JP2019038276A - Outboard engine lifting device - Google Patents

Outboard engine lifting device Download PDF

Info

Publication number
JP2019038276A
JP2019038276A JP2017159208A JP2017159208A JP2019038276A JP 2019038276 A JP2019038276 A JP 2019038276A JP 2017159208 A JP2017159208 A JP 2017159208A JP 2017159208 A JP2017159208 A JP 2017159208A JP 2019038276 A JP2019038276 A JP 2019038276A
Authority
JP
Japan
Prior art keywords
outboard motor
signal
state
chamber
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017159208A
Other languages
Japanese (ja)
Other versions
JP6243571B1 (en
Inventor
貴彦 齋藤
Takahiko Saito
貴彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2017159208A priority Critical patent/JP6243571B1/en
Priority to PCT/JP2017/033690 priority patent/WO2019038932A1/en
Application granted granted Critical
Publication of JP6243571B1 publication Critical patent/JP6243571B1/en
Publication of JP2019038276A publication Critical patent/JP2019038276A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Abstract

To obtain an outboard engine lifting device capable of having speed of lifting automatically changed according to state of an outboard engine.SOLUTION: An outboard engine lifting device (1) includes: a first oil passage for connecting a pump (42) and a lower chamber of a tilt cylinder (14); a second oil passage for connecting the first oil passage and a lower chamber of a trim cylinder (12); a selector valve (60) provided on the second oil passage; and a controller (100) for controlling the selector valve (60) by referring to hull state signal.SELECTED DRAWING: Figure 4

Description

本発明は、船体の船外機を昇降させる船外機昇降装置に関する。   The present invention relates to an outboard motor lifting apparatus that lifts and lowers an outboard motor of a hull.

船体の分野において、主として船外機を水面上に上昇させたり水面下に下降させたりするためのチルトシリンダと、主として水面下における船外機の角度を変更するためのトリムシリンダとを有する船外機昇降装置が知られている(例えば特許文献1及び2)。   In the hull field, an outboard having a tilt cylinder mainly for raising and lowering the outboard motor above the water surface and a trim cylinder mainly for changing the angle of the outboard motor below the water surface. A machine lifting device is known (for example, Patent Documents 1 and 2).

特公昭58−028159号公報Japanese Patent Publication No. 58-028159 特開平2−99494号公報JP-A-2-99494

ところで、船外機昇降装置では、船外機の昇降の速さを自動的に変更できることが好ましい。   By the way, it is preferable that the outboard motor lifting device can automatically change the lifting speed of the outboard motor.

本発明は、船外機の昇降の速さを自動的に変更することのできる船外機昇降装置を実現することを目的とする。   An object of the present invention is to realize an outboard motor lifting apparatus capable of automatically changing the speed of lifting of the outboard motor.

かかる目的のもと、本発明は、船外機を昇降させる船外機昇降装置において、1又は複数のチルトシリンダと、1又は複数のトリムシリンダと、油圧源と、前記油圧源に接続された第1のポンプポート及び第2のポンプポートと、を備え、前記各トリムシリンダは、当該トリムシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、前記各チルトシリンダは、当該チルトシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、当該船外機昇降装置は、前記1又は複数のトリムシリンダの第2室に接続された第1の油路と、前記第1の油路上に設けられた切替弁と、船体状態信号を参照して前記切替弁を制御する制御部とを更に備え、前記第1のポンプポートは、前記チルトシリンダの前記第1室及び前記第2室に対して、それぞれ接続された第2及び第1のシャトル室を有しており、前記第2のポンプポートは、前記第1のポンプポートの前記第1のシャトル室に接続されたシャトル室を有しており、前記第1の油路は、前記第2のポンプポートの前記シャトル室に対して接続されている船外機昇降装置である。   For this purpose, the present invention provides an outboard motor elevating apparatus for elevating an outboard motor, wherein one or more tilt cylinders, one or more trim cylinders, a hydraulic source, and the hydraulic source are connected. A first pump port and a second pump port, wherein each trim cylinder is connected to the piston for partitioning the trim cylinder into a first chamber and a second chamber, and to the first of the trim cylinder. Each of the tilt cylinders includes a piston that partitions the tilt cylinder into a first chamber and a second chamber, and a rod that is connected to the piston and passes through the first chamber of the tilt cylinder. The outboard motor lifting device includes a first oil passage connected to the second chamber of the one or more trim cylinders, a switching valve provided on the first oil passage, and a hull state. See signal And a control unit that controls the switching valve, wherein the first pump port is connected to the first chamber and the second chamber of the tilt cylinder, respectively. The second pump port includes a shuttle chamber connected to the first shuttle chamber of the first pump port, and the first oil passage includes the shuttle chamber. An outboard motor lifting device connected to the shuttle chamber of the second pump port.

このような構成とすることにより、船外機の昇降の速さを自動的に変更できる。   By setting it as such a structure, the raising / lowering speed of an outboard motor can be changed automatically.

本発明によれば、船外機の昇降の速さを自動的に変更することができる。   According to the present invention, the speed of raising and lowering the outboard motor can be automatically changed.

実施形態1に係る船外機昇降装置の使用例及び船外機の概略的な内部構成を示す図である。It is a figure which shows the usage example of the outboard motor raising / lowering apparatus which concerns on Embodiment 1, and the schematic internal structure of an outboard motor. 実施形態1に係る船外機昇降装置の構成の一例を示す正面図である。FIG. 3 is a front view illustrating an example of the configuration of the outboard motor lifting apparatus according to the first embodiment. 実施形態1に係る船外機昇降装置の側断面図である。1 is a side cross-sectional view of an outboard motor lifting apparatus according to Embodiment 1. FIG. 実施形態1に係る船外機昇降装置の油圧回路を制御部と共に示す図である。It is a figure which shows the hydraulic circuit of the outboard motor raising / lowering apparatus which concerns on Embodiment 1 with a control part. 実施形態1に係る制御部の一構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a configuration example of a control unit according to the first embodiment. 実施形態1に係る制御部による切替弁の制御の一例を示す図である。It is a figure which shows an example of control of the switching valve by the control part which concerns on Embodiment 1. FIG. 実施形態2に係る制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part which concerns on Embodiment 2. FIG. 実施形態3に係る制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part which concerns on Embodiment 3. 実施形態1〜4係る船外機のエンジン周辺の構成を示す図である。It is a figure which shows the structure of the engine periphery of the outboard motor concerning Embodiments 1-4.

〔実施形態1〕
以下、本発明の第1の実施形態に係る船外機昇降装置1について、図1〜図6を参照して説明する。
Embodiment 1
Hereinafter, an outboard motor lifting apparatus 1 according to a first embodiment of the present invention will be described with reference to FIGS.

船外機昇降装置1は、船外機300を昇降させるための装置である。図1の(a)は、船外機昇降装置1の使用例を示す図であり、船体(本体)200の後部と船外機300とに取り付けられた船外機昇降装置1を示している。図1の(a)における実線は、船外機300が下降した状態を示し、図1の(a)における破線は、船外機300が上昇した状態を示している。図1の(b)は、船外機300の内部構成を概略的に示す模式図である。図1の(b)に示すように、船外機300は、エンジン301と、プロペラ303と、エンジン301からプロペラ303に動力を伝達する動力伝達機構302とを備えている。ここで、動力伝達機構は、例えば、シャフトやギヤによって構成される。   The outboard motor lifting apparatus 1 is an apparatus for lifting the outboard motor 300. FIG. 1A is a diagram illustrating a usage example of the outboard motor lifting apparatus 1, and shows the outboard motor lifting apparatus 1 attached to the rear portion of the hull (main body) 200 and the outboard motor 300. . A solid line in (a) of FIG. 1 shows a state where the outboard motor 300 is lowered, and a broken line in (a) of FIG. 1 shows a state where the outboard motor 300 is raised. FIG. 1B is a schematic diagram schematically showing the internal configuration of the outboard motor 300. As shown in FIG. 1B, the outboard motor 300 includes an engine 301, a propeller 303, and a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303. Here, the power transmission mechanism is configured by, for example, a shaft or a gear.

図2は、船外機昇降装置1の構成の一例を示す正面図であり、図3は、船外機昇降装置1の側断面図である。図2に示すように、船外機昇降装置1は、シリンダユニット10と、船体200の後部に取り付けられる1対のスターンブラケット70と、船外機300に取り付けられるスイベルブラケット80とを備えている。   FIG. 2 is a front view showing an example of the configuration of the outboard motor lifting apparatus 1, and FIG. 3 is a side sectional view of the outboard motor lifting apparatus 1. As shown in FIG. 2, the outboard motor lifting apparatus 1 includes a cylinder unit 10, a pair of stern brackets 70 attached to the rear part of the hull 200, and a swivel bracket 80 attached to the outboard motor 300. .

シリンダユニット10は、一例として、図2に示すように、2本のトリムシリンダ12、1本のチルトシリンダ14、モータ16、タンク18、上部ジョイント22、基部24を備えている。トリムシリンダ12及びチルトシリンダ14は、基部24に対して相対移動不能に設けられている。   As an example, the cylinder unit 10 includes two trim cylinders 12, one tilt cylinder 14, a motor 16, a tank 18, an upper joint 22, and a base 24 as shown in FIG. The trim cylinder 12 and the tilt cylinder 14 are provided so as not to move relative to the base 24.

なお、シリンダユニット10が備えるトリムシリンダ12及びチルトシリンダ14の数は本実施形態を限定するものではなく、1又は複数のトリムシリンダ12及び1又は複数のチルトシリンダ14を備えるシリンダユニット10も本実施形態に含まれる。また、そのように任意の数のトリムシリンダ12及びチルトシリンダ14を有するシリンダユニット10に対しても以下の説明が成り立つ。   The number of trim cylinders 12 and tilt cylinders 14 included in the cylinder unit 10 is not limited to this embodiment, and the cylinder unit 10 including one or more trim cylinders 12 and one or more tilt cylinders 14 is also implemented. Included in the form. Further, the following explanation is valid for the cylinder unit 10 having any number of trim cylinders 12 and tilt cylinders 14 as described above.

トリムシリンダ12は、シリンダ12aと、シリンダ12a内に摺動可能に設けられたピストン12c(図4参照)と、ピストン12cに固定されたピストンロッド12bとを備えている。また、チルトシリンダ14は、シリンダ14aと、シリンダ14a内に摺動可能に設けられたピストン14c(図4参照)と、ピストン14cに固定されたピストンロッド14bとを備えている。   The trim cylinder 12 includes a cylinder 12a, a piston 12c (see FIG. 4) slidably provided in the cylinder 12a, and a piston rod 12b fixed to the piston 12c. The tilt cylinder 14 includes a cylinder 14a, a piston 14c (see FIG. 4) slidably provided in the cylinder 14a, and a piston rod 14b fixed to the piston 14c.

また、図2に示すように、基部24とスターンブラケット70には、それぞれ貫通孔が形成されており、これらの貫通孔を貫通するアンダーシャフト26を介して、基部24とスターンブラケット70とが相対回転可能に接続されている。   Further, as shown in FIG. 2, the base 24 and the stern bracket 70 are formed with through holes, respectively, and the base 24 and the stern bracket 70 are relative to each other through the under shaft 26 passing through these through holes. It is connected so that it can rotate.

また、図2に示すように、ピストンロッド14bの先端には、上部ジョイント22が設けられており、スイベルブラケット80には、支持部材28が固定されている。上部ジョイント22及び支持部材28には、それぞれ貫通孔が形成されており、こられの貫通孔を貫通するアッパーシャフト23を介して、上部ジョイント22とスイベルブラケット80とが相対回転可能に接続されている。   As shown in FIG. 2, the upper joint 22 is provided at the tip of the piston rod 14 b, and the support member 28 is fixed to the swivel bracket 80. The upper joint 22 and the support member 28 are each formed with a through hole, and the upper joint 22 and the swivel bracket 80 are connected to each other so as to be relatively rotatable via an upper shaft 23 that passes through the through hole. Yes.

また、スターンブラケット70及びスイベルブラケット80の上部一端にはそれぞれ貫通孔が形成されており、図3に示すように、これらの貫通孔を貫通する支持軸32によって、スターンブラケット70とスイベルブラケット80とが相対回転可能に接続されている。   Further, through holes are formed in upper ends of the stern bracket 70 and the swivel bracket 80, respectively. As shown in FIG. 3, the stern bracket 70, the swivel bracket 80, and the like are supported by the support shaft 32 that passes through these through holes. Are connected for relative rotation.

(トリム域及びチルト域)
チルトシリンダ14のピストンロッド14bが上昇及び下降することにより、スイベルブラケット80が上昇及び下降するので、船外機300が上昇及び下降する。
(Trim area and tilt area)
As the piston rod 14b of the tilt cylinder 14 is raised and lowered, the swivel bracket 80 is raised and lowered, so that the outboard motor 300 is raised and lowered.

チルトシリンダ14のピストンロッド14bの上昇及び下降によって調整される船外機300の角度領域は、図1の(a)に示したトリム域とチルト域とから構成される。チルト域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接不能な角度領域であり、チルト域での船外機300の角度調整はチルトシリンダ14のピストンロッド14bによって行われる。   The angle region of the outboard motor 300 adjusted by the raising and lowering of the piston rod 14b of the tilt cylinder 14 includes a trim region and a tilt region shown in FIG. The tilt region is an angle region in which the tip of the piston rod 12b of the trim cylinder 12 cannot contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt region is performed by the piston rod 14b of the tilt cylinder 14.

一方、トリム域は、トリムシリンダ12のピストンロッド12bの先端がスイベルブラケット80に当接可能な角度領域であり、チルト域での船外機300の角度調整はトリムシリンダ12のピストンロッド12b及びチルトシリンダ14のピストンロッド14bの双方によって行われ得る。ただし、後述するように、本実施形態では、チルト域においても、船外機300の角度調整がチルトシリンダ14のピストンロッド14bのみによって行われることもある。   On the other hand, the trim area is an angle area in which the tip of the piston rod 12b of the trim cylinder 12 can contact the swivel bracket 80, and the angle adjustment of the outboard motor 300 in the tilt area is performed by adjusting the piston rod 12b of the trim cylinder 12 and the tilt This can be done by both the piston rod 14b of the cylinder 14. However, as will be described later, in the present embodiment, the angle adjustment of the outboard motor 300 may be performed only by the piston rod 14b of the tilt cylinder 14 even in the tilt range.

(油圧回路)
次に、船外機昇降装置1の油圧回路について説明する。図4は、船外機昇降装置1の油圧回路を制御部100と共に示す図である。図4では、すでに説明した部材と同じ部材には同じ符号を付している。
(Hydraulic circuit)
Next, the hydraulic circuit of the outboard motor lifting apparatus 1 will be described. FIG. 4 is a view showing a hydraulic circuit of the outboard motor lifting apparatus 1 together with the control unit 100. In FIG. 4, the same members as those already described are denoted by the same reference numerals.

図4に示すように、船外機昇降装置1は、モータ16、ポンプ42、第1の逆止弁44a、第2の逆止弁44b、アップブローバルブ46a、ダウンブローバルブ46b、第1のメインバルブ(第1のポンプポート)48、第2のメインバルブ(第2のポンプポート)49、マニュアルバルブ52、サーマルバルブ54、チルトシリンダ14、トリムシリンダ12、タンク18、フィルタF1〜F3、第1の流路C1〜第7の流路C7、第9の流路C9、第13の流路C13、第14の流路C14、及び制御部100を備えている。   As shown in FIG. 4, the outboard motor lifting apparatus 1 includes a motor 16, a pump 42, a first check valve 44a, a second check valve 44b, an up blow valve 46a, a down blow valve 46b, a first Main valve (first pump port) 48, second main valve (second pump port) 49, manual valve 52, thermal valve 54, tilt cylinder 14, trim cylinder 12, tank 18, filters F1-F3, first 1 channel C1 to 7th channel C7, 9th channel C9, 13th channel C13, 14th channel C14, and control part 100 are provided.

モータ16によって駆動される油圧源としてのポンプ42は、運転者による船外機の昇降指示を示す昇降信号SIG_UDに応じて、「正転」「反転」「停止」の何れかの動作を行う。タンク18には作動油が貯えられている。   The pump 42 as a hydraulic power source driven by the motor 16 performs any one of “forward rotation”, “reverse rotation”, and “stop” in response to a lift signal SIG_UD indicating a lift instruction of the outboard motor by the driver. The tank 18 stores hydraulic oil.

第1のメインバルブ48は、図4に示すように、スプール48a、第1チェック弁48b、及び第2チェック弁48cを備えている。第1のメインバルブ48は、スプール48aによって、第1チェック弁48b側の第1シャトル室48dと、第2チェック弁48c側の第2シャトル室48eとに仕切られている。   As shown in FIG. 4, the first main valve 48 includes a spool 48a, a first check valve 48b, and a second check valve 48c. The first main valve 48 is partitioned by a spool 48a into a first shuttle chamber 48d on the first check valve 48b side and a second shuttle chamber 48e on the second check valve 48c side.

第1の流路C1は、ポンプ42と第1シャトル室48dとを接続すると共に、ポンプ42と第1の逆止弁44aとを接続している。また、第1の流路C1には、アップブローバルブ46aが接続されている。第2の流路C2は、ポンプ42と第2シャトル室48eとを接続すると共に、ポンプ42と第2の逆止弁44bとを接続している。また、第2の流路C2には、ダウンブローバルブ46bが接続されている。   The first flow path C1 connects the pump 42 and the first shuttle chamber 48d, and connects the pump 42 and the first check valve 44a. An up blow valve 46a is connected to the first flow path C1. The second flow path C2 connects the pump 42 and the second shuttle chamber 48e, and connects the pump 42 and the second check valve 44b. A down blow valve 46b is connected to the second flow path C2.

なお、本明明細書に記載の油路構成における「接続」には、他の油圧エレメントを介さずに流路によって直接接続されている場合と、他の油路エレメントを介して間接的に接続されている場合の双方が含まれる。ここで、他の油圧エレメントには、例えば、バルブ(弁)、シリンダ、及びフィルタ等が含まれる。   In addition, the “connection” in the oil passage configuration described in this specification is directly connected by a flow path without passing through other hydraulic elements, and indirectly through other oil passage elements. Both are included. Here, the other hydraulic elements include, for example, a valve, a cylinder, a filter, and the like.

チルトシリンダ14は、ピストン14cによって上室14fと下室14gとに仕切られており、チルトシリンダ14のピストン14cは、図4に示すように、ショックブローバルブ14d及びリターンバルブ14eを備えている。   The tilt cylinder 14 is partitioned into an upper chamber 14f and a lower chamber 14g by a piston 14c, and the piston 14c of the tilt cylinder 14 includes a shock blow valve 14d and a return valve 14e as shown in FIG.

なお、本明細書において、「上室」及び「下室」における「上」及び「下」とは、単に互いを区別するための名称であり、当該上室が当該下室よりも鉛直方向上側に位置することを必ずしも意味するものではない。このため、「上室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通する方の室である第1室と表現してもよいし、「下室」とは、シリンダにおいてピストンによって仕切られる第1室及び第2室のうち、ピストンに接続されたロッドが貫通しない方の室である第2室と表現してもよい。   In this specification, “upper” and “lower” in “upper chamber” and “lower chamber” are simply names for distinguishing each other, and the upper chamber is vertically above the lower chamber. It does not necessarily mean that it is located. For this reason, the “upper chamber” may be expressed as a first chamber which is a chamber through which a rod connected to the piston penetrates among the first chamber and the second chamber partitioned by the piston in the cylinder. The “lower chamber” may be expressed as a second chamber that is a chamber in which the rod connected to the piston does not penetrate among the first chamber and the second chamber partitioned by the piston in the cylinder.

本明細書では、特に混乱がない限り「上室」「下室」との表現も用いるが、上記の点に留意すべきである。   In this specification, the expressions “upper chamber” and “lower chamber” are also used unless there is a particular confusion, but the above points should be noted.

トリムシリンダ12は、ピストン12cによって上室12fと下室12gとに仕切られている。   The trim cylinder 12 is partitioned into an upper chamber 12f and a lower chamber 12g by a piston 12c.

第1チェック弁48bは、チルトシリンダ14の下室14gに、フィルタF1及び第3の流路C3を介して接続されている。すなわち、第1のポンプポート48の第1シャトル室48dは、チルトシリンダ14の下室14gに、第1チェック弁48b、フィルタF1及び第3の流路C3を介して接続されている。一方、第2チェック弁48cは、チルトシリンダ14の上室14fに、フィルタF2及び第4の流路C4を介して接続されている。すなわち、第1のポンプポート48の第2シャトル室48eは、チルトシリンダ14の上室14fに、第2チェック弁48c、フィルタF2及び第4の流路C4を介して接続されている。また、図4に示すように、第4の流路C4には、上室給油バルブ56が接続されている。   The first check valve 48b is connected to the lower chamber 14g of the tilt cylinder 14 via the filter F1 and the third flow path C3. That is, the first shuttle chamber 48d of the first pump port 48 is connected to the lower chamber 14g of the tilt cylinder 14 via the first check valve 48b, the filter F1, and the third flow path C3. On the other hand, the second check valve 48c is connected to the upper chamber 14f of the tilt cylinder 14 via the filter F2 and the fourth flow path C4. That is, the second shuttle chamber 48e of the first pump port 48 is connected to the upper chamber 14f of the tilt cylinder 14 via the second check valve 48c, the filter F2, and the fourth flow path C4. Moreover, as shown in FIG. 4, the upper chamber oil supply valve 56 is connected to the 4th flow path C4.

第3の流路C3と第4の流路C4とを接続する第5の流路C5にはマニュアルバルブ52及びサーマルバルブ54が接続されている。   A manual valve 52 and a thermal valve 54 are connected to a fifth flow path C5 that connects the third flow path C3 and the fourth flow path C4.

なお、メインバルブ48及びフィルタF1を介してポンプ42とチルトシリンダ14の下室14gとを接続する第1の流路C1及び第3の流路C3を、纏めて第2の油路とも呼ぶ。   The first flow path C1 and the third flow path C3 that connect the pump 42 and the lower chamber 14g of the tilt cylinder 14 via the main valve 48 and the filter F1 are also collectively referred to as a second oil path.

第6の流路C6(第1の油路とも呼ぶ)は、第3の流路C3とトリムシリンダ12の下室12gとを接続する。また、第6の流路C6は、第2のメインバルブ49におけるチェック弁49bに接続されている。換言すれば、第6の流路C6は、チェック弁49bを介して、第2のメインバルブ49における第1のシャトル室49dに接続されている。また、第6の流路C6は、マニュアルバルブ52にも接続されている。また、第6の流路C6上には、切替弁60が配置されている。   A sixth flow path C6 (also referred to as a first oil path) connects the third flow path C3 and the lower chamber 12g of the trim cylinder 12. The sixth flow path C6 is connected to the check valve 49b in the second main valve 49. In other words, the sixth flow path C6 is connected to the first shuttle chamber 49d in the second main valve 49 via the check valve 49b. The sixth channel C6 is also connected to the manual valve 52. A switching valve 60 is disposed on the sixth flow path C6.

第7の流路C7(第3の油路とも呼ぶ)は、複数のトリムシリンダ12の上室12fを互いに接続している。第7の流路C7の存在により、複数のトリムシリンダ12の上室12fの圧力が互いに均等化される。また第7の流路C7は、フィルタF3を介して、複数のトリムシリンダ12の上室12fの一つとタンク18とを接続している。第9の流路C9は、第1の逆止弁44a及び第2の逆止弁44とタンク18とを接続している。   The seventh flow path C7 (also referred to as a third oil path) connects the upper chambers 12f of the plurality of trim cylinders 12 to each other. Due to the presence of the seventh flow path C7, the pressures in the upper chambers 12f of the plurality of trim cylinders 12 are equalized. The seventh flow path C7 connects one of the upper chambers 12f of the plurality of trim cylinders 12 and the tank 18 via the filter F3. The ninth flow path C9 connects the first check valve 44a and the second check valve 44 to the tank 18.

第2のメインバルブ49は、図4に示すように、スプール49a、及びチェック弁49bを備えている。第2のメインバルブ49は、スプール49aによって、チェック弁49b側の第1シャトル室49dと、スプール49aから見てチェック弁49bとは反対側の第2シャトル室49eとに仕切られている。   As shown in FIG. 4, the second main valve 49 includes a spool 49a and a check valve 49b. The second main valve 49 is partitioned by a spool 49a into a first shuttle chamber 49d on the check valve 49b side and a second shuttle chamber 49e on the opposite side to the check valve 49b when viewed from the spool 49a.

第13の流路C13は、ポンプ42と第1シャトル室49dとを接続する。第14の流路C14は、ポンプ42と第2シャトル室49eとを接続する。   The thirteenth flow path C13 connects the pump 42 and the first shuttle chamber 49d. The fourteenth flow path C14 connects the pump 42 and the second shuttle chamber 49e.

第2のメインバルブ49における第1のシャトル室49dは、第13の流路C13及び第1の流路C1を介してメインバルブ48における第1のシャトル室48dにも接続されており、第2のメインバルブ49における第2のシャトル室49eは、第14の流路C14及び第2の流路C2を介してメインバルブ48における第2のシャトル室48eにも接続さされている。   The first shuttle chamber 49d in the second main valve 49 is also connected to the first shuttle chamber 48d in the main valve 48 via the thirteenth flow path C13 and the first flow path C1. The second shuttle chamber 49e in the main valve 49 is also connected to the second shuttle chamber 48e in the main valve 48 via the fourteenth channel C14 and the second channel C2.

第1の逆止弁44aは、トリムシリンダ12及びチルトシリンダ14が収縮し切った状態になってもなおポンプ42が作動油を回収しようとする場合に、タンク18からポンプ42に作動油を供給する。   The first check valve 44a supplies the hydraulic oil from the tank 18 to the pump 42 when the pump 42 still collects the hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are fully contracted. To do.

第2の逆止弁44bは、チルトシリンダ14が伸長する際に、ピストンロッド14bの退出容積分の作動油をタンク18からポンプ42に供給し、また、トリムシリンダ12が伸長する際には、ピストンロッド12bの退出容積分の作動油をタンク18からポンプ42に供給する。   When the tilt cylinder 14 extends, the second check valve 44b supplies hydraulic oil corresponding to the withdrawal volume of the piston rod 14b from the tank 18 to the pump 42, and when the trim cylinder 12 extends, The hydraulic oil corresponding to the withdrawal volume of the piston rod 12 b is supplied from the tank 18 to the pump 42.

アップブローバルブ46aは、トリムシリンダ12及びチルトシリンダ14が伸長し切った状態になってもなおポンプ42が作動油を供給する場合に、余剰の作動油をタンク18に戻す。   The up blow valve 46a returns excess hydraulic oil to the tank 18 when the pump 42 still supplies hydraulic oil even when the trim cylinder 12 and the tilt cylinder 14 are fully extended.

ダウンブローバルブ46bは、チルトシリンダ14が収縮する際に、ピストンロッド14bの進入容積分の作動油をタンク18に戻し、また、トリムシリンダ12が収縮する際には、ピストンロッド12bの進入容積分の作動油をタンク18に戻す。   When the tilt cylinder 14 contracts, the down blow valve 46b returns the hydraulic oil for the volume of entry of the piston rod 14b to the tank 18, and when the trim cylinder 12 contracts, the down blow valve 46b corresponds to the volume of entry of the piston rod 12b. Is returned to the tank 18.

マニュアルバルブ52は、手動による開閉が可能であり、船外機昇降装置1のメンテナンス時等においてマニュアルバルブ52を開状態とすることによって、作動油がチルトシリンダ14の下室14gからタンク18に戻される。これにより、チルトシリンダ14が手動で収縮可能となる。   The manual valve 52 can be manually opened and closed. When the manual valve 52 is opened during maintenance of the outboard motor lifting apparatus 1, the hydraulic oil is returned to the tank 18 from the lower chamber 14 g of the tilt cylinder 14. It is. Thereby, the tilt cylinder 14 can be manually contracted.

サーマルバルブ54は、温度上昇により作動油の体積が増大した場合に、余剰分の作動油をタンク18に戻す。   The thermal valve 54 returns excess hydraulic fluid to the tank 18 when the volume of hydraulic fluid increases due to temperature rise.

(切替弁60)
第6の流路C6上に設けられた切替弁60は、図4に示すように、ソレノイド62とソレノイド62によって駆動され、第6の流路C6を遮断状態又は開放状態とするプランジャ64を備えている。ソレノイド62には、後述する制御部100から制御信号SIG_CONTが供給され、制御信号SIG_CONTに基づき、ソレノイド62のON/OFFが切り替えられる。
(Switching valve 60)
As shown in FIG. 4, the switching valve 60 provided on the sixth channel C6 is driven by a solenoid 62 and a solenoid 62, and includes a plunger 64 that shuts off or opens the sixth channel C6. ing. The solenoid 62 is supplied with a control signal SIG_CONT from the control unit 100 described later, and the solenoid 62 is switched ON / OFF based on the control signal SIG_CONT.

切替弁60は、ソレノイド62がOFFの場合にクローズ状態となることによって第6の流路C6を遮断し、ソレノイド62がONの場合にオープン状態となることによって第6の流路C6を開放するノーマリークローズ弁として構成してもよいし、ソレノイドがOFFの場合にオープン状態となることによって第6の流路C6を開放し、ソレノイドがONの場合にクローズ状態となることによって第6の流路C6を遮断するノーマリーオープン弁として構成してもよい。   The switching valve 60 shuts off the sixth flow path C6 when it is closed when the solenoid 62 is OFF, and opens the sixth flow path C6 when it is open when the solenoid 62 is ON. It may be configured as a normally closed valve, or the sixth flow path C6 is opened by opening when the solenoid is OFF, and the sixth flow is achieved by closing when the solenoid is ON. You may comprise as a normally open valve which interrupts | blocks path C6.

切替弁60をノーマリーオープン弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第6の流路C6が開放された状態、すなわち、トリムシリンダ12の下室12gとチルトシリンダ14の下室14gとが連通した状態で維持されるので、チルトシリンダ14及びトリムシリンダ12の双方を用いて船外機300の角度調整を行うことができる。   When the switching valve 60 is configured as a normally open valve, even if the switching valve 60 stops operating, the sixth flow path C6 is open, that is, the lower chamber of the trim cylinder 12. Since 12 g and the lower chamber 14 g of the tilt cylinder 14 are maintained in communication, the angle of the outboard motor 300 can be adjusted using both the tilt cylinder 14 and the trim cylinder 12.

一方で、切替弁60をノーマリークローズ弁として構成した場合、万一、切替弁60が作動しなくなった場合であっても、第6の流路C6が遮断された状態、すなわち、トリムシリンダ12の下室12gとチルトシリンダ14の下室14gとが非連通状態で維持される。このため、チルトシリンダ14の下室14gから作動油が流出しないので、チルトシリンダ14のみで船外機300の角度調整を行ったり、船外機300を保持し続けたりすることができる。   On the other hand, when the switching valve 60 is configured as a normally closed valve, the sixth flow path C6 is blocked, that is, the trim cylinder 12 even if the switching valve 60 stops operating. The lower chamber 12g and the lower chamber 14g of the tilt cylinder 14 are maintained in a non-communication state. For this reason, since hydraulic fluid does not flow out from the lower chamber 14g of the tilt cylinder 14, the angle adjustment of the outboard motor 300 can be performed only by the tilt cylinder 14, or the outboard motor 300 can be held.

なお、本実施形態では、プランジャ64には、第6の流路C6の遮断状態においてトリムシリンダ12の下室12gにおける油圧の過度な上昇を防止するためのトリム下室保護バルブ66が設けられている。   In this embodiment, the plunger 64 is provided with a trim lower chamber protection valve 66 for preventing an excessive increase in hydraulic pressure in the lower chamber 12g of the trim cylinder 12 when the sixth flow path C6 is shut off. Yes.

また、上記の説明では、ソレノイド62がオンオフソレノイドであり、プランジャ64が第6の流路C6を遮断状態及び開放状態の何れか一方の状態とする構成を例に挙げたが、これは本実施形態を限定するものではない。ソレノイド62として比例ソレノイドを採用し、プランジャ64を遮断状態位置から開放状態位置までの任意の位置に制御可能な構成としてもよい。このような構成とすることにより、第6の流路C6を通過する作動油の流量をきめ細かく制御することができるので、船外機300の上昇及び下降をよりきめ細かく制御することができる。   In the above description, the solenoid 62 is an on / off solenoid, and the plunger 64 has exemplified the configuration in which the sixth flow path C6 is in one of the shut-off state and the open state. The form is not limited. A proportional solenoid may be employed as the solenoid 62, and the plunger 64 may be controlled to an arbitrary position from the shut-off position to the open position. With such a configuration, it is possible to finely control the flow rate of the hydraulic oil that passes through the sixth flow path C6, and thus it is possible to more precisely control the rising and lowering of the outboard motor 300.

(制御部100)
図4に示すように、船外機昇降装置1は制御部100を備えている。制御部100は、船体200のイグニッションのオンオフを示すイグニッション信号SIG_IG、船体状態信号SIG_IN、及び、運転者による船外機300の昇降指示を示す昇降信号SIG_UDを参照し、切替弁60を制御するための制御信号SIG_CONTを生成する。生成した制御信号SIG_CONTは切替弁60に供給される。なお、船体状態信号SIG_INの一例として、船外機300の状態を示す状態信号が挙げられるが、本明細書に記載の実施形態はこれに限定されるものではない。船体状態信号の様々な例については後述する。
(Control unit 100)
As shown in FIG. 4, the outboard motor lifting apparatus 1 includes a control unit 100. The control unit 100 controls the switching valve 60 with reference to an ignition signal SIG_IG that indicates ON / OFF of the ignition of the hull 200, a hull state signal SIG_IN, and a lift signal SIG_UD that indicates a lift instruction of the outboard motor 300 by the driver. Control signal SIG_CONT is generated. The generated control signal SIG_CONT is supplied to the switching valve 60. An example of the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, but the embodiments described in the present specification are not limited to this. Various examples of the hull state signal will be described later.

制御部100を備えることにより、船外機昇降装置1は、船外機300の状態に応じて船外機の昇降の速さを自動的に変更することができる。   By providing the control unit 100, the outboard motor lifting apparatus 1 can automatically change the lifting speed of the outboard motor according to the state of the outboard motor 300.

(制御部100の構成例)
以下では、制御部100の具体的な構成例について参照する図面を替えて説明する。
(Configuration example of control unit 100)
In the following, a description will be given with reference to a specific configuration example of the control unit 100 with reference to another drawing.

図5は、制御部100の一構成例を示す回路図である。本例では、イグニッション信号SIG_IG、船体状態信号SIG_IN、昇降信号SIG_UDは、すべてアナログ信号として制御部100に入力される。   FIG. 5 is a circuit diagram illustrating a configuration example of the control unit 100. In this example, the ignition signal SIG_IG, the hull state signal SIG_IN, and the lift signal SIG_UD are all input to the control unit 100 as analog signals.

図5に示すように、本例に係る制御部100は、第1のコネクタ101〜第4のコネクタ104、及び、第1のスイッチング素子121〜第5のスイッチング素子125等を備えて構成される。ここで、第1のスイッチング素子121、第3のスイッチング素子123、及び第4のスイッチング素子124は、例えばトランジスタによって構成されており、第2のスイッチング素子は、例えばFET(電界効果トランジスタ)によって構成されている。   As shown in FIG. 5, the control unit 100 according to this example includes a first connector 101 to a fourth connector 104, a first switching element 121 to a fifth switching element 125, and the like. . Here, the first switching element 121, the third switching element 123, and the fourth switching element 124 are configured by, for example, transistors, and the second switching element is configured by, for example, an FET (field effect transistor). Has been.

第1のスイッチング素子121のコレクタ電極及び第3のスイッチング素子123のコレクタ電極、並びに、第2のスイッチング素子122のドレイン電極には、第1のコネクタ101を介してイグニッション信号SIG_IGが入力される。   An ignition signal SIG_IG is input to the collector electrode of the first switching element 121, the collector electrode of the third switching element 123, and the drain electrode of the second switching element 122 through the first connector 101.

第1のスイッチング素子121のベース電極には、第2のコネクタ102及びダイオード111を介して船体状態信号SIG_INが入力され、第3のスイッチング素子123のベース電極には第1のスイッチング素子121のエミッタ電流がダイオード112を介して入力される。また、第4のスイッチング素子124のベース電極には、第3のコネクタ103及びダイオード113を介して昇降信号SIG_UDが入力され、第5のスイッチング素子125のベース電極には、第3のコネクタ103及びダイオード114を介して昇降信号SIG_UDが入力される。   The hull state signal SIG_IN is input to the base electrode of the first switching element 121 via the second connector 102 and the diode 111, and the emitter of the first switching element 121 is input to the base electrode of the third switching element 123. A current is input through the diode 112. In addition, a lift signal SIG_UD is input to the base electrode of the fourth switching element 124 via the third connector 103 and the diode 113, and the third connector 103 and the base electrode of the fifth switching element 125 are input. The lift signal SIG_UD is input through the diode 114.

第2のスイッチング素子122のゲート電極には、第1のスイッチング素子121のエミッタ電流に応じた信号が、第3のスイッチング素子123及び第4のスイッチング素子を介して、又は、第3のスイッチング素子123及び第5のスイッチング素子を介して入力される。より具体的には、第2のスイッチング素子122のゲート電極には、ダイオード115を介して、第4のスイッチング素子124のエミッタ電流及び第5のスイッチング素子125のエミッタ電流が入力される。   A signal corresponding to the emitter current of the first switching element 121 is supplied to the gate electrode of the second switching element 122 via the third switching element 123 and the fourth switching element, or the third switching element. 123 and the fifth switching element. More specifically, the emitter current of the fourth switching element 124 and the emitter current of the fifth switching element 125 are input to the gate electrode of the second switching element 122 via the diode 115.

第2のスイッチング素子122のソース電極からは、第4のコネクタ104を介して、制御信号SIG_CONTが切替弁60に供給される。   A control signal SIG_CONT is supplied from the source electrode of the second switching element 122 to the switching valve 60 via the fourth connector 104.

(船体状態信号SIG_INの具体例)
上述した船体状態信号SIG_INの一例として、船外機300が備えるエンジン301の状態を示すエンジン信号が挙げられる。ここで、エンジン信号とは、例えば、エンジン301の回転数を示す信号であり、一例としてエンジン301から取得することができる。なお、エンジンの回転数が0であればエンジンはオフであり、エンジンの回転数がゼロでなければエンジンはオンであるので、エンジンの回転数を示す信号はエンジンのオンオフを示す信号でもある。
(Specific example of hull state signal SIG_IN)
As an example of the hull state signal SIG_IN described above, an engine signal indicating the state of the engine 301 included in the outboard motor 300 can be given. Here, an engine signal is a signal which shows the rotation speed of the engine 301, for example, and can be acquired from the engine 301 as an example. If the engine speed is zero, the engine is off. If the engine speed is not zero, the engine is on. Therefore, the signal indicating the engine speed is also a signal indicating the engine on / off.

船体状態信号SIG_INをエンジン信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備えるエンジン301の状態に応じて船外機の昇降の速さを自動的に変更することができる。   By using the hull state signal SIG_IN as an engine signal, as will be seen below, the outboard motor elevating device 1 automatically increases the ascending / descending speed of the outboard motor according to the state of the engine 301 included in the outboard motor 300. Can be changed.

また、船体状態信号SIG_INの他の一例として、船外機300の備える動力伝達機構302が、動力伝達可能な状態、すなわちインギヤの状態にあるのか否かを示すギヤ信号が挙げられる。ギヤ信号は、一例として動力伝達機構302から取得することができる。   Another example of the hull state signal SIG_IN is a gear signal indicating whether or not the power transmission mechanism 302 included in the outboard motor 300 is in a state where power can be transmitted, that is, in an in-gear state. The gear signal can be acquired from the power transmission mechanism 302 as an example.

船体状態信号SIG_INをギヤ信号とすることにより、以下に見るように、船外機昇降装置1は、船外機300が備える動力伝達機構302の状態に応じて船外機の昇降の速さを自動的に変更することができる。   By using the hull state signal SIG_IN as a gear signal, the outboard motor elevating device 1 increases the ascending / descending speed of the outboard motor according to the state of the power transmission mechanism 302 provided in the outboard motor 300 as will be seen below. It can be changed automatically.

なお、上述のエンジン信号、及びインギヤ信号は、船外機300の状態を示す状態信号の一例である。   The engine signal and the in-gear signal described above are examples of status signals indicating the status of the outboard motor 300.

(船外機昇降装置1の動作例)
(上昇動作)
昇降信号SIG_UDが「上昇」を示している場合、ポンプ42が正転し、作動油がポンプ42から第1のメインバルブ48の第1シャトル室48d、及び第2のメインバルブ49の第1シャトル室49dに圧送される。これにより、第1のメインバルブ48の第1チェック弁48bが開くと共に、スプール48aが第1チェック弁48b側に移動し、第2チェック弁48cが開く。また、第2のメインバルブ49のチェック弁49bが開く。その結果、第1のメインバルブ48から作動油がチルトシリンダ14の下室14gに供給されると共に、チルトシリンダ14の上室14fから作動油が回収される。また、第2のメインバルブ49から作動油がトリムシリンダ12の下室12gに供給される。
(Operation example of outboard motor lifting device 1)
(Climbing action)
When the raising / lowering signal SIG_UD indicates “up”, the pump 42 rotates in the forward direction, and hydraulic oil flows from the pump 42 to the first shuttle chamber 48 d of the first main valve 48 and the first shuttle of the second main valve 49. Pumped into chamber 49d. As a result, the first check valve 48b of the first main valve 48 is opened, the spool 48a is moved to the first check valve 48b side, and the second check valve 48c is opened. Further, the check valve 49b of the second main valve 49 is opened. As a result, the hydraulic oil is supplied from the first main valve 48 to the lower chamber 14g of the tilt cylinder 14, and the hydraulic oil is recovered from the upper chamber 14f of the tilt cylinder 14. Further, hydraulic oil is supplied from the second main valve 49 to the lower chamber 12 g of the trim cylinder 12.

ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gにも供給されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇する。   Here, when the switching valve 60 is in the open state, the hydraulic oil is also supplied to the lower chamber 12g of the trim cylinder 12, so that both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 rise. .

一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gには供給されないので、チルトシリンダ14のピストンロッド14bは上昇するが、トリムシリンダ12のピストンロッド12bは上昇しない。   On the other hand, if the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12g of the trim cylinder 12, so that the piston rod 14b of the tilt cylinder 14 rises, but the piston rod 12b of the trim cylinder 12 does not rise. .

切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gに供給されない。ポンプ42によって供給される単位時間当たりの作動油量は、切替弁60がオープン状態であっても、クローズ状態であっても大きな変化はない。このため、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く上昇する。   When the switching valve 60 is in the closed state, the hydraulic oil is not supplied to the lower chamber 12g of the trim cylinder 12. The amount of hydraulic oil per unit time supplied by the pump 42 does not change greatly even when the switching valve 60 is in an open state or a closed state. For this reason, the piston rod 14b of the tilt cylinder 14 rises faster than when the switching valve 60 is in the open state.

(下降動作)
昇降信号SIG_UDが「下降」を示している場合、ポンプ42が逆転し、作動油がポンプ42から第1のメインバルブ48の第2シャトル室48e、及び第2のメインバルブ49の第2シャトル室49eに圧送される。これにより、第2チェック弁48cが開くと共に、スプール48aが第2チェック弁48c側に移動し、第1チェック弁48bが開く。また、第2のメインバルブ49のスプール49aがチェック弁49b側に移動し、チェック弁49bが開く。その結果、作動油がチルトシリンダ14の上室14fに供給されると共に、チルトシリンダ14の下室14gから作動油が回収される。また、トリムシリンダ12の下室12gから作動油が回収される。
(Descent action)
When the raising / lowering signal SIG_UD indicates “down”, the pump 42 reverses, and the hydraulic oil flows from the pump 42 to the second shuttle chamber 48e of the first main valve 48 and the second shuttle chamber of the second main valve 49. It is pumped to 49e. As a result, the second check valve 48c is opened, the spool 48a is moved to the second check valve 48c side, and the first check valve 48b is opened. Further, the spool 49a of the second main valve 49 moves to the check valve 49b side, and the check valve 49b opens. As a result, the hydraulic oil is supplied to the upper chamber 14f of the tilt cylinder 14, and the hydraulic oil is recovered from the lower chamber 14g of the tilt cylinder 14. Further, the hydraulic oil is recovered from the lower chamber 12g of the trim cylinder 12.

ここで、切替弁60がオープン状態であれば、作動油はトリムシリンダ12の下室12gからも回収されるので、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に下降する。   Here, if the switching valve 60 is in the open state, the hydraulic oil is also collected from the lower chamber 12g of the trim cylinder 12, so that both the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 descend. .

一方、切替弁60がクローズ状態であれば、作動油はトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは下降するが、トリムシリンダ12のピストンロッド12bは下降しない。   On the other hand, if the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12, so that the piston rod 14b of the tilt cylinder 14 is lowered, but the piston rod 12b of the trim cylinder 12 is not lowered. .

切替弁60がクローズ状態の場合、作動油がトリムシリンダ12の下室12gからは回収されないので、チルトシリンダ14のピストンロッド14bは、切替弁60がオープン状態である場合に比べて、速く下降する。   When the switching valve 60 is in the closed state, the hydraulic oil is not collected from the lower chamber 12g of the trim cylinder 12, so that the piston rod 14b of the tilt cylinder 14 descends faster than when the switching valve 60 is in the open state. .

(保持状態)
昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合、ポンプ42が停止する。ポンプ42が停止すると、船外機昇降装置1の油圧回路内の動作油の移動が収束した状態において、船外機300が保持される。なお、本明細書では、昇降信号SIG_UDが「上昇」及び「下降」の何れも示していない場合を、便宜的に、昇降信号SIG_UDが「保持」を示している場合と表現することもある。
(Holding state)
When the lift signal SIG_UD indicates neither “up” nor “down”, the pump 42 stops. When the pump 42 is stopped, the outboard motor 300 is held in a state where the movement of the working oil in the hydraulic circuit of the outboard motor lifting apparatus 1 has converged. In this specification, the case where the lift signal SIG_UD does not indicate “up” or “down” may be expressed as a case where the lift signal SIG_UD indicates “hold” for convenience.

(切替弁60の制御例)
以下では、図6を参照して、制御部100による切替弁60の制御例について説明する。
(Control example of switching valve 60)
Below, with reference to FIG. 6, the example of control of the switching valve 60 by the control part 100 is demonstrated.

図6は、船体状態信号SIG_INが示す船外機300の状態、昇降信号SIG_UDが示す運転者による船外機の昇降指示、及び、制御部100によって制御された切替弁60の状態を例示する表である。   FIG. 6 is a table illustrating the state of the outboard motor 300 indicated by the hull state signal SIG_IN, the instruction for raising / lowering the outboard motor by the driver indicated by the lift signal SIG_UD, and the state of the switching valve 60 controlled by the control unit 100. It is.

図6に示す例では、船体状態信号SIG_INが「エンジンオン」又は「インギヤ」を示している場合、昇降信号SIG_UDが「上昇」「下降」「保持」の何れを示しているのかに関わらず、制御部100は切替弁60をオープン状態とする。   In the example shown in FIG. 6, when the hull state signal SIG_IN indicates “engine on” or “in gear”, regardless of whether the lift signal SIG_UD indicates “up”, “down”, or “hold”, The control part 100 makes the switching valve 60 open.

一例として、船体状態信号SIG_INは、船外機300が備えるエンジン301のエンジン回転部に関連する信号であり、制御部100は、エンジン回転数が回転数に関する第1閾値以上である場合に、航行状態と判定し、切替弁60をオープン状態とする。ここで、回転数に関する第1閾値は、適宜設定された正の値を有している。また、制御部100は、エンジン回転数が回転数に関する第2閾値を超える場合に、航行状態と判定し、切替弁60をオープン状態とする構成でもよい。ここで、回転数に関する第2閾値は、適宜設定された0以上の値を有している。   As an example, the hull state signal SIG_IN is a signal related to the engine rotation unit of the engine 301 included in the outboard motor 300, and the control unit 100 navigates when the engine rotation number is equal to or higher than a first threshold value regarding the rotation number. It determines with a state, and makes the switching valve 60 into an open state. Here, the first threshold value related to the rotational speed has a positive value set as appropriate. Further, the control unit 100 may be configured to determine the navigation state when the engine rotational speed exceeds the second threshold value regarding the rotational speed, and to set the switching valve 60 to the open state. Here, the second threshold value regarding the rotational speed has a value of 0 or more set as appropriate.

このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、航行状態と判定した場合に、切替弁60をオープン状態となるように制御する。   In this manner, the control unit 100 refers to the hull state signal SIG_IN, determines the navigation state and the stoppage state, and controls the switching valve 60 to be in the open state when it is determined that the navigation state.

したがって、エンジン301がオンであるか又は動力伝達機構302がインギヤの状態では、トリム域において、チルトシリンダ14のピストンロッド14bとトリムシリンダ12のピストンロッド12bとが共に上昇及び下降することによって船外機300の角度調整が行われる。また、船外機300の保持状態において、外力によりトリムシリンダ12の下室12gの内圧が上昇した場合であっても、当該内圧は、チルトシリンダの下室14gに分散される。   Therefore, when the engine 301 is on or the power transmission mechanism 302 is in the in-gear state, the piston rod 14b of the tilt cylinder 14 and the piston rod 12b of the trim cylinder 12 are both raised and lowered in the trim region. The angle of the machine 300 is adjusted. Further, even when the internal pressure of the lower chamber 12g of the trim cylinder 12 is increased by an external force in the holding state of the outboard motor 300, the internal pressure is dispersed in the lower chamber 14g of the tilt cylinder.

一方で、図6に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「上昇」又は「保持」を示す場合に、制御部100は切替弁60をクローズ状態とする。   On the other hand, in the example shown in FIG. 6, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the lift signal SIG_UD indicates “up” or “hold”, the control unit 100 switches the switching valve 60. Is closed.

このように、制御部100は、船体状態信号SIG_INを参照して、航行状態及び停船状態を判定し、停船状態と判定した場合に、切替弁60をクローズ状態となるように制御する。   As described above, the control unit 100 refers to the hull state signal SIG_IN, determines the navigation state and the stop state, and controls the switching valve 60 to be in the closed state when it is determined that the state is the stop state.

したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を上昇させる場合、トリム域においても、チルトシリンダ14のピストンロッド14bのみが上昇する。このため、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態では、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く上昇させることができる。   Therefore, when the outboard motor 300 is raised while the engine 301 is off or the power transmission mechanism 302 is not in-gear, only the piston rod 14b of the tilt cylinder 14 is raised even in the trim region. Therefore, when the engine 301 is off or the power transmission mechanism 302 is not in-gear, the outboard motor 300 is raised faster than when the engine 301 is on or the power transmission mechanism 302 is in-gear. be able to.

また、船外機300の保持状態において、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されることがないので、チルトシリンダ14のピストンロッド14bによって船外機300をしっかりと保持することができる。   Further, since the hydraulic oil is not supplied from the lower chamber 14 g of the tilt cylinder 14 to the lower chamber 12 g of the trim cylinder 12 in the holding state of the outboard motor 300, the outboard motor 300 is operated by the piston rod 14 b of the tilt cylinder 14. Can be held firmly.

また、図6に示す例では、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をオープン状態とする。   In the example shown in FIG. 6, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the lift signal SIG_UD indicates “down”, the control unit 100 opens the switching valve 60. .

したがって、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給され、トリムシリンダ12のピストンロッド12bが、スイベルブラケット80に当接するまで上昇する。   Therefore, when the outboard motor 300 is lowered while the engine 301 is off or the power transmission mechanism 302 is not in-gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. The piston rod 12b of the trim cylinder 12 is raised until it contacts the swivel bracket 80.

なお、切替弁60の制御は、上記の例に限定されるものではなく、ユーザの使い勝手や外力に対する船外機昇降装置1の適応性等を鑑みて、適宜設定することができる。   Note that the control of the switching valve 60 is not limited to the above example, and can be set as appropriate in consideration of user convenience, adaptability of the outboard motor lifting apparatus 1 to external force, and the like.

例えば、船体状態信号SIG_INが「エンジンオフ」又は「インギヤでない」を示し、昇降信号SIG_UDが「下降」を示す場合に、制御部100は切替弁60をクローズ状態としてもよい。   For example, when the hull state signal SIG_IN indicates “engine off” or “not in gear” and the lift signal SIG_UD indicates “down”, the control unit 100 may close the switching valve 60.

この場合、エンジン301がオフであるか又は動力伝達機構302がインギヤでない状態において、船外機300を下降させる場合、作動油がチルトシリンダ14の下室14gからトリムシリンダ12の下室12gに供給されないので、エンジン301がオンであるか又は動力伝達機構302がインギヤである状態に比べて、船外機300を早く下降させることができる。   In this case, when the outboard motor 300 is lowered while the engine 301 is off or the power transmission mechanism 302 is not in-gear, hydraulic oil is supplied from the lower chamber 14g of the tilt cylinder 14 to the lower chamber 12g of the trim cylinder 12. Therefore, the outboard motor 300 can be lowered more quickly than when the engine 301 is on or the power transmission mechanism 302 is in gear.

〔実施形態2〕
以下では、図7を参照して実施形態2に係る制御部100aについて説明する。図7は本実施形態に係る制御部100aの構成を示すブロック図である。
[Embodiment 2]
Hereinafter, the control unit 100a according to the second embodiment will be described with reference to FIG. FIG. 7 is a block diagram illustrating a configuration of the control unit 100a according to the present embodiment.

本実施形態に係る船外機昇降装置は、実施形態1係る船外機昇降装置1において、制御部100に代えて、図7に示す制御部100aを備えたものである。本実施形態に係る船外機昇降装置のその他の構成は実施形態1において説明した船外機昇降装置1と同様である。   The outboard motor lifting apparatus according to the present embodiment includes a control unit 100a shown in FIG. 7 instead of the control unit 100 in the outboard motor lifting apparatus 1 according to the first embodiment. Other configurations of the outboard motor lifting apparatus according to the present embodiment are the same as those of the outboard motor lifting apparatus 1 described in the first embodiment.

制御部100aは、船体状態信号A−D変換回路131、昇降信号A−D変換回路132、演算部133、及び制御信号生成回路134を備えている。本実施形態においても、船体状態信号SIG_IN、及び昇降信号SIG_UDは、アナログ信号として制御部100aに入力される。なお、図7では、船体状態信号A−D変換回路131のことを入力信号A−D変換回路131と表記している。   The control unit 100 a includes a hull state signal AD conversion circuit 131, a lift signal AD conversion circuit 132, a calculation unit 133, and a control signal generation circuit 134. Also in the present embodiment, the hull state signal SIG_IN and the lift signal SIG_UD are input to the control unit 100a as analog signals. In FIG. 7, the hull state signal AD conversion circuit 131 is referred to as an input signal AD conversion circuit 131.

船体状態信号A−D変換回路131は、船体状態信号SIG_INをデジタル信号に変換する変換回路である。変換されたデジタル信号としての船体状態信号SIG_INは、演算部143に供給される。   The hull state signal AD conversion circuit 131 is a conversion circuit that converts the hull state signal SIG_IN into a digital signal. The converted hull state signal SIG_IN as a digital signal is supplied to the calculation unit 143.

昇降信号A−D変換回路132は、昇降信号SIG_UDをデジタル信号に変換する変換回路である。変換されたデジタル信号としての昇降信号SIG_UDは、演算部143に供給される。   The lift signal AD conversion circuit 132 is a conversion circuit that converts the lift signal SIG_UD into a digital signal. The converted lift signal SIG_UD as a digital signal is supplied to the calculation unit 143.

演算部133は、デジタル信号としての船体状態信号SIG_IN及び昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。   The computing unit 133 refers to the hull state signal SIG_IN and the lift signal SIG_UD as digital signals, and determines whether the switching valve 60 should be in an open state or a closed state. A signal indicating the determination result is supplied to the control signal generation circuit 134.

制御信号生成回路134は、上記決定結果を示す信号を参照し、上記決定結果に応じた制御信号SIG_CONTを生成する。生成された制御信号SIG_CONTは、切替弁60に供給される。   The control signal generation circuit 134 refers to the signal indicating the determination result and generates a control signal SIG_CONT according to the determination result. The generated control signal SIG_CONT is supplied to the switching valve 60.

演算部133において決定される、船体状態信号SIG_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図6と同様に決定する構成とすることができる。   The relationship between the hull state signal SIG_IN and the lift signal SIG_UD and the state of the switching valve 60 determined in the arithmetic unit 133 does not limit the present embodiment, but as an example, as in FIG. 6 of the first embodiment. It can be set as the structure to determine.

本実施形態に係る船外機昇降装置は、制御部100aを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、船体状態信号SIG_INを、船外機300の状態を示す状態信号とすれば、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。   Since the outboard motor lifting apparatus according to the present embodiment includes the control unit 100a, it is possible to automatically change the lifting speed of the outboard motor as in the first embodiment. Further, if the hull state signal SIG_IN is a state signal indicating the state of the outboard motor 300, the ascending / descending speed of the outboard motor can be automatically changed according to the state of the outboard motor.

〔実施形態3〕
以下では、図8を参照して実施形態3に係る制御部100bについて説明する。図8は本実施形態に係る制御部100bの構成を示すブロック図である。
[Embodiment 3]
Below, the control part 100b which concerns on Embodiment 3 is demonstrated with reference to FIG. FIG. 8 is a block diagram illustrating a configuration of the control unit 100b according to the present embodiment.

本実施形態に係る船外機昇降装置は、実施形態1に係る船外機昇降装置1において、制御部100に代えて、図8に示す制御部100bを備えたものである。以下の説明では、すでに説明した部材と同様の部材には同じ符号を付してその説明を省略する。   The outboard motor lifting apparatus according to the present embodiment includes a control unit 100b shown in FIG. 8 in place of the control unit 100 in the outboard motor lifting apparatus 1 according to the first embodiment. In the following description, the same members as those already described are denoted by the same reference numerals and description thereof is omitted.

制御部100bは、図8に示すように、デジタル信号送受信回路141、昇降信号A−D変換回路132、演算部143、及び制御信号生成回路134を備えている。   As illustrated in FIG. 8, the control unit 100 b includes a digital signal transmission / reception circuit 141, a lift signal A / D conversion circuit 132, a calculation unit 143, and a control signal generation circuit 134.

デジタル信号送受信回路141は、船体状態信号としてデジタル信号D_SIGを受信し、受信したデジタル信号D_SIGを演算部143に供給する。   The digital signal transmission / reception circuit 141 receives the digital signal D_SIG as the hull state signal, and supplies the received digital signal D_SIG to the calculation unit 143.

デジタル信号D_SIGは、船体200上に構成された有線又は無線ネットワークを介して伝送される信号であり、入力情報INFO_INを含んでいる。ここで、入力情報INFO_INとは、実施形態1及び2において説明した船体状態信号SIG_INによって示される情報と同様の情報である。一例として、入力情報INFO_INには、実施形態1及び2において説明した、船外機300の状態を示す状態信号と同等の情報が含まれ得る。入力情報INFO_INの具体例として、例えば、エンジン301のオンオフを示す1ビットのフラグ、船外機300の備える動力伝達機構302がインギヤの状態にあるのか否かを示す1ビットのフラグ等が挙げられる。   The digital signal D_SIG is a signal transmitted via a wired or wireless network configured on the hull 200, and includes input information INFO_IN. Here, the input information INFO_IN is the same information as the information indicated by the hull state signal SIG_IN described in the first and second embodiments. As an example, the input information INFO_IN may include information equivalent to the state signal indicating the state of the outboard motor 300 described in the first and second embodiments. Specific examples of the input information INFO_IN include, for example, a 1-bit flag indicating whether the engine 301 is on or off, a 1-bit flag indicating whether the power transmission mechanism 302 included in the outboard motor 300 is in an in-gear state, or the like. .

デジタル信号D_SIGは、船体200に関する様々な情報及び船体200外から取得した様々な情報を含み得る。デジタル信号D_SIGを伝送するための具体的な規格は本実施形態を限定するものではないが、一例として、NMEA(National Marine Electronics Association)によって制定されたNMEA2000(登録商標)が挙げられる。   The digital signal D_SIG may include various information related to the hull 200 and various information acquired from outside the hull 200. Although a specific standard for transmitting the digital signal D_SIG does not limit the present embodiment, an example is NMEA2000 (registered trademark) established by NMEA (National Marine Electronics Association).

演算部143は、デジタル信号送受信回路141から供給されるデジタル信号D_SIG、及び、昇降信号A−D変換回路132から供給されるデジタル信号としての昇降信号SIG_UDを参照し、切替弁60をオープン状態及びクローズ状態の何れにすべきかを決定する。決定結果を示す信号は制御信号生成回路134に供給される。   The calculation unit 143 refers to the digital signal D_SIG supplied from the digital signal transmission / reception circuit 141 and the lift signal SIG_UD as a digital signal supplied from the lift signal AD conversion circuit 132, and opens the switching valve 60. Decide which of the closed states should be used. A signal indicating the determination result is supplied to the control signal generation circuit 134.

演算部143において決定される、入力情報INFO_IN及び昇降信号SIG_UDと切替弁60の状態との関係は、本実施形態を限定するものではないが、一例として、実施形態1の図6と同様に決定する構成とすることができる。   The relationship between the input information INFO_IN and the raising / lowering signal SIG_UD and the state of the switching valve 60, which is determined in the calculation unit 143, is not limited to the present embodiment, but is determined in the same manner as in FIG. 6 of the first embodiment. It can be set as the structure to do.

また、演算部143は、デジタル信号D_SIGに含まれる他の情報を更に参照して、切替弁をオープン状態及びクローズ状態の何れにすべきかを決定する構成としてもよい。   In addition, the calculation unit 143 may be configured to further refer to other information included in the digital signal D_SIG to determine whether the switching valve should be in the open state or the closed state.

本実施形態に係る船外機昇降装置は、制御部100bを備えているので、実施形態1と同様に、船外機の昇降の速さを自動的に変更することができる。また、デジタル信号D_SIGが、船外機300の状態を示す状態信号と同等の情報を含む構成では、船外機の状態に応じて船外機の昇降の速さを自動的に変更することができる。   Since the outboard motor lifting apparatus according to the present embodiment includes the control unit 100b, the outboard motor lifting speed can be automatically changed as in the first embodiment. Further, in the configuration in which the digital signal D_SIG includes information equivalent to the state signal indicating the state of the outboard motor 300, the ascending / descending speed of the outboard motor can be automatically changed according to the state of the outboard motor. it can.

〔実施形態4〕
以下では、実施形態4として、実施形態1及び2において説明した船体状態信号SIG_INの他の具体例について説明する。船体状態信号SIG_INは、実施形態1及び2において説明した具体例に代えて、又は、実施形態1及び2において説明した具体例に加えて、後述する他の具体例の1又は複数を含む構成とすることができる。
[Embodiment 4]
Hereinafter, as the fourth embodiment, another specific example of the hull state signal SIG_IN described in the first and second embodiments will be described. The hull state signal SIG_IN includes one or more of other specific examples described later, instead of the specific examples described in the first and second embodiments, or in addition to the specific examples described in the first and second embodiments. can do.

なお、実施形態3において説明したように、実施形態3に係るデジタル信号D_SIGは、船体状態信号SIG_INが含む情報と同等の情報を含む。従って、以下において、船体状態信号SIG_INに関し説明する事項は実施形態1及び2のみならず、実施形態3に係るデジタル信号D_SIGに対しても適用されるものである。   As described in the third embodiment, the digital signal D_SIG according to the third embodiment includes information equivalent to the information included in the hull state signal SIG_IN. Therefore, in the following, the matters described regarding the hull state signal SIG_IN are applied not only to the first and second embodiments but also to the digital signal D_SIG according to the third embodiment.

船体状態信号SIG_INに含まれ得る信号は、
(A)船外機300から取得可能な船外機性能信号
(B)船体(本体)200から取得可能な船体(本体)性能信号
に分類される。
The signals that can be included in the hull state signal SIG_IN are:
(A) Outboard motor performance signal that can be acquired from the outboard motor 300 (B) Hull (main body) performance signal that can be acquired from the hull (main body) 200

船外機300から取得可能な船外機性能信号、及び、当該船外機性能信号を参照した制御部100、100a、100b(以下単に制御部とも記載する)による制御例は以下の通りである。   Examples of outboard motor performance signals that can be acquired from the outboard motor 300, and control examples by the control units 100, 100a, and 100b (hereinafter also simply referred to as control units) referring to the outboard motor performance signals are as follows. .

(A−1)イグニッション信号
イグニッション信号は、船外機300のイグニッションのオンオフを示す信号である。
(A-1) Ignition Signal The ignition signal is a signal that indicates on / off of the ignition of the outboard motor 300.

制御部は、例えば、イグニッションオンである場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、イグニッションオフである場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the ignition is on, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6, and when the ignition is off, the “not engine off or in gear” in FIG. The configuration may be such that the same control as that in the state is performed.

(A−2)チルト/トリム制御信号
チルト/トリム制御信号は船外機300のチルト及び/又はトリムを制御するための信号である。
(A-2) Tilt / Trim Control Signal The tilt / trim control signal is a signal for controlling the tilt and / or trim of the outboard motor 300.

制御部は、チルト/トリム制御信号に応じて、切替弁60を切り替える。   The control unit switches the switching valve 60 according to the tilt / trim control signal.

(A−3)エンジンニュートラル信号
エンジンニュートラル信号は、船外機300のエンジンがニュートラルであるか否かを示す信号である。
(A-3) Engine neutral signal The engine neutral signal is a signal indicating whether or not the engine of the outboard motor 300 is neutral.

制御部は、例えば、エンジンがニュートラルでない場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンがニュートラルである場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the engine is not neutral, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when the engine is neutral, the control unit “not engine off or in gear” in FIG. 6. The control may be the same as the control in the state of “

(A−4)トリム角度信号
トリム角度信号は、船外機300のトリムの角度を示す信号である。
(A-4) Trim Angle Signal The trim angle signal is a signal indicating the trim angle of the outboard motor 300.

制御部は、例えば、船外機300のトリムの角度が所定の値よりも小さい場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船外機300のトリムの角度が所定の値以上である場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the trim angle of the outboard motor 300 is smaller than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. When the angle is equal to or greater than a predetermined value, the same control as the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(A−5)エンジン水温信号
エンジン水温信号は、船外機300のエンジンの水温を示す信号である。
(A-5) Engine water temperature signal The engine water temperature signal is a signal indicating the water temperature of the engine of the outboard motor 300.

制御部は、例えば、エンジンの水温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの水温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the water temperature of the engine is equal to or higher than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6 and the water temperature of the engine is lower than the predetermined value. In addition, a configuration similar to the control in the state of “not engine off or in-gear” in FIG.

(A−6)エンジン油温信号
エンジン水温信号は、船外機300のエンジンの油温を示す信号である。
(A-6) Engine oil temperature signal The engine water temperature signal is a signal indicating the oil temperature of the engine of the outboard motor 300.

制御部は、例えば、エンジンの油温が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the oil temperature of the engine is equal to or higher than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and the engine oil temperature is lower than the predetermined value. In the case where it is small, the configuration may be such that the same control as the control in the state of “not engine off or in gear” in FIG. 6 is performed.

(A−7)エンジン油圧信号
エンジン油圧信号は、船外機300のエンジンの油圧を示す信号である。
(A-7) Engine oil pressure signal The engine oil pressure signal is a signal indicating the oil pressure of the engine of the outboard motor 300.

制御部は、例えば、エンジンの油圧が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、エンジンの油温が所定の値よりも小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the oil pressure of the engine is equal to or higher than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6 and the oil temperature of the engine is lower than the predetermined value. In such a case, a configuration similar to the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(A−8)水位信号
水位信号は、船外機300における水面の水位を示す信号である。
(A-8) Water Level Signal The water level signal is a signal indicating the water level of the water surface in the outboard motor 300.

制御部は、水位信号に応じて、切替弁60を切り替える。制御部は、例えば、水位信号の示す水位が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、水位信号の示す水位が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the water level signal. For example, when the water level indicated by the water level signal is equal to or higher than a predetermined value, the control unit performs the same control as that of the “engine on or in gear” state in FIG. 6, and the water level indicated by the water level signal is a predetermined value. In the case where it is smaller, a configuration similar to the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(A−9)スロットル開度信号
スロットル開度信号は、船外機300のエンジンのスロットルの開度を示す信号である。
(A-9) Throttle Opening Signal The throttle opening signal is a signal indicating the throttle opening of the engine of the outboard motor 300.

制御部は、例えば、スロットルの開度が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、スロットルの開度が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   For example, when the throttle opening is equal to or greater than a predetermined value, the control unit performs the same control as the “engine on or in-gear” state control in FIG. 6, and the throttle opening is smaller than the predetermined value. In such a case, a configuration similar to the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(A−10)船速信号(水流信号)
船速信号は、船速を示す信号である。船速は水流の速さを参照して特定されるので、船速信号は、水流信号と呼んでもよい。
(A-10) Ship speed signal (water flow signal)
The ship speed signal is a signal indicating the ship speed. Since the boat speed is specified with reference to the speed of the water flow, the boat speed signal may be called a water flow signal.

制御部は、船速が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、船速が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   When the boat speed is equal to or higher than a predetermined value, the control unit performs the same control as that of the “engine on or in gear” state in FIG. 6. When the boat speed is lower than the predetermined value, the control unit in FIG. What is necessary is just to set it as the structure which performs control similar to control of the state of "it is not an engine off or an in-gear".

(A−11)バッテリー電圧信号
バッテリー電圧信号はバッテリーの電圧を示す信号である。
(A-11) Battery voltage signal The battery voltage signal is a signal indicating the voltage of the battery.

制御部は、バッテリーの電圧に応じて、切替弁60を切り替える。制御部は、例えば、バッテリーの電圧が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、バッテリーの電圧が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the battery voltage. For example, when the battery voltage is equal to or higher than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and when the battery voltage is lower than the predetermined value. The configuration may be such that the same control as that in the state of “not engine off or in-gear” in FIG. 6 is performed.

(A−12)大気圧信号
大気圧信号は、大気圧を示す信号である。制御部は、大気圧に応じて、切替弁60を切り替える。
(A-12) Atmospheric pressure signal The atmospheric pressure signal is a signal indicating the atmospheric pressure. The control unit switches the switching valve 60 according to the atmospheric pressure.

(A−13)ジェネレータ出力電圧
上述した実施形態1〜3及び本実施形態に係る船外機300は、当該船外機300が備えるエンジン301に接続されたジェネレータを備えている。
図9は、船外機300のエンジン301周辺の構成を示すブロック図である。図9に示すように、船外機300は、エンジン301、エンジン301からプロペラ303に動力を伝達する動力伝達機構302、エンジン301により駆動されるジェネレータ(発電機)310、及びメインバッテリー311を備えている。また、一例として船外機300は、メインバッテリー311に加え、予備バッテリーも搭載可能に構成されている。
図9に示すように、ジェネレータ310からは、メインバッテリー310aへの導線310aに加え、予備バッテリーへの導線310bが引き出されている。当該導線310bは制御部100、100a、100bに接続され、当該導線310bの電位は、制御部によりジェネレータの出力電圧として参照される。
(A-13) Generator Output Voltage The above-described Embodiments 1 to 3 and the outboard motor 300 according to the present embodiment include a generator connected to the engine 301 included in the outboard motor 300.
FIG. 9 is a block diagram showing a configuration around the engine 301 of the outboard motor 300. As shown in FIG. 9, the outboard motor 300 includes an engine 301, a power transmission mechanism 302 that transmits power from the engine 301 to the propeller 303, a generator (generator) 310 driven by the engine 301, and a main battery 311. ing. Further, as an example, the outboard motor 300 is configured so that a spare battery can be mounted in addition to the main battery 311.
As shown in FIG. 9, from the generator 310, in addition to the conducting wire 310a to the main battery 310a, the conducting wire 310b to the spare battery is drawn out. The conducting wire 310b is connected to the control units 100, 100a, and 100b, and the potential of the conducting wire 310b is referred to by the control unit as the output voltage of the generator.

本例に係る制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第1閾値以上である場合に、航行状態と判定し、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う。ここで、電圧に関する上記第1閾値は、例えば、適宜設定された正の値を有する。
また、制御部は、船体状態信号SIG_INとして、ジェネレータの出力電圧を参照し、当該ジェネレータの出力電圧が、電圧に関する第2閾値を超える場合に、航行状態と判定し、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行う構成としてもよい。ここで、電圧に関する上記第2閾値は、例えば、適宜設定された0以上の値を有する。
The control unit according to the present example refers to the output voltage of the generator as the hull state signal SIG_IN, and determines that the navigation state is in the navigation state when the output voltage of the generator is equal to or higher than the first threshold related to the voltage. The same control as that in the “engine on or in gear” state is performed. Here, the said 1st threshold value regarding a voltage has a positive value set suitably, for example.
Further, the control unit refers to the output voltage of the generator as the hull state signal SIG_IN, and when the output voltage of the generator exceeds the second threshold value related to the voltage, determines that the navigation state, It may be configured to perform the same control as the control of the “in-gear” state. Here, the said 2nd threshold value regarding a voltage has the value of 0 or more set suitably, for example.

なお、以上例示した信号のうち、(A−1)〜(A−11)、及び(A−13)は、船外機300の状態を示す状態信号と捉えることもできる。   Of the signals exemplified above, (A-1) to (A-11) and (A-13) can also be regarded as state signals indicating the state of the outboard motor 300.

続いて、船体200から取得可能な船体(本体)性能信号、及び、当該船体(本体)性能信号を参照した制御部による制御例は以下の通りである。   Subsequently, a hull (main body) performance signal that can be acquired from the hull 200 and a control example by the control unit with reference to the hull (main body) performance signal are as follows.

(B−1)衝撃信号
衝撃信号は、船体200が受ける衝撃を示す信号である。
(B-1) Impact signal The impact signal is a signal indicating the impact received by the hull 200.

制御部は、衝撃信号に応じて切替弁60を切り替える。より具体的には、制御部は、船体200が受ける衝撃、又は衝撃信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、衝撃が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、衝撃が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the impact signal. More specifically, the control unit switches the switching valve 60 according to the impact received by the hull 200 or the presence or absence of the impact signal itself. For example, when the impact is equal to or greater than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6, and when the impact is smaller than the predetermined value, or the signal is In the case where there is not, the configuration may be such that the same control as the control in the state of “not engine off or in-gear” in FIG. 6 is performed.

(B−2)方位信号
方位信号は、船体200の進行方向を示す信号である。制御部は、方位信号に応じて、切替弁60を切り替える。
(B-2) Direction signal The direction signal is a signal indicating the traveling direction of the hull 200. The control unit switches the switching valve 60 according to the direction signal.

(B−3)ソナー信号
ソナー信号は、船体200が備えるソナーから供給される信号である。
(B-3) Sonar signal The sonar signal is a signal supplied from a sonar included in the hull 200.

制御部は、ソナー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、ソナー信号が示す障害物の有無、又は、ソナー信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the sonar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the sonar signal or the presence or absence of the sonar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6. When there is no obstacle or when there is no signal, the control unit in FIG. What is necessary is just to set it as the structure which performs control similar to control of the state of "it is not an engine off or an in-gear".

(B−4)GPS信号
GPS信号は、船体200が備えるGPS(Global Positioning System)装置から供給される信号である。なお、GPS装置は船体の上または近辺にあっても良い。
(B-4) GPS signal The GPS signal is a signal supplied from a GPS (Global Positioning System) device included in the hull 200. The GPS device may be on or near the hull.

制御部は、GPS信号が示す船速が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、GPS信号が示す船速が所定の値より小さい場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   When the ship speed indicated by the GPS signal is equal to or higher than a predetermined value, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6, and the ship speed indicated by the GPS signal is a predetermined value. In the case where it is smaller, a configuration similar to the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(B−5)トランサム振動信号
トランサム振動信号は、船体200が備えるトランサムの振動を示す信号である。
(B-5) Transom vibration signal The transom vibration signal is a signal indicating the vibration of the transom included in the hull 200.

制御部は、トランサム振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、トランサム振動信号の示す振動、又は、トランサム振動信号自体の有無に応じて、切替弁60を切り替える。制御部は、例えば、トランサムの振動が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、トランサムの振動が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the transom vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the transom vibration signal or the presence or absence of the transom vibration signal itself. For example, when the vibration of the transom is equal to or greater than a predetermined value, the control unit performs the same control as the control of the “engine on or in gear” state in FIG. 6, and when the vibration of the transom is smaller than the predetermined value, Alternatively, when there is no signal, a configuration similar to the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(B−6)水温信号
水温信号は、船体200の周囲の水温を示す信号である。制御部は、水温信号に応じて、切替弁60を切り替える。
(B-6) Water temperature signal The water temperature signal is a signal indicating the water temperature around the hull 200. The control unit switches the switching valve 60 according to the water temperature signal.

(B−7)振動信号
振動信号は、船体200の振動を示す信号である。
(B-7) Vibration signal The vibration signal is a signal indicating the vibration of the hull 200.

制御部は、振動信号に応じて、切替弁60を切り替える。より具体的には、制御部は、振動信号の示す振動、又は振動信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、振動信号の示す振動が所定の値以上である場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、振動信号の示す振動が所定の値より小さい場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the vibration signal. More specifically, the control unit switches the switching valve 60 according to the vibration indicated by the vibration signal or the presence / absence of the vibration signal itself. For example, when the vibration indicated by the vibration signal is equal to or greater than a predetermined value, the control unit performs control similar to the control of the “engine on or in-gear” state in FIG. In the case where it is smaller, or when there is no signal, the same control as the control in the state of “not engine off or in-gear” in FIG. 6 may be performed.

(B−8)IP画像信号
IP画像信号は、船体200の周辺の状況を示す画像信号である。
(B-8) IP image signal The IP image signal is an image signal indicating a situation around the hull 200.

制御部は、IP画像信号に応じて、切替弁60を切り替える。より具体的には、制御部は、IP画像信号の示す障害物の有無、または、IP画像信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the IP image signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the IP image signal or the presence or absence of the IP image signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6. When there is no obstacle or when there is no signal, the control unit in FIG. What is necessary is just to set it as the structure which performs control similar to control of the state of "it is not an engine off or an in-gear".

(B−9)レーダー信号
レーダー信号は、船体200が備えるレーダーから供給される信号である。
(B-9) Radar signal The radar signal is a signal supplied from a radar included in the hull 200.

制御部は、レーダー信号に応じて、切替弁60を切り替える。より具体的には、制御部は、レーダー信号が示の障害物の有無、または、レーダー信号自体の有無に応じて切替弁60を切り替える。制御部は、例えば、障害物がある場合に、図6における「エンジンオン又はインギヤ」の状態の制御と同様の制御を行い、障害物がない場合、または、信号が無い場合に、図6における「エンジンオフ又はインギヤでない」の状態の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the radar signal. More specifically, the control unit switches the switching valve 60 according to the presence or absence of an obstacle indicated by the radar signal or the presence or absence of the radar signal itself. For example, when there is an obstacle, the control unit performs control similar to the control of the “engine on or in gear” state in FIG. 6. When there is no obstacle or when there is no signal, the control unit in FIG. What is necessary is just to set it as the structure which performs control similar to control of the state of "it is not an engine off or an in-gear".

(B−10)音声信号
音声信号は、操船者(ユーザ)の音声を示す信号である。
(B-10) Voice signal The voice signal is a signal indicating the voice of the operator (user).

制御部は、音声信号に応じて、切替弁60を切り替える。制御部は、例えば、音声信号に含まれる音声指示を参照して、図6の制御と同様の制御を行う構成とすればよい。   The control unit switches the switching valve 60 according to the audio signal. For example, the control unit may be configured to perform control similar to the control in FIG. 6 with reference to a voice instruction included in the voice signal.

なお、以上例示した信号のうち、(B−1)〜(B−9)は、船体(本体)200の状態を示す状態信号と捉えることもできる。   Of the signals exemplified above, (B-1) to (B-9) can also be regarded as state signals indicating the state of the hull (main body) 200.

〔ソフトウェアによる実現例〕
制御部100、100a、100bは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control units 100, 100a, and 100b may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit). .

後者の場合、制御部100、100a、100bは、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。   In the latter case, the control units 100, 100a, and 100b include a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read that records the above-described program and various data so that the computer (or CPU) can read them. Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

1 船外機昇降装置
12 トリムシリンダ
14 チルトシリンダ
42 ポンプ(油圧源)
60 切替弁
100、100a、100b 制御部
121 第1のスイッチング素子
122 第2のスイッチング素子
133、143 演算部(決定部)
200 船体(本体)
300 船外機
301 エンジン
302 動力伝達機構
303 プロペラ
C1 第1の流路(第2の油路)
C2 第2の流路
C3 第3の流路(第2の油路)
C4 第4の流路
C5 第5の流路
C6 第6の流路(第1の油路)
C7 第7の流路(第3の油路)
C9 第9の流路
C13 第13の流路
C14 第14の流路
1 Outboard motor lifting device 12 Trim cylinder 14 Tilt cylinder 42 Pump (hydraulic power source)
60 switching valve 100, 100a, 100b control part 121 1st switching element 122 2nd switching element 133, 143 calculating part (decision part)
200 Hull (main body)
300 Outboard motor 301 Engine 302 Power transmission mechanism 303 Propeller C1 First flow path (second oil path)
C2 Second flow path C3 Third flow path (second oil path)
C4 4th flow path C5 5th flow path C6 6th flow path (1st oil path)
C7 Seventh flow path (third oil path)
C9 Ninth channel C13 Thirteenth channel C14 Fourteenth channel

Claims (7)

船外機を昇降させる船外機昇降装置において、
1又は複数のチルトシリンダと、
1又は複数のトリムシリンダと、
油圧源と、
前記油圧源に接続された第1のポンプポート及び第2のポンプポートと、
を備え、
前記各トリムシリンダは、当該トリムシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該トリムシリンダの第1室を貫通するロッドとを備え、
前記各チルトシリンダは、当該チルトシリンダを第1室と第2室とに仕切るピストンと、前記ピストンに接続され、当該チルトシリンダの第1室を貫通するロッドとを備え、
当該船外機昇降装置は、
前記1又は複数のトリムシリンダの第2室に接続された第1の油路と、
前記第1の油路上に設けられた切替弁と、
船体状態信号を参照して前記切替弁を制御する制御部と
を更に備え、
前記第1のポンプポートは、
前記チルトシリンダの前記第1室及び前記第2室に対して、それぞれ接続された第2及び第1のシャトル室を有しており、
前記第2のポンプポートは、
前記第1のポンプポートの前記第1のシャトル室に接続されたシャトル室を有しており、
前記第1の油路は、前記第2のポンプポートの前記シャトル室に対して接続されている
ことを特徴とする船外機昇降装置。
In the outboard motor lifting device that raises and lowers the outboard motor,
One or more tilt cylinders;
One or more trim cylinders;
A hydraulic source;
A first pump port and a second pump port connected to the hydraulic source;
With
Each trim cylinder includes a piston that partitions the trim cylinder into a first chamber and a second chamber, and a rod that is connected to the piston and penetrates the first chamber of the trim cylinder.
Each tilt cylinder includes a piston that partitions the tilt cylinder into a first chamber and a second chamber, and a rod that is connected to the piston and penetrates the first chamber of the tilt cylinder,
The outboard motor lifting device is
A first oil passage connected to the second chamber of the one or more trim cylinders;
A switching valve provided on the first oil passage;
A control unit that controls the switching valve with reference to a hull state signal;
The first pump port is
The first and second chambers of the tilt cylinder have second and first shuttle chambers connected to the first cylinder and the second chamber, respectively.
The second pump port is
Having a shuttle chamber connected to the first shuttle chamber of the first pump port;
The outboard motor elevating device, wherein the first oil passage is connected to the shuttle chamber of the second pump port.
前記制御部は、
前記船体状態信号を参照して、航行状態及び停船状態を判定し、
前記航行状態と判定した場合に、前記切替弁をオープン状態となるように制御し、
前記停船状態と判定した場合に、前記切替弁がクローズ状態となるように制御する
ことを特徴とする、請求項1に記載の船外機昇降装置。
The controller is
With reference to the hull state signal, the navigation state and the stop state are determined,
When the navigation state is determined, the switching valve is controlled to be in an open state,
The outboard motor lifting device according to claim 1, wherein the switching valve is controlled to be in a closed state when it is determined that the boat is stopped.
前記船体状態信号は、前記船外機が備えるエンジンに接続されたジェネレータの出力電圧であり、
前記制御部は、前記ジェネレータの出力電圧が、電圧に関する第1閾値以上である場合に、前記航行状態と判定する
ことを特徴とする請求項2に記載の船外機昇降装置。
The hull state signal is an output voltage of a generator connected to an engine included in the outboard motor,
The outboard motor elevating device according to claim 2, wherein the control unit determines that the navigation state is present when an output voltage of the generator is equal to or higher than a first threshold value related to a voltage.
前記船体状態信号は、前記船外機が備えるエンジンに接続されたジェネレータの出力電圧であり、
前記制御部は、前記ジェネレータの出力電圧が、電圧に関する第2閾値を超える場合に、前記航行状態と判定する
ことを特徴とする請求項2に記載の船外機昇降装置。
The hull state signal is an output voltage of a generator connected to an engine included in the outboard motor,
The outboard motor lifting device according to claim 2, wherein the control unit determines that the navigation state is established when an output voltage of the generator exceeds a second threshold value related to a voltage.
前記船体状態信号は、前記船外機のエンジン回転数に関連する信号であり、
前記制御部は、前記エンジン回転数が、回転数に関する第1閾値以上である場合に、前記航行状態と判定する
ことを特徴とする、請求項2に記載の船外機昇降装置。
The hull state signal is a signal related to the engine speed of the outboard motor,
The outboard motor lifting device according to claim 2, wherein the control unit determines that the navigation state is established when the engine speed is equal to or greater than a first threshold value regarding the speed.
前記船体状態信号は、前記船外機のエンジン回転数に関連する信号であり、
前記制御部は、前記エンジン回転数が、回転数に関する第2閾値を超える場合に、前記航行状態と判定する
ことを特徴とする、請求項2に記載の船外機昇降装置。
The hull state signal is a signal related to the engine speed of the outboard motor,
The outboard motor lifting device according to claim 2, wherein the control unit determines that the navigation state is established when the engine speed exceeds a second threshold value related to the speed.
前記船体状態信号は、アナログ信号であり、
前記制御部は、
前記船体状態信号が入力されるベース電極を有する第1のスイッチング素子と
前記第1のスイッチング素子のエミッタ電流に応じた信号が入力されるゲート電極、及び、前記切替弁に接続されたソース電極を有する第2のスイッチング素子と
を備えていることを特徴とする請求項1から6の何れか1項に記載の船外機昇降装置。
The hull state signal is an analog signal,
The controller is
A first switching element having a base electrode to which the hull state signal is input; a gate electrode to which a signal corresponding to an emitter current of the first switching element is input; and a source electrode connected to the switching valve. The outboard motor lifting apparatus according to claim 1, further comprising: a second switching element having the second switching element.
JP2017159208A 2017-08-22 2017-08-22 Outboard motor lifting device Active JP6243571B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017159208A JP6243571B1 (en) 2017-08-22 2017-08-22 Outboard motor lifting device
PCT/JP2017/033690 WO2019038932A1 (en) 2017-08-22 2017-09-19 Outboard motor lifting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159208A JP6243571B1 (en) 2017-08-22 2017-08-22 Outboard motor lifting device

Publications (2)

Publication Number Publication Date
JP6243571B1 JP6243571B1 (en) 2017-12-06
JP2019038276A true JP2019038276A (en) 2019-03-14

Family

ID=60570356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159208A Active JP6243571B1 (en) 2017-08-22 2017-08-22 Outboard motor lifting device

Country Status (2)

Country Link
JP (1) JP6243571B1 (en)
WO (1) WO2019038932A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6283298A (en) * 1985-10-07 1987-04-16 Yamaha Motor Co Ltd Hydraulic type tilt device for outboard propeller
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device
JPH04368295A (en) * 1991-06-18 1992-12-21 Sanshin Ind Co Ltd Support angle adjusting device for marine vessel propeller
JPH08270608A (en) * 1995-03-30 1996-10-15 Tokai Rika Co Ltd Control device for hydraulic circuit
JPH0911987A (en) * 1995-06-28 1997-01-14 Showa:Kk Trim-tilt apparatus of propeller for ship
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234096A (en) * 1984-05-01 1985-11-20 Sanshin Ind Co Ltd Tilt apparatus for vessel propulsion machine
JPS6283298A (en) * 1985-10-07 1987-04-16 Yamaha Motor Co Ltd Hydraulic type tilt device for outboard propeller
JPS6428095A (en) * 1987-07-21 1989-01-30 Sanshin Kogyo Kk Tilting device for ship propeller
JPH02102892A (en) * 1988-10-12 1990-04-16 Sanshin Ind Co Ltd Trimming and tilting device for marine propulsive unit
JPH04163292A (en) * 1990-10-24 1992-06-08 Soqi Inc Ship propeller elevating device
JPH04368295A (en) * 1991-06-18 1992-12-21 Sanshin Ind Co Ltd Support angle adjusting device for marine vessel propeller
JPH08270608A (en) * 1995-03-30 1996-10-15 Tokai Rika Co Ltd Control device for hydraulic circuit
JPH0911987A (en) * 1995-06-28 1997-01-14 Showa:Kk Trim-tilt apparatus of propeller for ship
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder

Also Published As

Publication number Publication date
WO2019038932A1 (en) 2019-02-28
JP6243571B1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JPWO2016002850A1 (en) Excavator and control method of excavator
JP6294545B1 (en) Outboard motor lifting device
JP6294547B1 (en) Outboard motor lifting device
JP6224798B1 (en) Outboard motor lifting device
JP6243571B1 (en) Outboard motor lifting device
JP6313891B1 (en) Terminal device, outboard motor lifting system, program, and recording medium.
CN104389940A (en) Adjustable damping buffer air cylinder
JP6364115B1 (en) Outboard motor lifting device
JP6330094B1 (en) Outboard motor lifting device
JP6330101B1 (en) Outboard motor lifting device
JP6313892B1 (en) Outboard motor lifting device
JP6374131B1 (en) Outboard motor lifting device
JP6294550B1 (en) Outboard motor lifting apparatus and control method for outboard motor lifting apparatus
JPWO2017164169A1 (en) Excavators and excavator control valves
JP2013024383A (en) Hydraulic cylinder device
JP2019002217A (en) Hydraulic system
JP4671719B2 (en) Directional control valve
JP2019043522A (en) Outboard motor raising/lowering device
JP2009127313A (en) Revolving pressure control device for work machine
KR20060016186A (en) Automatic travel shift for crawler excavator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170922

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250