JP2012083131A - Liquid metal-cooled nuclear reactor - Google Patents

Liquid metal-cooled nuclear reactor Download PDF

Info

Publication number
JP2012083131A
JP2012083131A JP2010227483A JP2010227483A JP2012083131A JP 2012083131 A JP2012083131 A JP 2012083131A JP 2010227483 A JP2010227483 A JP 2010227483A JP 2010227483 A JP2010227483 A JP 2010227483A JP 2012083131 A JP2012083131 A JP 2012083131A
Authority
JP
Japan
Prior art keywords
liquid metal
sleeve
silo
containment vessel
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010227483A
Other languages
Japanese (ja)
Inventor
Nobuhisa Takezawa
伸久 竹澤
Hideki Horie
英樹 堀江
Fumie Sebe
芙美絵 瀬部
Hisato Matsumiya
壽人 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010227483A priority Critical patent/JP2012083131A/en
Publication of JP2012083131A publication Critical patent/JP2012083131A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a liquid metal-cooled nuclear reactor which prevents contact of leaked liquid metal with cooling air and surely and efficiently removes heat generated in the liquid metal-cooled nuclear reactor by a multiple and passive reactor vessel auxiliary cooling system which is newly constituted even though an accident like a hypothetical event occurs.SOLUTION: A liquid metal-cooled nuclear reactor 1 includes; a reactor vessel 4 in which liquid metal is filled; a containment vessel 6 for containing the reactor vessel 4; a silo 7 for storing the containment vessel 6 via an annular space 35; a collector 10 which partitions the annular space 35 and which comprises a cylindrical sleeve 21 forming an air downward flow channel 12 on the side of the silo 7 and an air upward flow channel 13 on the side of the containment vessel 6; multiple closing members 15 which are arranged on the bottom part 14 of the silo 7 and whose specific gravity is smaller than the liquid metal; and a plurality of heat pipes 20 whose each one end is arranged within the sleeve 21 of the collector 10 and whose each of the other end is arranged outside a building. A melting point of the sleeve 21 is lower than a temperature of leaked liquid metal.

Description

本発明は原子炉容器補助冷却系を備えた液体金属冷却原子炉に関する。   The present invention relates to a liquid metal cooled nuclear reactor equipped with a reactor vessel auxiliary cooling system.

液体金属冷却原子炉は、図9に示すように、冷却材のナトリウム又はナトリウム・カリウム等の液体金属3を満たした原子炉容器4内に核燃料炉心2を配置し、原子炉容器4は、間に不活性ガスを満たした間隙5を介して格納容器6に格納され、格納容器6は地表下に掘り下げて形成したコンクリート製のサイロ7内に収容されている。   As shown in FIG. 9, a liquid metal cooled nuclear reactor has a nuclear fuel core 2 disposed in a reactor vessel 4 filled with a liquid metal 3 such as sodium or sodium / potassium as a coolant. Is stored in a storage container 6 through a gap 5 filled with an inert gas, and the storage container 6 is housed in a concrete silo 7 formed by digging under the ground surface.

この液体金属冷却原子炉1では、原子炉運転中の緊急事態に対処するため、又は保守点検を行うために、燃料の核分裂反応を停止する必要があるが、その際、停止操作を行った後にも残留崩壊熱が炉心から生じ続けるため、液体金属冷却原子炉1から発生する熱を除去する必要がある。   In this liquid metal cooled nuclear reactor 1, it is necessary to stop the nuclear fission reaction in order to cope with an emergency situation during the operation of the nuclear reactor or to perform maintenance and inspection. However, since the residual decay heat continues to be generated from the core, it is necessary to remove the heat generated from the liquid metal cooled reactor 1.

原子炉の熱は原子炉容器4から格納容器6に熱放射により伝えられ、格納容器6の温度が上昇し、格納容器6からの熱は外側のコンクリート製サイロ7等に向かって放射される。サイロ7等の構造物は、長期間の高温に耐えることができず、例えば、コンクリート製のサイロ7は膨張し、ひび割れが生じることがある。この格納容器6の熱を除去するために、格納容器6とサイロ7の間の環状空間35に原子炉容器補助冷却系(RVACS)が設けられている。   The heat of the reactor is transmitted from the reactor vessel 4 to the containment vessel 6 by heat radiation, the temperature of the containment vessel 6 rises, and the heat from the containment vessel 6 is radiated toward the outer concrete silo 7 and the like. A structure such as the silo 7 cannot withstand a high temperature for a long period of time. For example, the silo 7 made of concrete expands and may crack. In order to remove heat from the containment vessel 6, a reactor vessel auxiliary cooling system (RVACS) is provided in the annular space 35 between the containment vessel 6 and the silo 7.

ポンプ等の能動的な機器を用いない受動冷却系から構成されるこの原子炉容器補助冷却系は、自然対流で熱除去を行う冷却媒体として空気、すなわち大気を用いており、格納容器6の外側に空気が下降、上昇する空気下降流路12及び空気上昇流路13を形成するように、格納容器6とサイロ7の間の環状空間に筒状のコレクタ10を設ける構成となっている。   This reactor vessel auxiliary cooling system composed of a passive cooling system that does not use an active device such as a pump uses air, that is, the atmosphere, as a cooling medium for removing heat by natural convection, and the outside of the containment vessel 6. A cylindrical collector 10 is provided in an annular space between the storage container 6 and the silo 7 so as to form an air descending passage 12 and an air raising passage 13 in which air descends and rises.

これにより、空気上昇流路13中の空気は、格納容器の熱で加熱されることで空気上昇流路13を上昇し、ダクト17を経由して空気排出口18から外部に放出される。また、空気冷却流路の空気下降流路12へは空気取込口16から空気の取り込みがおこなわれ、空気下降流路12に取り込まれた空気は、空気下降流路12を下方に流れてサイロ7の底部空間14に流れ込んだ後、流れ方向を変えてコレクタ10と格納容器6の間の空気上昇流路13に流れ込み、格納容器6の外壁に沿って上方に流れ、その間に加熱されて格納容器の熱を外部に放出する(特許文献1)。   As a result, the air in the air ascending channel 13 is heated by the heat of the containment vessel, rises through the air ascending channel 13, and is discharged to the outside via the duct 17 from the air discharge port 18. In addition, air is taken into the air descending passage 12 of the air cooling passage from the air intake port 16, and the air taken into the air descending passage 12 flows downward through the air descending passage 12 and becomes a silo. 7 and then flows into the air rising flow path 13 between the collector 10 and the storage container 6, flows upward along the outer wall of the storage container 6, and is heated while being stored. The heat of the container is released to the outside (Patent Document 1).

特開平6−174884号公報Japanese Patent Laid-Open No. 6-174848

上述した従来の液体金属冷却原子炉において、極端で起こりそうもない仮想事象、例えば原子炉容器及び格納容器の両方が破損し、原子炉容器内の高温の液体金属が格納容器からさらにサイロ内に漏出する事象が仮に発生した場合には、格納容器とサイロの間の空気冷却流路は機能しなくなり、原子炉容器補助冷却系は動作しなくなる。   In the conventional liquid metal cooled nuclear reactor described above, an extreme and unlikely virtual event, for example, both the reactor vessel and the containment vessel are damaged, and the hot liquid metal in the reactor vessel is moved further from the containment vessel into the silo. If a leaking event occurs, the air cooling flow path between the containment vessel and the silo will not function and the reactor vessel auxiliary cooling system will not operate.

本発明は上記課題を解決するためになされたもので、二重容器漏れのような仮想事象が発生したとしても、漏洩液体金属と冷却空気との接触を防止し、液体金属冷却原子炉で発生する熱を確実かつ効率的に除去することができる多重的かつ受動的な原子炉補助冷却系を備えた液体金属冷却原子炉を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and even if a virtual event such as a double vessel leak occurs, it prevents contact between the leaked liquid metal and the cooling air and is generated in the liquid metal cooled reactor. It is an object of the present invention to provide a liquid metal cooled nuclear reactor equipped with a multiple and passive reactor auxiliary cooling system capable of reliably and efficiently removing heat.

上記課題を解決するために、本発明に係る液体金属冷却原子炉は、内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、前記サイロの底部に配置され前記液体金属よりも比重が小さい多数の閉止部材と、前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、前記スリーブの融点は漏洩液体金属の温度よりも低いことを特徴とする。   In order to solve the above problems, a liquid metal cooled nuclear reactor according to the present invention includes a nuclear reactor vessel filled with a liquid metal, a containment vessel for storing the nuclear reactor vessel, and the containment vessel in an annular space. In a liquid metal cooled nuclear reactor having a silo that is housed through and a collector comprising a cylindrical sleeve that divides the annular space and forms an air descending channel on the silo side and an air rising channel on the containment vessel side A plurality of closing members disposed at the bottom of the silo and having a specific gravity smaller than that of the liquid metal, and a plurality of heat pipes having one end disposed inside the collector sleeve and the other end disposed outdoors. The sleeve has a melting point lower than the temperature of the leaking liquid metal.

また、本発明に係る液体金属冷却原子炉は、内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、前記サイロの底部に配置された前記液体金属よりも比重が小さい多数の閉止部材と、前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、前記スリーブを上部スリーブと下部スリーブとから構成し、当該上部スリーブと下部スリーブとを融点が漏洩液体金属の温度よりも低い締結部材で接続したことを特徴とする。   A liquid metal cooled nuclear reactor according to the present invention includes a nuclear reactor vessel filled with liquid metal, a containment vessel for storing the nuclear reactor vessel, and a silo for accommodating the containment vessel via an annular space. A liquid metal cooled nuclear reactor having a cylindrical sleeve that divides the annular space and forms an air descending channel on the silo side and an air rising channel on the containment vessel side, at the bottom of the silo A plurality of closing members having a specific gravity smaller than that of the disposed liquid metal, and a plurality of heat pipes having one end disposed inside the sleeve of the collector and the other end disposed outside the building, the sleeve being the upper sleeve And a lower sleeve, and the upper sleeve and the lower sleeve are connected by a fastening member having a melting point lower than the temperature of the leaked liquid metal.

また、本発明に係る液体金属冷却原子炉は、内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、前記サイロの底部に配置された前記液体金属よりも比重が小さい多数の閉止部材と、前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、前記スリーブを接続部がバイメタル又は形状記憶合金からなる上部スリーブと下部スリーブとから構成し、漏洩液体金属の温度による変形により上部コレクタと下部コレクタの接続を解除することを特徴とする。   A liquid metal cooled nuclear reactor according to the present invention includes a nuclear reactor vessel filled with liquid metal, a containment vessel for storing the nuclear reactor vessel, and a silo for accommodating the containment vessel via an annular space. A liquid metal cooled nuclear reactor having a cylindrical sleeve that divides the annular space and forms an air descending channel on the silo side and an air rising channel on the containment vessel side, at the bottom of the silo A plurality of closing members having a specific gravity smaller than that of the arranged liquid metal, and a plurality of heat pipes having one end arranged inside the sleeve of the collector and the other end arranged outside the building, and connecting the sleeve to the connecting portion Is composed of an upper sleeve and a lower sleeve made of bimetal or shape memory alloy, and the connection between the upper collector and the lower collector is released by deformation due to the temperature of the leaked liquid metal. And butterflies.

本発明によれば、仮想事象のような事故が発生したとしても、新たに構成された多重的かつ受動的な原子炉容器補助冷却系により、漏洩液体金属と冷却空気との接触を防止し、液体金属冷却原子炉で発生する熱を確実にかつ効率的に除去することができる。   According to the present invention, even if an accident such as a virtual event occurs, the newly configured multiple and passive reactor vessel auxiliary cooling system prevents contact between the leaked liquid metal and the cooling air, Heat generated in the liquid metal cooled nuclear reactor can be reliably and efficiently removed.

(a)は第1の実施形態に係る液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is the whole block diagram of the liquid metal cooling reactor which concerns on 1st Embodiment, (b) is an enlarged view of a collector. 図1のA−A線からみた液体金属冷却原子炉の平面図。FIG. 2 is a plan view of a liquid metal cooled nuclear reactor as viewed from line AA in FIG. 1. (a)は第1の実施形態において、仮想事故が発生した場合の液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is a whole block diagram of a liquid metal cooling reactor when a virtual accident occurs in the first embodiment, and (b) is an enlarged view of a collector. (a)は第2の実施形態に係る液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is the whole block diagram of the liquid metal cooling reactor which concerns on 2nd Embodiment, (b) is an enlarged view of a collector. (a)は第2の実施形態において、仮想事故が発生した場合の液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is a whole block diagram of a liquid metal cooling reactor when a virtual accident occurs in the second embodiment, and (b) is an enlarged view of a collector. (a)は第3の実施形態に係る液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is the whole block diagram of the liquid metal cooling reactor which concerns on 3rd Embodiment, (b) is an enlarged view of a collector. (a)は第4の実施形態に係る液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is a whole block diagram of the liquid metal cooling reactor which concerns on 4th Embodiment, (b) is an enlarged view of a collector. (a)は第4の実施形態において、仮想事故が発生した場合の液体金属冷却原子炉の全体構成図、(b)はコレクタの拡大図。(A) is a whole block diagram of a liquid metal cooling reactor when a virtual accident occurs in the fourth embodiment, and (b) is an enlarged view of a collector. 従来の液体金属冷却原子炉の全体構成図。The whole block diagram of the conventional liquid metal cooling reactor.

以下、本発明に係る液体金属冷却原子炉の実施形態を、図面を参照して説明する。
[第1の実施形態]
本発明の第1の実施形態に係る液体金属冷却原子炉を図1乃至図3により説明する。
Hereinafter, embodiments of a liquid metal cooled nuclear reactor according to the present invention will be described with reference to the drawings.
[First Embodiment]
A liquid metal cooled nuclear reactor according to a first embodiment of the present invention will be described with reference to FIGS.

(構成)
本第1の実施形態に係る液体金属冷却原子炉1は、図1(a)に示すように、核燃料炉心2と、ナトリウム、あるいはナトリウム・カリウム等の液体金属3からなる冷却材が液位Lnまで満たされた原子炉容器4と、不活性ガスを満たした間隙5を介して原子炉容器4を格納する格納容器6と、この格納容器6を環状空間35を介して収容し地表下に掘り下げて形成したコンクリート製のサイロ7とから構成され、原子炉容器4と格納容器6は、上端部分がサイロ7の段部に支持されている。また、格納ドーム8が炉上部室9に収容された原子炉容器4と格納容器6の上部を覆うように配置されている。
(Constitution)
As shown in FIG. 1A, the liquid metal cooled nuclear reactor 1 according to the first embodiment includes a nuclear fuel core 2 and a coolant composed of a liquid metal 3 such as sodium or sodium / potassium at a liquid level Ln. A reactor vessel 4 filled up to a point, a containment vessel 6 for storing the reactor vessel 4 through a gap 5 filled with an inert gas, and the containment vessel 6 is accommodated via an annular space 35 and dug down below the ground surface. The reactor vessel 4 and the containment vessel 6 are supported by the stepped portion of the silo 7. Further, the storage dome 8 is arranged so as to cover the upper part of the reactor vessel 4 and the containment vessel 6 accommodated in the reactor upper chamber 9.

格納容器6の外側壁とサイロ7の内側壁との間の環状空間35には、上部がサイロ7に固定され、環状空間35を格納容器6側とサイロ7側の2つに区画する円筒状のコレクタ10が設けられている。これにより、空気下降流路(外方側流路)12がサイロ7側に、空気上昇流路(内方側流路)13が格納容器6側に形成され、空気下降流路12と空気上昇流路13は、各下端がサイロ7の底部14に開口し、連通するようになっている。また、空気下降流路12は、外部の冷却用空気を取り込むための空気取込口16に接続され、空気上昇流路13は、ダクト17と接続し、さらに前記ダクト17を通じて外部に冷却後空気を排出するための空気排出口18が接続されている。   The upper part of the annular space 35 between the outer wall of the storage container 6 and the inner wall of the silo 7 is fixed to the silo 7, and the annular space 35 is divided into two parts, the storage container 6 side and the silo 7 side. The collector 10 is provided. As a result, an air descending channel (outer channel) 12 is formed on the silo 7 side, and an air ascending channel (inner channel) 13 is formed on the storage container 6 side. Each flow path 13 is open at the bottom 14 of the silo 7 and communicates with each other. The air descending flow path 12 is connected to an air intake port 16 for taking in external cooling air, and the air ascending flow path 13 is connected to a duct 17 and is further cooled to the outside through the duct 17. An air discharge port 18 for discharging the air is connected.

コレクタ10は、図1(b)に示すように、内部に空隙を形成した環状のスリーブ21と、スリーブ21内の空隙に間隔をおいて周状に配列された複数のヒートパイプ20とから構成される。ヒートパイプ20の下端の冷却部はスリーブ21の下部まで延び、上端の冷却部は、図1(a)、図2に示すように、建屋の外に露出して設けられている。   As shown in FIG. 1B, the collector 10 is composed of an annular sleeve 21 having a gap formed therein, and a plurality of heat pipes 20 arranged circumferentially at intervals in the gap in the sleeve 21. Is done. The cooling part at the lower end of the heat pipe 20 extends to the lower part of the sleeve 21, and the cooling part at the upper end is provided to be exposed outside the building as shown in FIGS. 1 (a) and 2.

ヒートパイプ20の下端の加熱部は、仮想事象である原子炉容器4及び格納容器6から液体金属漏れが生じた緊急時に、液体金属3が、図3に示すように原子炉容器4、格納容器6、サイロ7内に漏出時液面位置Lcまで溜まった時に、液面Lcから下方に位置するように設けられている。   The heating part at the lower end of the heat pipe 20 is used for the liquid metal 3 in the reactor vessel 4 and the containment vessel as shown in FIG. 6. It is provided so as to be located below the liquid level Lc when it accumulates in the silo 7 up to the liquid level position Lc at the time of leakage.

ヒートパイプ20には漏洩液体金属3aの温度で作動する作動流体が封入されている。このような作動流体としては、例えば、作動温度が150℃〜400℃のダウサムA((C+(CO)やナフタリンC10がある。 The heat pipe 20 is filled with a working fluid that operates at the temperature of the leaked liquid metal 3a. Examples of such a working fluid include Dowsome A ((C 6 H 5 ) 2 + (C 6 H 5 ) 2 O) and naphthalene C 10 H 8 having an operating temperature of 150 ° C. to 400 ° C.

スリーブ21は漏洩液体金属3aの温度よりも融点が低い材料(例えば、亜鉛、インジウム、スズ、ビスマス、鉛などを主成分とした合金)で構成される。極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、スリーブ21は、漏洩液体金属3aに浸かって高温になって溶融し、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに浸漬する。   The sleeve 21 is made of a material having a melting point lower than the temperature of the leaking liquid metal 3a (for example, an alloy mainly composed of zinc, indium, tin, bismuth, lead, etc.). In an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is an extremely unlikely virtual event, occurs, the sleeve 21 is immersed in the leaked liquid metal 3a and becomes hot and melts, and the heat pipe 20 The heating part at the lower end of is exposed and immersed in the leaked liquid metal 3a.

また、サイロ7の底部14には、外部駆動、外部操作によらない受動的な閉止手段として、空気下降流路12と空気上昇流路13の流路形状よりも小さく、内部にガスが封入された多数の中空容器からなる閉止部材15が配置されている。このガスが封入された閉止部材15は、液体金属3よりも比重が小さく、漏洩液体金属3aの液面Lc上に浮かぶように形成されているが、通常時は、その重量により底部14の底面に配置されている。閉止部材15は、耐熱耐液体金属性の材料で形成されており、その形状は、液面Lcを埋め尽くすように浮かんだ際に、他の閉止部材15と隙間を作ることなく密着しあう同形もしくは大小異形の球体、略球体あるいは多面体、表面が凹凸面の立体等となっている。   Moreover, the bottom part 14 of the silo 7 is smaller than the flow path shape of the air descending flow path 12 and the air rising flow path 13 as a passive closing means that does not depend on external driving or external operation, and gas is sealed inside. Further, a closing member 15 made up of a number of hollow containers is disposed. The closing member 15 filled with the gas has a specific gravity smaller than that of the liquid metal 3 and is formed so as to float on the liquid level Lc of the leaking liquid metal 3a. Is arranged. The closing member 15 is formed of a heat-resistant and liquid-resistant metal material, and the shape of the closing member 15 is the same shape that makes close contact with the other closing member 15 without creating a gap when the liquid surface Lc is floated so as to be filled up. Alternatively, large and small irregularly shaped spheres, substantially spherical bodies or polyhedrons, and solid surfaces with irregular surfaces.

なお、本実施形態では、閉止部材15としてガスを封入した中空容器を用いているが、これに限定されず、液体金属3の液面上に浮上できる比重を有する中実の耐熱耐液体金属性材料で閉止部材15を構成してもよい。   In the present embodiment, a hollow container filled with gas is used as the closing member 15, but the present invention is not limited to this, and is a solid heat-resistant liquid metal-resistant metal having a specific gravity that can float on the liquid surface of the liquid metal 3. The closing member 15 may be made of a material.

(作用)
このように構成された液体金属冷却原子炉において、通常時は、原子炉容器4内に液体金属3が所定の通常時液面位置Lnになるように満たされ(図1(a))、核燃料炉心2での核分裂による発生熱は、液体金属3を循環させることで外部に取り出し、発電等に供される。
(Function)
In the liquid metal cooled nuclear reactor configured as described above, during normal times, the reactor vessel 4 is filled with the liquid metal 3 so as to reach a predetermined normal liquid level position Ln (FIG. 1 (a)), and nuclear fuel. The heat generated by nuclear fission in the core 2 is taken out by circulating the liquid metal 3 and used for power generation or the like.

そして、空気下降流路12は空気取込口16から冷却用空気を取り込み、空気下降流路12を下方向に流通させ、サイロ7の底部14で空気の流れ方向を反転させた後、空気上昇流路13を上方向に流通させて格納容器の冷却を行い、冷却後の空気をダクト17を通じて空気排出口18から外部に排出する。
なお、冷却用の空気の流れは、空気が格納容器6の外壁面で熱せられて空気上昇流路13を上方向に流れる自然対流によっている。
Then, the air descending flow path 12 takes in the cooling air from the air intake port 16, flows downward through the air descending flow path 12, reverses the air flow direction at the bottom 14 of the silo 7, and then rises in air. The containment vessel is cooled by circulating the flow path 13 upward, and the cooled air is discharged from the air discharge port 18 to the outside through the duct 17.
The flow of cooling air is due to natural convection in which air is heated on the outer wall surface of the containment vessel 6 and flows upward in the air ascending flow path 13.

次に、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時において、原子炉容器4内に通常時液面位置Lnまで満たされていた液体金属3が、図3(a)に示すように、通常時より低い漏出時液面位置Lcまで下がって原子炉容器4、格納容器6、環状空間35内に溜まり、コレクタ10は液体金属に浸漬する。このとき、スリーブ21は漏洩液体金属3aの熱によって高温になって溶融し、ヒートパイプ20の下端部が露出して漏洩液体金属3aに接触する(図3(b))。   Next, in an emergency where a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is a virtual event that is unlikely to occur at an extreme, the reactor vessel 4 was filled up to the normal liquid level position Ln. As shown in FIG. 3 (a), the liquid metal 3 drops to the leakage level Lc lower than normal and accumulates in the reactor vessel 4, the containment vessel 6, and the annular space 35, and the collector 10 becomes liquid metal. Immerse. At this time, the sleeve 21 is heated and melted by the heat of the leaking liquid metal 3a, and the lower end portion of the heat pipe 20 is exposed to contact the leaking liquid metal 3a (FIG. 3B).

これにより、漏洩液体金属3aに浸漬したヒートパイプ20の下端の加熱部は漏洩液体金属3aの熱を吸熱して、建屋外にあるヒートパイプ20の上端の冷却部で放熱する新たな受動的な原子炉容器補助冷却系が構成される。   Thereby, the heating part at the lower end of the heat pipe 20 immersed in the leaking liquid metal 3a absorbs the heat of the leaking liquid metal 3a, and is newly passively dissipated by the cooling part at the upper end of the heat pipe 20 outside the building. A reactor vessel auxiliary cooling system is configured.

さらに、サイロ7の底部14内に配置されている多数の閉止部材15が、溜まってくる漏洩液体金属3aの液面に、相互に密着して埋め尽くすように浮かび、液面の上昇と共に空気下降流路12、空気上昇流路13内に進入する。そして、漏洩液体金属3の液面が漏出時液面位置Lcに達して液面上昇が止ると、空気下降流路12、空気上昇流路13内の停止した液面に、それぞれ多数個の閉止部材15が密着するようにして液面を埋め尽くして浮かび、漏洩液体金属3aと空気の接触を防止する。   Further, a large number of closing members 15 arranged in the bottom part 14 of the silo 7 float so as to be buried in close contact with the liquid level of the accumulated leaked liquid metal 3a, and the air descends as the liquid level rises. It enters the flow path 12 and the air rising flow path 13. Then, when the liquid level of the leaked liquid metal 3 reaches the liquid level position Lc at the time of leakage and the liquid level rise stops, a large number of closed portions are respectively formed on the stopped liquid levels in the air descending flow path 12 and the air rising flow path 13. The liquid surface is filled up and floated so that the member 15 is in close contact, and contact between the leaked liquid metal 3a and the air is prevented.

これにより、空気接触によるナトリウム等の火災を防止するとともに、空気と漏洩液体金属3aの接触によって生じる放射性反応生成物の生成を防いで、大気中に直接漏れ出ることを防止する。   This prevents a fire of sodium or the like due to air contact and prevents generation of radioactive reaction products caused by contact between air and the leaked liquid metal 3a, thereby preventing direct leakage into the atmosphere.

このように、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時において、閉止部材によって漏洩液体金属3aと空気との接触を防止するとともに新たな空気冷却経路を構成し、さらに、露出したヒートパイプによって新たな放熱経路を構成し、これにより、受動的かつ多重化された新たな原子炉容器補助冷却系を構築することが可能となり、停止操作を行った後に炉心から生じ続ける残留崩壊熱を確実かつ効率的に除去することができる。   In this way, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6 is a virtual event that is unlikely to occur at an extreme, the closing member prevents contact between the leaked liquid metal 3a and the air. A new air cooling path is configured, and a new heat dissipation path is configured by the exposed heat pipe, which makes it possible to construct a passive and multiplexed new reactor vessel auxiliary cooling system, It is possible to reliably and efficiently remove the residual decay heat that continues to be generated from the core after the stop operation.

以上説明したように、本第1の実施形態によれば、仮想事象のような事故が発生したとしても、新たに構成された多重的かつ受動的な原子炉容器補助冷却系により、漏洩液体金属と冷却空気との接触を防止するとともに液体金属冷却原子炉発生する熱を確実かつ効率的に除去することができる。   As described above, according to the first embodiment, even if an accident such as a virtual event occurs, the newly configured multiple and passive reactor vessel auxiliary cooling system allows the leaked liquid metal And the heat generated in the liquid metal cooling reactor can be reliably and efficiently removed.

[第2の実施形態]
本発明の第2の実施形態に係る液体金属冷却原子炉を図4及び図5により説明する。
(構成)
本第2の実施形態では、円筒状のコレクタ10は、図4(a)、(b)に示すように、スリーブ21が上下方向に上部スリーブ21aと下部スリーブ21bの2つに分割され、両者は例えばボルト等の締結部材30によって接続固定されている。
[Second Embodiment]
A liquid metal cooled nuclear reactor according to a second embodiment of the present invention will be described with reference to FIGS.
(Constitution)
In the second embodiment, as shown in FIGS. 4 (a) and 4 (b), the cylindrical collector 10 has a sleeve 21 that is divided into an upper sleeve 21a and a lower sleeve 21b in the vertical direction. Is connected and fixed by a fastening member 30 such as a bolt.

締結部材30は液体金属の温度よりも融点が低い材料(例えば、亜鉛、インジウム、スズ、ビスマス、鉛などを主成分とした合金)で構成される。極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、締結部材30は漏洩液体金属3aに浸漬し、漏洩液体金属3aの熱によって締結部材30は溶融する。これにより、下部スリーブ21bは底部14に落下し、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに直接接触する(図5(a)、(b))。   The fastening member 30 is made of a material having a melting point lower than that of the liquid metal (for example, an alloy mainly composed of zinc, indium, tin, bismuth, lead, etc.). In the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is an extremely unlikely virtual event, the fastening member 30 is immersed in the leaking liquid metal 3a and the fastening member is heated by the heat of the leaking liquid metal 3a. 30 melts. As a result, the lower sleeve 21b falls to the bottom 14, and the heating part at the lower end of the heat pipe 20 is exposed and directly contacts the leaked liquid metal 3a (FIGS. 5A and 5B).

(作用)
上記のように構成された液体金属冷却原子炉において、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、液体金属3が、通常時より低い漏出時液面位置Lcまで下がるが、締結部材30は漏洩液体金属の熱によって溶融し、下部スリーブ21bは落下し、上部スリーブ21aが残り、図5(b)に示すように、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに浸漬する。
(Function)
In the liquid metal cooled nuclear reactor configured as described above, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is an extremely unlikely virtual event, occurs, the liquid metal 3 The fastening member 30 is melted by the heat of the leaking liquid metal, the lower sleeve 21b falls, and the upper sleeve 21a remains, as shown in FIG. 5 (b). The heating part at the lower end of 20 is exposed and immersed in the leaked liquid metal 3a.

これにより、漏洩液体金属3aに浸漬したヒートパイプ20の下端の加熱部は漏洩液体金属3aの熱を吸熱して、建屋外にあるヒートパイプ20の上端の冷却部で放熱する新たな受動的な原子炉容器補助冷却系が構成される。
なお、サイロ7の底部14内に配置されている多数の閉止部材15の作用、機能は上記第1の実施形態と同様である。
Thereby, the heating part at the lower end of the heat pipe 20 immersed in the leaking liquid metal 3a absorbs the heat of the leaking liquid metal 3a, and is newly passively dissipated by the cooling part at the upper end of the heat pipe 20 outside the building. A reactor vessel auxiliary cooling system is configured.
In addition, the effect | action and function of many closing members 15 arrange | positioned in the bottom part 14 of the silo 7 are the same as that of the said 1st Embodiment.

本第2の実施形態によれば、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時において、閉止部材によって漏洩液体金属3aと空気との接触を防止するとともに新たな空気冷却経路を構成し、さらに、下部スリーブが落下することで露出したヒートパイプによって新たな放熱経路を構成し、これにより、受動的かつ多重化された新たな原子炉容器補助冷却系を構築することが可能となり、停止操作を行った後に炉心から生じ続ける残留崩壊熱を確実かつ効率的に除去することができる。   According to the second embodiment, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6 is a virtual event that is unlikely to occur in an extreme, the leakage liquid metal 3a and the air In addition, a new air cooling path is formed, and a new heat dissipation path is formed by a heat pipe exposed by the lower sleeve falling, thereby forming a new passive and multiplexed atom. It becomes possible to construct a reactor vessel auxiliary cooling system, and it is possible to reliably and efficiently remove the residual decay heat that continues to be generated from the core after the stop operation.

[第3の実施形態]
本発明の第3の実施形態に係る液体金属冷却原子炉を図6により説明する。
(構成)
本第3の実施形態では、円筒状のコレクタ10は、図6(b)に示すように、スリーブ21が上下方向に上部スリーブ21aと下部スリーブ21bの2つに分割され、両者は例えばボルト等の締結部材30によって接続固定される。
[Third Embodiment]
A liquid metal cooled nuclear reactor according to a third embodiment of the present invention will be described with reference to FIG.
(Constitution)
In the third embodiment, as shown in FIG. 6B, the cylindrical collector 10 includes a sleeve 21 that is divided into an upper sleeve 21a and a lower sleeve 21b in the vertical direction. The fastening member 30 is connected and fixed.

第2の実施形態と異なる点は、締結部材30のみならず下部スリーブ21bも液体金属の温度よりも融点が低い材料(例えば、亜鉛、インジウム、スズ、ビスマス、鉛などを主成分とした合金)で構成されている。   The difference from the second embodiment is that not only the fastening member 30 but also the lower sleeve 21b has a material whose melting point is lower than the temperature of the liquid metal (for example, an alloy mainly composed of zinc, indium, tin, bismuth, lead, etc.). It consists of

(作用)
上記のように構成された液体金属冷却原子炉において、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、液体金属3が、通常時より低い漏出時液面位置Lcまで下がり、締結部材30は漏洩液体金属の熱によって溶融し、また、下部スリーブ21bも落下もしくは溶融して、上部スリーブ21aが残り、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに直接接触する。
(Function)
In the liquid metal cooled nuclear reactor configured as described above, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is an extremely unlikely virtual event, occurs, the liquid metal 3 Lowering to the lower liquid level position Lc at the time of leakage, the fastening member 30 is melted by the heat of the leaked liquid metal, and the lower sleeve 21b is also dropped or melted, leaving the upper sleeve 21a, and the heating portion at the lower end of the heat pipe 20 Is exposed and directly contacts the leaked liquid metal 3a.

これにより、漏洩液体金属3aに浸漬したヒートパイプ20の下端の加熱部は漏洩液体金属3aの熱を吸熱して、建屋外にあるヒートパイプ20の上端の冷却部で放熱する新たな受動的な原子炉容器補助冷却系が構成される。
なお、サイロ7の底部14内に配置されている多数の閉止部材15の作用、機能は上記の実施形態と同様である。
Thereby, the heating part at the lower end of the heat pipe 20 immersed in the leaking liquid metal 3a absorbs the heat of the leaking liquid metal 3a, and is newly passively dissipated by the cooling part at the upper end of the heat pipe 20 outside the building. A reactor vessel auxiliary cooling system is configured.
In addition, the effect | action and function of many closing members 15 arrange | positioned in the bottom part 14 of the silo 7 are the same as that of said embodiment.

本第3の実施形態によれば、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時において、閉止部材によって漏洩液体金属3aと空気との接触を防止するとともに新たな空気冷却経路を構成し、さらに、下部スリーブが溶融または落下することで露出したヒートパイプによって新たな放熱経路を構成し、これにより、受動的かつ多重化された新たな原子炉容器補助冷却系を構築することが可能となり、停止操作を行った後に炉心から生じ続ける残留崩壊熱を確実かつ効率的に除去することができる。   According to the third embodiment, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6 is a virtual event that is unlikely to occur at an extreme, the leakage liquid metal 3a and the air In addition, a new air cooling path is formed, and a new heat radiation path is formed by a heat pipe exposed by melting or dropping of the lower sleeve, and thereby a passive and multiplexed new path is formed. It is possible to construct a reactor vessel auxiliary cooling system, and it is possible to reliably and efficiently remove the residual decay heat that continues to be generated from the core after the shutdown operation.

[第4の実施形態]
本発明の第4の実施形態に係る液体金属冷却原子炉を図7及び図8により説明する。
(構成)
本第4の実施形態は、図7(a)、(b)に示すように、上部スリーブ21aの下端と下部スリーブ21bの上端は、バイメタルもしくは形状記憶合金で構成され、図7(b)に示すように、通常時は相互に屈曲して係合している。
[Fourth Embodiment]
A liquid metal cooled nuclear reactor according to a fourth embodiment of the present invention will be described with reference to FIGS.
(Constitution)
In the fourth embodiment, as shown in FIGS. 7A and 7B, the lower end of the upper sleeve 21a and the upper end of the lower sleeve 21b are made of a bimetal or a shape memory alloy, as shown in FIG. As shown, it is normally bent and engaged with each other.

極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、上部スリーブ21aの下端と下部スリーブ21bの上端が漏洩液体金属3aの温度に達すると、バイメタルもしくは形状記憶合金の特性によって変形して、略真っ直ぐになり、係合が解除される。これにより、下部サポート21b落下して、上部サポート21aが残り、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに直接接触する。   In the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6, which is an extremely unlikely virtual event, occurs when the lower end of the upper sleeve 21a and the upper end of the lower sleeve 21b reach the temperature of the leaked liquid metal 3a. It is deformed by the characteristics of the bimetal or shape memory alloy, becomes almost straight, and the engagement is released. As a result, the lower support 21b falls, the upper support 21a remains, the heating portion at the lower end of the heat pipe 20 is exposed, and directly contacts the leaked liquid metal 3a.

(作用)
上記のように構成された液体金属冷却原子炉において、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時に、漏洩液体金属3aが、通常時より低い漏出時液面位置Lcまで下がり、上部スリーブ21aの下端と下部スリーブ21bの上端が漏洩液体金属3aの温度に達すると、バイメタルもしくは形状記憶合金の特性によって変形して略真っ直ぐになり、係合が解除され、下部スリーブ21bが落下して、ヒートパイプ20の下端の加熱部が露出して漏洩液体金属3aに直接接触する(図8(a)、(b))。
(Function)
In the liquid metal cooled nuclear reactor configured as described above, in the event of an emergency in which a liquid metal leak from the reactor vessel 4 and the containment vessel 6 is a virtual event that is unlikely to occur in the extreme, the leaked liquid metal 3a is usually When the liquid level position Lc is lower than the time of leakage, and the lower end of the upper sleeve 21a and the upper end of the lower sleeve 21b reach the temperature of the leaked liquid metal 3a, it is deformed by the characteristics of the bimetal or shape memory alloy and becomes substantially straight. The engagement is released, the lower sleeve 21b falls, the heating part at the lower end of the heat pipe 20 is exposed, and directly contacts the leaked liquid metal 3a (FIGS. 8A and 8B).

これにより、漏洩液体金属3aに浸漬したヒートパイプ20の下端の加熱部は漏洩液体金属3aの熱を吸熱して、建屋外にあるヒートパイプ20の上端の冷却部で放熱する新たな受動的な原子炉容器補助冷却系が構成される。
なお、サイロ7の底部14内に配置されている多数の閉止部材15の作用、機能は上記の実施形態と同様である。
Thereby, the heating part at the lower end of the heat pipe 20 immersed in the leaking liquid metal 3a absorbs the heat of the leaking liquid metal 3a, and is newly passively dissipated by the cooling part at the upper end of the heat pipe 20 outside the building. A reactor vessel auxiliary cooling system is configured.
In addition, the effect | action and function of many closing members 15 arrange | positioned in the bottom part 14 of the silo 7 are the same as that of said embodiment.

本第4の実施形態によれば、極端で起こりそうもない仮想事象である原子炉容器4及び格納容器6からの液体金属漏れが生じた緊急時において、閉止部材によって漏洩液体金属3aと空気との接触を防止するとともに新たな空気冷却経路を構成し、さらに、下部スリーブが落下することで露出したヒートパイプによって新たな放熱経路を構成し、これにより、受動的かつ多重化された新たな原子炉容器補助冷却系を構築することが可能となり、停止操作を行った後に炉心から生じ続ける残留崩壊熱を確実かつ効率的に除去することができる。   According to the fourth embodiment, in the event of an emergency in which liquid metal leaks from the reactor vessel 4 and the containment vessel 6, which are virtual events that are unlikely to occur in an extreme, the leakage liquid metal 3 a and the air In addition, a new air cooling path is formed, and a new heat dissipation path is formed by a heat pipe exposed by the lower sleeve falling, thereby forming a new passive and multiplexed atom. It becomes possible to construct a reactor vessel auxiliary cooling system, and it is possible to reliably and efficiently remove the residual decay heat that continues to be generated from the core after the stop operation.

以上、本発明の実施形態の例を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的な対象となる液体金属冷却炉等は、適宜変更可能である。また、実施形態やその変更例に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施形態に記載されたものに限定されるものではない。   As mentioned above, although the example of the embodiment of the present invention has been described, only a specific example has been illustrated, and the present invention is not particularly limited, and a specific target liquid metal cooling furnace or the like can be changed as appropriate. is there. Further, the operations and effects described in the embodiments and the modifications thereof are merely a list of the most preferable operations and effects resulting from the present invention, and the operations and effects according to the present invention are described in the embodiments of the present invention. It is not limited to the ones.

1…液体金属冷却原子炉、2…核燃料炉心、3…液体金属、3a…漏洩液体金属、4…原子炉容器、5…間隙、6…格納容器、7…サイロ、8…格納ドーム、9…炉上部室、10…コレクタ、12…空気下降流路、13…空気上昇流路、14…底部、15…閉止部材、16…空気取込口、17…ダクト、18…空気排出口、20…ヒートパイプ、21…スリーブ、21a…上部スリーブ、21b…下部スリーブ、30…締結部材、35…環状空間、Ln…通常時液面位置、Lc…漏出時液面位置。   DESCRIPTION OF SYMBOLS 1 ... Liquid metal cooling reactor, 2 ... Nuclear fuel core, 3 ... Liquid metal, 3a ... Leakage liquid metal, 4 ... Reactor vessel, 5 ... Gap, 6 ... Containment vessel, 7 ... Silo, 8 ... Containment dome, 9 ... Furnace upper chamber, 10 ... collector, 12 ... air descending channel, 13 ... air rising channel, 14 ... bottom, 15 ... closing member, 16 ... air intake, 17 ... duct, 18 ... air outlet, 20 ... Heat pipe, 21 ... sleeve, 21a ... upper sleeve, 21b ... lower sleeve, 30 ... fastening member, 35 ... annular space, Ln ... normal liquid level position, Lc ... leakage liquid level position.

Claims (6)

内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、
前記サイロの底部に配置され前記液体金属よりも比重が小さい多数の閉止部材と、
前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、
前記スリーブの融点は漏洩液体金属の温度よりも低いことを特徴とする液体金属冷却原子炉。
A reactor vessel filled with a liquid metal, a containment vessel for storing the reactor vessel, a silo for housing the containment vessel via an annular space, and dividing the annular space, the air descends to the silo side In a liquid metal cooled nuclear reactor having a collector consisting of a cylindrical sleeve that forms an air rising channel on the channel and the containment vessel side,
A number of closing members disposed at the bottom of the silo and having a specific gravity smaller than the liquid metal;
A plurality of heat pipes having one end arranged inside the sleeve of the collector and the other end arranged outside the building,
A liquid metal cooled nuclear reactor in which the melting point of the sleeve is lower than the temperature of the leaked liquid metal.
内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、
前記サイロの底部に配置された前記液体金属よりも比重が小さい多数の閉止部材と、
前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、
前記スリーブを上部スリーブと下部スリーブとから構成し、当該上部スリーブと下部スリーブとを融点が漏洩液体金属の温度よりも低い締結部材で接続したことを特徴とする液体金属冷却原子炉。
A reactor vessel filled with a liquid metal, a containment vessel for storing the reactor vessel, a silo for housing the containment vessel via an annular space, and dividing the annular space, the air descends to the silo side In a liquid metal cooled nuclear reactor having a collector consisting of a cylindrical sleeve that forms an air rising channel on the channel and the containment vessel side,
A number of closing members having a specific gravity smaller than that of the liquid metal disposed at the bottom of the silo;
A plurality of heat pipes having one end arranged inside the sleeve of the collector and the other end arranged outside the building,
A liquid metal cooled nuclear reactor, wherein the sleeve comprises an upper sleeve and a lower sleeve, and the upper sleeve and the lower sleeve are connected by a fastening member having a melting point lower than the temperature of the leaked liquid metal.
前記下部スリーブの融点が前記漏洩液体金属の温度よりも低いことを特徴とする請求項2記載の液体金属冷却原子炉。   The liquid metal cooled nuclear reactor according to claim 2, wherein a melting point of the lower sleeve is lower than a temperature of the leaked liquid metal. 内部に液体金属が満たされた原子炉容器と、前記原子炉容器を格納する格納容器と、前記格納容器を環状空間を介して収納するサイロと、前記環状空間を区画し、サイロ側に空気下降流路及び格納容器側に空気上昇流路を形成する筒状のスリーブからなるコレクタと、を有する液体金属冷却原子炉において、
前記サイロの底部に配置された前記液体金属よりも比重が小さい多数の閉止部材と、
前記コレクタのスリーブ内部に一端が配置され他端が建屋外に配置された複数のヒートパイプと、を備え、
前記スリーブを接続部がバイメタル又は形状記憶合金からなる上部スリーブと下部スリーブとから構成し、漏洩液体金属の温度による変形により上部コレクタと下部コレクタの接続を解除することを特徴とする液体金属冷却原子炉。
A reactor vessel filled with a liquid metal, a containment vessel for storing the reactor vessel, a silo for housing the containment vessel via an annular space, and dividing the annular space, the air descends to the silo side In a liquid metal cooled nuclear reactor having a collector consisting of a cylindrical sleeve that forms an air rising channel on the channel and the containment vessel side,
A number of closing members having a specific gravity smaller than that of the liquid metal disposed at the bottom of the silo;
A plurality of heat pipes having one end arranged inside the sleeve of the collector and the other end arranged outside the building,
A liquid metal cooling atom characterized in that the sleeve comprises an upper sleeve and a lower sleeve whose connection portion is made of a bimetal or a shape memory alloy, and the connection between the upper collector and the lower collector is released by deformation due to the temperature of the leaked liquid metal. Furnace.
前記閉止部材は、中実又は中空の耐熱耐液体金属性材からなることを特徴とする請求項1乃至4いずれかに記載の液体金属冷却原子炉。   5. The liquid metal cooled nuclear reactor according to claim 1, wherein the closing member is made of a solid or hollow heat-resistant liquid metal material. 前記ヒートパイプに、前記漏洩液体金属の温度で作動する作動流体が封入されていることを特徴とする請求項1から請求項5いずれかに記載の液体金属冷却原子炉。   The liquid metal cooled nuclear reactor according to any one of claims 1 to 5, wherein a working fluid that operates at a temperature of the leaked liquid metal is enclosed in the heat pipe.
JP2010227483A 2010-10-07 2010-10-07 Liquid metal-cooled nuclear reactor Pending JP2012083131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227483A JP2012083131A (en) 2010-10-07 2010-10-07 Liquid metal-cooled nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227483A JP2012083131A (en) 2010-10-07 2010-10-07 Liquid metal-cooled nuclear reactor

Publications (1)

Publication Number Publication Date
JP2012083131A true JP2012083131A (en) 2012-04-26

Family

ID=46242165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227483A Pending JP2012083131A (en) 2010-10-07 2010-10-07 Liquid metal-cooled nuclear reactor

Country Status (1)

Country Link
JP (1) JP2012083131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653107A (en) * 2016-09-26 2017-05-10 南华大学 Passive decay heat removal system for liquid metal cooling pool type reactor
CN110211711A (en) * 2019-05-31 2019-09-06 中国舰船研究设计中心 A kind of Marine heat pipe type lead bismuth heap residual heat removal system
CN113140337A (en) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 Passive cooling system and method for multi-medium shared cooling channel and reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653107A (en) * 2016-09-26 2017-05-10 南华大学 Passive decay heat removal system for liquid metal cooling pool type reactor
CN110211711A (en) * 2019-05-31 2019-09-06 中国舰船研究设计中心 A kind of Marine heat pipe type lead bismuth heap residual heat removal system
CN113140337A (en) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 Passive cooling system and method for multi-medium shared cooling channel and reactor
CN113140337B (en) * 2021-03-05 2023-09-15 国科中子能(青岛)研究院有限公司 Passive cooling system, method and reactor for multi-medium shared cooling channel

Similar Documents

Publication Publication Date Title
EP0528674B1 (en) Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
JP3554001B2 (en) Corium protective assembly
JP4612558B2 (en) Core catcher and reactor containment
JP3118489B2 (en) Reactor with equipment for recovery of core after accidental meltdown of reactor
US8358732B2 (en) Core catcher, manufacturing method thereof, reactor containment vessel and manufacturing method thereof
US4696791A (en) Nuclear reactor installation
KR101665059B1 (en) The in-vessel and ex-vessel melt cooling system and method having the core catcher
JPH06503885A (en) Nuclear reactor equipment, its core containment, and emergency cooling methods for nuclear reactor equipment
JP2016014640A (en) Static containment cooling filter vent system and nuclear power plant
JP2634739B2 (en) Liquid metal cooled reactor plant
RU100327U1 (en) MELT LOCALIZATION DEVICE
JP2010019793A (en) Neutron shield, nuclear reactor, and neutron shielding method
JP4761592B2 (en) Water reactor with a built-in core recovery unit that operates during accidental core melting
JP4828963B2 (en) Core melt cooling device, reactor containment vessel, and method of installing core melt cooling device
JP2012083131A (en) Liquid metal-cooled nuclear reactor
JP2014081212A (en) Core meltdown object holding device and nuclear reactor container
KR100458741B1 (en) Passive emergency hydrogen mitigation system for water-cooled nuclear reactors
JP2008241657A (en) Reactor container
KR102286098B1 (en) Coolling system for spent fuel pool
JP6109580B2 (en) Molten core holding device and reactor containment vessel provided with the same
WO2017030107A1 (en) Compact molten salt reactor
JP2011242160A (en) Liquid metal-cooled nuclear reactor
KR102078170B1 (en) Passive reactor external vessel cooling system
JP2014157029A (en) Nuclear reactor system and nuclear reactor molten material retaining device
US6285727B1 (en) Nuclear plant