means applies a predetermined voltage over the entire area of the object to be processed and exposes the entire area of the object to be processed from the electrolytic solution every time a series of anodic oxidation processes are completed. The anode means is moved to a position in a direction to pull up the object to be processed from the electrolytic solution.

これにより、本発明によれば、マイクロアーク酸化処理を含むアノード酸化処理時の電流を所定の電流I以下に保持することが可能であるため、大容量の電源が不要となる。更に、全ての酸化皮膜の形成過程の発熱を積極的に下げることができるので、処理系の冷却するためのシステムを従来と比べて小さくすることができる。
ゆえに、本発明は、小電流の電源装置で、かつ簡易な電解液の冷却機構であっても、マイクロアーク酸化処理を含むアノード酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な表面処理装置をもたらす。
また、本発明の表面処理装置は、上述した陽極手段を備えているので、大面積の被処理物に対して、自動的に被処理物を覆うように所望の膜厚からなる酸化被膜を形成できる。
Thus, according to the present invention, since it is possible to retain the current at the anode oxidation process comprising micro-arc oxidation process in a predetermined current I 1 or less, large-capacity power supply is not required. Furthermore, since the heat generation during the formation process of all oxide films can be actively reduced, the system for cooling the processing system can be made smaller than the conventional system.
Therefore, the present invention provides an oxide film that is intermittently applied to an object to be processed on a large area by an anodic oxidation treatment including a micro arc oxidation treatment, even with a small current power supply device and a simple electrolyte cooling mechanism. A surface treatment apparatus capable of forming the surface.
In addition, since the surface treatment apparatus of the present invention includes the above-described anode means, an oxide film having a desired film thickness is formed on a large-area workpiece to automatically cover the workpiece. it can.

本発明において着目した「電流密度」とは、被処理体のうち特定の処理区画までを電解液に浸漬させた状態において、電解液の液面により特定される被処理体の表面周囲の長さ(周長)で電流値を除した数値であり、いわゆる「線電流密度」である。
図3(a)において、被処理体のサイズが、x1=2500mm、x2=3000mm、x3=50mmとした場合、被処理体の表面周囲の長さ(周長)は、「2500×2+50×2」となる。(直流)電源装置から印加する(最大)電圧を50V、(最大)電流を50Aとした場合、「線電流密度」は0.0098A/mm(≒50/5100)と算出される。つまり、電解液の液面が接する被処理体の表面周囲(周長部)には、極めて微弱な電流が作用するだけである。よって、本発明によれば、酸化被膜の成長領域以外は絶縁破壊の現象が発生しにくい状態で、酸化被膜の形成を安定して行うことが可能となる。
The “current density” focused on in the present invention is the length around the surface of the target object specified by the liquid level of the electrolytic solution in a state where up to a specific processing section of the target object is immersed in the electrolytic solution. It is a numerical value obtained by dividing the current value by (circumference length), which is a so-called “linear current density”.
In FIG. 3A, when the size of the object to be processed is x1 = 2500 mm, x2 = 3000 mm, and x3 = 50 mm, the length (periphery) around the surface of the object to be processed is “2500 × 2 + 50 × 2”. " When the (maximum) voltage applied from the (DC) power supply device is 50 V and the (maximum) current is 50 A, the “linear current density” is calculated as 0.0098 A / mm (≈50 / 5100). That is, a very weak current only acts on the periphery (circumferential portion) of the surface of the workpiece to be in contact with the liquid surface of the electrolytic solution. Therefore, according to the present invention, it is possible to stably form the oxide film in a state where the dielectric breakdown phenomenon is unlikely to occur except in the growth region of the oxide film.

本発明は、このように極めて微弱な電流が作用するだけで、酸化被膜を形成できる。ゆえに、本発明によれば、大電流を供給するような電源装置は必要なく、小電流密度の電源装置でも十分に酸化被膜を形成することが可能である。したがって、本発明は、簡易な電解液の冷却機構であっても、マイクロアーク酸化処理を含むアノード酸化処理によって大きな面積の被処理体に対して断続的に酸化被膜を形成することが可能な表面処理装置をもたらす。
また、本発明の表面処理装置は、上述した陽極手段を備えているので、大面積の被処理物に対して、自動的に被処理物を覆うように所望の膜厚からなる酸化被膜の安定した形成を実現する。
In the present invention, an oxide film can be formed only by the action of such a very weak current. Therefore, according to the present invention, there is no need for a power supply device that supplies a large current, and it is possible to sufficiently form an oxide film even with a power supply device with a low current density. Therefore, the present invention provides a surface capable of intermittently forming an oxide film on a workpiece having a large area by an anodic oxidation treatment including a micro-arc oxidation treatment even with a simple electrolyte cooling mechanism. Provide a processing device.
In addition, since the surface treatment apparatus of the present invention includes the above-described anode means, it is possible to stabilize an oxide film having a desired film thickness so as to automatically cover the workpiece with respect to the workpiece having a large area. To achieve the formation.

本発明は、バルブ金属からなる被処理体の表面処理法に広く適用可能である。本発明は、真空装置の内部空間で使用される物品、たとえば、加熱ヒータパネルや、シャワープレート、チャンバの内壁材などの表面処理法として好適に用いられる。   The present invention can be widely applied to a surface treatment method of an object to be processed made of a valve metal. The present invention is suitably used as a surface treatment method for articles used in the internal space of a vacuum apparatus, such as a heater panel, a shower plate, and an inner wall material of a chamber.

11 被処理体、21 電解液槽、22 電解液、22a 液面、15a1、15b1、15c1、・・15n1(15) 酸化被膜、A、B、C、・・N 処理区画。   DESCRIPTION OF SYMBOLS 11 To-be-processed object, 21 Electrolyte tank, 22 Electrolyte, 22a Liquid surface, 15a1, 15b1, 15c1, ... 15n1 (15) Oxide film, A, B, C, ... N Processing division.

上記課題を解決するために、本発明は次のような表面処理方法および表面処理装置を提供した。すなわち、
請求項1に記載の発明は、バルブ金属からなる被処理体の被処理面に、複数の処理区画を設定し、各処理区画ごとに断続的に電解液に浸漬してアノード酸化処理を行い、前記被処理面に酸化被膜を形成する表面処理方法であって、
前記アノード酸化処理は、第M(Mは2以上の整数)工程から構成され、
前記第M工程は、
前記被処理体のうち第一処理区画のみを前記電解液に浸漬させて、マイクロアーク酸化処理を含むアノード酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとなるように、前記被処理体の第一処理区画に所望の酸化被膜を形成する第Ma工程と、
前記第Ma工程を終えた被処理体を、前記第一処理区画に隣接する第二処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記二処理区画に所望の酸化被膜を形成する第Mb工程と、
前記第Mb工程を終えた被処理体を、第n処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記n処理区画に所望の酸化被膜を形成し、前記被処理面の全域に亘って酸化被膜を形成するする第Mn工程(nは1以上の整数)とを備え、
前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値とし、前記第M工程を繰り返し行うことにより、合計膜厚が所望の厚さからなる前記酸化被膜を形成する、
ことを特徴とする。
In order to solve the above problems, the present invention provides the following surface treatment method and surface treatment apparatus. That is,
The invention according to claim 1 sets a plurality of processing sections on the processing surface of the target object made of a valve metal, performs an anodic oxidation treatment by intermittently immersing each processing section in an electrolytic solution, A surface treatment method for forming an oxide film on the surface to be treated,
The anodizing treatment is composed of an Mth step (M is an integer of 2 or more),
The Mth step includes
Said only the first processing compartment of the object to be processed is immersed in the electrolyte solution, and held at the maximum voltage V max voltage lower than V M of the anode oxidation process comprising micro-arc oxidation process, a predetermined current I 1 A Ma step of forming a desired oxide film on the first processing section of the object to be processed;
The object to be processed that has finished the Ma process is immersed in the electrolytic solution up to a second process section adjacent to the first process section, and a desired oxide film is formed on the second process section under the same conditions as in the Ma process. The Mb step of forming
The object to be processed after the Mb step is immersed in the electrolytic solution up to the nth processing section, and a desired oxide film is formed on the nth processing section under the same conditions as in the Ma process, and the surface to be processed Mn step (n is an integer of 1 or more) for forming an oxide film over the entire area of
The voltage of V M increased in order in the direction of the highest voltage V max is a predetermined number, By repeating the first M step to form the oxide film total thickness is composed of a desired thickness,
It is characterized by that.

請求項2に記載の発明は、請求項1において、前記アノード酸化処理は、前記nが1であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を連続的または断続的に前記電解液に浸漬する、ことを特徴とする。
請求項3に記載の発明は、請求項2において、前記第Mb工程、・・・前記第Mn工程における所定の電流の値が、前記第Ma工程における所定の電流Iと同じであることを特徴とする。
請求項4に記載の発明は、請求項1において、前記被処理体における前記第一処理区画、前記第二処理区画、・・前記第n処理区画を順に前記電解液に浸漬させる際には、該電解液の深さ方向へ該被処理体が進行するか、または停止するように、前記電解液の液面に対する前記被処理体の位置を制御する、ことを特徴とする。
請求項5に記載の発明は、請求項4において、前記電解液の液面に対する前記被処理体の位置を制御するために、前記電解液の液面の高さ位置を固定し、前記電解液の液面に対して前記被処理体の高さ位置を調整する、ことを特徴とする。
請求項6に記載の発明は、請求項4において、前記電解液の液面に対する前記被処理体の位置を制御するために、前記被処理体の高さ位置を固定し、前記被処理体の高さ位置に対して前記電解液の液面の高さを調整する、ことを特徴とする。
請求項7に記載の発明は、請求項1において、前記アノード酸化処理における最後の第M工程に続けて、前記最後の第M工程が行われた前記電圧VMよりも低い電圧VM−まで、所定の時間で連続的又は断続的に電圧を降下させて、前記アノード酸化処理を行う工程Pと、前記電圧VM−で定電圧処理を行う工程Qとを順に、さらに備えることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the anodic oxidation treatment is such that the n is 1, and the Mth step, the Ma step, the Mb step,. The Mn process is characterized in that the object to be treated is immersed in the electrolytic solution continuously or intermittently.
Invention according to claim 3, in claim 2, wherein said Mb step, the value of the predetermined current in ... the first Mn step, that is the same as the predetermined current I 1 in the first Ma step Features.
The invention according to claim 4 is the invention according to claim 1, wherein the first processing section, the second processing section, and the n-th processing section in the object to be processed are sequentially immersed in the electrolytic solution. The position of the object to be processed relative to the liquid surface of the electrolyte is controlled so that the object to be processed advances or stops in the depth direction of the electrolyte.
According to a fifth aspect of the present invention, in the fourth aspect, in order to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution, a height position of the liquid surface of the electrolytic solution is fixed, and the electrolytic solution The height position of the object to be processed is adjusted with respect to the liquid level.
In order to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution, the height of the object to be processed is fixed, and the invention described in claim 6 fixes the height of the object to be processed. The height of the electrolyte surface is adjusted with respect to the height position.
According to a seventh aspect of the present invention, in the first aspect , the voltage VM− is lower than the voltage VM at which the last Mth step is performed, to a voltage VM− lower than the voltage VM− at which the last Mth step is performed. The method further comprises a step P of performing the anodic oxidation process by dropping the voltage continuously or intermittently in a period of time and a step Q of performing the constant voltage process at the voltage VM−.

請求項8に記載の発明は、バルブ金属からなる被処理体を電解液に浸漬してアノード酸化処理を行い、前記被処理体に酸化被膜を形成する表面処理装置であって、
前記被処理体の被処理面上にアノード酸化処理によって前記酸化被膜を形成するための陽極手段と、
前記電解液を収納し、かつ、該電解液に対する前記陽極手段の浸漬を可能とする開口部を備えた電解液槽と、
前記電解液中において前記陽極手段と対向して配置された陰極手段と、
前記陽極手段と前記陰極手段が前記電解液に浸漬された状態において、前記陽極手段と前記陰極手段との間に電流を発生させて、前記アノード酸化処理を行うための電源手段と、
前記被処理体のうち特定の処理区画までを前記電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、前記特定の処理区画までが前記電解液に浸漬された位置に前記被処理体を静止させる機能を備えた被処理体の移動手段と、を含み、
前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成されている、ことを特徴とする。
請求項9に記載の発明は、バルブ金属からなる被処理体を電解液に浸漬してアノード酸化処理を行い、前記被処理体に酸化被膜を形成する表面処理装置であって、
前記被処理体の被処理面上にアノード酸化処理によって前記酸化被膜を形成するための陽極手段と、
前記電解液を収納し、かつ、該電解液に対する前記陽極手段の浸漬を可能とする開口部を備えた電解液槽と、
前記電解液中において前記陽極手段と対向して配置された陰極手段と、
前記陽極手段と前記陰極手段が前記電解液に浸漬された状態において、前記陽極手段と前記陰極手段との間に電流を発生させて、前記アノード酸化処理を行うための電源手段と、
前記被処理体のうち特定の処理区画までを前記電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、所定の電流値と処理電流の値を比較し、前記所定の電流値を超える場合は前記被処理体を静止させる機能を備えた被処理体の移動手段と、を含み、
前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理工程が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成され、かつ、前記一連のアノード酸化処理工程の次の一連のアノード酸化処理工程においては前記所定の電圧より高い電圧を所定の電圧として前記被処理体に印加している、
ことを特徴とする。
The invention according to claim 8 is a surface treatment apparatus for performing an anodic oxidation treatment by immersing a workpiece made of a valve metal in an electrolytic solution, and forming an oxide film on the workpiece.
An anode means for forming the oxide film by anodic oxidation on the surface to be processed of the object to be processed;
An electrolytic bath containing the electrolytic solution and having an opening that allows the anode means to be immersed in the electrolytic solution;
Cathode means disposed opposite to the anode means in the electrolyte solution;
In the state where the anode means and the cathode means are immersed in the electrolytic solution, a power supply means for generating an electric current between the anode means and the cathode means to perform the anodization treatment;
In order to immerse the object to be treated up to a specific processing section in the electrolytic solution, the object to be processed is moved in the depth direction of the electrolytic solution, and up to the specific processing section is in the electrolytic solution. A moving means of the object to be processed having a function of stopping the object to be processed in an immersed position,
The moving means applies a predetermined voltage over the entire area of the object to be processed, and each time a series of anodic oxidation processes is completed, from the electrolyte solution to a position where the entire area of the object to be exposed is exposed. The anode means is configured to move in a direction in which the object to be processed is pulled up from the electrolytic solution.
The invention according to claim 9 is a surface treatment apparatus for performing an anodic oxidation treatment by immersing a target object made of a valve metal in an electrolytic solution, and forming an oxide film on the target object.
An anode means for forming the oxide film by anodic oxidation on the surface to be processed of the object to be processed;
An electrolytic bath containing the electrolytic solution and having an opening that allows the anode means to be immersed in the electrolytic solution;
Cathode means disposed opposite to the anode means in the electrolyte solution;
In the state where the anode means and the cathode means are immersed in the electrolytic solution, a power supply means for generating an electric current between the anode means and the cathode means to perform the anodization treatment;
In order to immerse the object to be processed up to a specific processing section in the electrolytic solution, the object to be processed is moved in the depth direction of the electrolytic solution, and a predetermined current value is compared with a value of the processing current. And, when the predetermined current value is exceeded, includes a means for moving the object to be processed having a function of stopping the object to be processed,
The moving means applies a predetermined voltage over the entire area of the object to be processed, and each time a series of anodizing treatment steps is completed, the position where the entire area of the object to be processed is exposed from the electrolytic solution. The anode means is moved in the direction of pulling up the object to be processed from the electrolytic solution, and in a series of anodizing treatment steps subsequent to the series of anodizing treatment steps, the predetermined voltage is applied. A high voltage is applied to the object as a predetermined voltage,
It is characterized by that.

Claims (8)

バルブ金属からなる被処理体の被処理面に、複数の処理区画を設定し、各処理区画ごとに連続的または断続的に電解液に浸漬してアノード酸化処理を行い、前記被処理面に酸化被膜を形成する表面処理方法であって、
前記アノード酸化処理は、第M(Mは2以上の整数)工程から構成され、
前記第M工程は、
前記被処理体のうち第一処理区画のみを前記電解液に浸漬させて、マイクロアーク酸化処理を含むアノード酸化処理の最高電圧Vmaxよりも低い電圧Vに保持し、所定の電流Iとなるように、前記被処理体の第一処理区画に所望の酸化被膜を形成する第Ma工程と、
前記第Ma工程を終えた被処理体を、前記第一処理区画に隣接する第二処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記二処理区画に所望の酸化被膜を形成する第Mb工程と、
前記第Mb工程を終えた被処理体を、第n処理区画まで前記電解液に浸漬させて、第Ma工程と同一条件で前記n処理区画に所望の酸化被膜を形成し、前記被処理面の全域に亘って酸化被膜を形成するする第Mn工程(nは1以上の整数)とを備え、
前記電圧Vを前記最高電圧Vmaxの方向へ順に増加させて所定の数値とし、前記第M工程を繰り返し行うことにより、合計膜厚が所望の厚さからなる前記酸化被膜を形成する、
ことを特徴とする表面処理方法。
A plurality of processing sections are set on the processing surface of the target object made of valve metal, and each processing section is immersed in an electrolytic solution continuously or intermittently for anodic oxidation, and the processing surface is oxidized. A surface treatment method for forming a film,
The anodizing treatment is composed of an Mth step (M is an integer of 2 or more),
The Mth step includes
Said only the first processing compartment of the object to be processed is immersed in the electrolyte solution, and held at the maximum voltage V max voltage lower than V M of the anode oxidation process comprising micro-arc oxidation process, a predetermined current I 1 A Ma step of forming a desired oxide film on the first processing section of the object to be processed;
The object to be processed that has finished the Ma process is immersed in the electrolytic solution up to a second process section adjacent to the first process section, and a desired oxide film is applied to the two process sections under the same conditions as in the Ma process. Forming the Mb step;
The object to be processed that has finished the Mb step is immersed in the electrolytic solution up to the nth processing section, and a desired oxide film is formed on the n processing section under the same conditions as in the Ma process. A Mn-th step (n is an integer of 1 or more) for forming an oxide film over the entire area,
The voltage of V M increased in order in the direction of the highest voltage V max is a predetermined number, by repeating the first M step to form the oxide film total thickness is composed of a desired thickness,
A surface treatment method characterized by the above.
前記アノード酸化処理は、前記nが1であり、前記第M工程を構成する、前記第Ma工程、前記第Mb工程、・・・前記第Mn工程が、前記被処理体を連続的または断続的に前記電解液に浸漬する、
ことを特徴とする請求項1に記載の表面処理方法。
In the anodic oxidation treatment, the n is 1, and the M-th step, the M-th step, the Mb-step,. Dipping in the electrolyte solution,
The surface treatment method according to claim 1.
前記第Mb工程、・・・前記第Mn工程における所定の電流の値が、前記第Ma工程における所定の電流Iと同じであることを特徴とする請求項2に記載の表面処理方法。 3. The surface treatment method according to claim 2, wherein a value of a predetermined current in the Mb step,..., The Mn step is the same as a predetermined current I 1 in the Ma step. 前記被処理体における前記第一処理区画、前記第二処理区画、・・前記第n区画を順に前記電解液に浸漬させる際には、該電解液の深さ方向へ該被処理体が進行するか、または停止するように、前記電解液の液面に対する前記被処理体の位置を制御する、
ことを特徴とする請求項1に記載の表面処理方法。
When the first processing section, the second processing section, and the n-th section in the object to be processed are sequentially immersed in the electrolytic solution, the object to be processed advances in the depth direction of the electrolytic solution. Or controlling the position of the object to be processed with respect to the liquid level of the electrolytic solution so as to stop,
The surface treatment method according to claim 1.
前記電解液の液面に対する前記被処理体の位置を制御するために、前記電解液の液面の高さ位置を固定し、前記電解液の液面に対して前記被処理体の高さ位置を調整する、
ことを特徴とする請求項4に記載の表面処理方法。
In order to control the position of the object to be processed with respect to the liquid surface of the electrolytic solution, the height position of the liquid surface of the electrolytic solution is fixed, and the height position of the object to be processed with respect to the liquid surface of the electrolytic solution Adjust the
The surface treatment method according to claim 4.
前記電解液の液面に対する前記被処理体の位置を制御するために、前記被処理体の高さ位置を固定し、前記被処理体の高さ位置に対して前記電解液の液面の高さを調整する、
ことを特徴とする請求項4に記載の表面処理方法。
In order to control the position of the object to be processed with respect to the liquid level of the electrolytic solution, the height position of the object to be processed is fixed, and the height of the liquid surface of the electrolytic solution with respect to the height position of the object to be processed is fixed. Adjust the height,
The surface treatment method according to claim 4.
請求項1における最後の第M工程に続けて、
前記最後の第M工程が行われた前記電圧Vよりも低い電圧VM−まで、所定の時間で連続的又は断続的に電圧を降下させて、前記アノード酸化処理を行う工程Pと、
前記電圧VM−で定電圧処理を行う工程Qとを順に、さらに備える、
ことを特徴とする表面処理方法。
Following the last Mth step in claim 1,
The final low voltage V to M- than the M step the voltage V M made, continuously or intermittently lowers the voltage at a predetermined time, a step P of performing the anodic oxidation treatment,
Step Q for performing constant voltage processing at the voltage V M− is further provided in order.
A surface treatment method characterized by the above.
バルブ金属からなる被処理体を電解液に浸漬してアノード酸化処理を行い、前記被処理体に酸化被膜を形成する表面処理装置であって、
前記被処理体の被処理面上にアノード酸化処理によって前記酸化被膜を形成するための陽極手段と、
前記電解液を収納し、かつ、該電解液に対する前記陽極手段の浸漬を可能とする開口部を備えた電解液槽と、
前記電解液中において前記陽極手段と対向して配置された陰極手段と、
前記陽極手段と前記陰極手段が前記電解液に浸漬された状態において、前記陽極手段と前記陰極手段との間に電流を発生させて、前記アノード酸化処理を行うための電源手段と、
前記被処理体のうち特定の処理区画までを前記電解液に浸漬させるために、前記被処理体を前記電解液の深さ方向へ移動させ、かつ、前記特定の処理区画までが前記電解液に浸漬された位置に前記被処理体を静止させる機能を備えた被処理体の移動手段と、を含み、
前記移動手段は、前記被処理体の全域に亘って、所定の電圧を印加して一連のアノード酸化処理が終了する毎に、前記電解液の中から前記被処理体の全域が露呈する位置まで、該被処理体を該電解液から引き上げる方向へ前記陽極手段を移動させるように構成されている、ことを特徴とする表面処理装置。
A surface treatment apparatus for performing an anodic oxidation treatment by immersing an object to be treated made of a valve metal in an electrolytic solution, and forming an oxide film on the object to be treated,
An anode means for forming the oxide film by anodic oxidation on the surface to be processed of the object to be processed;
An electrolytic bath containing the electrolytic solution and having an opening that allows the anode means to be immersed in the electrolytic solution;
Cathode means disposed opposite to the anode means in the electrolyte solution;
In the state where the anode means and the cathode means are immersed in the electrolytic solution, a power supply means for generating an electric current between the anode means and the cathode means to perform the anodization treatment;
In order to immerse the object to be treated up to a specific processing section in the electrolytic solution, the object to be processed is moved in the depth direction of the electrolytic solution, and up to the specific processing section is in the electrolytic solution. A moving means of the object to be processed having a function of stopping the object to be processed in an immersed position,
The moving means applies a predetermined voltage over the entire area of the object to be processed, and each time a series of anodic oxidation processes is completed, from the electrolyte solution to a position where the entire area of the object to be exposed is exposed. The surface treatment apparatus is configured to move the anode means in a direction in which the object to be treated is pulled up from the electrolytic solution.
JP2017160602A 2017-08-23 2017-08-23 Surface treatment method and surface treatment apparatus Active JP6558649B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017160602A JP6558649B2 (en) 2017-08-23 2017-08-23 Surface treatment method and surface treatment apparatus
KR1020180096586A KR102469728B1 (en) 2017-08-23 2018-08-20 Surface treatment method and surface treatment apparatus
CN201810966182.6A CN109423674B (en) 2017-08-23 2018-08-23 Surface treatment method and surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017160602A JP6558649B2 (en) 2017-08-23 2017-08-23 Surface treatment method and surface treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019092836A Division JP6630015B2 (en) 2019-05-16 2019-05-16 Surface treatment method and surface treatment device

Publications (2)

Publication Number Publication Date
JP2019039030A true JP2019039030A (en) 2019-03-14
JP6558649B2 JP6558649B2 (en) 2019-08-14

Family

ID=65514568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160602A Active JP6558649B2 (en) 2017-08-23 2017-08-23 Surface treatment method and surface treatment apparatus

Country Status (3)

Country Link
JP (1) JP6558649B2 (en)
KR (1) KR102469728B1 (en)
CN (1) CN109423674B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279874A (en) * 1975-12-26 1977-07-05 Fujitsu Ltd Anodization method
JPH04299830A (en) * 1991-03-28 1992-10-23 Casio Comput Co Ltd Anodizing method for conductive film
JPH06146077A (en) * 1992-11-10 1994-05-27 Casio Comput Co Ltd Anodic oxidation method
JPH06336693A (en) * 1993-05-31 1994-12-06 Sigma Merutetsuku Kk Anodic oxidation and device therefor
US5441618A (en) * 1992-11-10 1995-08-15 Casio Computer Co., Ltd. Anodizing apparatus and an anodizing method
JP2005320623A (en) * 2004-04-07 2005-11-17 Mitsubishi Chemicals Corp Method for forming oxide film
JP2009102721A (en) * 2007-10-25 2009-05-14 Ulvac Japan Ltd Surface treatment method
JP2013060613A (en) * 2011-09-12 2013-04-04 Ulvac Japan Ltd Method for forming oxide film
JP2014214342A (en) * 2013-04-25 2014-11-17 株式会社アルバック Method for forming oxidized film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836921B1 (en) 1968-12-25 1973-11-08
JPS55121803A (en) * 1979-03-15 1980-09-19 Ebara Infilco Co Ltd Film washer
JPS59155136A (en) * 1983-02-23 1984-09-04 Fujitsu Ltd Formation of semiconductor oxide film
CN109811386A (en) * 2019-02-09 2019-05-28 沈阳富创精密设备有限公司 A kind of anode oxidation process of boost mode
CN113423872B (en) * 2019-02-15 2024-06-04 富士胶片株式会社 Anodic oxidation method and method for producing anisotropic conductive member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279874A (en) * 1975-12-26 1977-07-05 Fujitsu Ltd Anodization method
JPH04299830A (en) * 1991-03-28 1992-10-23 Casio Comput Co Ltd Anodizing method for conductive film
JPH06146077A (en) * 1992-11-10 1994-05-27 Casio Comput Co Ltd Anodic oxidation method
US5441618A (en) * 1992-11-10 1995-08-15 Casio Computer Co., Ltd. Anodizing apparatus and an anodizing method
JPH06336693A (en) * 1993-05-31 1994-12-06 Sigma Merutetsuku Kk Anodic oxidation and device therefor
JP2005320623A (en) * 2004-04-07 2005-11-17 Mitsubishi Chemicals Corp Method for forming oxide film
JP2009102721A (en) * 2007-10-25 2009-05-14 Ulvac Japan Ltd Surface treatment method
JP2013060613A (en) * 2011-09-12 2013-04-04 Ulvac Japan Ltd Method for forming oxide film
JP2014214342A (en) * 2013-04-25 2014-11-17 株式会社アルバック Method for forming oxidized film

Also Published As

Publication number Publication date
CN109423674B (en) 2022-05-27
KR102469728B1 (en) 2022-11-22
JP6558649B2 (en) 2019-08-14
KR20190022348A (en) 2019-03-06
CN109423674A (en) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6630015B2 (en) Surface treatment method and surface treatment device
US8187432B2 (en) Anodizing apparatus
US20150114847A1 (en) Electrochemical system and method for electropolishing hollow metal bodies
TWI595123B (en) Dynamic current distribution control apparatus and method for wafer electroplating
JP2014111831A (en) Method and apparatus for dynamic current distribution control during electroplating
JP6411741B2 (en) Electrolytic treatment method and electrolytic treatment apparatus
KR102311578B1 (en) Electric field treatment method and electric field treatment device
DE102007030052B4 (en) Automatic deposition profile target control
JP2009235539A (en) Method for anodizing aluminum member
JP6558649B2 (en) Surface treatment method and surface treatment apparatus
JP6698209B2 (en) Surface treatment method and surface treatment apparatus
RU2324014C2 (en) Process for compression microarc oxidation plating of metal and alloy parts and related equipment therefor
CN110184641B (en) Electroplating method of electroplating device
CN215560737U (en) Laser-assisted micro-arc oxidation device
Zhu et al. Electroforming of revolving parts with near-polished surface and uniform thickness
CN212357443U (en) Electroplating device and anode assembly thereof
US3202595A (en) Electro-chemical machining process
JP3096296B1 (en) Electroplating equipment
KR102416001B1 (en) Treatment method of metal surface for improving plasma resistance
RU2613250C2 (en) Micro-arc oxidation device
RU2515718C2 (en) Method and device for processing of articles
CN113502523A (en) Laser-assisted micro-arc oxidation device and processing method
KR20190045738A (en) Electro forming coating auto control apparatus
JPH05251282A (en) Manufacture of solid electrolytic capacitor
KR20170065443A (en) Electrolytic treatment apparatus and electrolytic treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6558649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250