JP2019035696A - Reactor core melt reception device and method of installing the same, heat-resistant component, and nuclear power facility - Google Patents

Reactor core melt reception device and method of installing the same, heat-resistant component, and nuclear power facility Download PDF

Info

Publication number
JP2019035696A
JP2019035696A JP2017158108A JP2017158108A JP2019035696A JP 2019035696 A JP2019035696 A JP 2019035696A JP 2017158108 A JP2017158108 A JP 2017158108A JP 2017158108 A JP2017158108 A JP 2017158108A JP 2019035696 A JP2019035696 A JP 2019035696A
Authority
JP
Japan
Prior art keywords
heat
resistant
core melt
core
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017158108A
Other languages
Japanese (ja)
Other versions
JP2019035696A5 (en
JP6878203B2 (en
Inventor
佳朗 西岡
Yoshiaki Nishioka
佳朗 西岡
智香子 岩城
Chikako Iwaki
智香子 岩城
山本 泰
Yasushi Yamamoto
泰 山本
洋一 鬼塚
Yoichi Onizuka
洋一 鬼塚
美香 田原
Mika Tawara
美香 田原
敏浩 吉井
Toshihiro Yoshii
敏浩 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017158108A priority Critical patent/JP6878203B2/en
Publication of JP2019035696A publication Critical patent/JP2019035696A/en
Publication of JP2019035696A5 publication Critical patent/JP2019035696A5/ja
Application granted granted Critical
Publication of JP6878203B2 publication Critical patent/JP6878203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

To provide a reactor core melt reception device that can securely hold a reactor core melt, produced when an accident occurs, in a nuclear reactor container, and is easy to construct.SOLUTION: A reactor core melt reception device according to an embodiment is installed in a nuclear reactor container below a nuclear reactor pressure container, and receives a nuclear reactor melt produced if an accident occurs and a reactor core is molten. The reactor core melt reception device has: a plurality of sealed containers 41 arranged along a predetermined installation surface; a plurality of heat resistant members 47 housed in the sealed containers 41 respectively and fixed in the sealed containers 41; and particulate matter 50 which is charged in the respective sealed containers 41 and charged between the plurality of heat resistant members 47, and made of a heat-resistant material.SELECTED DRAWING: Figure 4

Description

この発明の実施形態は、耐熱部品、ならびに、原子炉事故時に炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置とその設置方法、ならびに、炉心溶融物受け装置を備えた原子力施設に関する。   Embodiments of the present invention include a heat-resistant component, a core melt receiving device that receives a core melt generated when the core is melted in a nuclear accident, a method for installing the core melt receiving device, and a nuclear facility provided with the core melt receiving device About.

水冷却型原子炉では、原子炉圧力容器内への給水の停止や、原子炉圧力容器に接続された配管の破断などにより冷却水が喪失すると、原子炉水位が低下し炉心が露出して冷却が不十分になる可能性がある。このような場合を想定して、水位低下の信号により自動的に原子炉は非常停止され、非常用炉心冷却装置(ECCS)による冷却材の注入によって炉心を冠水させて冷却し、炉心溶融事故を未然に防ぐようになっている。   In a water-cooled nuclear reactor, if the cooling water is lost due to the stoppage of water supply to the reactor pressure vessel or the breakage of piping connected to the reactor pressure vessel, the reactor water level falls and the core is exposed and cooled. May be insufficient. Assuming such a case, the reactor is automatically shut down in response to a water level lowering signal, and the core is submerged and cooled by injecting coolant using an emergency core cooling system (ECCS), and a core melting accident is performed. It is designed to prevent it.

しかしながら、極めて低い確率ではあるが、上記非常用炉心冷却装置が作動せず、かつ、その他の炉心への注水装置も利用できない事態も想定され得る。このような場合、原子炉水位の低下により炉心は露出し、十分な冷却が行われなくなり、原子炉停止後も発生し続ける崩壊熱によって燃料棒温度が上昇し、最終的には炉心溶融に至ることが考えられる。このような事態に至った場合、高温の炉心溶融物が原子炉圧力容器下部に溶け落ち、さらに原子炉圧力容器下鏡を溶融貫通して、原子炉格納容器内の床上に落下するに至ることが考えられる。   However, although the probability is very low, it can be assumed that the emergency core cooling device does not operate and water injection devices for other cores cannot be used. In such a case, the core is exposed due to a decrease in the reactor water level, and sufficient cooling is not performed, and the fuel rod temperature rises due to decay heat that continues to occur after the reactor shuts down, eventually leading to core melting. It is possible. When such a situation occurs, the hot core melt melts into the lower part of the reactor pressure vessel, and further melts through the reactor pressure vessel lower mirror and falls onto the floor in the reactor containment vessel. Can be considered.

炉心溶融物(溶融炉心、デブリ)は、原子炉格納容器床と、床に設置しているドレンサンプに張られたコンクリートを加熱し、接触面が高温状態になるとコンクリートと反応し、二酸化炭素、水素等の非凝縮性ガスを大量に発生させるとともに、コンクリートを溶融浸食する。発生した非凝縮性ガスは原子炉格納容器内の圧力を高め、原子炉格納容器を破損させる可能性があり、また、コンクリートの溶融浸食により原子炉格納容器バウンダリを破損させたり、原子炉格納容器構造強度を低下させる可能性がある。結果的に、炉心溶融物とコンクリートの反応が継続すると、原子炉格納容器破損に至り、原子炉格納容器内の放射性物質が外部環境へ放出される恐れがある。   The core melt (melting core, debris) heats the concrete that is stretched between the reactor containment floor and the drain sump installed on the floor, and reacts with the concrete when the contact surface reaches a high temperature. A large amount of non-condensable gas such as is generated, and concrete is melted and eroded. The generated non-condensable gas increases the pressure in the containment vessel and may damage the containment vessel. Also, the containment vessel boundary may be damaged by melting and erosion of concrete. There is a possibility of reducing the structural strength. As a result, if the reaction between the core melt and concrete continues, the reactor containment vessel may be damaged, and the radioactive material in the reactor containment vessel may be released to the external environment.

また、通常原子炉格納容器の下部に位置するドレンサンプに炉心溶融物が侵入すると、炉心溶融物の体積に比して炉心溶融物の上面の面積が小さいため、仮に、注水ラインで原子炉格納容器の下部に注水したとしても、炉心溶融物の温度が低下せず、ドレンサンプ底部の侵食が継続する恐れがある。   Also, if the core melt enters the drain sump normally located at the bottom of the reactor containment vessel, the area of the upper surface of the core melt is smaller than the volume of the core melt. Even if water is injected into the lower part of the core, the temperature of the core melt does not decrease, and erosion of the drain sump bottom may continue.

この炉心溶融物とコンクリートの反応を抑制するためには、炉心溶融物を冷却し、炉心溶融物底部のコンクリートとの接触面の温度を浸食温度以下(一般的なコンクリートで1500K以下)に冷却するか、炉心溶融物とコンクリートが直接接触しないようにする必要がある。そのため、炉心溶融物が落下した場合に備えて様々な対策が提案されている。代表的なものがコアキャッチャと呼ばれるもので、落下した炉心溶融物を耐熱材で受け止めて、注水手段と組み合わせて炉心溶融物の冷却を図る設備である。   In order to suppress the reaction between the core melt and the concrete, the core melt is cooled, and the temperature of the contact surface with the concrete at the bottom of the core melt is cooled to the erosion temperature or lower (1500 K or lower for general concrete). Or it is necessary to avoid direct contact between the core melt and concrete. For this reason, various countermeasures have been proposed in case the core melt falls. A typical one is called a core catcher, which is a facility that receives a fallen core melt with a heat-resistant material and cools the core melt in combination with water injection means.

原子炉格納容器の内壁および床であるペデスタルに落下した炉心溶融物の上面に冷却水を注水しても、炉心溶融物の底部での除熱量が小さいと、崩壊熱によって炉心溶融物底部の温度が高温のまま維持され、ペデスタルのコンクリート侵食を停止することができないことがありうる。そのため、炉心溶融物を底面から冷却するという方法もいくつか提案されている。また、冷却流路は用いずに、耐熱材のみを格納容器床面に敷設するコリウムシールドと呼ばれる簡易なものもある。耐熱材の敷設方法についても、溝や突起のかみ合いを利用した結合方式が提案されている。   Even if cooling water is injected into the top surface of the core melt that has fallen onto the pedestal, which is the inner wall and floor of the reactor containment vessel, if the amount of heat removal at the bottom of the core melt is small, the temperature at the bottom of the core melt is caused by decay heat. May remain hot and may not be able to stop concrete erosion of the pedestal. Therefore, several methods of cooling the core melt from the bottom surface have been proposed. There is also a simple one called a corium shield in which only the heat-resistant material is laid on the storage container floor without using a cooling flow path. As for the laying method of the heat-resistant material, a coupling method using the engagement of grooves and protrusions has been proposed.

特許第3150451号公報Japanese Patent No. 3150451

ところで、上述したコアキャッチャを用いる方式では、炉心溶融物の保持と、保持するための構造物を熱的に保護するために、耐熱材を敷き詰め、その外側を冷却水により自然循環するシステムにより冷却する。また、格納容器床面に、直接耐熱材を敷き詰める方式では、床面のコンクリートを熱的に防護している。上述のコアキャッチャにおける耐熱材、または、格納容器床面に敷設された耐熱材は、地震によるずれ、圧力容器下部構造物落下による機械衝撃、常時運転時の炉水浸漬による性質変化、炉心溶融物落下時の短期的なインピンジメント、炉心溶融物と耐熱材の長期的な熱・化学浸食等の要因により、破損、崩落する可能性がある。そのため、炉心溶融物を保持する際に、本来の機能を十分に発揮できない可能性がある。   By the way, in the system using the core catcher described above, in order to hold the core melt and to thermally protect the structure for holding the core, it is cooled by a system in which a heat-resistant material is spread and the outside is naturally circulated by cooling water. To do. Further, in the system in which the heat-resistant material is spread directly on the storage container floor surface, the concrete on the floor surface is thermally protected. The heat-resistant material in the core catcher mentioned above or the heat-resistant material laid on the containment vessel floor surface is displaced by an earthquake, mechanical impact due to dropping of the pressure vessel substructure, property change due to immersion in reactor water during normal operation, core melt There is a possibility of breakage or collapse due to factors such as short-term impingement at the time of fall, long-term thermal and chemical erosion of the core melt and heat-resistant material. Therefore, there is a possibility that the original function cannot be sufficiently exhibited when holding the core melt.

本実施形態は、上記事情を踏まえたものであって、その目的は、耐熱材料のずれや破損等の可能性が低減され、しかもその施工が容易な炉心溶融物受け装置およびその設置方法、耐熱部品、ならびに炉心溶融物受け装置を備えた原子力施設を提供することにある。   The present embodiment is based on the above circumstances, and its purpose is to reduce the possibility of misalignment or breakage of the heat-resistant material, and to easily install the core-melt receiving device and its installation method, heat resistance It is to provide a nuclear facility equipped with parts and a core melt receiver.

上記課題を解決するために、本実施形態に係る炉心溶融物受け装置は、炉心を収容する原子炉圧力容器を格納する原子炉格納容器内で前記原子炉圧力容器の下方に設置されて、事故時に前記炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置であって、所定の設置面に沿って並べられた複数の密閉容器と、前記密閉容器に充填された耐熱材料からなる粉粒体と、を備えたことを特徴とする。   In order to solve the above problems, a core melt receiving apparatus according to the present embodiment is installed below the reactor pressure vessel in a reactor containment vessel that stores a reactor pressure vessel that accommodates the core, and an accident occurs. A core melt receiving device for receiving a core melt that is sometimes generated when the core is melted, comprising a plurality of sealed containers arranged along a predetermined installation surface, and a heat-resistant material filled in the sealed container And a granular material.

また、本実施形態に係る原子力施設は、炉心と、前記炉心を収容する原子炉圧力容器と、前記原子炉圧力容器を格納する原子炉格納容器と、前記原子炉格納容器内で前記原子炉圧力容器の下方に設置されて、事故時に前記炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置と、を備えた原子力施設であって、前記炉心溶融物受け装置は、所定の設置面に沿って並べられた複数の密閉容器と、前記密閉容器に充填された耐熱材料からなる粉粒体と、を有すること、を特徴とする。   Further, the nuclear facility according to the present embodiment includes a core, a reactor pressure vessel that accommodates the reactor core, a reactor containment vessel that stores the reactor pressure vessel, and the reactor pressure within the reactor containment vessel. A core melt receiving device installed below a vessel and receiving a core melt generated when the core melts in the event of an accident, the core melt receiving device being installed in a predetermined manner It has the some airtight container arranged along the surface, and the granular material which consists of a heat-resistant material with which the said airtight container was filled, It is characterized by the above-mentioned.

また、本実施形態に係る炉心溶融物受け装置設置方法は、事故時に炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置を、前記炉心を収容する原子炉圧力容器の下方の原子炉格納容器内に設置する方法であって、前記密閉容器に耐熱材料からなる粉粒体を充填する充填ステップと、前記充填ステップの後に前記密閉容器を密閉する密閉ステップと、前記密閉ステップの後に前記複数の密閉容器を所定の設置面に沿って並べる容器設置ステップと、を備えたことを特徴とする。   Further, the core melt receiver installation method according to the present embodiment includes a core melt receiver that receives a core melt generated when the core is melted in the event of an accident, and has a reactor below the reactor pressure vessel that houses the core. A method of installing in a furnace containment vessel, a filling step of filling the airtight container with a granular material made of a heat-resistant material, a sealing step of sealing the airtight container after the filling step, and after the sealing step And a container installation step of arranging the plurality of sealed containers along a predetermined installation surface.

また、本実施形態に係る耐熱部品は、所定の設置面に沿って複数並べられる耐熱部品であって、密閉容器と、前記密閉容器の内部に充填された耐熱材料からなる粉粒体と、を備えたことを特徴とする。   Further, the heat-resistant component according to the present embodiment is a heat-resistant component that is arranged in a plurality along a predetermined installation surface, and includes a sealed container and a granular material made of a heat-resistant material filled in the sealed container. It is characterized by having.

本実施形態によれば、耐熱材料のずれや破損等の可能性が低減され、しかもその施工が容易である。   According to this embodiment, the possibility of deviation or breakage of the heat-resistant material is reduced, and the construction is easy.

第1の実施形態に係る原子炉格納容器の構成を示す模式的立断面図。1 is a schematic sectional elevation showing a configuration of a containment vessel according to a first embodiment. FIG. 図1のコアキャッチャとその周辺を拡大して示す模式的立断面図。FIG. 2 is a schematic vertical sectional view showing the core catcher of FIG. 1 and its periphery in an enlarged manner. 図2の炉心溶融物受け装置の一部を拡大して示す斜視図。The perspective view which expands and shows a part of core melt receiving apparatus of FIG. 図3の炉心溶融物受け装置を構成する一つの耐熱密閉容器の内部構造を示す斜視図。The perspective view which shows the internal structure of one heat-resistant airtight container which comprises the core melt receiving apparatus of FIG. 図4の耐熱密閉容器の底板を取り出して示す斜視図。The perspective view which takes out and shows the bottom plate of the heat-resistant airtight container of FIG. 図4の固定具の一つを取り出して示す斜視図。The perspective view which takes out and shows one of the fixing tools of FIG. 第1の実施形態に係る炉心溶融物受け装置の設置方法の手順の一例を示すフロー図。The flowchart which shows an example of the procedure of the installation method of the core melt receiving apparatus which concerns on 1st Embodiment. 第2の実施形態に係る炉心溶融物受け装置を示す模式的立断面図。The typical elevation sectional view showing the core melt receiving device concerning a 2nd embodiment. 第3の実施形態に係る炉心溶融物受け装置を示す模式的立断面図。The typical elevation sectional view showing the core melt receiving device concerning a 3rd embodiment. 第4の実施形態に係る炉心溶融物受け装置の一つの耐熱密閉容器の内部構造を示す模式的立断面図。The typical elevation sectional view showing the internal structure of one heat-resistant airtight container of the core melt receiver concerning a 4th embodiment.

以下、図面を参照して、本発明の実施形態について説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は、第1の実施形態に係る原子力施設の構成を示す模式的立断面図である。図2は、図1のコアキャッチャとその周辺を拡大して示す模式的立断面図である。図3は、図2の炉心溶融物受け装置の一部を拡大して示す斜視図である。図4は、図3の炉心溶融物受け装置を構成する一つの耐熱密閉容器の内部構造を示す斜視図である。図5は、図4の耐熱密閉容器の底板を取り出して示す斜視図である。図6は、図4の固定具の一つを取り出して示す斜視図である。
[First Embodiment]
FIG. 1 is a schematic sectional elevation view showing the configuration of the nuclear facility according to the first embodiment. 2 is an enlarged schematic sectional view showing the core catcher of FIG. 1 and its periphery. FIG. 3 is an enlarged perspective view showing a part of the core melt receiver of FIG. FIG. 4 is a perspective view showing an internal structure of one heat-resistant airtight container constituting the core melt receiver of FIG. 5 is a perspective view showing the bottom plate of the heat-resistant airtight container of FIG. FIG. 6 is a perspective view showing one of the fixtures shown in FIG.

図1に示す原子力施設100は沸騰水型原子力施設であって、原子炉格納容器12内に原子炉圧力容器10が配置されている。原子炉圧力容器10内に炉心11が収容されている。原子炉格納容器12内空間は、原子炉圧力容器10を収容するドライウェル13と、圧力抑制プール14を収容するウェットウェル15を含む。ドライウェル13と圧力抑制プール14はベント管16で連絡している。   A nuclear facility 100 shown in FIG. 1 is a boiling water nuclear facility, and a reactor pressure vessel 10 is disposed in a reactor containment vessel 12. A reactor core 11 is accommodated in the reactor pressure vessel 10. The internal space of the reactor containment vessel 12 includes a dry well 13 that accommodates the reactor pressure vessel 10 and a wet well 15 that accommodates the pressure suppression pool 14. The dry well 13 and the pressure suppression pool 14 communicate with each other through a vent pipe 16.

原子炉圧力容器10は、コンクリート製で上部が開放された円筒状のペデスタル17によって支持されている。ペデスタル17の底部は、ほぼ円形でコンクリート製のペデスタル底部18が形成されている。ドライウェル13のうち、ペデスタル17に囲まれて、原子炉圧力容器10の下方、かつペデスタル底部18の上方の空間をペデスタル空間19と呼ぶ。ペデスタル17の周りを囲んでウェットウェル15が形成されている。   The reactor pressure vessel 10 is supported by a cylindrical pedestal 17 made of concrete and having an open top. The bottom of the pedestal 17 is substantially circular and a concrete pedestal bottom 18 is formed. In the dry well 13, a space surrounded by the pedestal 17 and below the reactor pressure vessel 10 and above the pedestal bottom 18 is referred to as a pedestal space 19. A wet well 15 is formed around the pedestal 17.

ペデスタル底部18の一部は掘り込まれてドレンサンプ20が形成されている。ただし、図2ではドレンサンプ20の図示を省略している。ドレンサンプ20内には、図示しない漏水検出のための検出器が配置されている。   A part of the pedestal bottom 18 is dug to form a drain sump 20. However, the drain sump 20 is not shown in FIG. In the drain sump 20, a detector for detecting water leakage (not shown) is arranged.

ペデスタル底部18の上にコアキャッチャ21が配置されている。コアキャッチャ21は、炉心溶融事故時に、原子炉圧力容器10の底部を突き破って落下する炉心溶融物を保持し、冷却できる構造となっている。   A core catcher 21 is disposed on the pedestal bottom 18. The core catcher 21 has a structure that can hold and cool the core melt falling through the bottom of the reactor pressure vessel 10 in the event of a core melting accident.

なお、既設炉には上述のようにドレンサンプ20が形成されていることが多いが、コアキャッチャ21の設置にあたってドレンサンプ20とは別に漏水検出機能を有する構成を設けることも考えられる。このような構成の例としては、コアキャッチャ21に検出器を設置する、コアキャッチャ21の上方に漏水捕集用の床を設置する、といったものが考えられる。このような構成を適用するに際しては、ドレンサンプ20はそのままにしても撤去してもよい。また、プラント建設時にコアキャッチャ21を設置する場合は、ドレンサンプ20を設けずに、上述したドレンサンプ20とは異なる漏水検出機能を有する構成を設けることも考えられる。   In addition, although the drain sump 20 is often formed in the existing furnace as described above, it is conceivable to provide a structure having a water leakage detection function separately from the drain sump 20 when the core catcher 21 is installed. As an example of such a configuration, a detector may be installed on the core catcher 21, and a floor for collecting water leakage may be installed above the core catcher 21. When applying such a configuration, the drain sump 20 may be left alone or removed. Moreover, when installing the core catcher 21 at the time of plant construction, it is possible to provide the structure which has a water leak detection function different from the drain sump 20 mentioned above, without providing the drain sump 20. FIG.

事故時に原子炉格納容器12の外側からコアキャッチャ21の上方に冷却水を供給するための注水配管23が設けられ、注水配管23の途中でペデスタル空間19内に注水弁24が設けられている。   A water injection pipe 23 for supplying cooling water from the outside of the reactor containment vessel 12 to the upper side of the core catcher 21 in the event of an accident is provided, and a water injection valve 24 is provided in the pedestal space 19 in the middle of the water injection pipe 23.

コアキャッチャ21は、図2に示すように、ペデスタル底部18の上で水平に広がるほぼ円形の水平支持部30と、水平支持部30の周囲に沿って上方に延びる側壁部31とを備えている。水平支持部30とペデスタル底部18との間、および、側壁部31とペデスタル17との間に冷却水流路が形成されている。冷却水流路は、仕切板60によって仕切られ、自然循環が促進されるように構成されている。詳細の図示は省略するが、仕切板60は、コアキャッチャ21、ペデスタル底部18およびペデスタル17との間隔を適宜保つようにして支持されている。図2で、冷却水の流れの向きを矢印Aで示している。   As shown in FIG. 2, the core catcher 21 includes a substantially circular horizontal support portion 30 that extends horizontally on the pedestal bottom portion 18, and a side wall portion 31 that extends upward along the periphery of the horizontal support portion 30. . Cooling water flow paths are formed between the horizontal support 30 and the pedestal bottom 18 and between the side wall 31 and the pedestal 17. The cooling water flow path is partitioned by the partition plate 60 and is configured to promote natural circulation. Although details are not shown in detail, the partition plate 60 is supported so as to keep an appropriate distance from the core catcher 21, the pedestal bottom 18 and the pedestal 17. In FIG. 2, the direction of the cooling water flow is indicated by an arrow A.

原子炉事故時に、注水配管23および注水弁24を通じてペデスタル空間19内に流入した冷却水は、ペデスタル17内面に沿う環状の下降流路32内を下降し、その後、ペデスタル底部18に沿う底部求心流路33内をペデスタル底部18の中央へ向かって流れる。その後、冷却水は、中央上昇流路34内を上昇し、水平支持部30の下面に沿って径方向外側へ向かう遠心流路35内を流れ、その後、側壁部31の外面に沿う環状の上昇流路36内を上昇し、上昇流路36の出口から流出した冷却水の一部はふたたび下降流路32へ、一部は炉心溶融物受け装置40の内側へ流入するように構成されている。   Cooling water that has flowed into the pedestal space 19 through the water injection pipe 23 and the water injection valve 24 at the time of the reactor accident descends in the annular descending flow path 32 along the inner surface of the pedestal 17, and then the bottom centripetal flow along the pedestal bottom 18. It flows in the path 33 toward the center of the pedestal bottom 18. Thereafter, the cooling water rises in the central ascending flow path 34, flows in the centrifugal flow path 35 toward the radially outer side along the lower surface of the horizontal support portion 30, and then rises in an annular shape along the outer surface of the side wall portion 31. A part of the cooling water rising in the flow path 36 and flowing out from the outlet of the rise flow path 36 is again configured to flow into the down flow path 32 and part into the inside of the core melt receiver 40. .

水平支持部30の上面および側壁部31の内面(所定の設置面)に沿って、炉心溶融物受け装置40を構成する複数の耐熱密閉容器(密閉容器)41が敷き詰められている。耐熱密閉容器41のそれぞれが、後述するように耐熱材料を内包した耐熱部品である。各耐熱密閉容器41はほぼ直方体である。ただし、水平支持部30の上面は全体でほぼ円形であるから、たとえば図3に示すように、各耐熱密閉容器41の上面形状を台形にして、全体で円形となるように並べればよい。図3は、径方向に並べられた互いに隣接する2列の耐熱密閉容器41を示している。この場合、径方向中央には、たとえば、正多角柱状の耐熱密閉容器41(図示せず)を配置すればよい。図3に示す配置とは異なる例として、複数の直方体状の耐熱密閉容器41を水平に縦横に並べ、周辺部には三角柱状の耐熱密閉容器の配置することによって、全体で円柱状に近い多角柱状としてもよい。   A plurality of heat-resistant sealed containers (sealed containers) 41 constituting the core melt receiver 40 are laid along the upper surface of the horizontal support portion 30 and the inner surface (predetermined installation surface) of the side wall portion 31. Each of the heat-resistant airtight containers 41 is a heat-resistant component containing a heat-resistant material as will be described later. Each heat-resistant airtight container 41 is a substantially rectangular parallelepiped. However, since the upper surface of the horizontal support portion 30 is substantially circular as a whole, for example, as shown in FIG. 3, the upper surface shape of each heat-resistant sealed container 41 may be trapezoidal and arranged so as to be circular as a whole. FIG. 3 shows two rows of heat-resistant sealed containers 41 adjacent to each other arranged in the radial direction. In this case, for example, a regular polygonal column-shaped heat-resistant airtight container 41 (not shown) may be disposed at the center in the radial direction. As an example different from the arrangement shown in FIG. 3, a plurality of rectangular parallelepiped heat-resistant sealed containers 41 are arranged horizontally and vertically, and a triangular prism-shaped heat-resistant sealed container is arranged around the periphery, thereby forming a polygon that is nearly cylindrical as a whole. It may be columnar.

各耐熱密閉容器41は、図4に示すように、容器底板42と、容器底板42の上部を覆って水密に封止される容器カバー43とを有している。ただし、図4では、容器カバー43を取り付ける前の状態を示し、容器カバー43の外形は2点鎖線で示している。耐熱密閉容器41の構成材料は、ステンレス鋼やタングステンなどの高融点耐熱材料であって、炉心溶融物(デブリ)の成分に対して不活性な材料であることが望ましい。   As shown in FIG. 4, each heat-resistant airtight container 41 includes a container bottom plate 42 and a container cover 43 that covers the top of the container bottom plate 42 and is sealed in a watertight manner. However, FIG. 4 shows a state before the container cover 43 is attached, and the outer shape of the container cover 43 is indicated by a two-dot chain line. The constituent material of the heat-resistant sealed container 41 is preferably a high-melting-point heat-resistant material such as stainless steel or tungsten, and is inactive to the core melt (debris) components.

各耐熱密閉容器41の中に1個ないし複数個(本実施形態では4個として説明する)の耐熱部材47が配置され、各耐熱部材47は固定具44によって容器底板42上に固定されている。図4に示すように、各耐熱部材47はたとえば直方体状であり、酸化ジルコニウム(ジルコニア)や酸化アルミニウム(アルミナ)などの耐熱材料からなる。容器底板42の上面には耐熱部材47の下部が嵌め込まれる窪み45が形成されており、耐熱部材47が安定して固定されるように構成されている。固定具44は、図6に示すように、耐熱部材47の側部および上部を囲んで取り付けられ、ボルト穴46にボルト(図示せず)を通し、容器底板42の上面に形成したねじ穴(図示せず)にボルトを締め込むことにより取り付けることができる。   One or a plurality of heat resistant members 47 (described as four in this embodiment) are arranged in each heat resistant sealed container 41, and each heat resistant member 47 is fixed on the container bottom plate 42 by a fixture 44. . As shown in FIG. 4, each heat-resistant member 47 has a rectangular parallelepiped shape, for example, and is made of a heat-resistant material such as zirconium oxide (zirconia) or aluminum oxide (alumina). A recess 45 into which the lower part of the heat-resistant member 47 is fitted is formed on the upper surface of the container bottom plate 42, and the heat-resistant member 47 is configured to be stably fixed. As shown in FIG. 6, the fixture 44 is attached so as to surround a side portion and an upper portion of the heat-resistant member 47, a bolt (not shown) is passed through the bolt hole 46, and a screw hole formed on the upper surface of the container bottom plate 42 ( It can be attached by tightening bolts (not shown).

二つの互いに隣接する耐熱部材47の間には、モルタルなどの耐熱材料からなる粉粒体50が充填されている。図4の例では、二つの互いに隣接する耐熱部材47の対向部の一部にのみ粉粒体50が充填されているが、耐熱密閉容器41の中のすべての隙間を粉粒体50で充填してもよい。粉粒体50は、セメントをもとにした市販のモルタルでもよいし、酸化ジルコニウムを含むものを粉末状にしたものでもよい。   Between two adjacent heat-resistant members 47, a granular material 50 made of a heat-resistant material such as mortar is filled. In the example of FIG. 4, the powder body 50 is filled only in a part of the opposing portions of the two adjacent heat-resistant members 47, but all the gaps in the heat-resistant sealed container 41 are filled with the powder body 50. May be. The granular material 50 may be a commercially available mortar based on cement, or a powder containing zirconium oxide.

炉心溶融物受け装置40を構成する複数の耐熱密閉容器41を水平支持部30の上面および側壁部31の内面(所定の設置面)に沿って並べて設置するに当たっては、たとえば、アンカーボルト(図示せず)を用いることができる。すなわち、設置面に複数のアンカーボルトを設置し、耐熱密閉容器41にアンカーボルトが貫通するボルト穴(図示せず)を設け、アンカーボルトにナット(図示せず)を締め付けることにより、耐熱密閉容器41を固定することができる。また、互いに隣接する耐熱密閉容器41同士を結合部材(図示せず)によって結合してもよい。   In order to install a plurality of heat-resistant airtight containers 41 constituting the core melt receiver 40 side by side along the upper surface of the horizontal support portion 30 and the inner surface (predetermined installation surface) of the side wall portion 31, for example, anchor bolts (not shown) Can be used. That is, a plurality of anchor bolts are installed on the installation surface, a bolt hole (not shown) through which the anchor bolt penetrates is provided in the heat-resistant airtight container 41, and a nut (not shown) is tightened on the anchor bolt. 41 can be fixed. Moreover, you may couple | bond together the heat-resistant airtight container 41 which adjoins mutually by a coupling member (not shown).

耐熱密閉容器41が水密であることから、原子炉圧力容器に接続された配管からの漏洩等の、過酷事故ではない事象で冷却水が炉心溶融物受け装置40上に落下した場合に、冷却水が耐熱密閉容器41内部へ侵入して内部の耐熱部材47等が劣化するのを防止することができる。   Since the heat-resistant airtight container 41 is watertight, when the cooling water falls on the core melt receiving device 40 due to an event that is not a severe accident such as leakage from a pipe connected to the reactor pressure vessel, the cooling water Can be prevented from entering the heat-resistant airtight container 41 and the internal heat-resistant member 47 and the like being deteriorated.

ここで、本実施形態の炉心溶融物受け装置40を原子炉格納容器12内に設置する方法について、図7を参照して説明する。図7は第1の実施形態に係る炉心溶融物受け装置の設置方法の手順の一例を示すフロー図である。   Here, a method of installing the core melt receiver 40 of the present embodiment in the reactor containment vessel 12 will be described with reference to FIG. FIG. 7 is a flowchart showing an example of the procedure of the installation method of the core melt receiving apparatus according to the first embodiment.

はじめに、複数の耐熱密閉容器41内それぞれに、複数の耐熱部材47を収容して、固定具44により耐熱密閉容器41内に固定する(耐熱部材固定ステップS1)。ただし、このときは、容器カバー43が外されていて、耐熱密閉容器41は密閉されていない。   First, a plurality of heat-resistant members 47 are accommodated in each of the plurality of heat-resistant sealed containers 41, and are fixed in the heat-resistant sealed containers 41 by the fixtures 44 (heat-resistant member fixing step S1). However, at this time, the container cover 43 is removed, and the heat-resistant sealed container 41 is not sealed.

つぎに、耐熱密閉容器41内の複数の耐熱部材47同士の隙間や耐熱密閉容器41と耐熱部材47の隙間などに、耐熱材料からなる粉粒体50を充填する(充填ステップS2)。   Next, the granular material 50 made of a heat-resistant material is filled in a gap between the plurality of heat-resistant members 47 in the heat-resistant sealed container 41 or a gap between the heat-resistant sealed container 41 and the heat-resistant member 47 (filling step S2).

つぎに、耐熱密閉容器41の容器カバー43を容器底板42に被せて容器カバー43と容器底板42とを溶接などにより水密に接合する(密閉ステップS3)。   Next, the container cover 43 of the heat-resistant sealed container 41 is placed on the container bottom plate 42, and the container cover 43 and the container bottom plate 42 are joined in a watertight manner by welding or the like (sealing step S3).

以上のステップS1〜S3は原子炉格納容器12の外で行うことができる。   The above steps S1 to S3 can be performed outside the reactor containment vessel 12.

つぎに、密閉された耐熱密閉容器41を原子炉格納容器12内に搬入する(搬入ステップS4)。   Next, the sealed heat-resistant airtight container 41 is carried into the reactor containment vessel 12 (carrying-in step S4).

つぎに、原子炉格納容器12内に搬入された耐熱密閉容器41を水平支持部30の上面および側壁部31の内面(所定の設置面)に沿って並べる(容器設置ステップS5)。   Next, the heat-resistant airtight containers 41 carried into the reactor containment vessel 12 are arranged along the upper surface of the horizontal support portion 30 and the inner surface (predetermined installation surface) of the side wall portion 31 (container installation step S5).

この実施形態によれば、耐熱部材47が耐熱密閉容器41内に収納されて固定されていることから、たとえば、圧力容器下部構造物落下による機械衝撃、常時運転時の炉水による耐熱材浸水、地震による耐熱材のずれを防止できる。   According to this embodiment, since the heat-resistant member 47 is housed and fixed in the heat-resistant airtight container 41, for example, a mechanical impact caused by dropping of the pressure vessel lower structure, immersion of heat-resistant material by reactor water during normal operation, The shift of heat-resistant materials due to an earthquake can be prevented.

また、耐熱密閉容器41に高融点でデブリ成分と不活性な材料等を用いることで、炉心溶融物落下時の短期的なインピンジメントを防止することができる。耐熱部材47の材料として酸化ジルコニウムなどの耐熱材料を用いることにより、炉心溶融物による長期的な侵食を抑制することができる。耐熱部材47間に耐熱材料からなる粉粒体50を充填することにより、高温状態の際にも粉粒体50が溶融しにくく、かつ耐熱部材47の熱膨張による伸びを吸収することができ、耐熱部材47の破損を防止することができる。これにより、耐熱部材47の位置ずれ、破損、崩落する要因の影響を限りなく小さくし、耐熱部材47の本来の機能を引き出すことができる。   Further, by using a high melting point debris component and an inert material for the heat-resistant airtight container 41, short-term impingement when the core melt is dropped can be prevented. By using a heat-resistant material such as zirconium oxide as the material of the heat-resistant member 47, long-term erosion due to the core melt can be suppressed. By filling the heat-resistant member 47 with the granular material 50 made of a heat-resistant material, the granular material 50 is hardly melted even in a high temperature state, and the elongation due to the thermal expansion of the heat-resistant member 47 can be absorbed. Damage to the heat-resistant member 47 can be prevented. As a result, the influence of the cause of the positional shift, breakage, and collapse of the heat-resistant member 47 can be minimized, and the original function of the heat-resistant member 47 can be brought out.

なお、コアキャッチャ21が炉心溶融物を保持できる時間の観点、炉心溶融物受け装置40を介しての炉心溶融物と冷却水の熱交換の観点では、耐熱密閉容器41内の体積を耐熱部材47が占める割合が高く、かつすべての隙間に粉粒体50を充填することが好ましい。より具体的には、耐熱密閉容器41内の耐熱材料の質量が大きいほど炉心溶融物を長時間保持できるため、耐熱材部材47の占める割合が高いことが望ましい。また、粉粒体50の占める割合が大きいほど充填や充填率管理等の工程時間が長くなることから、製作性の観点からも耐熱材47の占める割合が大きいことが望ましい。したがって、耐熱材47を設置したのちの固定具44取り付け等の作業性と、上述した耐熱部材47の熱膨張の吸収に十分な隙間が確保される前提の下で、耐熱部材47は大きいほど好ましい。また、耐熱密閉容器41内の耐熱材料の質量の増大や熱交換の効率向上の観点から、隙間は空間とせず粉粒体50で充填するほうが望ましい。   From the viewpoint of the time during which the core catcher 21 can hold the core melt, and from the viewpoint of heat exchange between the core melt and the cooling water via the core melt receiver 40, the volume in the heat-resistant sealed container 41 is set to the heat-resistant member 47. It is preferable to fill the powder body 50 in all the gaps. More specifically, since the core melt can be held for a longer time as the mass of the heat-resistant material in the heat-resistant sealed container 41 is larger, it is desirable that the ratio of the heat-resistant material member 47 is higher. Moreover, since the process time, such as filling and filling rate management, becomes longer as the proportion of the powder particles 50 is larger, it is desirable that the proportion of the heat-resistant material 47 is larger from the viewpoint of manufacturability. Therefore, the larger the heat-resistant member 47 is, the more preferable, on the premise that a sufficient gap is secured to absorb the thermal expansion of the heat-resistant member 47 and the workability of attaching the fixing tool 44 after the heat-resistant material 47 is installed. . In addition, from the viewpoint of increasing the mass of the heat-resistant material in the heat-resistant airtight container 41 and improving the efficiency of heat exchange, it is desirable to fill the gaps with the powder 50 instead of spaces.

他方で、耐熱密閉容器41内の耐熱材料の熱膨張による伸びを吸収できるように、隙間を完全に粉粒体50で充填せず一定の空間を確保するか、粉粒体50の充填率が所定以下となるようにする。   On the other hand, in order to absorb the elongation due to the thermal expansion of the heat-resistant material in the heat-resistant airtight container 41, the gap is not completely filled with the powder 50, but a certain space is secured, or the filling rate of the powder 50 is It is made to become below predetermined.

さらに、本実施形態によれば、各耐熱密閉容器41内に複数の耐熱部材47が収納されて固定されていることから、原子炉格納容器12の外で、各耐熱密閉容器41内に複数の耐熱部材47を収納し固定して、各耐熱密閉容器41を密閉した後に原子炉格納容器12内に搬入して、これらの耐熱密閉容器41を設置することができ、原子炉格納容器12内への搬入および原子炉格納容器12内での設置作業を効率よく進めることができる。   Furthermore, according to the present embodiment, since a plurality of heat-resistant members 47 are housed and fixed in each heat-resistant sealed container 41, a plurality of heat-resistant sealed containers 41 are disposed outside the reactor containment vessel 12. The heat-resistant member 47 is housed and fixed, and each heat-resistant sealed container 41 is sealed and then loaded into the reactor containment vessel 12 so that these heat-resistant sealed containers 41 can be installed. And the installation work in the reactor containment vessel 12 can be efficiently advanced.

なお、上記説明で、「耐熱」という表現には、高温における強度が大きいこと、融点が高いこと、高温の炉心溶融物との反応性が低いこと、が含まれている。   In the above description, the expression “heat resistance” includes high strength at high temperature, high melting point, and low reactivity with high temperature core melt.

図1および図2に示すコアキャッチャ21では、水平支持部30が水平に広がっているものとしたが、変形例として、この水平支持部30が、中央が低く周辺部が高くなったボウル状(すり鉢状)であってもよい。そのような形状であれば、冷却水の自然循環のさらなる促進が期待される。   In the core catcher 21 shown in FIG. 1 and FIG. 2, the horizontal support portion 30 is assumed to spread horizontally, but as a modification, the horizontal support portion 30 has a bowl shape with a low center and a high peripheral portion ( (Mortar shape). With such a shape, further promotion of the natural circulation of cooling water is expected.

また、耐熱密閉容器41や耐熱部材47は、設置面の形状に応じて種々の形状をとることができる。特に、既存の構造物が存在するペデスタル空間の底部や壁に敷設する場合やコアキャッチャ21の形状・構造によっては、他の構造物との干渉等を考慮して複雑な形状とすることが望ましい場合も考えられる。このような場合、金属製で加工が容易な耐熱密閉容器41を複雑な形状とし、その内部は直方体等の耐熱部材47を配して粉粒体50を充填すればよいため、耐熱部材47を複雑な形状に形成するよりも製作性が向上する。   Moreover, the heat-resistant airtight container 41 and the heat-resistant member 47 can take various shapes according to the shape of the installation surface. In particular, when laying on the bottom or wall of a pedestal space where an existing structure exists, or depending on the shape and structure of the core catcher 21, it is desirable to have a complicated shape in consideration of interference with other structures. Cases are also conceivable. In such a case, the heat-resistant airtight container 41 made of metal and easy to process is formed into a complicated shape, and the heat-resistant member 47 such as a rectangular parallelepiped is disposed inside and filled with the powder body 50. Manufacturability is improved compared to forming in a complicated shape.

[第2の実施形態]
図8は、第2の実施形態に係る炉心溶融物受け装置を示す模式的立断面図である。この実施形態では、原子炉格納容器12内にコアキャッチャ21(図1、図2)が設置されておらず、炉心溶融物受け装置40を構成する複数の耐熱密閉容器41が、ペデスタル底部18の上面およびペデスタル17の内面(所定の設置面)に沿って敷き詰められている。その他の構成は第1の実施形態と同様である。ここでは、ドレンサンプ20(図1)の図示は省略する。
[Second Embodiment]
FIG. 8 is a schematic vertical sectional view showing a core melt receiving apparatus according to the second embodiment. In this embodiment, the core catcher 21 (FIG. 1, FIG. 2) is not installed in the reactor containment vessel 12, and a plurality of heat-resistant airtight containers 41 constituting the core melt receiver 40 are provided on the bottom of the pedestal bottom 18. It is spread along the upper surface and the inner surface (predetermined installation surface) of the pedestal 17. Other configurations are the same as those of the first embodiment. Here, the drain sump 20 (FIG. 1) is not shown.

この実施形態では、原子炉格納容器12内にコアキャッチャが設置されていない場合において、コンクリート製のペデスタル底部18の上面やペデスタル17の内面に炉心溶融物が直接接触するのを避けることができる。その他の作用・効果は第1の実施形態と同様である。   In this embodiment, when the core catcher is not installed in the reactor containment vessel 12, it is possible to avoid the core melt from coming into direct contact with the upper surface of the concrete pedestal bottom 18 or the inner surface of the pedestal 17. Other operations and effects are the same as those of the first embodiment.

[第3の実施形態]
図9は、第3の実施形態に係る炉心溶融物受け装置を示す模式的立断面図である。この実施形態は、第2の実施形態の変形であって、複数の耐熱密閉容器41同士の間に隙間53が形成されている。その他の構成は第2の実施形態と同様である。
[Third Embodiment]
FIG. 9 is a schematic vertical sectional view showing a core melt receiving device according to a third embodiment. This embodiment is a modification of the second embodiment, and a gap 53 is formed between a plurality of heat-resistant sealed containers 41. Other configurations are the same as those of the second embodiment.

この実施形態では、耐熱密閉容器41が熱膨張した場合に、耐熱密閉容器41同士が干渉して破損することを避けることができる。   In this embodiment, when the heat-resistant airtight container 41 is thermally expanded, the heat-resistant airtight containers 41 can be prevented from interfering with each other and being damaged.

なお、図9に示す例では、ペデスタル17の内面とペデスタル底部18の上面との接合部付近に隙間53が形成されているが、その他の位置でも、ペデスタル17の内面またはペデスタル底部18の上面と耐熱密閉容器41との間、または互いに隣接する耐熱密閉容器41同士の間に隙間を形成することにより、耐熱密閉容器41などの熱膨張による耐熱密閉容器41などの破損を避けることができる。   In the example shown in FIG. 9, a gap 53 is formed in the vicinity of the joint between the inner surface of the pedestal 17 and the upper surface of the pedestal bottom portion 18, but the inner surface of the pedestal 17 or the upper surface of the pedestal bottom portion 18 is also located at other positions. By forming a gap between the heat-resistant airtight containers 41 or between the heat-resistant airtight containers 41 adjacent to each other, damage to the heat-resistant airtight containers 41 and the like due to thermal expansion of the heat-resistant airtight containers 41 and the like can be avoided.

上記説明では、この第3の実施形態は、第2の実施形態の変形として、耐熱密閉容器41をペデスタル17の内面およびペデスタル底部18の上面に沿って並べるものとした。この実施形態の変形として、第1の実施形態と同様に、コアキャッチャ21の水平支持部30の上面および側壁部31の内面(図2参照)に沿って耐熱密閉容器41を並べる場合に、耐熱密閉容器41同士の間、または、耐熱密閉容器41と水平支持部30の上面または側壁部31の内面との間に隙間を形成することにより、同様の効果を得ることができる。   In the above description, in the third embodiment, as a modification of the second embodiment, the heat-resistant sealed container 41 is arranged along the inner surface of the pedestal 17 and the upper surface of the pedestal bottom portion 18. As a modification of this embodiment, as in the first embodiment, when the heat-resistant sealed containers 41 are arranged along the upper surface of the horizontal support portion 30 of the core catcher 21 and the inner surface of the side wall portion 31 (see FIG. 2), A similar effect can be obtained by forming a gap between the sealed containers 41 or between the heat-resistant sealed container 41 and the upper surface of the horizontal support portion 30 or the inner surface of the side wall portion 31.

[第4の実施形態]
図10は、第4の実施形態に係る炉心溶融物受け装置の一つの耐熱密閉容器の内部構造を示す模式的立断面図である。
[Fourth Embodiment]
FIG. 10 is a schematic vertical sectional view showing the internal structure of one heat-resistant airtight container of the core melt receiver according to the fourth embodiment.

この実施形態では、耐熱密閉容器41内に収納される複数の耐熱部材47が上層耐熱部材(第1の耐熱部材)47aと下層耐熱部材(第2の耐熱部材)47bの2層になっている。   In this embodiment, the plurality of heat-resistant members 47 housed in the heat-resistant sealed container 41 are two layers of an upper layer heat-resistant member (first heat-resistant member) 47a and a lower layer heat-resistant member (second heat-resistant member) 47b. .

上層耐熱部材47aは、下層耐熱部材47bに比べて、耐熱性の高い材料からできている。たとえば、上層耐熱部材47aは酸化ジルコニウム製であり、下層耐熱部材47bは酸化アルミニウム製である。この炉心溶融物受け装置に炉心溶融物が上方から落下する場合、上層耐熱部材47aの方が下層耐熱部材47bに比べてより高温にさらされ、デブリの成分との反応が起こる可能性も高い。この実施形態では、上層耐熱部材47aの方が下層耐熱部材47bに比べて耐熱性の高くデブリの成分との反応性が低い材料からできているので、上層耐熱部材47aの損傷を抑制することができる。また、耐熱性が高くて高価な材料、たとえば酸化ジルコニウムを下層耐熱部材47bに使用しないことにより、全体のコストを抑制することができる。   The upper heat resistant member 47a is made of a material having higher heat resistance than the lower heat resistant member 47b. For example, the upper heat-resistant member 47a is made of zirconium oxide, and the lower heat-resistant member 47b is made of aluminum oxide. When the core melt falls from above into the core melt receiver, the upper heat-resistant member 47a is exposed to a higher temperature than the lower heat-resistant member 47b, and there is a high possibility that a reaction with debris components will occur. In this embodiment, the upper heat-resistant member 47a is made of a material having higher heat resistance and lower reactivity with the debris component than the lower heat-resistant member 47b, so that the damage to the upper heat-resistant member 47a can be suppressed. it can. Further, by not using an expensive material having high heat resistance such as zirconium oxide for the lower layer heat resistant member 47b, the overall cost can be suppressed.

また、この実施形態では、上層耐熱部材47a同士の接合部と下層耐熱部材47b同士の接合部の水平方向位置がずれている。これにより、事故時に、耐熱密閉容器41の上方から炉心溶融物が侵入してきた場合に、かりに上層耐熱部材47a同士の間の粉粒体50が溶けて炉心溶融物が落下しても、炉心溶融物の落下は下層耐熱部材47bによって阻止される。これにより、炉心溶融物の落下を阻止できる。   In this embodiment, the horizontal position of the joint between the upper heat-resistant members 47a and the joint between the lower heat-resistant members 47b are shifted. As a result, even if the core melt enters from the upper side of the heat-resistant airtight container 41 in the event of an accident, even if the powder 50 between the upper heat-resistant members 47a melts and the core melt falls, the core melts. The fall of the object is prevented by the lower layer heat-resistant member 47b. Thereby, the fall of the core melt can be prevented.

この第4の実施形態で、耐熱密閉容器41の内部構造以外の構成は、第1ないし第3の実施形態のいずれかと同様である。   In the fourth embodiment, the configuration other than the internal structure of the heat-resistant sealed container 41 is the same as that of any of the first to third embodiments.

上記説明では、耐熱密閉容器41に対して上方から炉心溶融物が落下することを想定し、耐熱密閉容器41の上部が下部よりも高温にさらされる場合について説明した。しかし、ペデスタル17の内面またはコアキャッチャ21の側壁部31の内面に配置される耐熱密閉容器41では、事故時に炉心溶融物に近い内側がより高温にさらされる。したがって、その場合は、炉心溶融物に近い内側が上記説明における上層耐熱部材(第1の耐熱部材)47aに対応し、炉心溶融物から遠い外側が上記説明における下層耐熱部材(第2の耐熱部材)47bに対応する。   In the above description, assuming that the core melt falls from above with respect to the heat-resistant sealed container 41, the case where the upper part of the heat-resistant sealed container 41 is exposed to a higher temperature than the lower part has been described. However, in the heat-resistant sealed container 41 disposed on the inner surface of the pedestal 17 or the inner surface of the side wall portion 31 of the core catcher 21, the inner side close to the core melt is exposed to a higher temperature in the event of an accident. Therefore, in that case, the inner side close to the core melt corresponds to the upper heat-resistant member (first heat-resistant member) 47a in the above description, and the outer side far from the core melt corresponds to the lower heat-resistant member (second heat-resistant member in the above description). ) 47b.

また、上記説明で、上層耐熱部材47a同士の接合部と下層耐熱部材47b同士の接合部の水平方向位置がずれているとしたが、ペデスタル17の内面またはコアキャッチャ21の側壁部31の内面に配置される耐熱密閉容器41を含めて考えると、事故時に炉心溶融物から見て、第1の耐熱部材47a同士の接合部と第2の耐熱部材47b同士の接合部とが重ならない位置にあればよい。   In the above description, the horizontal position of the joint between the upper heat-resistant members 47a and the joint between the lower heat-resistant members 47b is shifted, but the inner surface of the pedestal 17 or the inner surface of the side wall 31 of the core catcher 21 Considering the heat-resistant airtight container 41 to be arranged, the joint between the first heat-resistant members 47a and the joint between the second heat-resistant members 47b do not overlap each other when viewed from the core melt at the time of the accident. That's fine.

[他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
[Other Embodiments]
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

例えば、第1の実施形態において、炉心溶融物の保持や炉心溶融物受け装置40を介しての炉心溶融物と冷却水の熱交換について必要な性能を満たせるのであれば、耐熱密閉容器41内に耐熱部材47を配さずに粉粒体50を充填した構成でもよい。このような構成によっても、地震や機械的衝撃等による耐熱材料の破損や水による劣化等の可能性の低減、また設置面に並べる施工が容易といった効果を奏する。   For example, in the first embodiment, if the required performance can be satisfied for the core melt holding and the heat exchange between the core melt and the cooling water via the core melt receiving device 40, the heat resistant sealed container 41 can be used. The structure filled with the granular material 50 without providing the heat-resistant member 47 may be sufficient. Even with such a configuration, it is possible to reduce the possibility of breakage of heat-resistant materials due to earthquakes, mechanical shocks, etc., deterioration due to water, and the like, and it is easy to perform construction on the installation surface.

10…原子炉圧力容器、 11…炉心、 12…原子炉格納容器、 13…ドライウェル、 14…圧力抑制プール、 15…ウェットウェル、 16…ベント管、 17…ペデスタル、 18…ペデスタル底部、 19…ペデスタル空間、 20…ドレンサンプ、 21…コアキャッチャ、 23…注水配管、 24…注水弁、 30…水平支持部、 31…側壁部、 32…下降流路、 33…底部求心流路、 34…中央上昇流路、 35…遠心流路、 36…上昇流路、 40…炉心溶融物受け装置、 41…耐熱密閉容器(密閉容器)、 42…容器底板、 43…容器カバー、 44…固定具、 45…窪み、 46…ボルト穴、 47…耐熱部材、 47a…上層耐熱部材(第1の耐熱部材)、 47b…下層耐熱部材(第2の耐熱部材)、 50…粉粒体、 53…隙間、 60…仕切板、 100…原子力施設 DESCRIPTION OF SYMBOLS 10 ... Reactor pressure vessel, 11 ... Core, 12 ... Reactor containment vessel, 13 ... Dry well, 14 ... Pressure suppression pool, 15 ... Wet well, 16 ... Vent pipe, 17 ... Pedestal, 18 ... Bottom of pedestal, 19 ... Pedestal space, 20 ... Drain sump, 21 ... Core catcher, 23 ... Water injection piping, 24 ... Water injection valve, 30 ... Horizontal support, 31 ... Side wall, 32 ... Down flow path, 33 ... Bottom centripetal flow path, 34 ... Center rise Flow path, 35 ... Centrifugal flow path, 36 ... Ascending flow path, 40 ... Core melt receiving device, 41 ... Heat-resistant sealed container (sealed container), 42 ... Container bottom plate, 43 ... Container cover, 44 ... Fixing tool, 45 ... 46, Bolt hole, 47 ... Heat resistant member, 47a ... Upper layer heat resistant member (first heat resistant member), 47b ... Lower layer heat resistant member (second heat resistant member), 50 Granules, 53 ... gap, 60 ... partition plate, 100 ... nuclear facilities

Claims (15)

炉心を収容する原子炉圧力容器を格納する原子炉格納容器内で前記原子炉圧力容器の下方に設置されて、事故時に前記炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置であって、
所定の設置面に沿って並べられた複数の密閉容器と、
前記密閉容器に充填された耐熱材料からなる粉粒体と、
を備えたことを特徴とする炉心溶融物受け装置。
A core melt receiving device installed below the reactor pressure vessel in the reactor containment vessel for storing the reactor pressure vessel containing the core and receiving the core melt generated when the core melts in the event of an accident. There,
A plurality of sealed containers arranged along a predetermined installation surface;
A granular material made of a heat-resistant material filled in the sealed container;
A core melt receiver.
前記密閉容器それぞれの内部に収容されて前記密閉容器内に固定された耐熱部材をさらに備え
前記粉粒体は前記密閉容器と前記耐熱部材の隙間間に充填されたことを特徴とする請求項1記載の炉心溶融物受け装置。
The heat-resistant member accommodated in each of the sealed containers and further fixed in the sealed container is further provided, wherein the granular material is filled in a gap between the sealed container and the heat-resistant member. The core melt receiver as described.
前記設置面は前記原子炉格納容器内の床面であることを特徴とする請求項2に記載の炉心溶融物受け装置。   The core melt receiving apparatus according to claim 2, wherein the installation surface is a floor surface in the reactor containment vessel. 前記設置面は前記原子炉格納容器内の床面の上方に位置し、前記設置面と前記床面との間に冷却水が流通する冷却水流路が形成されていることを特徴とする請求項2に記載の炉心溶融物受け装置。   The said installation surface is located above the floor surface in the said reactor containment vessel, The cooling water flow path through which a cooling water distribute | circulates between the said installation surface and the said floor surface is formed. 2. The core melt receiving apparatus according to 2. 前記密閉容器同士の間または前記密閉容器と前記設置面との間に、前記密閉容器の熱膨張を吸収するための隙間が形成されていること、を特徴とする請求項2ないし請求項4のいずれか一項に記載の炉心溶融物受け装置。   5. A gap for absorbing thermal expansion of the sealed container is formed between the sealed containers or between the sealed container and the installation surface. The core melt receiver according to any one of the preceding claims. 前記複数の密閉容器の少なくとも一つの内部に収納された前記耐熱部材が、事故時に前記炉心溶融物に比較的近くなる側に配置された第1の耐熱部材と、前記第1の耐熱部材に比べて事故時に前記炉心溶融物に遠くなる側に配置された第2の耐熱部材とを含み、前記第1の耐熱部材の耐熱温度が第2の耐熱部材の耐熱温度よりも高いこと、を特徴とする請求項2ないし請求項5のいずれか一項に記載の炉心溶融物受け装置。   The heat-resistant member housed in at least one of the plurality of closed containers is compared with the first heat-resistant member and the first heat-resistant member disposed on the side relatively close to the core melt at the time of an accident. And a second heat-resistant member disposed on the side farther from the core melt at the time of an accident, wherein the heat-resistant temperature of the first heat-resistant member is higher than the heat-resistant temperature of the second heat-resistant member, The core melt receiving device according to any one of claims 2 to 5. 前記複数の密閉容器の少なくとも一つの内部に収納された前記耐熱部材が、事故時に前記炉心溶融物に比較的近くなる側に配置された複数の第1の耐熱部材と、前記第1の耐熱部材に比べて事故時に前記炉心溶融物に遠くなる側に配置された複数の第2の耐熱部材とを含み、
前記複数の第1の耐熱部材同士の隙間と前記複数の第2の耐熱部材同士の隙間とが事故時に前記炉心溶融物から見て重ならない位置にあること、を特徴とする請求項2ないし請求項6のいずれか一項に記載の炉心溶融物受け装置。
A plurality of first heat-resistant members, wherein the heat-resistant member housed in at least one of the plurality of closed containers is disposed on a side relatively close to the core melt at the time of an accident, and the first heat-resistant member A plurality of second heat-resistant members disposed on the side farther from the core melt at the time of an accident than
The gap between the plurality of first heat-resistant members and the gap between the plurality of second heat-resistant members are in positions where they do not overlap when viewed from the core melt at the time of an accident. Item 7. The core melt receiver according to any one of Items 6 to 7.
前記耐熱部材の耐熱温度は前記粉粒体および前記密閉容器の耐熱温度と同等以上であること、を特徴とする請求項2ないし請求項7のいずれか一項に記載の炉心溶融物受け装置。   The core melt receiving apparatus according to any one of claims 2 to 7, wherein a heat resistant temperature of the heat resistant member is equal to or higher than a heat resistant temperature of the granular material and the sealed container. 前記耐熱部材はジルコニアを含むこと、を特徴とする請求項2ないし請求項8のいずれか一項に記載の炉心溶融物受け装置。   The core melt receiving device according to any one of claims 2 to 8, wherein the heat-resistant member contains zirconia. 前記密閉容器は金属材料からなること、を特徴とする請求項2ないし請求項9のいずれか一項に記載の炉心溶融物受け装置。   The core melt receiving apparatus according to any one of claims 2 to 9, wherein the sealed container is made of a metal material. 前記複数の密閉容器の少なくとも一つの内部に配置されて前記密閉容器に前記複数の耐熱部材を固定する固定具をさらに備えたこと、を特徴とする請求項2ないし請求項10のいずれか一項に記載の炉心溶融物受け装置。   11. The apparatus according to claim 2, further comprising a fixture that is disposed inside at least one of the plurality of sealed containers and fixes the plurality of heat-resistant members to the sealed container. The core melt receiving apparatus described in 1. 前記複数の密閉容器の少なくとも一つの密閉容器内の底部に、前記耐熱部材の少なくとも一つが嵌め込まれた窪みが形成されていること、を特徴とする請求項2ないし請求項11のいずれか一項に記載の炉心溶融物受け装置。   The recess into which at least one of the heat-resistant members is fitted is formed at the bottom of at least one sealed container of the plurality of sealed containers. The core melt receiving apparatus described in 1. 炉心と、
前記炉心を収容する原子炉圧力容器と、
前記原子炉圧力容器を格納する原子炉格納容器と、
前記原子炉格納容器内で前記原子炉圧力容器の下方に設置されて、事故時に前記炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置と、
を備えた原子力施設であって、
前記炉心溶融物受け装置は、
所定の設置面に沿って並べられた複数の密閉容器と、
前記密閉容器に充填された耐熱材料からなる粉粒体と、
を有すること、を特徴とする原子力施設。
The reactor core,
A reactor pressure vessel containing the core;
A reactor containment vessel for housing the reactor pressure vessel;
A core melt receiving device that is installed below the reactor pressure vessel in the reactor containment vessel and receives a core melt generated when the core is melted in the event of an accident;
A nuclear facility equipped with
The core melt receiver is
A plurality of sealed containers arranged along a predetermined installation surface;
A granular material made of a heat-resistant material filled in the sealed container;
A nuclear facility characterized by comprising:
事故時に炉心が溶融した場合に生じる炉心溶融物を受け止める炉心溶融物受け装置を、前記炉心を収容する原子炉圧力容器の下方の原子炉格納容器内に設置する方法であって、
複数の密閉容器に耐熱材料からなる粉粒体を充填する充填ステップと、
前記充填ステップの後に前記複数の密閉容器を密閉する密閉ステップと、
前記密閉ステップの後に前記複数の密閉容器を所定の設置面に沿って並べる容器設置ステップと、
を備えたことを特徴とする炉心溶融物受け装置設置方法。
A method of installing a core melt receiving device for receiving a core melt generated when a core is melted at the time of an accident in a reactor containment vessel below a reactor pressure vessel containing the core,
A filling step of filling a plurality of hermetic containers with a granular material made of a heat-resistant material;
A sealing step of sealing the plurality of sealed containers after the filling step;
A container installation step of arranging the plurality of sealed containers along a predetermined installation surface after the sealing step;
A method for installing a core melt receiving apparatus, comprising:
所定の設置面に沿って複数並べられる耐熱部品であって、
密閉容器と、
前記密閉容器の内部に充填された耐熱材料からなる粉粒体と、
を備えたことを特徴とする耐熱部品。
A heat-resistant component that is arranged in a plurality along a predetermined installation surface,
A sealed container;
A granular material made of a heat-resistant material filled in the sealed container;
Heat-resistant parts characterized by comprising
JP2017158108A 2017-08-18 2017-08-18 Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities Active JP6878203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017158108A JP6878203B2 (en) 2017-08-18 2017-08-18 Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158108A JP6878203B2 (en) 2017-08-18 2017-08-18 Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities

Publications (3)

Publication Number Publication Date
JP2019035696A true JP2019035696A (en) 2019-03-07
JP2019035696A5 JP2019035696A5 (en) 2020-03-12
JP6878203B2 JP6878203B2 (en) 2021-05-26

Family

ID=65637497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158108A Active JP6878203B2 (en) 2017-08-18 2017-08-18 Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities

Country Status (1)

Country Link
JP (1) JP6878203B2 (en)

Also Published As

Publication number Publication date
JP6878203B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP3554001B2 (en) Corium protective assembly
JP6776241B2 (en) A system that cools and traps the molten core of a pressurized water reactor
US4036688A (en) Apparatus for controlling molten core debris
KR960008856B1 (en) Passive cooling system for liquid metal cooled nuclear reactors with back-up coolant folw path
BR112017013046B1 (en) CONFINMENT AND COOLING SYSTEM FOR MOLTEN MATERIAL FROM NUCLEAR REACTOR CORE MODERATED BY WATER AND COOLED BY WATER
KR100366322B1 (en) Passive air-cooled liquid metal-cooled reactor with double vessel leakage adaptability
JP2634739B2 (en) Liquid metal cooled reactor plant
JP2009145135A (en) Reactor container, and leakage-detecting floor
RU2453006C1 (en) Container to transport spent nuclear fuel
US20200126679A1 (en) Core catcher and boiling water nuclear plant using the same
RU2465662C1 (en) Container for transportation and/or storage of spent nuclear fuel
US20130170598A1 (en) Nuclear reactor containment vessel
JP2011163829A (en) Corium cooling structure
JP4828963B2 (en) Core melt cooling device, reactor containment vessel, and method of installing core melt cooling device
JP2013104711A (en) Liquid metal cooled nuclear reactor
JP6109580B2 (en) Molten core holding device and reactor containment vessel provided with the same
JP6878203B2 (en) Core melt receiver and its installation method, heat-resistant parts, and nuclear facilities
JP2012021877A (en) Core molten material holding device and containment vessel
RU2510721C1 (en) Container for spent nuclear fuel transportation
WO2013150750A1 (en) Structure for protecting penetrating part of reactor pressure vessel, and reactor
KR20140060768A (en) Support structure for nuclear reactor
JP2012083131A (en) Liquid metal-cooled nuclear reactor
KR101278196B1 (en) Apparatus with vertical hole for treating a melted fuel rod of nuclear reactor
JP6462501B2 (en) Drain sump protection structure and containment vessel
KR101404954B1 (en) Method Of Nuclear Corium Cooling Using Liquid Metal Layer, And Nuclear Corium Cooling System Using The Same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150