JP2019038395A - Drive assistance device for vehicle - Google Patents

Drive assistance device for vehicle Download PDF

Info

Publication number
JP2019038395A
JP2019038395A JP2017162239A JP2017162239A JP2019038395A JP 2019038395 A JP2019038395 A JP 2019038395A JP 2017162239 A JP2017162239 A JP 2017162239A JP 2017162239 A JP2017162239 A JP 2017162239A JP 2019038395 A JP2019038395 A JP 2019038395A
Authority
JP
Japan
Prior art keywords
vehicle
steering angle
succeeding
calculated
environment information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017162239A
Other languages
Japanese (ja)
Other versions
JP6882958B2 (en
Inventor
悟 寺山
Satoru Terayama
悟 寺山
雅俊 保科
Masatoshi Hoshina
雅俊 保科
元希 財前
Motoki Zaizen
元希 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017162239A priority Critical patent/JP6882958B2/en
Publication of JP2019038395A publication Critical patent/JP2019038395A/en
Application granted granted Critical
Publication of JP6882958B2 publication Critical patent/JP6882958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

To make it possible to obtain stable travel performance even if the own vehicle M is pulled in the direction of a preceding vehicle or pushed out in a vehicle width direction when passing a large preceding vehicle Mt.SOLUTION: In a case where a following vehicle Mt traveling in a passing lane approaches when the own vehicle M travels along a target advancing path under lane maintaining control, an estimated quantity Zw' of push lateral movement in which the own vehicle M is pushed by the following vehicle Mt and an estimated quantity Zw of pull lateral movement are obtained (S6, S7) on the basis of a following vehicle speed (ΔVt+V) calculated from an own vehicle speed V and a relative vehicle speed ΔVt and on the basis of the front-face projection area Sf and side-face projection area Ss of the following vehicle Mt. A push correction steering angle θkz' and a pull correction steering angle θkz for offsetting them are calculated and are added to FF steering angle θff, thereby calculating an FF target steering angle θffo when subjected to push pressure (S15) and an FF target steering angle θffo when subjected to pull pressure (S16).SELECTED DRAWING: Figure 2

Description

本発明は、車線維持制御により走行中の自車両が後続車に追い越されるに際し、後続車の後車速、前面投影面積、側面投影面積等に基づき、後続車に対する押し出し横移動量と引き寄せ横移動量とを相殺する補正操舵角を求めて、フィードフォワード制御による目標操舵角を補正するようにした車両の運転支援装置に関する。   The present invention relates to a lateral movement amount and a pushing lateral movement amount with respect to a succeeding vehicle based on the rear vehicle speed, the front projection area, the side projection area, etc. of the succeeding vehicle when the host vehicle traveling by the lane keeping control is overtaken by the following vehicle. The present invention relates to a driving support apparatus for a vehicle that obtains a corrected steering angle that cancels out and corrects a target steering angle by feedforward control.

最近の車両には、運転中における運転者の負担を軽減し、快適性の向上を図るべく、様々な運転支援機能が備えられている。例えば、自動運転においては、ステレオカメラ、或いはステレオカメラや単眼カメラと、レーザレーダ、ミリ波レーダ、超音波ソナー等とを組み合わせて、自車両周辺の環境情報を取得し、運転操作の一部を運転者に代わってシステムが行い、又、特定区間では全ての運転操作を運転者に代わってシステムが行う技術が知られている。   Recent vehicles are provided with various driving support functions in order to reduce the burden on the driver during driving and to improve comfort. For example, in automatic driving, a stereo camera, or a stereo camera or monocular camera, and laser radar, millimeter wave radar, ultrasonic sonar, etc. are combined to acquire environmental information around the host vehicle, and a part of driving operation is performed. A technique is known in which the system performs the operation on behalf of the driver, and the system performs all the driving operations on behalf of the driver in a specific section.

この種の運転支援制御としては、先行車追従制御、車線維持制御、車線逸脱防止制御、先行車追越制御等がある。例えば、本出願人が先に提出した特許文献1(特開2016−16829号公報)には、自動運転時において、先行車の車速が自車両のセット車速よりも低い場合に、運転者が任意に選択することのできる走行モードとして、自車両を先行車に追従させる追従制御モードと先行車を追い越す追越モードとを備える技術を提案した。   This type of driving support control includes preceding vehicle following control, lane keeping control, lane departure prevention control, preceding vehicle overtaking control, and the like. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2016-16829) filed earlier by the present applicant, the driver can arbitrarily set the vehicle speed of the preceding vehicle lower than the set vehicle speed of the own vehicle during automatic driving. As a travel mode that can be selected, a technology is proposed that includes a follow-up control mode in which the host vehicle follows the preceding vehicle and an overtaking mode in which the preceding vehicle is overtaken.

又、この文献には、先行車が存在しない場合は、セット車速で走行させる技術も開示されている。そして、追従制御モード及びセット車速での走行では、自車両を走行車線に沿って走行させる車線維持制御が実行される。   This document also discloses a technique for running at a set vehicle speed when there is no preceding vehicle. Then, in traveling in the follow-up control mode and the set vehicle speed, lane keeping control for causing the host vehicle to travel along the traveling lane is executed.

その際、自車両が横風や路面カント等の横力外乱を受けた場合、例えば特許文献2(特開2001−97234号公報)に開示されているように、先ず、自車両に作用する横力とヨーイングモーメントを推定し、外乱による横力とヨーイングモーメントとを相殺するようにフィードバック制御する技術が一般的である。   At that time, when the host vehicle is subjected to a lateral force disturbance such as a crosswind or a road surface cant, first, as disclosed in, for example, Japanese Patent Laid-Open No. 2001-97234, a lateral force acting on the host vehicle is firstly applied. In general, the feedback control is performed so that the yawing moment is estimated and the lateral force and yawing moment due to disturbance are canceled out.

特開2016−16829号公報JP 2016-16829 A 特開2001−97234号公報JP 2001-97234 A

ところで、車線維持制御によって走行している自車両に作用する外乱は、横風や路面カント以外に、隣接車線を走行する後続車が、全長の比較的長い大型トラック等の大型車両の場合、当該後続車が自車両を追い越す際に受ける圧力も横力外乱として作用する。   By the way, the disturbance acting on the host vehicle traveling by the lane keeping control is not limited to the side wind and the road surface cant, but the subsequent vehicle traveling in the adjacent lane is a large vehicle such as a large truck having a relatively long overall length. The pressure received when a car overtakes the host vehicle also acts as a lateral force disturbance.

すなわち、後続車が自車両に近接するに際し、後続車の全面にて押しのけられた空気圧が自車両にかかり、その風圧によって車幅方向へ押し出され易くなる。一方、後続車が先行車を並走する際に、自車両と後続車との対向面の距離(横車間距離)が狭い場合、両車間を通過する空気流速が速くなり、その分空気密度が低くなるため、自車両が後続車側に引き寄せられ易くなる。この現象は、自車両が軽自動車、普通乗用車やワンボックス車等の小型車両において顕著に表れる。   That is, when the succeeding vehicle approaches the host vehicle, the air pressure pushed over the entire surface of the succeeding vehicle is applied to the host vehicle, and is easily pushed out in the vehicle width direction by the wind pressure. On the other hand, when the following vehicle runs in parallel with the preceding vehicle, if the distance between the opposing surfaces of the host vehicle and the following vehicle (distance between the side vehicles) is narrow, the air flow speed passing between the two vehicles becomes faster, and the air density is correspondingly increased. Since it becomes low, it becomes easy for the own vehicle to be drawn toward the following vehicle side. This phenomenon is prominent in small vehicles such as light vehicles, ordinary passenger cars, and one-box vehicles.

自車両が後続車に追い越される際に横力外乱を受けた場合、上述した特許文献2に開示されているように、フィードバック制御により横力外乱が相殺される。しかし、フィードバック制御は、自車両が隣接車線を走行する後続車から押し出し圧、或いは引き寄せ圧を受けて横移動した後、これを相殺する方向へ操舵角が制御されるため、応答遅れにより、車両挙動に乱れが生じ、走行安定性が損なわれる不都合がある。   When the host vehicle is subjected to a lateral force disturbance when being overtaken by a succeeding vehicle, the lateral force disturbance is canceled by feedback control as disclosed in Patent Document 2 described above. However, since the steering angle is controlled in a direction in which the own vehicle receives a pushing pressure or a pulling pressure from a succeeding vehicle traveling in an adjacent lane and moves laterally after the lateral movement, the steering angle is controlled. There is a disadvantage that the behavior is disturbed and the running stability is impaired.

本発明は、上記事情に鑑み、自車両が後続車に追い抜かれる際に、後続車から車幅方向へ押し出され、或いは後続車の方向へ引き寄せられる圧力を受けても、車両挙動に乱れが生じることがなく、安定した走行性能を得ることのできる車両の運転支援装置を提供することを目的とする。   In view of the above circumstances, in the present invention, when the own vehicle is overtaken by a succeeding vehicle, the vehicle behavior is disturbed even if the vehicle is subjected to pressure that is pushed out from the succeeding vehicle in the vehicle width direction or pulled toward the following vehicle. It is an object of the present invention to provide a vehicle driving support device that can obtain stable running performance without any problems.

本発明は、自車両を走行車線に沿って車線維持制御により走行させる運転支援制御手段と、前記自車両後方の環境情報を取得する後方環境情報取得手段と、前記後方環境情報取得手段で取得した前記環境情報に基づき隣接車線を走行する後続車と前記自車両との相対車速を求め、前記後続車が前記自車両を追い越すか否かを判定する追越判定手段とを備える車両用運転支援装置において、前記運転支援制御手段は、前記追越判定手段で前記後続車が前記自車両を追い越すと判定した場合、前記後方環境情報取得手段で取得した前記環境情報に基づき前記後続車の車速を算出する後続車速算出手段と、前記後方環境情報取得手段で取得した前記環境情報に基づいて前記後続車の前面投影面積を算出する前面投影面積算出手段と、前記後方環境情報取得手段で取得した前記環境情報に基づいて前記後続車の側面投影面積を算出する側面投影面積算出手段と、前記後続車速算出手段で算出した前記後続車の車速と前記前面投影面積算出手段で算出した前記前面投影面積とに基づき、前記自車両が前記後続車から押し出される押し出し圧による前記自車両の横移動量を相殺する押し出し補正操舵角を算出する押し出し補正操舵角算出手段と、前記後続車速算出手段で算出した前記後続車の車速と前記側面投影面積算出手段で算出した前記側面投影面積とに基づき、前記自車両が前記後続車に引き寄せられる引き寄せ圧による前記自車両の横移動量を相殺する引き寄せ補正操舵角を算出する引き寄せ補正操舵角算出手段と、前記後続車の前面付近が前記自車両に近接した際には前記押し出し補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定し、又前記後続車の側面を前記自車両が並走している際は前記引き寄せ補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定するフィードフォワード目標操舵角算出手段とを備える。   The present invention is obtained by driving support control means for causing the host vehicle to travel along the driving lane by lane keeping control, rear environment information acquiring means for acquiring environment information behind the host vehicle, and the rear environment information acquiring means. A driving support apparatus for a vehicle, comprising: an overtaking determination unit that obtains a relative vehicle speed between a following vehicle that travels in an adjacent lane based on the environment information and the own vehicle, and determines whether the following vehicle passes the own vehicle. The driving support control means calculates the vehicle speed of the succeeding vehicle based on the environment information acquired by the rear environment information acquiring means when the succeeding determination means determines that the succeeding vehicle overtakes the own vehicle. A subsequent vehicle speed calculating means, a front projected area calculating means for calculating a front projected area of the succeeding vehicle based on the environment information acquired by the rear environment information acquiring means, and the rear environment information Calculated by the side projection area calculation means for calculating the side projection area of the subsequent vehicle based on the environmental information acquired by the acquisition means, the vehicle speed of the subsequent vehicle calculated by the subsequent vehicle speed calculation means, and the front projection area calculation means A correction correction steering angle calculating means for calculating a correction correction steering angle that cancels out a lateral movement amount of the host vehicle due to a pressing pressure with which the host vehicle is pushed out from the succeeding vehicle based on the front projected area, and the subsequent vehicle speed. Based on the vehicle speed of the succeeding vehicle calculated by the calculating means and the side projected area calculated by the side projection area calculating means, the lateral movement amount of the own vehicle due to the attraction pressure with which the own vehicle is attracted to the succeeding vehicle is offset. An attraction correction steering angle calculation means for calculating an attraction correction steering angle, and the push-out compensation when the vicinity of the front surface of the succeeding vehicle approaches the host vehicle. The feedforward target steering angle is set by correcting the feedforward steering angle with the steering angle, and the feedforward steering angle is corrected with the pulling correction steering angle when the host vehicle is running side by side on the side of the succeeding vehicle. And feedforward target steering angle calculating means for setting the feedforward target steering angle.

本発明によれば、自車両が後続車に追い越される際に、後続車から受ける押し出し圧と引き寄せ圧とによる横移動量を相殺する押し出し補正操舵角と引き寄せ補正操舵角とを算出し、自車両に後続車の前面付近が近接した際には押し出し補正操舵角でフィードフォワード操舵角を補正し、又、後続車が自車両の側面を並走している際は引き寄せ補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定してフィードフォワード目標操舵角を設定するようにしたので、自車両が後続車に追い越されるに際し、後続車から車幅方向へ押し出される圧力を受け、或いは後続車方向へ引き寄せられる圧力を受けても車両挙動に乱れが生じることがなく、安定した走行性能を得ることができる。   According to the present invention, when the host vehicle is overtaken by the succeeding vehicle, the pushing correction steering angle and the pulling correction steering angle that cancel the lateral movement amount due to the pushing pressure and the pulling pressure received from the following vehicle are calculated, and the own vehicle is calculated. When the following vehicle is close to the front, the feed-forward steering angle is corrected with the push-out correction steering angle, and when the following vehicle is running along the side of the host vehicle, the feed-forward steering is performed with the pull-up correction steering angle. Since the feedforward target steering angle is set by correcting the angle and the feedforward target steering angle is set, when the host vehicle is overtaken by the following vehicle, it receives pressure pushed out from the following vehicle in the vehicle width direction, Or even if it receives the pressure drawn toward the following vehicle, the vehicle behavior is not disturbed, and stable running performance can be obtained.

運転支援装置の概略構成図Schematic configuration diagram of the driving support device 横移動補正操舵角演算ルーチンを示すフローチャートFlowchart showing lateral movement correction steering angle calculation routine FF目標操舵角演算ルーチンを示すフローチャートFlowchart showing FF target steering angle calculation routine FB目標操舵角演算ルーチンを示すフローチャートFlowchart showing FB target steering angle calculation routine 指示操舵角演算ルーチンを示すフローチャートA flowchart showing a command steering angle calculation routine (a)は後続車の前面投影面積と側面投影面積を求める状態を示す俯瞰図、(b)は自車両が後続車から押し出し圧を受けた際のフィードフォワード制御を説明する俯瞰図、(d)は自車両が後続車に引き寄せ圧を受けた際のフィードフォワード制御を説明する俯瞰図(A) is a bird's-eye view showing a state in which a front projection area and a side projection area of a succeeding vehicle are obtained, and (b) is a bird's-eye view explaining feedforward control when the host vehicle receives the extrusion pressure from the following vehicle, (d) ) Is a bird's-eye view explaining feedforward control when the host vehicle is attracted to the following vehicle (a)は車幅方向中央に目標進行路を設定した状態を示す俯瞰図、(b)は目標進行路に対して自車進行路がずれた状態を示す俯瞰図(A) is a bird's-eye view showing a state in which a target traveling path is set at the center in the vehicle width direction, and (b) is a bird's-eye view showing a state in which the own vehicle traveling path is shifted from the target traveling path

以下、図面に基づいて本発明の一実施形態を説明する。図6に示す符号Mは走行車線を走行する自車両、Mtは隣接車線(以下、「追い越し車線」と称する)を走行する後続車である。又、自車両Mは軽自動車、或いは普通車であり、後続車Mtは大型トラック、バス、トレーラ等、車長の長い大型車両である。尚、本実施形態では左側通行を前提に説明する。従って、右側通行の場合は、左右が逆の説明となる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A reference symbol M shown in FIG. 6 is a host vehicle traveling in a traveling lane, and Mt is a succeeding vehicle traveling in an adjacent lane (hereinafter referred to as “passing lane”). The own vehicle M is a light vehicle or a normal vehicle, and the following vehicle Mt is a large vehicle having a long vehicle length, such as a large truck, a bus, or a trailer. In the present embodiment, description will be made on the assumption that left-hand traffic. Therefore, in the case of right-hand traffic, the left and right descriptions are reversed.

自車両Mには、図1に示す運転支援装置1が搭載されている。この運転支援装置1は、運転支援制御手段としての運転支援制御ユニット11、パワー制御ユニット(以下「P/W_ECU」と称する)12、パーワステアリング制御ユニット(以下「PS_ECU」と称する)13、ブレーキ制御ユニット(以下「BK_ECU」と称する)14等の各制御ユニットを備え、この各制御ユニット11〜14が、CAN(Controller Area Network)等の車内通信回線15を通じて、双方向通信自在に接続されている。尚、各ユニット11〜14はCPU、ROM、RAMなどを備えたマイクロコンピュータにより構成されており、ROMにはシステム毎に設定されている動作を実現するための制御プログラムや固定データ等が記憶されている。   The driving support device 1 shown in FIG. 1 is mounted on the host vehicle M. The driving support apparatus 1 includes a driving support control unit 11 as driving support control means, a power control unit (hereinafter referred to as “P / W_ECU”) 12, a power steering control unit (hereinafter referred to as “PS_ECU”) 13, a brake. Each control unit such as a control unit (hereinafter referred to as “BK_ECU”) 14 is provided, and these control units 11 to 14 are connected to each other through a vehicle communication line 15 such as a CAN (Controller Area Network) so as to be capable of bidirectional communication. Yes. Each unit 11 to 14 is composed of a microcomputer equipped with a CPU, ROM, RAM, etc., and the ROM stores a control program and fixed data for realizing the operation set for each system. ing.

又、運転支援制御ユニット11の入力側に、車載カメラユニット21、自車両Mの車速(自車速)Vを検出する車速センサ22、ハンドルの操舵角θhを検出する操舵角センサ23、前側方レーダ24、後側方レーダ25、自車両Mに作用するヨーレートを検出するヨーレートセンサ26、後方の走行環境を撮像する後方カメラユニット27等の各種センサ類が接続され、出力側に報知手段28が接続されている。尚、上述した後側方レーダ25と後方カメラユニット27とで、本発明の自車両M後方の環境情報を取得する後方環境情報取得手段を構成している。又、各センサ22,23,26が、本発明の運転状態検出手段に対応している。   Further, on the input side of the driving support control unit 11, an in-vehicle camera unit 21, a vehicle speed sensor 22 for detecting the vehicle speed (own vehicle speed) V of the host vehicle M, a steering angle sensor 23 for detecting the steering angle θh of the steering wheel, and a front side radar. 24, a rear side radar 25, a yaw rate sensor 26 for detecting a yaw rate acting on the host vehicle M, a rear camera unit 27 for imaging a rear traveling environment, and other various sensors are connected, and an informing means 28 is connected on the output side. Has been. The rear side radar 25 and the rear camera unit 27 described above constitute rear environment information acquisition means for acquiring environment information behind the host vehicle M of the present invention. Each sensor 22, 23, 26 corresponds to the operating state detecting means of the present invention.

車載カメラユニット21は、メインカメラ21aとサブカメラ21bとからなるステレオカメラと、画像処理ユニット(IPU)21cとを有し、両カメラ21a,21bで撮像した自車前方の所定領域Er1(図6(a)参照)の走行環境画像がIPU21cで所定に画像処理された後、運転支援制御ユニット11に送信される。又、後方カメラユニット27はリヤウインドウの車室側に取付けられており、自車後方の所定領域Er4(図6(b)参照)の後方環境を撮像する単眼カメラ27aと画像処理ユニット(IPU)27bとを有している。この単眼カメラ27aで撮像した画像はIPU27bで所定に画像処理されて、運転支援制御ユニット11に送信される。   The in-vehicle camera unit 21 includes a stereo camera composed of a main camera 21a and a sub camera 21b, and an image processing unit (IPU) 21c, and a predetermined area Er1 in front of the host vehicle captured by both the cameras 21a and 21b (FIG. 6). The driving environment image (see (a)) is subjected to predetermined image processing by the IPU 21 c and then transmitted to the driving support control unit 11. The rear camera unit 27 is attached to the vehicle compartment side of the rear window, and a monocular camera 27a and an image processing unit (IPU) for imaging the rear environment of the predetermined area Er4 (see FIG. 6B) behind the host vehicle. 27b. The image captured by the monocular camera 27 a is subjected to predetermined image processing by the IPU 27 b and transmitted to the driving support control unit 11.

又、各レーダ24,25はミリ波レーダ、マイクロ波レーダ、赤外線レーザレーダ等であり、例えばフロントバンパ、或いはリヤバンパの左右側部に各々配設された一対のレーダで構成されている。前側方レーダ24は上述した車載カメラユニット21からの画像では認識することの困難な左右斜め前方の領域Er2L,Er2R(図6(b)参照)を監視し、検出された物体と自車両Mとの距離を求める。   Each of the radars 24 and 25 is a millimeter wave radar, a microwave radar, an infrared laser radar, or the like, and includes, for example, a pair of radars disposed on the left and right sides of the front bumper or the rear bumper. The front side radar 24 monitors the areas Er2L and Er2R (see FIG. 6B) that are difficult to recognize from the above-described image from the in-vehicle camera unit 21, and detects the detected object and the own vehicle M. Find the distance.

又、後側方レーダ25のスキャンする領域は前側方レーダ24よりも比較的広く、自車両Mの後方から左右の、前側方レーダ24では監視することのできない領域Er3L,Er3R(図6(b)参照)を監視し、側方、斜め後方、及び後方で検出された物体と自車両Mとの距離を求める。   The area scanned by the rear side radar 25 is relatively wider than that of the front side radar 24, and the areas Er3L and Er3R which cannot be monitored by the front side radar 24 from the rear of the host vehicle M to the left and right (see FIG. 6 (b)). )), And the distance between the vehicle M and the object detected laterally, obliquely rearward, and rearward is obtained.

本実施形態では、後方カメラユニット27で撮像した後方環境画像と後側方レーダ25からのスキャンデータとに基づき後続車Mtの有無、後続車Mtとの距離を求め、更に、後続車Mtの前面投影面積Sf、側面投影面積Ssを求める。   In the present embodiment, the presence / absence of the succeeding vehicle Mt and the distance from the succeeding vehicle Mt are obtained based on the rear environment image captured by the rear camera unit 27 and the scan data from the rear side radar 25, and further the front surface of the succeeding vehicle Mt. The projected area Sf and the side projected area Ss are obtained.

又、報知手段28は、運転者に自動運転の開始、中断などを点滅表示、文字表示、音声等で報知するもので、表示ランプ、表示器、スピーカ等で構成されている。   The notification means 28 notifies the driver of the start or stop of automatic driving by blinking display, character display, voice, or the like, and includes a display lamp, a display, a speaker, and the like.

一方、P/W_ECU12は駆動源の出力を走行負荷等に応じて制御するもので、駆動源としては、エンジンと電動モータを備えるハイブリッド駆動源、又はエンジン或いは電動モータ等、単体の駆動源であり、P/W_ECU12は、この駆動源の出力を制御するP/Wアクチュエータ31に接続されている。尚、駆動源として電動モータを有している場合、P/Wアクチュエータ31は力行、回生(回生制動)の双方を制御する。   On the other hand, the P / W_ECU 12 controls the output of the drive source in accordance with the traveling load, and the drive source is a hybrid drive source including an engine and an electric motor, or a single drive source such as an engine or an electric motor. The P / W_ECU 12 is connected to a P / W actuator 31 that controls the output of the drive source. In addition, when it has an electric motor as a drive source, the P / W actuator 31 controls both power running and regenerative (regenerative braking).

又、PS_ECU13の出力側に電動パワステ(EPS)モータ32が接続されている。このEPSモータ32はステアリング機構にモータの回転力で操舵トルクを付与するものである。自動運転では、PS_ECU13からの駆動信号によりEPSモータ32を制御動作させることで、自車両Mを目標進行路(例えば、車線中央)に沿って走行させる車線維持制御を実行させる。   An electric power steering (EPS) motor 32 is connected to the output side of the PS_ECU 13. The EPS motor 32 applies steering torque to the steering mechanism by the rotational force of the motor. In the automatic operation, the EPS motor 32 is controlled by a drive signal from the PS_ECU 13 to execute lane keeping control for causing the host vehicle M to travel along the target travel path (for example, the center of the lane).

又、BK_ECU14の出力側にブレーキアクチュエータ33が接続されている。このブレーキアクチュエータ33は、各車輪に設けられているブレーキホイールシリンダに対して供給するブレーキ油圧を調整するもので、BK_ECU14からの駆動信号によりブレーキアクチュエータ33が駆動されると、ブレーキホイールシリンダにより各車輪に対してブレーキ力が発生し、強制的に減速される。   A brake actuator 33 is connected to the output side of the BK_ECU 14. The brake actuator 33 adjusts the brake hydraulic pressure supplied to the brake wheel cylinder provided on each wheel. When the brake actuator 33 is driven by a drive signal from the BK_ECU 14, each brake wheel 33 is driven by the brake wheel cylinder. Braking force is generated and the vehicle is forcibly decelerated.

運転支援制御ユニット11は、走行車線に設定した目標進行路に沿って車線維持制御により自車両Mを走行させている間、後方カメラユニット27で撮像した後方環境画像情報と後側方レーダ25からのスキャンデータとに基づき、追い越し車線を走行し、自車両Mに近接する後続車Mtの有無を常時監視している。   The driving support control unit 11 uses the rear environment image information captured by the rear camera unit 27 and the rear side radar 25 while the host vehicle M is traveling by the lane keeping control along the target traveling path set in the traveling lane. Based on the scan data, the vehicle travels in the overtaking lane and constantly monitors the presence or absence of the following vehicle Mt close to the host vehicle M.

そして、運転支援制御ユニット11が自車両Mに近接する後続車Mtを検出した場合、先ず、後続車Mtと自車両Mとの相対車速ΔVtを算出すると共に、後続車Mtから受ける押し出し圧による横移動量である押し出し横移動予測量Zw’と引き寄せ圧による横移動量である引き寄せ横移動予測量Zwとを算出し、この各横移動予測量Zw’,Zwを含めたフィードフォワード(FF)目標操舵角θffoを算出する。更に、自車両Mを目標進行路に沿って走行させるためのフィードバック(FB)目標操舵角θfbを算出し、この両目標操舵角θffo,θfbに基づき、EPSモータ32を駆動させる指示操舵角θtを算出する。   When the driving support control unit 11 detects the subsequent vehicle Mt that is close to the host vehicle M, first, the relative vehicle speed ΔVt between the subsequent vehicle Mt and the host vehicle M is calculated, and the lateral pressure due to the extrusion pressure received from the subsequent vehicle Mt is calculated. A predicted feed lateral movement amount Zw ′, which is a movement amount, and a pulling lateral movement prediction amount Zw, which is a lateral movement amount due to the pulling pressure, are calculated, and a feedforward (FF) target including the respective lateral movement prediction amounts Zw ′ and Zw. A steering angle θffo is calculated. Further, a feedback (FB) target steering angle θfb for causing the host vehicle M to travel along the target traveling path is calculated, and an instruction steering angle θt for driving the EPS motor 32 is calculated based on both target steering angles θffo and θfb. calculate.

運転支援制御ユニット11で実行される、自車両Mを目標進行路に沿って走行させる車線維持制御は、具体的には、図2〜図5に示す各ルーチンに従って処理される。   Specifically, the lane keeping control executed by the driving support control unit 11 for causing the host vehicle M to travel along the target traveling path is processed according to the routines shown in FIGS.

車線維持制御では、追い越し車線を走行する後続車Mtが検出された場合、先ず、図2に示す横移動補正操舵角演算ルーチンが実行され、ステップS1で、後側方レーダ25のスキャンデータに基づき、自車両Mと追い越し車線を走行する後続車Mtとの相対車速ΔVt、及び車間距離を算出し、ステップS2で、後続車Mtは自車両Mを追い越すか否かを調べる。そして、相対車速ΔVtは後続車Mtが速く、且つ、車間距離が所定車間距離以内の場合、追い越すと判定してステップS3へ進み、相対車速ΔVtが0[Km/h]或いは自車両Mよりも後続車Mtが遅く、或いは、車間距離が所定車間距離以上の場合、後続車Mtには追い越されないと判定し、ルーチンを抜ける。尚、このステップS2での処理が、本発明の追越判定手段に対応している。   In the lane keeping control, when the succeeding vehicle Mt traveling in the overtaking lane is detected, first, the lateral movement correction steering angle calculation routine shown in FIG. 2 is executed, and based on the scan data of the rear side radar 25 in step S1. Then, the relative vehicle speed ΔVt and the inter-vehicle distance between the own vehicle M and the following vehicle Mt traveling in the overtaking lane are calculated, and it is checked whether or not the following vehicle Mt passes the own vehicle M in step S2. When the following vehicle Mt is fast and the inter-vehicle distance is within the predetermined inter-vehicle distance, the relative vehicle speed ΔVt is determined to be overtaken, and the process proceeds to step S3, where the relative vehicle speed ΔVt is 0 [Km / h] or less than the own vehicle M. If the following vehicle Mt is late or the inter-vehicle distance is equal to or greater than the predetermined inter-vehicle distance, it is determined that the subsequent vehicle Mt is not overtaken, and the routine is exited. Note that the processing in step S2 corresponds to the overtaking determination means of the present invention.

一方、ステップS3へ進むと、ステップS3,S4において、後方カメラユニット27で撮像した後方環境画像により認識した、追い越し車線を走行して自車両Mに接近する後続車Mtと、後側方レーダ25からのスキャンデータから検出した後続車Mtの距離データとに基づき、後続車Mtの前面投影面積Sfと側面投影面積Ssとを算出する。   On the other hand, when the process proceeds to step S3, the succeeding vehicle Mt traveling in the passing lane and approaching the host vehicle M recognized by the rear environment image captured by the rear camera unit 27 in steps S3 and S4, and the rear side radar 25. The front projection area Sf and the side projection area Ss of the subsequent vehicle Mt are calculated based on the distance data of the subsequent vehicle Mt detected from the scan data.

この場合、後方カメラユニット27の単眼カメラ27aはステレオカメラであってもよく、ステレオカメラの場合は、後側方レーダ25を用いることなく、画像処理にて後続車Mtの前面投影面積Sfと側面投影面積Ssとを求めることができる。尚、ステップS3での処理が、本発明の前面投影面積算出手段に対応し、ステップS4での処理が、本発明の側面投影面積算出手段に対応している。   In this case, the monocular camera 27a of the rear camera unit 27 may be a stereo camera. In the case of a stereo camera, the front projection area Sf and the side surface of the succeeding vehicle Mt are processed by image processing without using the rear side radar 25. The projected area Ss can be obtained. The process in step S3 corresponds to the front projected area calculating means of the present invention, and the process in step S4 corresponds to the side projected area calculating means of the present invention.

そして、ステップS5で、後側方レーダ25からのスキャンデータに基づき自車両Mに接近する後続車Mtとの横車間距離Lwを算出する。尚、後方カメラユニット27がステレオカメラを搭載している場合、横車間距離Lwはステレオカメラで撮像した画像から求めることができる。又、このステップでの処理が、本発明の横車間距離算出手段に対応している。   In step S5, a lateral inter-vehicle distance Lw with the following vehicle Mt approaching the host vehicle M is calculated based on the scan data from the rear side radar 25. Note that, when the rear camera unit 27 is equipped with a stereo camera, the lateral inter-vehicle distance Lw can be obtained from an image captured by the stereo camera. Further, the processing in this step corresponds to the side-to-vehicle distance calculation means of the present invention.

その後、ステップS6へ進み、自車両Mが後続車Mtに追い抜かれる際に受ける押し出し圧による押し出し横移動予測量Zw’を算出する。後続車Mtが大型車両の場合、前面の投影面積が広く、空気抵抗が大きいため、高速走行時は空気抵抗を受けて、その風圧が車幅方向、及び上方へ流れる。その結果、前面の車幅方向、及び上方の空気密度が高くなり、それが押し出し圧となる。空気抵抗は前面投影面積Sfと車速の二乗とで変化するため、後続車Mtの車速である後続車速(V+ΔVt)と前面投影面積Sfとから押し出し圧を求めることができる。   Thereafter, the process proceeds to step S6, and the predicted lateral displacement Zw 'is calculated based on the extrusion pressure received when the host vehicle M is overtaken by the following vehicle Mt. When the succeeding vehicle Mt is a large vehicle, the projected area on the front surface is large and the air resistance is large. Therefore, the air pressure is received during high-speed traveling, and the wind pressure flows in the vehicle width direction and upward. As a result, the air density in the vehicle width direction on the front side and the upper air density become high, which becomes the extrusion pressure. Since the air resistance changes depending on the front projection area Sf and the square of the vehicle speed, the extrusion pressure can be obtained from the subsequent vehicle speed (V + ΔVt) that is the vehicle speed of the subsequent vehicle Mt and the front projection area Sf.

そして、この押し出し圧は横車間距離Lwが狭い程大きく、又、後続車Mtの前面が自車両Mの前方に抜け出すまで継続される。この継続時間は、相対車速ΔVtと自車両Mの車長とから算出されるため、この継続時間と押し出し圧と横車間距離Lwとに基づき押し出し横移動予測量Zw’(図6(b)参照)を算出する。従って、このステップS6には、本発明の後続車速算出手段としての機能が含まれている。   The pushing pressure is increased as the lateral distance Lw is decreased, and is continued until the front surface of the succeeding vehicle Mt comes out ahead of the host vehicle M. Since the duration is calculated from the relative vehicle speed ΔVt and the length of the host vehicle M, the predicted lateral displacement Zw ′ (see FIG. 6B) based on the duration, the extrusion pressure, and the lateral distance Lw. ) Is calculated. Therefore, this step S6 includes a function as the subsequent vehicle speed calculation means of the present invention.

その後、ステップS7へ進むと、後続車Mtが自車両Mと並走することにより、自車両Mが後続車Mtから受ける引き寄せ圧による引き寄せ横移動予測量Zwを算出する。後続車Mtが自車両Mを追い越すべく並走している区間では、後続車Mtと自車両Mとの間を流れる空気の流速は、横車間距離Lwによって狭まれているため、周辺の流速よりも速く、従って、空気密度が低くなる。その結果、自車両Mが後続車Mt側へ引き寄せられ易くなる。   Thereafter, when the process proceeds to step S7, the subsequent vehicle Mt travels in parallel with the host vehicle M, thereby calculating a predicted lateral movement predicted amount Zw by the pulling pressure that the host vehicle M receives from the subsequent vehicle Mt. In the section where the following vehicle Mt is running in parallel to pass the own vehicle M, the flow velocity of the air flowing between the following vehicle Mt and the own vehicle M is narrowed by the lateral inter-vehicle distance Lw. Faster, and therefore the air density is lower. As a result, the host vehicle M is likely to be drawn toward the subsequent vehicle Mt.

この引き寄せ圧は、後続車Mtの側面投影面積Ssが大きく、横車間距離Lwが狭く、且つ、後続車速(ΔVt+V)が大きいほど大きくなる。そして、この引き寄せ圧は自車両Mが後続車Mtを通過するまで継続され、その継続時間は相対車速ΔVtと後続車Mtの車長から算出することができる。そのため、側面投影面積Ssと横車間距離Lwと後続車速(ΔVt+V)とに基づき引き寄せ圧を求め、更に、相対車速ΔVtと後続車Mtの車長に基づいて、自車両Mが後続車Mtと並走している間に受ける引き寄せ圧による引き寄せ横移動予測量Zw(図6(c)参照)を算出する。   The pulling pressure increases as the side projected area Ss of the following vehicle Mt increases, the lateral inter-vehicle distance Lw decreases, and the subsequent vehicle speed (ΔVt + V) increases. The drawing pressure is continued until the host vehicle M passes the succeeding vehicle Mt, and the duration can be calculated from the relative vehicle speed ΔVt and the vehicle length of the following vehicle Mt. Therefore, the drawing pressure is obtained based on the side projection area Ss, the lateral distance Lw, and the following vehicle speed (ΔVt + V), and the own vehicle M is aligned with the following vehicle Mt based on the relative vehicle speed ΔVt and the vehicle length of the following vehicle Mt. A predicted pulling lateral movement amount Zw (see FIG. 6C) due to the pulling pressure received during running is calculated.

そして、ステップS8で、押し出し横移動予測量Zw’に基づき、押し出しテーブル(図示せず)を参照して押し出し補正操舵角θkz’を算出して、ルーチンを抜ける。この押し出しテーブルには押し出し横移動予測量Zw’を相殺する、後続車Mtから横車間方向へ近接させる値の押し出し補正操舵角θkz’が格納されている。尚、上述したステップS6,S8での処理が、本発明の押し出し補正操舵角算出手段に対応している。   In step S8, based on the extrusion lateral movement prediction amount Zw ', the extrusion correction steering angle θkz' is calculated with reference to the extrusion table (not shown), and the routine is exited. The push-out table stores a push-out corrected steering angle θkz ′ that cancels out the push-out lateral movement predicted amount Zw ′ and is close to the inter-vehicle direction from the succeeding vehicle Mt. Note that the processing in steps S6 and S8 described above corresponds to the extrusion correction steering angle calculation means of the present invention.

次いで、ステップS8で、引き寄せ横移動予測量Zwに基づき、引き寄せテーブル(図示せず)を参照して引き寄せ補正操舵角θkzを算出する。この引き寄せテーブルには引き寄せ横移動予測量Zwを相殺する、後続車Mtから横車間方向へ離間する値の引き寄せ補正操舵角θkzが格納されている。尚、上述したステップS7,S9での処理が、本発明の引き寄せ補正操舵角算出手段に対応している。   Next, in step S8, an attraction correction steering angle θkz is calculated with reference to an attraction table (not shown) based on the attraction lateral movement prediction amount Zw. In this drawing table, a drawing correction steering angle θkz of a value that cancels the drawing lateral movement predicted amount Zw and is separated from the succeeding vehicle Mt in the direction between the horizontal vehicles is stored. Note that the processing in steps S7 and S9 described above corresponds to the attraction correction steering angle calculation means of the present invention.

上述した各補正操舵角θkz’,θkzは、図3に示すFF目標操舵角演算ルーチンで読込まれる。このルーチンでは、先ず、ステップS11で、目標進行路の曲率aを読込む。図7(a)に示すように、目標進行路は車載カメラユニット21からの走行環境画像情報に基づいて認識した走行車線の左右を区画する区画線の中央に設定されている。尚、この曲率aの求め方については、本出願人が先に提出した特開2014−193645号公報等に詳述されているため、ここでの説明は省略する。   The corrected steering angles θkz ′ and θkz described above are read by the FF target steering angle calculation routine shown in FIG. In this routine, first, in step S11, the curvature a of the target traveling path is read. As shown in FIG. 7A, the target traveling path is set at the center of the lane marking that divides the left and right of the traveling lane recognized based on the traveling environment image information from the in-vehicle camera unit 21. The method of obtaining the curvature a is described in detail in Japanese Patent Application Laid-Open No. 2014-193645 previously filed by the present applicant, and thus the description thereof is omitted here.

次いで、ステップS12へ進み、自車速V、曲率a、及び自車両Mの挙動をモデル化した車両モデルに基づいてFF操舵角θffを設定する。そして、ステップS13へ進み、近接する後続車Mtからの押し出し圧により車幅方向へ押し出されたか否かを調べる。自車両Mが押し出されたか否かは、例えば、自車両Mに後続車Mtが近接した際の後側方レーダ25からのスキャンデータに基づき、後続車Mtに対する自車両Mの横位置変化量から判定する。この横位置変化量は、操舵角センサ23で検出した操舵角の変化量、或いはヨーレートセンサ26で検出したヨーレートの変化量から検出するようにしても良い。   Next, the process proceeds to step S12, and the FF steering angle θff is set based on the vehicle model obtained by modeling the host vehicle speed V, the curvature a, and the behavior of the host vehicle M. And it progresses to step S13 and it is investigated whether it was extruded to the vehicle width direction by the extrusion pressure from the adjacent vehicle Mt which adjoins. Whether or not the host vehicle M has been pushed out is determined from, for example, the amount of change in the lateral position of the host vehicle M with respect to the following vehicle Mt based on the scan data from the rear side radar 25 when the following vehicle Mt approaches the host vehicle M. judge. The lateral position change amount may be detected from the steering angle change amount detected by the steering angle sensor 23 or the yaw rate change amount detected by the yaw rate sensor 26.

そして、自車両Mが押し出されていないと判定した場合は、ステップS14へ分岐し、押し出されたと判定した場合はステップS15へ進む。   And when it determines with the own vehicle M not being extruded, it branches to step S14, and when it determines with having pushed out, it progresses to step S15.

ステップS14へ進むと、自車両Mが後続車Mtに引き寄せられたか否かを調べる。この判定は、上述と同様、車載カメラユニット21からの走行環境画像情報、又は、操舵角センサ23で検出した操舵角の変化量、或いはヨーレートセンサ26で検出したヨーレートの変化量に基づき、自車両Mの横位置変化量を算出して行う。この場合、自車両Mがワンボックス車のように車高の高い車両である場合は、車載カメラユニット21からの走行環境画像に基づき、車体横方向の傾斜角を検出し、その傾斜角度と傾斜方向から、自車両Mが後続車Mtから押し出されているか、引き寄せられているかを判定するようにしても良い。尚、上述したステップS13,S14での処理が、本発明の車両挙動判定手段に対応している。   If it progresses to step S14, it will be investigated whether the own vehicle M was drawn near to the succeeding vehicle Mt. This determination is based on the traveling environment image information from the in-vehicle camera unit 21, the change amount of the steering angle detected by the steering angle sensor 23, or the change amount of the yaw rate detected by the yaw rate sensor 26 as described above. This is performed by calculating the lateral position change amount of M. In this case, when the host vehicle M is a vehicle having a high vehicle height such as a one-box vehicle, the vehicle body lateral direction inclination angle is detected based on the traveling environment image from the in-vehicle camera unit 21, and the inclination angle and inclination are determined. You may make it determine from the direction whether the own vehicle M is pushed out from the succeeding vehicle Mt, or is pulled. Note that the processing in steps S13 and S14 described above corresponds to the vehicle behavior determination means of the present invention.

そして、引き寄せありと判定した場合は、ステップS16へ進み、引き寄せなしと判定した場合は、ステップS17へ分岐する。   If it is determined that there is attraction, the process proceeds to step S16. If it is determined that there is no attraction, the process branches to step S17.

自車両Mが押し出されたと判定して、ステップS15へ進むと、FF操舵角θffに押し出し補正操舵角θkz’を加算してFF目標操舵角θffoを設定し、ルーチンを抜ける(θffo←θff+θkz’)。   If it is determined that the host vehicle M has been pushed out and the process proceeds to step S15, the FF steering angle θff is added to the FF steering angle θff to set the FF target steering angle θffo, and the routine is exited (θffo ← θff + θkz ′). .

又、引き寄せられたと判定して、ステップS16へ進むと、FF操舵角θffに引き寄せ補正操舵角θkzを加算してFF目標操舵角θffoを設定し、ルーチンを抜ける(θffo←θff+θkz)。一方、ステップS17へ進むと、押し出しも、引き寄せもないため、FF操舵角θffをFF目標操舵角θffoとして設定して、ルーチンを抜ける(θffo←θff)。尚、上述したステップS15〜S17での処理が、本発明のFF目標操舵角算出手段に対応している。   If it is determined that the wheel has been pulled and the process proceeds to step S16, the FF steering angle θkz is added to the FF steering angle θff to set the FF target steering angle θffo, and the routine is exited (θffo ← θff + θkz). On the other hand, when the process proceeds to step S17, neither pushing nor pulling occurs, so the FF steering angle θff is set as the FF target steering angle θffo and the routine is exited (θffo ← θff). Note that the processing in steps S15 to S17 described above corresponds to the FF target steering angle calculation means of the present invention.

本実施形態では、図6(b),(c)に示すように、押し出し圧による横移動予測量Zw’、及び引き寄せ圧による横移動予測量Zwを予め算出し、それを相殺する押し出し補正操舵角θkz’と引き寄せ補正操舵角θkzとを算出し、これを操舵角のフィードフォワード成分として上乗せするようにしたので、後続車Mtが自車両Mを追い越す際に、自車両Mが後続車Mtから押し出し圧、及び引き寄せ圧を受けても車両挙動が不安定化せず、良好な走行性能を得ることができる。   In this embodiment, as shown in FIGS. 6B and 6C, the lateral movement prediction amount Zw ′ based on the pushing pressure and the lateral movement prediction amount Zw based on the pulling pressure are calculated in advance and the extrusion correction steering that cancels them out. Since the angle θkz ′ and the attraction correction steering angle θkz are calculated and added as a feedforward component of the steering angle, when the succeeding vehicle Mt passes the own vehicle M, the own vehicle M departs from the succeeding vehicle Mt. Even when subjected to the extrusion pressure and the pulling pressure, the vehicle behavior does not become unstable, and good running performance can be obtained.

次に、図4に示すFB目標操舵角演算ルーチンについて説明する。このルーチンでは、先ず、ステップS21で、自車両Mの目標進行路の曲率aを読込み、続く、ステップS22でヨーレートセンサ26で検出したヨーレートに基づき、自車両Mの目標進行路に対する対車線ヨー角yを算出する(図7(b)参照)。   Next, the FB target steering angle calculation routine shown in FIG. 4 will be described. In this routine, first, in step S21, the curvature a of the target traveling path of the host vehicle M is read, and subsequently, the yaw angle with respect to the target traveling path of the host vehicle M based on the yaw rate detected by the yaw rate sensor 26 in step S22. y is calculated (see FIG. 7B).

そして、ステップS23において、この対車線ヨー角yを0にするFB目標操舵角θfbを設定してルーチンを抜ける。   In step S23, the FB target steering angle θfb for setting the anti-lane yaw angle y to 0 is set, and the routine is exited.

上述したFF目標操舵角θffo、及びFB目標操舵角θfbは、図5に示す指示操舵角演算ルーチンにて読込まれる。このルーチンでは、先ず、ステップS31で、両目標操舵角θffo,θfb、及び、自動運転時に必要な、その他のフィードフォワード制御系、フィードバック制御系の各目標操舵角を読込む。   The above-described FF target steering angle θffo and FB target steering angle θfb are read by the command steering angle calculation routine shown in FIG. In this routine, first, in step S31, both target steering angles θffo, θfb and other target steering angles of the feedforward control system and the feedback control system necessary for automatic operation are read.

そして、ステップS32で、FF目標操舵角θffo、FB目標操舵角θfb、及びその他の目標操舵角に、所定重み付けのゲインをそれぞれ乗算した上で加算して指示操舵角θtを設定し、ルーチンを抜ける。   In step S32, the FF target steering angle θffo, the FB target steering angle θfb, and other target steering angles are respectively multiplied by a predetermined weighting gain and added to set the command steering angle θt, and the routine is exited. .

運転支援制御ユニット11で求めた指示操舵角θtは、PS_ECU13で読込まれる。PS_ECU13は、指示操舵角θtに基づいてEPSモータ出力テーブル(図示せず)を参照してEPSモータトルクを求め、このEPSモータトルクにてEPSモータ32を駆動制御して、自車両Mを目標進行路(図7(a))に沿って走行させる。   The command steering angle θt obtained by the driving support control unit 11 is read by the PS_ECU 13. The PS_ECU 13 obtains an EPS motor torque with reference to an EPS motor output table (not shown) based on the command steering angle θt, and drives and controls the EPS motor 32 with the EPS motor torque, so that the host vehicle M progresses as a target. Drive along the road (Fig. 7 (a)).

このように、本実施形態によれば、自車両Mが後続車Mtに追い越されるに際し、後続車Mtから受ける押し出し圧と引き寄せ圧による横移動予測量Zw’,Zwを求め、これを相殺する補正操舵角θkz’,θkzを算出しておき、自車両Mが後続車Mtに押し出され、或いは引き寄せられた際に、押し出し横移動予測量Zw’、或いは引き寄せ横移動予測量ZwをFF操舵角θffに加算してFF目標操舵角θffoを求めるようにしたので、自車両Mが後続車Mtに追い越される際に、押し出され、或いは引き寄せられる圧力を受けても、それが相殺されるため、車両挙動に乱れが生じることがなく、安定した走行性能を得ることができる。   As described above, according to the present embodiment, when the host vehicle M is overtaken by the succeeding vehicle Mt, the lateral movement predicted amounts Zw ′ and Zw due to the pushing pressure and the pulling pressure received from the succeeding vehicle Mt are obtained, and the correction for canceling this is obtained. Steering angles θkz ′ and θkz are calculated, and when the host vehicle M is pushed out or pulled toward the succeeding vehicle Mt, the predicted lateral movement predicted amount Zw ′ or the pulled lateral movement predicted amount Zw is converted into the FF steering angle θff. Since the FF target steering angle θffo is obtained by adding to the following vehicle pressure, even if the vehicle M is overtaken by the succeeding vehicle Mt, even if it receives pressure that is pushed out or drawn, it is canceled out. Therefore, stable running performance can be obtained.

尚、本発明は、上述した実施形態に限るものではなく、例えば、自車両Mがワンボックス車等、車高の高い車両である場合、左右の傾斜を検出する傾斜センサ、あるいは横Gセンサで検出した傾斜角に基づいて引き寄せ圧、或いは押し出し圧を検出するようにしても良い。   The present invention is not limited to the above-described embodiment. For example, when the host vehicle M is a vehicle with a high vehicle height, such as a one-box vehicle, an inclination sensor or a lateral G sensor that detects right and left inclinations is used. The pulling pressure or the pushing pressure may be detected based on the detected inclination angle.

1…運転支援装置、
11…運転支援制御ユニット、
12…パワー制御ユニット、
13…パーワステアリング制御ユニット、
14…ブレーキ制御ユニット、
15…車内通信回線、
21…車載カメラユニット、
21a…メインカメラ、
21b…サブカメラ、
22…車速センサ、
23…操舵角センサ、
24…前側方レーダ、
25…後側方レーダ、
26…ヨーレートセンサ、
27…後方カメラユニット、
27a…単眼カメラ、
28…報知手段、
31…パワーアクチュエータ、
32…電動パワステモータ、
33…ブレーキアクチュエータ、
a…曲率、
Lw…横車間距離、
M…自車両、
Mt…後続車、
Sf…前面投影面積、
Ss…側面投影面積、
V…自車速、
y…対車線ヨー角、
Zw…引き寄せ横移動予測量、
Zw’…押し出し横移動予測量、
ΔVt…相対車速、
θfb…FB目標操舵角、
θff…FF操舵角、
θffo…FF目標操舵角、
θh…操舵角、
θkz…引き寄せ補正操舵角、
θkz’…押し出し補正操舵角、
θt…指示操舵角
1 ... Driving assistance device,
11 ... Driving support control unit,
12 ... Power control unit,
13 ... Power steering control unit,
14 ... Brake control unit,
15 ... In-car communication line,
21 ... In-vehicle camera unit,
21a ... main camera,
21b ... sub camera,
22 ... Vehicle speed sensor,
23 ... Steering angle sensor,
24: Front side radar,
25: Rear side radar,
26 ... Yaw rate sensor,
27 ... Rear camera unit,
27a ... Monocular camera,
28 ... informing means,
31 ... Power actuator,
32 ... Electric power steering motor,
33 ... Brake actuator,
a ... curvature,
Lw ... Distance between the side cars,
M ... own vehicle,
Mt ... following car,
Sf: Front projection area,
Ss: side projection area,
V ... Vehicle speed,
y ... Yaw angle to lane,
Zw: Pulling lateral movement prediction amount,
Zw '... Extruded lateral movement prediction amount,
ΔVt ... Relative vehicle speed,
θfb ... FB target steering angle,
θff ... FF steering angle,
θffo ... FF target steering angle,
θh: steering angle,
θkz: Attraction correction steering angle,
θkz ′: Push-out correction steering angle,
θt ... Instructed steering angle

Claims (3)

自車両を走行車線に沿って車線維持制御により走行させる運転支援制御手段と、
前記自車両後方の環境情報を取得する後方環境情報取得手段と、
前記後方環境情報取得手段で取得した前記環境情報に基づき隣接車線を走行する後続車と前記自車両との相対車速を求め、前記後続車が前記自車両を追い越すか否かを判定する追越判定手段と
を備える車両用運転支援装置において、
前記運転支援制御手段は、前記追越判定手段で前記後続車が前記自車両を追い越すと判定した場合、前記後方環境情報取得手段で取得した前記環境情報に基づき前記後続車の車速を算出する後続車速算出手段と、
前記後方環境情報取得手段で取得した前記環境情報に基づいて前記後続車の前面投影面積を算出する前面投影面積算出手段と、
前記後方環境情報取得手段で取得した前記環境情報に基づいて前記後続車の側面投影面積を算出する側面投影面積算出手段と、
前記後続車速算出手段で算出した前記後続車の車速と前記前面投影面積算出手段で算出した前記前面投影面積とに基づき、前記自車両が前記後続車から押し出される押し出し圧による前記自車両の横移動量を相殺する押し出し補正操舵角を算出する押し出し補正操舵角算出手段と、
前記後続車速算出手段で算出した前記後続車の車速と前記側面投影面積算出手段で算出した前記側面投影面積とに基づき、前記自車両が前記後続車に引き寄せられる引き寄せ圧による前記自車両の横移動量を相殺する引き寄せ補正操舵角を算出する引き寄せ補正操舵角算出手段と、
前記後続車の前面付近が前記自車両に近接した際には前記押し出し補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定し、又前記後続車の側面を前記自車両が並走している際は前記引き寄せ補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定するフィードフォワード目標操舵角算出手段と
を備えることを特徴とする車両の運転支援装置。
Driving support control means for driving the host vehicle along the driving lane by lane keeping control;
Back environment information acquisition means for acquiring environment information behind the host vehicle;
An overtaking determination that determines a relative vehicle speed between a following vehicle that travels in an adjacent lane and the own vehicle based on the environment information acquired by the rear environment information acquisition unit, and determines whether the following vehicle passes the own vehicle. A vehicle driving support device comprising:
The driving support control means calculates a vehicle speed of the succeeding vehicle based on the environment information acquired by the rear environment information acquiring means when the succeeding determination means determines that the succeeding vehicle passes the own vehicle. Vehicle speed calculation means;
Front projection area calculation means for calculating a front projection area of the succeeding vehicle based on the environment information acquired by the rear environment information acquisition means;
Side projection area calculation means for calculating a side projection area of the succeeding vehicle based on the environment information acquired by the rear environment information acquisition means;
Based on the vehicle speed of the succeeding vehicle calculated by the succeeding vehicle speed calculating means and the front projected area calculated by the front projected area calculating means, the own vehicle is laterally moved by the pushing pressure with which the own vehicle is pushed out from the succeeding vehicle. An extrusion correction steering angle calculating means for calculating an extrusion correction steering angle that cancels the amount;
Based on the vehicle speed of the succeeding vehicle calculated by the succeeding vehicle speed calculating means and the side projected area calculated by the side projection area calculating means, the own vehicle is laterally moved by the attraction pressure at which the own vehicle is attracted to the succeeding vehicle. An attraction correction steering angle calculating means for calculating an attraction correction steering angle for offsetting the amount;
When the vicinity of the front surface of the succeeding vehicle approaches the host vehicle, the feedforward steering angle is corrected by the push-out correction steering angle to set a feedforward target steering angle, and the side surface of the succeeding vehicle is set by the host vehicle. A vehicle driving support device, comprising: a feedforward target steering angle calculation unit that sets a feedforward target steering angle by correcting a feedforward steering angle with the pulling correction steering angle when running in parallel.
前記後方環境情報取得手段で取得した前記環境情報、或いは運転状態検出手段で検出した前記自車両の運転状態に基づき、前記自車両が前記後続車に引き寄せられているか押し出されているかを判定する車両挙動判定手段を更に有し、
前記フィードフォワード目標操舵角算出手段は、前記車両挙動判定手段で前記自車両が押し出されていると判定した場合は前記押し出し補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定し、又引き寄せられていると判定した場合は前記引き寄せ補正操舵角でフィードフォワード操舵角を補正してフィードフォワード目標操舵角を設定する
ことを特徴とする請求項1記載の車両の運転支援装置。
A vehicle that determines whether the host vehicle is being drawn or pushed out to the succeeding vehicle based on the environment information acquired by the rear environment information acquiring unit or the driving state of the host vehicle detected by the driving state detecting unit A behavior determination means;
The feedforward target steering angle calculation means sets the feedforward target steering angle by correcting the feedforward steering angle with the extrusion correction steering angle when the vehicle behavior determination means determines that the host vehicle is being pushed out. In addition, when it is determined that the vehicle is being pulled, the feed forward target steering angle is set by correcting the feed forward steering angle with the pulling correction steering angle.
前記自車両と前記後続車との横車間距離を算出する横車間距離算出手段を更に有し、
前記押し出し補正操舵角算出手段は、前記後続車速算出手段で算出した前記後続車の車速と前記前面投影面積算出手段で算出した前記後続車の前面投影面積と前記横車間距離算出手段で算出した前記横車間距離とに基づいて前記自車両の横移動量を相殺する押し出し補正操舵角を算出し、
前記引き寄せ補正操舵角算出手段は、前記後続車速算出手段で算出した前記後続車の車速と前記側面投影面積算出手段で算出した前記側面投影面積と前記横車間距離算出手段で算出した前記横車間距離とに基づいて前記自車両の横移動量を相殺する引き寄せ補正操舵角を算出する
ことを特徴とする請求項1或いは2記載の車両の運転支援装置。
A lateral inter-vehicle distance calculating means for calculating a lateral inter-vehicle distance between the host vehicle and the succeeding vehicle;
The pushing correction steering angle calculating means calculates the vehicle speed of the succeeding vehicle calculated by the succeeding vehicle speed calculating means, the front projected area of the succeeding vehicle calculated by the front projected area calculating means, and the lateral inter-vehicle distance calculating means. Calculating an extrusion correction steering angle that offsets the lateral movement amount of the host vehicle based on the distance between the side vehicles,
The attraction correction steering angle calculation means includes the vehicle speed of the subsequent vehicle calculated by the subsequent vehicle speed calculation means, the side projection area calculated by the side projection area calculation means, and the lateral inter-vehicle distance calculated by the lateral inter-vehicle distance calculation means. The vehicle driving support device according to claim 1, wherein an attraction correction steering angle that cancels out a lateral movement amount of the host vehicle is calculated based on
JP2017162239A 2017-08-25 2017-08-25 Vehicle driving support device Active JP6882958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162239A JP6882958B2 (en) 2017-08-25 2017-08-25 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162239A JP6882958B2 (en) 2017-08-25 2017-08-25 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2019038395A true JP2019038395A (en) 2019-03-14
JP6882958B2 JP6882958B2 (en) 2021-06-02

Family

ID=65725255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162239A Active JP6882958B2 (en) 2017-08-25 2017-08-25 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP6882958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152222A (en) * 2019-03-20 2020-09-24 本田技研工業株式会社 Vehicle control device, vehicle control method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130479A1 (en) * 2018-12-19 2020-06-25 주식회사 만도 Steering control apparatus, steering control method, and steering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146786A (en) * 1985-12-23 1987-06-30 Toyota Motor Corp Running stabilizer for trailer
JP2010023669A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Traveling safety device for vehicle
JP2015191316A (en) * 2014-03-27 2015-11-02 富士重工業株式会社 Lane deviation prevention control device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146786A (en) * 1985-12-23 1987-06-30 Toyota Motor Corp Running stabilizer for trailer
JP2010023669A (en) * 2008-07-18 2010-02-04 Honda Motor Co Ltd Traveling safety device for vehicle
JP2015191316A (en) * 2014-03-27 2015-11-02 富士重工業株式会社 Lane deviation prevention control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152222A (en) * 2019-03-20 2020-09-24 本田技研工業株式会社 Vehicle control device, vehicle control method and program

Also Published As

Publication number Publication date
JP6882958B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6384949B2 (en) Vehicle driving support device
JP6895111B2 (en) Vehicle travel control device
US10435024B2 (en) Driving support apparatus performing driving support based on reliability of each detection apparatus
US10328941B2 (en) Driving assistance device
EP3472014B1 (en) Automatic drive control system and method, and vehicle
JP2009061878A (en) Running controller
JP4873047B2 (en) Travel control device
KR102075329B1 (en) Vehicle control method and vehicle control device
JP6285809B2 (en) Vehicle driving support device
JP2007269312A (en) Driving operation auxiliary device for vehicle
JP6298372B2 (en) Vehicle driving support device
JP2009070254A (en) Vehicle risk estimation device
JP2017136968A (en) Vehicle control device
JP6327707B2 (en) Vehicle driving support device
JP2016141387A (en) Driving support control device for vehicle
JP6882958B2 (en) Vehicle driving support device
JP6613332B2 (en) Vehicle driving support device
JP6322062B2 (en) Vehicle driving support device
JP6882957B2 (en) Vehicle driving support device
JP6322063B2 (en) Vehicle driving support device
JP2009018621A (en) Running control device and transport system using this
JP2017073060A (en) Lane change support device
JP6354719B2 (en) Lane maintenance control device
JP2019111927A (en) Vehicle running controller
JP2023088592A (en) travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210507

R150 Certificate of patent or registration of utility model

Ref document number: 6882958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250