JP2019038744A - Method for producing secondary graphite, method for producing flaked graphite, secondary graphite, and flaked graphite - Google Patents

Method for producing secondary graphite, method for producing flaked graphite, secondary graphite, and flaked graphite Download PDF

Info

Publication number
JP2019038744A
JP2019038744A JP2018200704A JP2018200704A JP2019038744A JP 2019038744 A JP2019038744 A JP 2019038744A JP 2018200704 A JP2018200704 A JP 2018200704A JP 2018200704 A JP2018200704 A JP 2018200704A JP 2019038744 A JP2019038744 A JP 2019038744A
Authority
JP
Japan
Prior art keywords
graphite
exfoliated graphite
producing
expanded
exfoliated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018200704A
Other languages
Japanese (ja)
Other versions
JP6818266B2 (en
Inventor
増田 浩樹
Hiroki Masuda
浩樹 増田
豊田 昌宏
Masahiro Toyoda
昌宏 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Oita University
Original Assignee
Sekisui Chemical Co Ltd
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Oita University filed Critical Sekisui Chemical Co Ltd
Publication of JP2019038744A publication Critical patent/JP2019038744A/en
Application granted granted Critical
Publication of JP6818266B2 publication Critical patent/JP6818266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide secondary graphite which is hardly bent and is rigid and from which non-oxidizing flaked graphite is obtained and to provide a method for producing the flaked graphite.SOLUTION: A method for producing secondary graphite comprises the steps of: immersing raw material graphite comprising graphite or expanded graphite in an electrolytic solution prepared by using at least one of alkali metal salt and alkaline-earth metal salt as an electrolyte; applying a DC voltage to the immersed raw material graphite to perform electrochemical treatment so that the secondary graphite having an expanded distance between the adjacent graphene layers can be obtained. The method for producing the flaked graphite further comprises a step of performing exfoliation treatment on the secondary graphite to obtain the flaked graphite.SELECTED DRAWING: None

Description

本発明は、原料黒鉛よりもグラフェン間が拡げられている二次黒鉛の製造方法、該二次黒鉛、並びに該二次黒鉛を用いて薄片化黒鉛を製造する方法及び該薄片化黒鉛に関する。   The present invention relates to a method for producing secondary graphite in which the graphene is expanded more than raw graphite, the secondary graphite, a method for producing exfoliated graphite using the secondary graphite, and the exfoliated graphite.

従来、原料黒鉛よりもグラフェン積層数が少ない薄片化黒鉛が注目されている。薄片化黒鉛は、比表面積が大きい。従って、少量の添加で合成樹脂などを補強することができる。   Conventionally, exfoliated graphite having a smaller number of graphene stacks than raw graphite has attracted attention. Exfoliated graphite has a large specific surface area. Therefore, a synthetic resin or the like can be reinforced with a small amount of addition.

下記の特許文献1や2には、このような薄片化黒鉛の製造方法が開示されている。   Patent Documents 1 and 2 below disclose such a method for producing exfoliated graphite.

特許文献1に記載の製造方法では、黒鉛を含む陽極と、陰極とを水溶液中に浸漬し、陽極と陰極との間に直流電圧を印加する。それによって、黒鉛のグラフェン層間に電解質に由来する陰イオンを挿入させる。それによって、陰イオンが挿入された黒鉛層間化合物が得られている。この電解質としては、硝酸、硫酸などの強酸が用いられている。しかるのち、上記黒鉛層間化合物を剥離することにより薄片化黒鉛が得られている。   In the manufacturing method described in Patent Document 1, an anode containing graphite and a cathode are immersed in an aqueous solution, and a DC voltage is applied between the anode and the cathode. Thereby, an anion derived from the electrolyte is inserted between the graphene layers of graphite. Thereby, a graphite intercalation compound having an anion inserted therein is obtained. As this electrolyte, strong acids such as nitric acid and sulfuric acid are used. Thereafter, exfoliated graphite is obtained by exfoliating the graphite intercalation compound.

他方、下記の特許文献2には、酸性電解質水溶液中に黒鉛を作用極として浸漬し、電気化学処理により膨張化黒鉛を得る方法が開示されている。この膨張化黒鉛を、さらに機械的剥離処理することにより、薄片化黒鉛が得られる。   On the other hand, Patent Document 2 below discloses a method of obtaining expanded graphite by electrochemical treatment by immersing graphite in an acidic electrolyte aqueous solution as a working electrode. The exfoliated graphite is further exfoliated to obtain exfoliated graphite.

特開2011−195432号公報JP 2011-195432 A 特開2012−131691号公報JP 2012-131691 A

特許文献1に記載の薄片化黒鉛の製造方法では、酸性電解質水溶液中で硝酸イオンなどをインターカレートしなければならなかった。そのため、最終的に得られた薄片化黒鉛には二酸化グラフェンが積層された形態である。そのため、還元処理を施さなければ、導電性などの良好な特性を得ることができなかった。また、得られた薄片化黒鉛の厚みは比較的薄かった。そのため、樹脂に展開した場合、変形し、織り込まれたり、カールしたりすることがあった。   In the method for producing exfoliated graphite described in Patent Document 1, nitrate ions and the like had to be intercalated in an acidic electrolyte aqueous solution. Therefore, graphene dioxide is laminated on the exfoliated graphite finally obtained. Therefore, good characteristics such as conductivity cannot be obtained unless reduction treatment is performed. Further, the thickness of the exfoliated graphite obtained was relatively thin. For this reason, when developed on a resin, it may be deformed, woven or curled.

他方、引用文献2に記載の電気化学反応を利用した薄片化黒鉛の製造方法においても、得られた薄片化黒鉛の厚みは極めて薄かった。そのため、薄片化黒鉛が屈曲しがちであるという問題があった。そのため、やはり、合成樹脂に添加されると、薄片化黒鉛が変形したり、折りたたまれたりすることがあった。   On the other hand, even in the method for producing exfoliated graphite using the electrochemical reaction described in Patent Document 2, the thickness of the exfoliated graphite obtained was extremely thin. Therefore, there has been a problem that exfoliated graphite tends to be bent. Therefore, when added to the synthetic resin, exfoliated graphite may be deformed or folded.

上記のように、薄片化黒鉛が屈曲したり、折りたたまれたりすると、少量の添加で合成樹脂の機械的強度を高めることが困難となる。   As described above, when exfoliated graphite is bent or folded, it becomes difficult to increase the mechanical strength of the synthetic resin with a small amount of addition.

本発明の目的は、屈曲が少なく、剛直であり、非酸化性の薄片化黒鉛を得ることを可能とする二次黒鉛の製造方法及び該二次黒鉛を提供することにある。   An object of the present invention is to provide a method for producing secondary graphite, which is less rigid and rigid, and makes it possible to obtain non-oxidized exfoliated graphite, and the secondary graphite.

また、本発明の他の目的は、上記二次黒鉛を用いた薄片化黒鉛の製造方法及び薄片化黒鉛を提供することにある。   Another object of the present invention is to provide a method for producing exfoliated graphite using the secondary graphite and exfoliated graphite.

本発明の二次黒鉛の製造方法は、黒鉛または膨張黒鉛からなる原料黒鉛を用意する工程と、アルカリ金属塩及びアルカリ土類金属塩のうちの少なくとも一方を電解質とする電解液に、原料黒鉛を浸漬し、該原料黒鉛を作用極とし、対照極との間に5〜500mAの範囲内の直流電圧を印加し、電気化学処理を行い、グラフェン間の隙間が拡げられた二次黒鉛を得る工程とを備える。   The method for producing secondary graphite of the present invention comprises a step of preparing raw material graphite made of graphite or expanded graphite, and an electrolytic solution containing at least one of an alkali metal salt and an alkaline earth metal salt as an electrolyte. Step of obtaining secondary graphite in which a gap between graphenes is widened by immersing and applying a direct current voltage in the range of 5 to 500 mA between the raw graphite as a working electrode and applying a DC voltage within a range of 5 to 500 mA. With.

なお、原料黒鉛とは、上記のように黒鉛または膨張黒鉛からなる。ここで、膨張黒鉛とは、グラフェン層間を拡げた後に再度圧縮して得られた膨張黒鉛シートにより従来から市販されている膨張黒鉛をいうものとする。   The raw graphite is made of graphite or expanded graphite as described above. Here, the expanded graphite refers to expanded graphite that is conventionally marketed by an expanded graphite sheet obtained by expanding the graphene layer and then compressing it again.

二次黒鉛とは、本発明により得られる黒鉛であって、原料黒鉛よりもグラフェン層間が拡げられている黒鉛をいうものとする。   The secondary graphite is graphite obtained by the present invention, and refers to graphite in which the graphene layer is expanded more than the raw graphite.

本発明に係る二次黒鉛の製造方法では、好ましくは、アルカリ金属塩として、塩化ナトリウム、塩化カリウム、水酸化カリウム及び水酸化ナトリウムからなる群から選択された少なくとも1種が用いられる。この場合には、アルカリ金属がグラフェン間に容易に入り込み、上記電気化学処理によりグラフェン層間をより一層確実に拡げることが可能となる。   In the method for producing secondary graphite according to the present invention, preferably, at least one selected from the group consisting of sodium chloride, potassium chloride, potassium hydroxide and sodium hydroxide is used as the alkali metal salt. In this case, the alkali metal easily enters between the graphenes, and it is possible to further reliably expand the graphene layer by the electrochemical treatment.

本発明に係る二次黒鉛の製造方法では、好ましくは、上記アルカリ土類金属塩として、水酸化マグネシウム、水酸化カルシウム、塩化カルシウム及び塩化マグネシウムからなる群から選択された少なくとも1種が用いられる。この場合には、アルカリ土類金属がグラフェン間に容易に入り込み、上記電気化学処理によりグラフェン層間をより一層確実に拡げることが可能となる。   In the method for producing secondary graphite according to the present invention, preferably, at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, calcium chloride and magnesium chloride is used as the alkaline earth metal salt. In this case, the alkaline earth metal easily enters between the graphenes, and it is possible to further reliably expand the graphene layer by the electrochemical treatment.

本発明に係る薄片化黒鉛の製造方法は、上記二次黒鉛の製造方法で得られた二次黒鉛のグラフェン間の隙間を剥離する剥離処理を行うものである。それによって薄片化黒鉛が得られる。なお、薄片化黒鉛とは、原料黒鉛よりもグラフェンの積層数が少ない黒鉛をいうものとする。上記剥離処理は、超音波処理又は湿潤粉砕によって行われることが好ましい。   The method for producing exfoliated graphite according to the present invention is a treatment for exfoliating a gap between graphenes of secondary graphite obtained by the method for producing secondary graphite. Thereby, exfoliated graphite is obtained. Note that exfoliated graphite means graphite having a smaller number of graphene layers than raw graphite. The peeling treatment is preferably performed by ultrasonic treatment or wet pulverization.

本発明に係る二次黒鉛は、本発明の二次黒鉛の製造方法で得られ、XRDスペクトルにおいて26度及び43度にのみ回折ピークを示す。すなわち、酸化グラフェンに起因する回折ピークを示さず、元の黒鉛由来の回折ピークのみを示す。   The secondary graphite according to the present invention is obtained by the method for producing secondary graphite of the present invention, and exhibits diffraction peaks only at 26 degrees and 43 degrees in the XRD spectrum. That is, only the diffraction peak derived from the original graphite is shown without showing the diffraction peak due to graphene oxide.

本発明に係る薄片化黒鉛は、本発明の二次黒鉛の製造方法で得られた二次黒鉛を剥離処理することにより得られる。この薄片化黒鉛では、最大距離を隔てて対向している両端間の最短距離をAとし、該両端間の道のりをBとしたとき、A/Bで表される屈曲度は0.5以上である。   The exfoliated graphite according to the present invention is obtained by exfoliating the secondary graphite obtained by the method for producing secondary graphite of the present invention. In this exfoliated graphite, when the shortest distance between both ends facing each other at the maximum distance is A and the distance between the both ends is B, the degree of bending represented by A / B is 0.5 or more. is there.

本発明に係る二次黒鉛の製造方法によれば、酸化しておらず、グラフェン層間が原料黒鉛よりも拡げられている二次黒鉛を提供することができる。また、本発明の薄片化黒鉛の製造方法によれば、上記二次黒鉛を剥離処理することにより薄片化黒鉛が得られるため、酸化されておらず、屈曲が少ない、剛直な薄片化黒鉛を提供することが可能となる。   According to the method for producing secondary graphite according to the present invention, it is possible to provide secondary graphite that is not oxidized and in which the graphene layer is expanded more than the raw material graphite. In addition, according to the method for producing exfoliated graphite of the present invention, exfoliated graphite can be obtained by exfoliating the secondary graphite, so that it is not oxidized and provides a rigid exfoliated graphite that is less bent. It becomes possible to do.

実施例1において、電気化学処理において得られた二次黒鉛のXRDスペクトルを示す図である。In Example 1, it is a figure which shows the XRD spectrum of the secondary graphite obtained in the electrochemical process. 比較例3において、電気化学処理後のサンプルのXRDスペクトルを示す図である。In Comparative Example 3, it is a figure which shows the XRD spectrum of the sample after an electrochemical process. 実施例1において、電気化学処理前の原料黒鉛としての膨張黒鉛シートの断面の走査型電子顕微鏡写真(1000倍)を示す図である。In Example 1, it is a figure which shows the scanning electron micrograph (1000 time) of the cross section of the expanded graphite sheet as raw material graphite before an electrochemical process. 実施例1において、電気化学処理後に得られた二次黒鉛の断面を示す走査型電子顕微鏡写真(1000倍)を示す図である。In Example 1, it is a figure which shows the scanning electron micrograph (1000 time) which shows the cross section of the secondary graphite obtained after the electrochemical process.

以下、本発明の詳細、並びに本発明の実施例及び比較例を挙げることにより本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically by giving details of the present invention and examples and comparative examples of the present invention. In addition, this invention is not limited to a following example.

(原料黒鉛を用意する工程)
本発明の二次黒鉛の製造方法では、まず、原料黒鉛として黒鉛または膨張黒鉛を用意する。黒鉛とは、天然黒鉛または人造黒鉛などを広く含むものである。膨張黒鉛とは、黒鉛のグラフェン層間を膨張させ、再度圧縮した膨張黒鉛をいうものとする。このような膨張黒鉛は、例えば東洋炭素社製、品番:PF8などの膨張黒鉛シートが挙げられる。
(Process of preparing raw material graphite)
In the method for producing secondary graphite of the present invention, first, graphite or expanded graphite is prepared as raw graphite. Graphite widely includes natural graphite or artificial graphite. Expanded graphite refers to expanded graphite that has been expanded and again compressed between graphite graphene layers. Examples of such expanded graphite include expanded graphite sheets made by Toyo Tanso Co., Ltd., product number: PF8.

(電気化学処理)
本発明では、アルカリ金属塩及びアルカリ土類金属塩のうちの少なくとも一方を電解質とする電解液に、原料黒鉛を浸漬する。上記アルカリ金属塩及びアルカリ土類金属塩としては特に限定されない。例えば、アルカリ金属塩としては、塩化ナトリウム、塩化カリウム、水酸化カリウム及び水酸化ナトリウムからなる群から選択された少なくとも1種を好適に用いることができる。このようなアルカリ金属塩を用いた場合には、電気化学処理によりグラフェン間の隙間をより確実に拡げることができる。
(Electrochemical processing)
In the present invention, raw material graphite is immersed in an electrolytic solution containing at least one of an alkali metal salt and an alkaline earth metal salt as an electrolyte. The alkali metal salt and alkaline earth metal salt are not particularly limited. For example, as the alkali metal salt, at least one selected from the group consisting of sodium chloride, potassium chloride, potassium hydroxide and sodium hydroxide can be suitably used. When such an alkali metal salt is used, the gap between graphenes can be expanded more reliably by electrochemical treatment.

上記アルカリ土類金属塩としては、塩化カルシウム、塩化マグネシウム、塩化ストロンチウム、塩化バリウム、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム又は水酸化バリウムを挙げることができる。なかでも、水酸化マグネシウム、水酸化カルシウム、塩化カルシウム及び塩化マグネシウムからなる群から選択された少なくとも1種を好適に用いることができる。このようなアルカリ土類金属塩を用いた場合には、電気化学処理によりグラフェン間の隙間をより確実に拡げることができる。   Examples of the alkaline earth metal salt include calcium chloride, magnesium chloride, strontium chloride, barium chloride, calcium hydroxide, magnesium hydroxide, strontium hydroxide, and barium hydroxide. Among these, at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, calcium chloride, and magnesium chloride can be suitably used. When such an alkaline earth metal salt is used, the gap between graphenes can be expanded more reliably by electrochemical treatment.

本発明においては、電解液は、上記アルカリ金属塩及びアルカリ土類金属塩のうち少なくとも一方を電解質として含むものであればよい。この場合、アルカリ金属塩のうち少なくとも1種及びアルカリ土類金属塩のうちの少なくとも1種の双方を併用してもよい。上記電解液の溶媒としては、水、アルコールなどを用いることができる。好ましくは、金属塩を十分に溶媒中に溶解させる必要があるため、水が溶媒として望ましい。   In the present invention, the electrolytic solution only needs to contain at least one of the alkali metal salt and the alkaline earth metal salt as an electrolyte. In this case, at least one of the alkali metal salts and at least one of the alkaline earth metal salts may be used in combination. As the solvent of the electrolytic solution, water, alcohol or the like can be used. Preferably, water is desirable as the solvent because it is necessary to sufficiently dissolve the metal salt in the solvent.

上記電解液の濃度は、電気化学処理によりグラフェン間の隙間を拡げ得る限り特に限定されないが、通常、0.1mol/dm〜5.0mol/dmの濃度とすればよい。この濃度範囲であれば、電気化学処理によりグラフェン層間をより一層確実に拡げることができる。 The concentration of the electrolyte solution is not particularly limited as long as it can expand the gap between the graphene by an electrochemical process, usually, may be a concentration of 0.1mol / dm 3 ~5.0mol / dm 3 . Within this concentration range, the graphene layer can be more reliably expanded by electrochemical treatment.

本発明では、電解液に原料黒鉛を浸漬し、該原料黒鉛を作用極とし、対照極との間に直流電圧を印加する。対照極としては、Pt、Auなどの適宜の金属からなる電極を用いることができる。   In the present invention, raw material graphite is immersed in an electrolytic solution, the raw material graphite is used as a working electrode, and a DC voltage is applied between the reference electrode and the reference electrode. As the reference electrode, an electrode made of an appropriate metal such as Pt or Au can be used.

また、好ましくは、Ag/AgCl、Hg/HgSOからなる参照極を上記電解液中に浸漬し、電気化学処理を施すことが望ましい。 Preferably, it is desirable to immerse a reference electrode made of Ag / AgCl, Hg / Hg 2 SO 4 in the electrolytic solution and perform an electrochemical treatment.

作用極と対照極との間に印加する直流電圧の大きさは、5〜500mAの範囲であることが必要である。直流電流の範囲がこの範囲内であれば比較的短い時間で、グラフェン層間を拡げることができ、かつ黒鉛の酸化を確実に抑制することができる。さらに、得られた二次黒鉛を用いて薄片化黒鉛を得た場合、薄片化黒鉛における屈曲も効果的に抑制することができる。より好ましくは、上記直流電流の範囲は、10〜100mAの範囲内である。このより好ましい範囲内であれば、より一層速やかに、グラフェン層間の隙間を拡げることができ、黒鉛の酸化をより確実に防止することができる。   The magnitude of the DC voltage applied between the working electrode and the reference electrode needs to be in the range of 5 to 500 mA. If the range of the direct current is within this range, the graphene layer can be expanded in a relatively short time, and oxidation of graphite can be reliably suppressed. Furthermore, when exfoliated graphite is obtained using the obtained secondary graphite, bending in the exfoliated graphite can be effectively suppressed. More preferably, the range of the direct current is in the range of 10 to 100 mA. If it is in this more preferable range, the gap between graphene layers can be expanded more rapidly, and the oxidation of graphite can be more reliably prevented.

上記電気化学処理により、元の黒鉛の酸化を抑制しつつ、グラフェン層間を拡げることができる。すなわち、黒鉛が酸化しておらず、グラフェン層間が拡げられている二次黒鉛を得ることができる。本発明において、二次黒鉛とは、上記電気化学処理により得られた元の黒鉛よりもグラフェン層間が拡げられており、かつ酸化していない黒鉛をいうものとする。   By the electrochemical treatment, the graphene layer can be expanded while suppressing oxidation of the original graphite. That is, secondary graphite in which the graphite is not oxidized and the graphene layer is expanded can be obtained. In the present invention, secondary graphite refers to graphite in which the graphene layer is expanded more than the original graphite obtained by the electrochemical treatment and is not oxidized.

上記のようにして得られた二次黒鉛のXRDスペクトルでは、元の黒鉛の(002)面による2θ=26度に位置する回折ピークを示し、他の回折ピークを示さない。従って、黒鉛の酸化、あるいはグラフェン層間へのインターカレーション反応が進行していないことがわかる。また、電気化学処理後の上記二次黒鉛では、グラフェン層間が拡げられている。これは、後述の実施例で示すように、得られた二次黒鉛の走査型電子顕微鏡写真により確認することができる。上記のように、酸化を抑制しつつ、グラフェン層間を拡げうるのは、グラフェン層間に物質がインターカレートされるのではなく、グラフェン層間において、電気分解に際してのガスの発生によりグラフェン間が拡げられていることによると考えられる。従って、本発明によって得られる二次黒鉛では、全てのグラフェン層間において層間が拡げられているのではなく、複数層ごとのグラフェン間においてガスが発生し、グラフェン層間の隙間が拡げられることになる。よって、最終的に剥離処理を施した場合、比較的厚みの厚い剛直な薄片化黒鉛が得られる。   The XRD spectrum of the secondary graphite obtained as described above shows a diffraction peak located at 2θ = 26 degrees by the (002) plane of the original graphite, and does not show other diffraction peaks. Therefore, it can be seen that the oxidation of graphite or the intercalation reaction between the graphene layers does not proceed. Moreover, in the secondary graphite after the electrochemical treatment, the graphene layer is expanded. This can be confirmed by a scanning electron micrograph of the obtained secondary graphite as shown in Examples described later. As described above, it is possible to expand the graphene layer while suppressing the oxidation. The material is not intercalated between the graphene layers, but the graphene layer is expanded by the generation of gas during the electrolysis. It is thought to be due to that. Therefore, in the secondary graphite obtained by the present invention, the interlayer is not expanded between all the graphene layers, but gas is generated between the graphenes of every plurality of layers, and the gap between the graphene layers is expanded. Therefore, when exfoliation processing is finally performed, rigid exfoliated graphite having a relatively large thickness can be obtained.

(剥離処理)
本発明の薄片化黒鉛の製造方法では、上記のようにして得られた二次黒鉛に剥離処理を施す。それによって、薄片化黒鉛を得る。剥離処理としては、従来、膨張黒鉛すなわちグラフェン層間が拡げられた黒鉛を剥離処理するのに用いられていた適宜の方法を用いることができる。このような剥離処理としては、剪断力を加える機械的剥離処理、超音波処理などが挙げられる。また、剥離処理に際しては、加熱してもよい。
(Peeling treatment)
In the method for producing exfoliated graphite of the present invention, exfoliation treatment is performed on the secondary graphite obtained as described above. Thereby, exfoliated graphite is obtained. As the exfoliation treatment, an appropriate method that has been conventionally used for exfoliating expanded graphite, that is, graphite in which a graphene interlayer is expanded, can be used. Examples of such a peeling treatment include mechanical peeling treatment that applies a shearing force, ultrasonic treatment, and the like. Moreover, you may heat in the peeling process.

なかでも、剥離処理は、超音波処理又は湿潤粉砕によって行われることが好ましい。このような剥離処理は、二次黒鉛を分散媒中に分散させて行うことができる。上記分散媒としては、ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)又はトルエンなどが用いられる。   Especially, it is preferable that a peeling process is performed by ultrasonic treatment or wet grinding. Such peeling treatment can be performed by dispersing secondary graphite in a dispersion medium. As the dispersion medium, dimethylformamide (DMF), N-methylpyrrolidone (NMP), toluene or the like is used.

上記のように、剥離処理により物理的な力を与えられると、プラスの発生によりグラフェン層間が拡げられている部分において剥離が生じ、薄片化黒鉛が得られる。   As described above, when a physical force is applied by the exfoliation treatment, exfoliation occurs at a portion where the graphene layer is expanded due to the generation of plus, and exfoliated graphite is obtained.

(薄片化黒鉛)
本発明の薄片化黒鉛の製造方法では、上記のように、グラフェン層間が拡げられている部分において剥離が生じ、薄片化黒鉛が得られる。従って、得られた薄片化黒鉛は、従来の薄片化黒鉛の製造方法により得られた薄片化黒鉛に比べ、グラフェン積層数がある程度大きい、剛直な薄片化黒鉛である。このような薄片化黒鉛は、剛直であるため、屈曲しがたい。このような薄片化黒鉛の屈曲度を本発明では以下のようにして評価する。薄片化黒鉛を、合成樹脂中に分散させる。このとき、1つの薄片化黒鉛の断面において、最大距離にある両端間の最短距離をAとする。この両端間の道のりをBとする。(A/B)で表される値が、1つの薄片化黒鉛における屈曲度として求めることができる。この場合、屈曲度は0.5以上であることが好ましく、0.7以上であることがより好ましく、さらに0.9以上であることがより好ましい。上記屈曲度が1であることが断面において直線上の形状となる。
(Flaky graphite)
In the method for producing exfoliated graphite of the present invention, as described above, exfoliation occurs at the portion where the graphene layer is expanded, and exfoliated graphite is obtained. Therefore, the obtained exfoliated graphite is a rigid exfoliated graphite having a somewhat larger number of graphene layers than the exfoliated graphite obtained by the conventional exfoliated graphite manufacturing method. Such exfoliated graphite is rigid and difficult to bend. In the present invention, the degree of bending of exfoliated graphite is evaluated as follows. Exfoliated graphite is dispersed in a synthetic resin. At this time, in the cross section of one exfoliated graphite, A is the shortest distance between both ends at the maximum distance. Let B be the path between these ends. The value represented by (A / B) can be obtained as the degree of bending in one exfoliated graphite. In this case, the degree of bending is preferably 0.5 or more, more preferably 0.7 or more, and even more preferably 0.9 or more. A bending degree of 1 is a straight line shape in the cross section.

本発明により得られる薄片化黒鉛は剛直であるため、樹脂に分散させた後、上記屈曲度が0.5以上であり、従って、少量の添加で優れた補強効果を発現する。   Since the exfoliated graphite obtained by the present invention is rigid, after being dispersed in a resin, the above-mentioned bending degree is 0.5 or more, and therefore, an excellent reinforcing effect is exhibited with a small amount of addition.

なお、上記屈曲度を求める合成樹脂としては、エポキシ樹脂、メタクリル樹脂またはポリエステル樹脂などの適宜の合成樹脂を用いることができるが、本発明では、上記合成樹脂としてエポキシ樹脂を用いた場合の屈曲度の値で、0.5以上であることが好ましい。   As the synthetic resin for obtaining the bending degree, an appropriate synthetic resin such as an epoxy resin, a methacrylic resin or a polyester resin can be used. However, in the present invention, the bending degree when an epoxy resin is used as the synthetic resin. It is preferable that it is 0.5 or more.

超音波処理に際しては、適宜の溶媒を用いることができる。このような溶媒としては、水または各種有機溶媒が挙げられる。超音波の照射時間は、特に限定されず、30分〜240分の範囲が好ましい。この範囲内であれば薄片化黒鉛の酸化を抑制しつつ、二次黒鉛を確実に剥離し、薄片化黒鉛を得ることができる。   An appropriate solvent can be used for the ultrasonic treatment. Examples of such a solvent include water and various organic solvents. The irradiation time of ultrasonic waves is not particularly limited, and a range of 30 minutes to 240 minutes is preferable. Within this range, it is possible to reliably exfoliate the secondary graphite while suppressing oxidation of the exfoliated graphite, and obtain exfoliated graphite.

作用極として用いる原料黒鉛の密度は、特に限定されないが、0.5〜1.5g/cmの範囲内であることが好ましい。0.5g/cm未満の場合には、電気化学処理に際し、作用極が崩壊することがある。1.5g/cmを超えると、グラフェン間が十分に拡げられないことがある。より好ましくは、作用極として用いる原料黒鉛の密度は、0.7g/cm±0.1g/cmの範囲であることが望ましい。このような原料黒鉛としては、上述した東洋炭素社製、品番:PF8の膨張黒鉛が挙げられる。 The density of the raw material graphite used as the working electrode is not particularly limited, but is preferably in the range of 0.5 to 1.5 g / cm 3 . If it is less than 0.5 g / cm 3 , the working electrode may collapse during the electrochemical treatment. If it exceeds 1.5 g / cm 3 , the space between graphenes may not be sufficiently expanded. More preferably, the density of the raw material graphite used as the working electrode is desirably in the range of 0.7 g / cm 3 ± 0.1 g / cm 3 . As such raw material graphite, the expanded graphite of the product number: PF8 by Toyo Tanso Co., Ltd. mentioned above is mentioned.

次に本発明の具体的な実施例及び比較例を挙げる。   Next, specific examples and comparative examples of the present invention will be given.

(実施例1)
原料黒鉛として、厚みが1mmの膨張黒鉛シート(東洋炭素社製、品番:PRMA−FOIL)を用意した。この原料黒鉛を作用極として用いた。この作用極をPtからなる対照極と、Ag/AgClからなる参照極とともに、1.0mol/dm濃度の塩化カリウム水溶液中に浸漬し、電気化学処理を施した。電気化学処理に際しては、50mAの直流電流を60分印加した。
Example 1
As the raw material graphite, an expanded graphite sheet (product number: PRMA-FOIL, manufactured by Toyo Tanso Co., Ltd.) having a thickness of 1 mm was prepared. This raw graphite was used as a working electrode. This working electrode was immersed in a 1.0 mol / dm 3 concentration aqueous potassium chloride solution together with a reference electrode made of Pt and a reference electrode made of Ag / AgCl, and subjected to electrochemical treatment. In the electrochemical treatment, a direct current of 50 mA was applied for 60 minutes.

上記のようにして電気化学処理を行い、二次黒鉛を得た。この二次黒鉛について、X線回折により評価した。結果を図1に示す。図1は、上記電気化学処理により得られた二次黒鉛のXRDパターンを示す図である。図1から明らかなように、θが26度と54度とに位置する回折ピークのみが確認された。これは、原料の膨張黒鉛の(002)面による回折ピークに起因するものである。従って、電気化学処理によって、酸化が進行していないことがわかる。   Electrochemical treatment was performed as described above to obtain secondary graphite. This secondary graphite was evaluated by X-ray diffraction. The results are shown in FIG. FIG. 1 is a diagram showing an XRD pattern of secondary graphite obtained by the electrochemical treatment. As is clear from FIG. 1, only diffraction peaks where θ is located at 26 degrees and 54 degrees were confirmed. This is due to the diffraction peak due to the (002) plane of the expanded graphite as a raw material. Therefore, it can be seen that the oxidation does not proceed by the electrochemical treatment.

次に、上記のようにして得られた二次黒鉛を純水に浸漬し、60分間超音波処理した。超音波処理に際しては、発振周波数26kHzとし、強力超音波洗浄機(PHENIXIIシリーズ)を用いた。   Next, the secondary graphite obtained as described above was immersed in pure water and subjected to ultrasonic treatment for 60 minutes. In the ultrasonic treatment, an oscillation frequency of 26 kHz was used, and a powerful ultrasonic cleaner (PHENIX II series) was used.

上記のようにして薄片化黒鉛を得た。得られた薄片化黒鉛の厚みを原子間力顕微鏡(キーエンス社製、ナノスケールハイブリッド顕微鏡、品番:VN−8000)を用い、評価した。その結果、薄片化黒鉛の厚みは15nmであった。また、電子顕微鏡により断面を観察し、断面の観察から前述した屈曲度を求めた。屈曲度を評価するにあたっては、得られた薄片化黒鉛8.0gを合成樹脂としてのポリプロピレン(日本ポリプロ社製、品番:ノバテックPP)40.0gに溶融の状態で混練し、17cm×17cm×0.5mm厚のサイズのシートの形に成形し、複合材料を得た。この複合材料の断面について走査型電子顕微鏡で観察した。この断面において現われている薄片化黒鉛100個について、上記のようにして定義される屈曲度を求め、その平均値を求め屈曲度とした。屈曲度は0.9であった。   Exfoliated graphite was obtained as described above. The thickness of the exfoliated graphite obtained was evaluated using an atomic force microscope (manufactured by Keyence Corporation, nanoscale hybrid microscope, product number: VN-8000). As a result, the thickness of exfoliated graphite was 15 nm. Moreover, the cross section was observed with the electron microscope, and the bending degree mentioned above was calculated | required from observation of the cross section. In evaluating the degree of flexion, 8.0 g of the exfoliated graphite obtained was kneaded in a molten state with 40.0 g of polypropylene as a synthetic resin (product number: Novatec PP), and 17 cm × 17 cm × 0 The composite material was obtained by molding into a sheet having a size of 5 mm thickness. The cross section of this composite material was observed with a scanning electron microscope. With respect to 100 exfoliated graphite appearing in this cross section, the bending degree defined as described above was obtained, and the average value thereof was obtained as the bending degree. The degree of bending was 0.9.

図3は、元の原料黒鉛としての膨張黒鉛シートの断面の走査型電子顕微鏡写真(1000倍)を示す図である。図4は、上記電気化学処理により得られた二次黒鉛の断面の走査型電子顕微鏡写真(1000倍)を示す図である。   FIG. 3 is a view showing a scanning electron micrograph (1000 times) of a cross section of an expanded graphite sheet as the original raw material graphite. FIG. 4 is a view showing a scanning electron micrograph (1000 times) of a cross section of secondary graphite obtained by the electrochemical treatment.

図3と図4とを対比すれば明らかなように、上記電気化学処理により得られた二次黒鉛ではグラフェン間が拡げられていることがわかる。   As is clear from comparison between FIG. 3 and FIG. 4, it can be seen that in the secondary graphite obtained by the electrochemical treatment, the space between the graphenes is expanded.

(実施例2)
電気化学処理に際しての直流電流の大きさを10mAとしたことを除いては、実施例1と同様にして二次黒鉛を得、さらに薄片化黒鉛を得た。得られた薄片化黒鉛を原子間力顕微鏡により評価し、厚みを求めた。その結果、薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡で観察した断面から求められた屈曲度は0.9であった。
(Example 2)
Secondary graphite was obtained in the same manner as in Example 1 except that the magnitude of the direct current during the electrochemical treatment was 10 mA, and exfoliated graphite was further obtained. The obtained exfoliated graphite was evaluated by an atomic force microscope to determine the thickness. As a result, the thickness of exfoliated graphite was 18 nm. Moreover, the bending degree calculated | required from the cross section observed with the scanning electron microscope was 0.9.

(実施例3)
電気化学処理に際しての直流電流の大きさを400mAとしたことを除いては、実施例1と同様にして二次黒鉛を得、さらに薄片化黒鉛を得た。得られた薄片化黒鉛を原子間力顕微鏡により評価し、厚みを求めた。その結果、薄片化黒鉛の厚みは12nmであった。また、走査型電子顕微鏡で観察した断面から求められた屈曲度は0.9であった。
(Example 3)
Secondary graphite was obtained in the same manner as in Example 1 except that the magnitude of the direct current during the electrochemical treatment was 400 mA, and further exfoliated graphite was obtained. The obtained exfoliated graphite was evaluated by an atomic force microscope to determine the thickness. As a result, the thickness of exfoliated graphite was 12 nm. Moreover, the bending degree calculated | required from the cross section observed with the scanning electron microscope was 0.9.

(実施例4)
電気化学処理に際して用いた電解液を塩化ナトリウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは15nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
Example 4
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used in the electrochemical treatment was an aqueous sodium chloride solution. The thickness of exfoliated graphite measured by an atomic force microscope was 15 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例5)
電気化学処理に際して用いた電解液を水酸化ナトリウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 5)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolyte used for the electrochemical treatment was an aqueous sodium hydroxide solution. The thickness of exfoliated graphite measured by an atomic force microscope was 18 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例6)
電気化学処理に際して用いた電解液を水酸化カリウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは20nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 6)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used in the electrochemical treatment was an aqueous potassium hydroxide solution. The thickness of exfoliated graphite measured by an atomic force microscope was 20 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例7)
電気化学処理に際して用いた電解液を水酸化マグネシウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 7)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used in the electrochemical treatment was an aqueous magnesium hydroxide solution. The thickness of exfoliated graphite measured by an atomic force microscope was 18 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例8)
電気化学処理に際して用いた電解液を水酸化カルシウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは20nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 8)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used for the electrochemical treatment was an aqueous calcium hydroxide solution. The thickness of exfoliated graphite measured by an atomic force microscope was 20 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例9)
電気化学処理に際して用いた電解液を塩化カルシウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは20nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
Example 9
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used in the electrochemical treatment was an aqueous calcium chloride solution. The thickness of exfoliated graphite measured by an atomic force microscope was 20 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例10)
電気化学処理に際して用いた電解液を0.1mol/dm濃度の塩化カリウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 10)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used for the electrochemical treatment was a 0.1 mol / dm 3 concentration potassium chloride aqueous solution. The thickness of exfoliated graphite measured by an atomic force microscope was 18 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例11)
電気化学処理に際して用いた電解液を5.0mol/dm濃度の塩化カリウム水溶液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 11)
Exfoliated graphite was obtained in the same manner as in Example 1 except that the electrolytic solution used in the electrochemical treatment was an aqueous potassium chloride solution having a concentration of 5.0 mol / dm 3 . The thickness of exfoliated graphite measured by an atomic force microscope was 18 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例12)
電気化学処理に際して用いた電解液を、1.0mol/dm濃度の塩化カリウム水溶液と1.0mol/dm濃度の塩化ナトリウム水溶液との混合液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは18nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 12)
The electrolytic solution used for the electrochemical treatment was the same as that of Example 1 except that the electrolytic solution was a mixed solution of a 1.0 mol / dm 3 concentration potassium chloride aqueous solution and a 1.0 mol / dm 3 concentration sodium chloride aqueous solution. Thus, exfoliated graphite was obtained. The thickness of exfoliated graphite measured by an atomic force microscope was 18 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例13)
電気化学処理に際して用いた電解液を、1.0mol/dm濃度の塩化カルシウム水溶液と、1.0mol/dm濃度の塩化マグネシウム水溶液との混合液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは20nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 13)
The electrolytic solution used during the electrochemical treatment, the aqueous solution of calcium chloride 1.0 mol / dm 3 concentration, except that a mixed solution of magnesium chloride aqueous solution 1.0 mol / dm 3 concentration, as in Example 1 Similarly, exfoliated graphite was obtained. The thickness of exfoliated graphite measured by an atomic force microscope was 20 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(実施例14)
電気化学処理に際して用いた電解液を、1.0mol/dm濃度の塩化カリウム水溶液と、1.0mol/dm濃度の塩化カルシウム水溶液との混合液としたことを除いては、実施例1と同様にして、薄片化黒鉛を得た。原子間力顕微鏡により測定した薄片化黒鉛の厚みは20nmであった。また、走査型電子顕微鏡により断面を観察して求められた屈曲度は0.9であった。
(Example 14)
Example 1 except that the electrolytic solution used in the electrochemical treatment was a mixed solution of a 1.0 mol / dm 3 concentration potassium chloride aqueous solution and a 1.0 mol / dm 3 concentration calcium chloride aqueous solution. Similarly, exfoliated graphite was obtained. The thickness of exfoliated graphite measured by an atomic force microscope was 20 nm. Further, the bending degree obtained by observing the cross section with a scanning electron microscope was 0.9.

(比較例1)
直流電流の大きさを3mAとしたことを除いては、実施例1と同様にして電気化学処理を行った。上記のようにして電気化学処理を行った後のサンプルについて、断面を電子顕微鏡写真で観察したところ、グラフェン間は拡がっていなかった。また、上記のようにして電気化学処理を行ったあと剥離処理を施したが、薄片化黒鉛を得ることができなかった。
(Comparative Example 1)
The electrochemical treatment was performed in the same manner as in Example 1 except that the magnitude of the direct current was 3 mA. About the sample after performing electrochemical treatment as mentioned above, when the cross section was observed with the electron micrograph, the space between graphene was not expanded. Further, exfoliation graphite was not able to be obtained even though exfoliation treatment was performed after the electrochemical treatment as described above.

(比較例2)
直流電流の大きさを700mAとしたことを除いては、実施例1と同様にして電気化学処理を行った。その結果、電解の崩壊が生じ、二次黒鉛を得ることはできなかった。また、崩壊した残渣を用い剥離処理を施したが、薄片化黒鉛を得ることができなかった。
(Comparative Example 2)
The electrochemical treatment was performed in the same manner as in Example 1 except that the magnitude of the direct current was 700 mA. As a result, electrolytic breakdown occurred, and secondary graphite could not be obtained. Moreover, exfoliation processing was performed using the disintegrated residue, but exfoliated graphite could not be obtained.

(比較例3)
電解液を濃度が13.0mol/dmの硝酸水溶液としたことを除いては、実施例1と同様にして電気化学処理を施し、さらに剥離処理を施した。図2は、電気化学処理後のサンプルのXRDパターンを示す。図2から明らかなように、電気化学処理後のサンプルにおいて、2θが11度と22度に位置する回折ピークがそれぞれ確認された。これは、酸化黒鉛が形成されているために生じた回折ピークである。従って、電気化学処理により黒鉛の酸化が進行し、酸化黒鉛が形成されていることが確認できた。また、剥離処理で得られた薄片化黒鉛について原子間力顕微鏡により評価したところ、薄片化黒鉛の厚みは3nmであった。また、実施例1と同様にして屈曲度を評価したところ、0.6であった。上記実施例1〜14及び比較例1〜3の結果を下記の表1にまとめて示す。
(Comparative Example 3)
Except that the electrolytic solution was an aqueous nitric acid solution having a concentration of 13.0 mol / dm 3 , an electrochemical treatment was performed in the same manner as in Example 1, and a peeling treatment was further performed. FIG. 2 shows the XRD pattern of the sample after electrochemical treatment. As is clear from FIG. 2, diffraction peaks having 2θ of 11 degrees and 22 degrees were confirmed in the samples after electrochemical treatment, respectively. This is a diffraction peak generated due to the formation of graphite oxide. Therefore, it was confirmed that the oxidation of graphite progressed by the electrochemical treatment, and graphite oxide was formed. Moreover, when the exfoliated graphite obtained by the peeling treatment was evaluated by an atomic force microscope, the thickness of the exfoliated graphite was 3 nm. Further, when the bending degree was evaluated in the same manner as in Example 1, it was 0.6. The results of Examples 1 to 14 and Comparative Examples 1 to 3 are summarized in Table 1 below.

表1中の剥離の○は薄片化黒鉛が得られ、×は薄片化黒鉛が得られなかったことを意味する。   Exfoliation in Table 1 means that exfoliated graphite was obtained, and x means that exfoliated graphite was not obtained.

Claims (1)

最大距離を隔てて対向している両端間の最短距離をAとし、該両端間の道のりをBとしたとき、A/Bで表される屈曲度が0.9以上であり、厚みが20nm以下である、薄片化黒鉛。   When the shortest distance between both ends facing each other at the maximum distance is A and the distance between both ends is B, the degree of flexion represented by A / B is 0.9 or more and the thickness is 20 nm or less. Exfoliated graphite.
JP2018200704A 2013-07-18 2018-10-25 Method for producing secondary graphite, method for producing flaky graphite, secondary graphite and flaky graphite Active JP6818266B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013149538 2013-07-18
JP2013149538 2013-07-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014145632A Division JP6493903B2 (en) 2013-07-18 2014-07-16 Method for producing secondary graphite, method for producing exfoliated graphite, secondary graphite and exfoliated graphite

Publications (2)

Publication Number Publication Date
JP2019038744A true JP2019038744A (en) 2019-03-14
JP6818266B2 JP6818266B2 (en) 2021-01-20

Family

ID=52631398

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014145632A Active JP6493903B2 (en) 2013-07-18 2014-07-16 Method for producing secondary graphite, method for producing exfoliated graphite, secondary graphite and exfoliated graphite
JP2018200704A Active JP6818266B2 (en) 2013-07-18 2018-10-25 Method for producing secondary graphite, method for producing flaky graphite, secondary graphite and flaky graphite

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014145632A Active JP6493903B2 (en) 2013-07-18 2014-07-16 Method for producing secondary graphite, method for producing exfoliated graphite, secondary graphite and exfoliated graphite

Country Status (1)

Country Link
JP (2) JP6493903B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785374B1 (en) * 2015-07-31 2017-10-17 가천대학교 산학협력단 Method of manufacturing non-oxidized graphene using shear flow exfoliation and electrochemical pretreatment and apparatus for manufacturing the same
US10381646B2 (en) 2015-12-24 2019-08-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, graphene oxide, and manufacturing method thereof
KR102068258B1 (en) * 2016-03-30 2020-01-20 주식회사 엘지화학 Method for preparation of graphene
CN106006693B (en) * 2016-05-17 2017-07-07 西北工业大学 A kind of high stability calcium hydroxide/graphene nanocomposite material and preparation method
KR101996811B1 (en) * 2017-05-25 2019-07-08 한국과학기술원 Method of fabricating high-quality graphene flakes using electrochemical exfoliation process and dispersion solution of graphene flakes
CN108117065B (en) * 2017-12-14 2020-04-17 北京化工大学 Method for preparing graphene by adopting alternate current stripping
CN108821278A (en) * 2018-08-21 2018-11-16 大同新成新材料股份有限公司 A method of expanded graphite is prepared using graphene composite material
CN110282616A (en) * 2019-06-29 2019-09-27 天津大学 The method that composite shuttering prepares three-dimensional grapheme multistage network material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050228A (en) * 2006-08-26 2008-03-06 Masayoshi Umeno Method for producing single crystal graphite film
US20090026086A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
JP2009143799A (en) * 2007-12-17 2009-07-02 Samsung Electronics Co Ltd Single crystal graphene sheet and method for producing the same
WO2011102473A1 (en) * 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
JP2012020915A (en) * 2010-07-16 2012-02-02 Masayoshi Umeno Method for forming transparent conductive film, and transparent conductive film
JP2013067549A (en) * 2011-09-06 2013-04-18 Waseda Univ Method for forming thin film
JP2013112604A (en) * 2011-11-29 2013-06-10 Xerox Corp Graphene nano-sheet and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181383A (en) * 2002-12-04 2004-07-02 Nippon Telegr & Teleph Corp <Ntt> Carbon material for storing hydrogen
JP2013112542A (en) * 2011-11-25 2013-06-10 Sekisui Chem Co Ltd Intercalated graphite and method for producing flaked graphite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050228A (en) * 2006-08-26 2008-03-06 Masayoshi Umeno Method for producing single crystal graphite film
US20090026086A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Electrochemical method of producing nano-scaled graphene platelets
JP2009143799A (en) * 2007-12-17 2009-07-02 Samsung Electronics Co Ltd Single crystal graphene sheet and method for producing the same
WO2011102473A1 (en) * 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
JP2012020915A (en) * 2010-07-16 2012-02-02 Masayoshi Umeno Method for forming transparent conductive film, and transparent conductive film
JP2013067549A (en) * 2011-09-06 2013-04-18 Waseda Univ Method for forming thin film
JP2013112604A (en) * 2011-11-29 2013-06-10 Xerox Corp Graphene nano-sheet and method for producing the same

Also Published As

Publication number Publication date
JP6493903B2 (en) 2019-04-03
JP6818266B2 (en) 2021-01-20
JP2015038017A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP6818266B2 (en) Method for producing secondary graphite, method for producing flaky graphite, secondary graphite and flaky graphite
JP6618905B2 (en) Production of graphene oxide
JP6968082B2 (en) Electrochemical direct production of graphene sheets from graphite minerals
Yu et al. Electrochemical exfoliation of graphite and production of functional graphene
Zhang et al. Binder-free graphene foams for O 2 electrodes of Li–O 2 batteries
JP5048873B2 (en) Method for producing carbonaceous material and method for producing exfoliated graphite
KR20120045411A (en) Spinel type li4ti5o12/reduced graphite oxide(graphene) composite and method for preparing the composite
US9481576B2 (en) Environmentally benign production of graphene materials
JP6840315B2 (en) Sheet-shaped air electrode manufacturing method, acid battery and power generation system
CN108807905B (en) Preparation method of iron oxide @ titanium oxide composite anode material with adjustable cavity structure
Akhter et al. MXenes: Acomprehensive review of synthesis, properties, and progress in supercapacitor applications
US20160024259A1 (en) Composite material and method for producing same
US9695516B2 (en) Graphite oxide and graphene preparation method
Cao et al. Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils
JP2012131691A (en) Expanded graphite and method for producing the same
Jiang et al. Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances
Ikram et al. Electrochemical exfoliation of 2D advanced carbon derivatives
KR20160002009A (en) Graphene nanosheets, graphene powder, graphene ink, graphene substrate, and method for manufacturing the graphene nanosheets
Im et al. Amorphous carbon nanotube/MnO2/graphene oxide ternary composite electrodes for electrochemical capacitors
Ahmad et al. Revolutionizing energy storage: A critical appraisal of MXene-based composites for material designing and efficient performance
KR20150021614A (en) Method for fabricating graphite oxide and method for manufacturing graphene nano seat using the graphite oxide
Bakunin et al. Modern methods for synthesis of few-layer graphene structures by electrochemical exfoliation of graphite
KR101282741B1 (en) Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation
Er et al. Electrocatalytic Performance of Interconnected Self‐Standing Tin Nanowire Network Produced by AAO Template Method for Electrochemical CO2 Reduction
TW202026239A (en) Method for producing thin sheet-shaped structure of graphite, exfoliated graphite and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R150 Certificate of patent or registration of utility model

Ref document number: 6818266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150