JP2019035338A - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP2019035338A
JP2019035338A JP2017155456A JP2017155456A JP2019035338A JP 2019035338 A JP2019035338 A JP 2019035338A JP 2017155456 A JP2017155456 A JP 2017155456A JP 2017155456 A JP2017155456 A JP 2017155456A JP 2019035338 A JP2019035338 A JP 2019035338A
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
sensor
signal
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017155456A
Other languages
Japanese (ja)
Inventor
正 内山
Tadashi Uchiyama
正 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017155456A priority Critical patent/JP2019035338A/en
Publication of JP2019035338A publication Critical patent/JP2019035338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To provide a control device capable of reducing an influence of temperature characteristics of a particulate matter, which is used together with an electric resistance type PM sensor.SOLUTION: A control device used together with an electric resistance type PM sensor that outputs a first signal indicating a resistance value between electrodes provided on an insulator exposed to exhaust gas, includes: a temperature sensor that outputs a second signal indicating a peripheral temperature; a heat generator that receives power supply and generates heat; a response delay compensation part for controlling the power supply to the heat generator so that the temperature indicated by the second signal coincides with a predetermined temperature which is lower than a regeneration temperature of the PM sensor, and is set based on an exhaust gas temperature; and a PM amount derivation part for deriving an amount of a particulate matter in the exhaust gas based on the first signal and the second signal.SELECTED DRAWING: Figure 1

Description

本開示は、電気抵抗型PMセンサの制御装置に関する。   The present disclosure relates to a control device for an electrical resistance PM sensor.

従来より、内燃機関で生じる排ガスの流路には、排ガスに含まれる粒子状物質の量に相関する信号を出力する電気抵抗型PMセンサが設けられることがある。   Conventionally, an electrical resistance PM sensor that outputs a signal correlated with the amount of particulate matter contained in exhaust gas is sometimes provided in a flow path of exhaust gas generated in an internal combustion engine.

この種のPMセンサは、絶縁体の一例としての絶縁基板と、この絶縁体の表面上に相互に間隔をあけて配置された一対の電極と、を含んでいる。   This type of PM sensor includes an insulating substrate as an example of an insulator, and a pair of electrodes that are spaced apart from each other on the surface of the insulator.

粒子状物質は、主として、導電性を有する煤から構成されているので、電極間に一定量以上の粒子状物質が堆積すると、電極間に導電パスが形成される。また、粒子状物質の堆積量に応じて、導電パスの抵抗値が変化する。   Since the particulate matter is mainly composed of conductive soot, when a certain amount or more of particulate matter is deposited between the electrodes, a conductive path is formed between the electrodes. In addition, the resistance value of the conductive path changes according to the amount of particulate matter deposited.

電極間には、例えば、所定値を有する電圧(例えば定電圧)が印加されるので、導電パスの抵抗値(換言すると、粒子量物質の堆積量)に相関する信号が電極対から出力される。   For example, a voltage having a predetermined value (for example, a constant voltage) is applied between the electrodes, so that a signal correlated with the resistance value of the conductive path (in other words, the amount of deposited particulate matter) is output from the electrode pair. .

また、電極周辺に堆積した粒子状物質を除去するために、絶縁体を加熱する発熱体と、粒子状物質の全てを燃焼可能な温度に基材温度が一致するように発熱体への電力供給を制御する電力制御部と、が設けられる。   Also, in order to remove the particulate matter deposited around the electrodes, the heating element that heats the insulator and the power supply to the heating element so that the substrate temperature matches the temperature at which all of the particulate matter can be combusted. A power control unit for controlling the power supply.

特開2015−175321号公報Japanese Patent Laying-Open No. 2015-175321

排ガス温度は内燃機関の運転状況により大きく変動し、粒子状物質の抵抗値には温度依存性(以下、単に温度特性という)がある。このような状況下でも、一対の電極からの出力信号に基づいて、粒子状物質の堆積量をより正確に導出することが求められる。   The exhaust gas temperature varies greatly depending on the operating condition of the internal combustion engine, and the resistance value of the particulate matter has temperature dependence (hereinafter simply referred to as temperature characteristics). Even under such circumstances, it is required to more accurately derive the amount of particulate matter deposited based on the output signals from the pair of electrodes.

本開示の目的は、電気抵抗型PMセンサと共に用いられる制御装置であって、粒子状物質の温度特性の影響を低減可能な制御装置を提供することである。   The objective of this indication is a control apparatus used with an electrical resistance type PM sensor, Comprising: It is providing the control apparatus which can reduce the influence of the temperature characteristic of a particulate matter.

本開示の一形態は、排ガスに晒される絶縁体上に設けられた電極の間の抵抗値を表す第一信号を出力する電気抵抗型のPMセンサと共に用いられる制御装置であって、自身の周辺温度を表す第二信号を出力する温度センサと、電力供給を受けて発熱する発熱体と、前記第二信号が表す温度と、前記PMセンサの再生温度未満でかつ前記排ガス温度に基づき設定される所定温度とが一致するように、前記発熱体への電力供給を制御する応答遅れ補償部と、前記第一信号と前記第二信号に基づき、前記排ガス中の粒子状物質の量を導出するPM量導出部と、を備えた制御装置に向けられる。   One form of the present disclosure is a control device that is used together with an electrical resistance type PM sensor that outputs a first signal indicating a resistance value between electrodes provided on an insulator exposed to exhaust gas. A temperature sensor that outputs a second signal representing temperature, a heating element that generates heat upon receiving power supply, a temperature represented by the second signal, and a temperature that is less than the regeneration temperature of the PM sensor and is set based on the exhaust gas temperature. PM for deriving the amount of particulate matter in the exhaust gas based on the response delay compensator for controlling the power supply to the heating element and the first signal and the second signal so as to match the predetermined temperature And a quantity derivation unit.

本開示によれば、電気抵抗型PMセンサ共に用いられ、粒子状物質の温度特性の影響を低減可能な加熱装置を提供することが出来る。   According to the present disclosure, it is possible to provide a heating device that can be used together with an electric resistance PM sensor and can reduce the influence of the temperature characteristics of the particulate matter.

本開示の一実施形態に関する制御装置が用いられる排気系の構成を示す図The figure which shows the structure of the exhaust system in which the control apparatus regarding one Embodiment of this indication is used. 図1の制御装置のフロー図Flow chart of the control device of FIG.

以下、上記図面を参照して、制御装置1について詳説するが、それに先立ち、まずは用語の定義を行う。   Hereinafter, the control apparatus 1 will be described in detail with reference to the above drawings. Prior to that, terms are first defined.

<1.定義>
下表1は、本実施形態で使用される頭字語や略語の意味を示している。
<1. Definition>
Table 1 below shows the meaning of acronyms and abbreviations used in this embodiment.

Figure 2019035338
Figure 2019035338

<2.制御装置やPMセンサの概略構成>
図1に示すように、輸送機器V(例えば車両)には、制御装置1と、排気系3と、PMセンサ5と、が搭載されている。
<2. Schematic configuration of control device and PM sensor>
As shown in FIG. 1, a control device 1, an exhaust system 3, and a PM sensor 5 are mounted on a transport device V (for example, a vehicle).

以下、制御装置1に先立ち、排気系3およびPMセンサ5の説明を行う。   Hereinafter, the exhaust system 3 and the PM sensor 5 will be described prior to the control device 1.

排気系3は、図示しない内燃機関と接続される。内燃機関は、ディーゼルエンジンやガソリンエンジン(特に直噴エンジン)であって、排ガスを生じる。   The exhaust system 3 is connected to an internal combustion engine (not shown). The internal combustion engine is a diesel engine or a gasoline engine (particularly a direct injection engine), and generates exhaust gas.

排気系3は排ガス流路31を有する。排ガス流路31は、内燃機関で生じた排ガスを大気中(車外)に導く。また、排ガス流路31には、排ガスの後処理装置として、PMフィルタ33が設けられている。   The exhaust system 3 has an exhaust gas passage 31. The exhaust gas passage 31 guides exhaust gas generated in the internal combustion engine to the atmosphere (outside the vehicle). The exhaust gas flow path 31 is provided with a PM filter 33 as an exhaust gas aftertreatment device.

PMフィルタ33は、例えばDPFやGPFである。PMフィルタ33は、所謂ウォールフロー型フィルタであって、セラミックで作製され、円柱形状のハニカム担体を有する。   The PM filter 33 is, for example, a DPF or a GPF. The PM filter 33 is a so-called wall flow filter, which is made of ceramic and has a cylindrical honeycomb carrier.

PMフィルタ33の作製時、ハニカム担体の両端面を貫通する多数の孔が形成された後、上流側端面および下流側端面の各開口が交互に目封じされて半貫通孔(即ち、セル)が形成される。これによって、PMフィルタ33には、上流側端面の開口(即ち、セルの開口)から、上流側のセル、ハニカム壁面(隣り合う二個のセルの隔壁)および下流側のセルを通って、下流側端面の開口(隣接セルの開口)に至る排ガスの流路が形成される。なお、ハニカム壁面には、貴金属触媒(酸化触媒)が担持またはコーティングされても良い。   When the PM filter 33 is manufactured, a large number of holes penetrating both end faces of the honeycomb carrier are formed, and then the openings on the upstream end face and the downstream end face are alternately sealed to form semi-through holes (that is, cells). It is formed. As a result, the PM filter 33 passes through the upstream end face (ie, the opening of the cell), the upstream side cell, the honeycomb wall surface (the partition wall of two adjacent cells), and the downstream side cell. A flow path for exhaust gas reaching the opening of the side end face (opening of the adjacent cell) is formed. Note that a noble metal catalyst (oxidation catalyst) may be supported or coated on the honeycomb wall surface.

上記構成のPMフィルタ33を、排ガス流路31の上流側から案内されてきた排ガスは通過する。その過程で、ハニカム壁面の上流側表面に、排ガス中の粒子状物質が堆積し捕集される。また、PMフィルタ33を通過した排ガスは、周知のSCR等により処理されて無害化された後、マフラー(図示せず)等を介して、大気中に排出される。   The exhaust gas guided from the upstream side of the exhaust gas passage 31 passes through the PM filter 33 having the above configuration. In the process, particulate matter in the exhaust gas is deposited and collected on the upstream surface of the honeycomb wall surface. Further, the exhaust gas that has passed through the PM filter 33 is treated with a well-known SCR or the like to be rendered harmless, and then discharged into the atmosphere via a muffler (not shown).

PMセンサ5は、所謂電気抵抗型のPMセンサである。このPMセンサ5は、例えば、排ガス流路31においてPMフィルタ33の直ぐ下流側に配置されて、ここを通過する排ガスに晒される。これにより、PMフィルタ33の内部には、排ガス中の粒子状物質が堆積し、その堆積量に応じて変化する第一信号を制御装置1に出力する。   The PM sensor 5 is a so-called electric resistance type PM sensor. For example, the PM sensor 5 is disposed immediately downstream of the PM filter 33 in the exhaust gas passage 31 and is exposed to the exhaust gas passing therethrough. As a result, particulate matter in the exhaust gas is accumulated inside the PM filter 33, and a first signal that changes in accordance with the amount of accumulation is output to the control device 1.

なお、PMセンサ5は、PMフィルタ33の直ぐ下流側に限らず、PMフィルタ33の上流側等、他の場所に設けられても構わない。   The PM sensor 5 is not limited to the immediate downstream side of the PM filter 33, and may be provided at other locations such as the upstream side of the PM filter 33.

ここで、図1の楕円内には、PMセンサ5の要部の斜視図が描かれている。以下、これを参照しつつ、PMセンサ5の要部を詳説する。   Here, a perspective view of the main part of the PM sensor 5 is drawn in the ellipse of FIG. Hereinafter, the principal part of the PM sensor 5 will be described in detail with reference to this.

PMセンサ5は、絶縁体51と、少なくとも一対の電極53と、を備えている。   The PM sensor 5 includes an insulator 51 and at least a pair of electrodes 53.

絶縁体51は、電気絶縁性を有する材料(例えば、耐熱性セラミック等)からなり、例えば、所定方向に相対向する二つの主面51a,51bを有する絶縁基板である。   The insulator 51 is made of a material having electrical insulation (for example, heat-resistant ceramic), and is, for example, an insulating substrate having two main surfaces 51a and 51b facing each other in a predetermined direction.

一対の電極53は、導電性材料からなり、例えば主面51a上に、相互に間隔をあけて配置される。各電極53の形状は、特に限定される訳では無いが、例えば櫛歯状である。   The pair of electrodes 53 is made of a conductive material, and is disposed, for example, on the main surface 51a with a space therebetween. Although the shape of each electrode 53 is not specifically limited, For example, it is a comb-tooth shape.

上記のような絶縁体51は、例えば、一対の電極53が排ガス流路31において排ガスに晒され、排ガス流路31の上流側を主面51aが向くように、配置される。   The insulator 51 as described above is disposed, for example, such that the pair of electrodes 53 are exposed to the exhaust gas in the exhaust gas flow channel 31 and the main surface 51 a faces the upstream side of the exhaust gas flow channel 31.

排ガス中の粒子状物質は、主に、導電性を有する煤から構成されている。そのため、一対の電極53間に一定量以上の粒子状物質が堆積すると、一対の電極53の間に導電パスが形成される。また、粒子状物質の堆積量により導電パスの抵抗値が変化する。   The particulate matter in the exhaust gas is mainly composed of soot having conductivity. Therefore, when a certain amount or more of particulate matter is deposited between the pair of electrodes 53, a conductive path is formed between the pair of electrodes 53. In addition, the resistance value of the conductive path varies depending on the amount of particulate matter deposited.

一対の電極53の両端子間には、例えば制御部17の制御下で、所定値を有する電圧(例えば定電圧)Vdが印加される。従って、導電パスの抵抗値(換言すると、粒子状物質の堆積量)に相関する電流Idが、一対の電極53(以下、電極対53とも称する)を流れる。この電流Idは第一信号として、制御部17に与えられる。   A voltage (for example, a constant voltage) Vd having a predetermined value is applied between both terminals of the pair of electrodes 53, for example, under the control of the control unit 17. Therefore, a current Id that correlates with the resistance value of the conductive path (in other words, the amount of particulate matter deposited) flows through a pair of electrodes 53 (hereinafter also referred to as electrode pair 53). This current Id is given to the control unit 17 as a first signal.

制御装置1は、発熱体11と、温度センサ13と、電源回路15と、制御部17と、を備えている。   The control device 1 includes a heating element 11, a temperature sensor 13, a power supply circuit 15, and a control unit 17.

発熱体11は、相対的に高い抵抗値を有する導電性材料からなり、絶縁体51に設けられる。ここで、発熱体11が絶縁体51に設けられる態様としては、下記が例示される。   The heating element 11 is made of a conductive material having a relatively high resistance value, and is provided on the insulator 51. Here, the following is illustrated as an aspect with which the heat generating body 11 is provided in the insulator 51. FIG.

第一の態様は、図示した通りであって、発熱体11が絶縁体51の主面51b上に設けられる態様である。第二の態様は、図示していないが、発熱体11が絶縁体51内に埋設するように設けられる態様である。第三の態様は、図示していないが、発熱体11が絶縁体51から若干離れて設けられる態様である。   The first mode is as illustrated, and is a mode in which the heating element 11 is provided on the main surface 51 b of the insulator 51. Although not shown, the second mode is a mode in which the heating element 11 is provided so as to be embedded in the insulator 51. Although not shown, the third mode is a mode in which the heating element 11 is provided slightly apart from the insulator 51.

発熱体11は、主面51bの法線方向からの平面視で蛇行形状等を有し、制御部17の制御下で電源回路15から供給された電力を熱に変換し放出する。これにより、絶縁体51が加熱される。   The heating element 11 has a meandering shape or the like in plan view from the normal direction of the main surface 51b, and converts the electric power supplied from the power supply circuit 15 into heat and releases it under the control of the control unit 17. Thereby, the insulator 51 is heated.

温度センサ13は、例えば、正または負の温度特性を有するチップタイプのサーミスタ等であって、絶縁体51の表面上に実装されれば良い。この温度センサ13は、自身の周囲温度に相関する第二信号を制御部17に出力する。ここで、自身の周囲温度は、実質的に、電極53間に堆積する粒子状物質の温度に相当する。   The temperature sensor 13 is, for example, a chip-type thermistor having a positive or negative temperature characteristic, and may be mounted on the surface of the insulator 51. The temperature sensor 13 outputs a second signal correlated with its ambient temperature to the control unit 17. Here, its own ambient temperature substantially corresponds to the temperature of the particulate matter deposited between the electrodes 53.

電源回路15は、図示しないバッテリからの出力電圧から定電圧Vdを生成して、電極53の端子間に印加する。電源回路15はさらに、例えば上記バッテリからの出力電圧を、後述の制御部17から出力された制御信号に基づきスイッチング素子にてスイッチングし、これにより得られたパルス電圧を発熱体11の両端子間に印加する。   The power supply circuit 15 generates a constant voltage Vd from an output voltage from a battery (not shown) and applies it between the terminals of the electrode 53. The power supply circuit 15 further switches, for example, the output voltage from the battery by a switching element based on a control signal output from the control unit 17 described later, and the pulse voltage obtained thereby is connected between both terminals of the heating element 11. Apply to.

制御部17は、制御基板上に実装された入出力コネクタ、マイコン、プログラムメモリおよびメインメモリを含むECUである。   The control unit 17 is an ECU including an input / output connector, a microcomputer, a program memory, and a main memory mounted on the control board.

入出力コネクタは、前述の温度センサ13および電源回路15と電気的に接続される。   The input / output connector is electrically connected to the temperature sensor 13 and the power supply circuit 15 described above.

マイコンは、プログラムメモリ内のプログラムを、メインメモリを使って実行して、図2に示すような処理を実行する。   The microcomputer executes the program in the program memory using the main memory, and executes processing as shown in FIG.

<3.制御部の処理>
図2において、マイコンは、電極対53から第一信号を、温度センサ13から第二信号を受け取る(ステップS001)。
<3. Processing of control unit>
In FIG. 2, the microcomputer receives a first signal from the electrode pair 53 and a second signal from the temperature sensor 13 (step S001).

次に、マイコンは、応答遅れ補償部として動作し、温度センサ13からの入力第二信号が表す温度と、予め定められた所定温度との偏差がゼロに近づくように、第一デューティ比を有するパルス状の制御信号を生成し、入出力コネクタから電源回路15のスイッチング素子に出力する(ステップS003)。   Next, the microcomputer operates as a response delay compensation unit, and has a first duty ratio so that a deviation between a temperature represented by the second input signal from the temperature sensor 13 and a predetermined temperature is close to zero. A pulsed control signal is generated and output from the input / output connector to the switching element of the power supply circuit 15 (step S003).

ステップS003の処理により、発熱体11は発熱し、電極53間に堆積する粒子状物質の温度が所定温度となるように、発熱体11は絶縁体51を加熱する。   By the process of step S003, the heating element 11 generates heat, and the heating element 11 heats the insulator 51 so that the temperature of the particulate matter deposited between the electrodes 53 becomes a predetermined temperature.

ここで、所定温度は、後述のPMセンサ5の再生温度未満で、かつ、内燃機関で生じる排ガス温度に基づき定められる。ここで、内燃機関で生じる排ガスの温度は、内燃機関の運転状況により大きく変動するが、リアルワールド(実走行環境)においては、ある程度一定の温度範囲内で変動する。温度範囲は、予め実験等により求めておくことが出来る。所定温度は、例えば、排ガスの温度範囲の中間値に設定される。   Here, the predetermined temperature is determined based on an exhaust gas temperature generated in the internal combustion engine that is lower than a regeneration temperature of the PM sensor 5 described later. Here, the temperature of the exhaust gas generated in the internal combustion engine varies greatly depending on the operation state of the internal combustion engine, but in the real world (actual traveling environment), it varies within a certain temperature range to some extent. The temperature range can be obtained in advance by experiments or the like. The predetermined temperature is set to an intermediate value in the temperature range of the exhaust gas, for example.

もし、排ガスの温度範囲が0℃〜400℃程度であれば、所定温度は例えば150℃〜250℃程度に設定される。より好ましくは、所定温度は、中間値の200℃程度に設定される。   If the temperature range of the exhaust gas is about 0 ° C to 400 ° C, the predetermined temperature is set to about 150 ° C to 250 ° C, for example. More preferably, the predetermined temperature is set to an intermediate value of about 200 ° C.

次に、マイコンは、PM量導出部として動作し、電極対53からの入力第一信号が表す抵抗値と、温度センサ13からの入力第二信号が表す温度とに基づき、排ガス中の粒子状物質の量を導出する(ステップS005)。   Next, the microcomputer operates as a PM amount deriving unit, and is based on the resistance value represented by the first input signal from the electrode pair 53 and the temperature represented by the second input signal from the temperature sensor 13. The amount of the substance is derived (step S005).

具体的には、プログラムメモリには、第一信号が表す抵抗値および第二信号が表す温度の組み合わせ毎に、排ガス中の粒子状物質の量が記述されたマップが格納されている。マイコンは、入力第一信号が表す抵抗値と、入力第二信号が表す温度とで特定される粒子状物質の量を読み出す。   Specifically, the program memory stores a map in which the amount of particulate matter in the exhaust gas is described for each combination of the resistance value indicated by the first signal and the temperature indicated by the second signal. The microcomputer reads the amount of the particulate matter specified by the resistance value indicated by the input first signal and the temperature indicated by the input second signal.

ステップS005の次に、マイコンは、PMセンサ5の再生処理の実行条件を満たすか否かを判断する(ステップS007)。ステップS007の判断基準は公知のもので良いが、例えば、下記の二つが例示される。
・前回の再生処理から所定時間が経過したか否か
・ステップS005で求めた粒子状物質の量が所定量以上となったか否か
After step S005, the microcomputer determines whether or not the execution condition for the regeneration process of the PM sensor 5 is satisfied (step S007). Although the determination criteria of step S007 may be a well-known thing, the following two are illustrated, for example.
Whether or not a predetermined time has elapsed since the previous regeneration process. Whether or not the amount of the particulate matter obtained in step S005 has exceeded a predetermined amount.

ステップS007でNOと判断されると、処理はステップS001に戻る。   If NO is determined in step S007, the process returns to step S001.

それに対し、ステップS007でYESと判断されると、マイコンは、再生処理部として機能し、ステップS001で受け取った第二信号が表す温度と、PMセンサ5に堆積した粒子状物質の全てを燃焼除去可能な温度(以下、再生温度という)との偏差がゼロに近づくように、第二デューティ比を有するパルス状の制御信号を生成し、入出力コネクタから電源回路15のスイッチング素子に出力する(ステップS009)。   On the other hand, if “YES” is determined in the step S007, the microcomputer functions as a regeneration processing unit and burns and removes the temperature represented by the second signal received in the step S001 and all the particulate matter deposited on the PM sensor 5. A pulsed control signal having a second duty ratio is generated so that a deviation from a possible temperature (hereinafter referred to as a regeneration temperature) approaches zero, and is output from the input / output connector to the switching element of the power supply circuit 15 (step) S009).

ステップS009の処理により、電極53間に堆積する粒子状物質の温度が再生温度(例えば、約600℃)となるように、発熱体11は絶縁体51を加熱する。その結果、電極53間の粒子状物質が完全に燃焼する(PMセンサ5の再生処理)。   By the processing in step S009, the heating element 11 heats the insulator 51 so that the temperature of the particulate matter deposited between the electrodes 53 becomes the regeneration temperature (for example, about 600 ° C.). As a result, the particulate matter between the electrodes 53 is completely burned (regeneration processing of the PM sensor 5).

<4.制御装置の効果>
本開示の制御装置1は、ステップS003の応答遅れ補償を実行することを特徴する。もし、本ステップS003を実行しなかったとすると、下記のような技術的課題が生じる。
<4. Effect of control device>
The control device 1 of the present disclosure is characterized by executing response delay compensation in step S003. If this step S003 is not executed, the following technical problem arises.

前述の通り、内燃機関で生じる排ガスの温度は、ある程度一定の温度範囲内で、内燃機関の運転状況により大きく変動する。   As described above, the temperature of the exhaust gas generated in the internal combustion engine varies greatly depending on the operating condition of the internal combustion engine within a certain temperature range.

また、粒子状物質の抵抗値は温度特性を有する。具体的には、粒子状物質の温度に対し粒子状物質の抵抗値は指数関数的に変化する。   Further, the resistance value of the particulate matter has temperature characteristics. Specifically, the resistance value of the particulate matter changes exponentially with respect to the temperature of the particulate matter.

また、温度センサ13の動作は熱現象であるため、応答遅れが伴う。   Further, since the operation of the temperature sensor 13 is a thermal phenomenon, there is a response delay.

従って、ステップS003を実行する事無く、ステップS005を実行してしまうと、排ガスの温度(即ち、粒子状物質の温度)が大きく変化した場合、温度センサ13の応答遅れに起因して、制御部17は、粒子状物質の現在の温度を正しく認識することが出来ず、その結果、粒子状物質の現在の量を正しく導出することが出来なくなる。   Therefore, if step S005 is executed without executing step S003, if the temperature of the exhaust gas (that is, the temperature of the particulate matter) changes significantly, the control unit 17 cannot correctly recognize the current temperature of the particulate matter, and as a result, cannot correctly derive the current amount of the particulate matter.

しかし、上述のステップS003を実行して、電極53間の粒子状物質の温度を前述の所定温度(好ましくは、排ガスの温度範囲の中間値)としておくと、排ガス温度が大きく変化したとしても、ステップS003を実行しない場合と比較して、第二信号が表す温度が実際の粒子状物質の温度にいち早く追従する可能性が高くなる。即ち、応答遅れを補償することが出来る。   However, if step S003 described above is performed and the temperature of the particulate matter between the electrodes 53 is set to the above-described predetermined temperature (preferably, an intermediate value of the exhaust gas temperature range), even if the exhaust gas temperature changes greatly, Compared to the case where step S003 is not executed, the temperature represented by the second signal is more likely to quickly follow the actual temperature of the particulate matter. That is, response delay can be compensated.

上述の通り、本開示の制御装置1によれば、粒子状物質の温度特性の影響も低減させて、より現状に適した粒子状物質の量を導出することが可能となる。   As described above, according to the control device 1 of the present disclosure, it is possible to reduce the influence of the temperature characteristics of the particulate matter, and to derive an amount of the particulate matter that is more suitable for the current situation.

本開示の制御装置は、粒子状物質の温度特性の影響を低減可能であり、輸送機器に好適である。   The control device of the present disclosure can reduce the influence of the temperature characteristics of the particulate matter, and is suitable for transportation equipment.

1 制御装置
11 発熱体
13 温度センサ
17 制御部
5 PMセンサ
51 絶縁体
53 電極
DESCRIPTION OF SYMBOLS 1 Control apparatus 11 Heating body 13 Temperature sensor 17 Control part 5 PM sensor 51 Insulator 53 Electrode

Claims (2)

排ガスに晒される絶縁体上に設けられた電極の間の抵抗値を表す第一信号を出力する電気抵抗型のPMセンサと共に用いられる制御装置であって、
自身の周辺温度を表す第二信号を出力する温度センサと、
電力供給を受けて発熱する発熱体と、
前記第二信号が表す温度と、前記PMセンサの再生温度未満でかつ前記排ガス温度に基づき設定される所定温度とが一致するように、前記発熱体への電力供給を制御する応答遅れ補償部と、
前記第一信号と前記第二信号に基づき、前記排ガス中の粒子状物質の量を導出するPM量導出部と、
を備えた制御装置。
A control device used together with an electric resistance type PM sensor that outputs a first signal representing a resistance value between electrodes provided on an insulator exposed to exhaust gas,
A temperature sensor that outputs a second signal representing its ambient temperature;
A heating element that generates heat upon receiving power supply;
A response delay compensation unit that controls power supply to the heating element such that the temperature represented by the second signal matches a predetermined temperature that is lower than the regeneration temperature of the PM sensor and is set based on the exhaust gas temperature; ,
A PM amount deriving unit for deriving the amount of particulate matter in the exhaust gas based on the first signal and the second signal;
A control device comprising:
前記所定温度は、前記排ガスの温度範囲の中間値に設定される、
請求項1に記載の制御装置。

The predetermined temperature is set to an intermediate value in the temperature range of the exhaust gas.
The control device according to claim 1.

JP2017155456A 2017-08-10 2017-08-10 Control device Pending JP2019035338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155456A JP2019035338A (en) 2017-08-10 2017-08-10 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155456A JP2019035338A (en) 2017-08-10 2017-08-10 Control device

Publications (1)

Publication Number Publication Date
JP2019035338A true JP2019035338A (en) 2019-03-07

Family

ID=65637216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155456A Pending JP2019035338A (en) 2017-08-10 2017-08-10 Control device

Country Status (1)

Country Link
JP (1) JP2019035338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142218A (en) * 2019-03-08 2020-09-10 株式会社綿谷製作所 Disassembling apparatus of solar cell panel, and disassembling method of solar cell panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142218A (en) * 2019-03-08 2020-09-10 株式会社綿谷製作所 Disassembling apparatus of solar cell panel, and disassembling method of solar cell panel

Similar Documents

Publication Publication Date Title
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP2019512634A (en) Dual purpose heater and fluid flow measurement system
JP2011247650A (en) Particulate matter detection sensor, and particulate matter detection sensor unit
CN109996938B (en) Device for purifying exhaust gases
JP2008215351A (en) Electrically heatable honeycomb body and operation method thereof
CN111295583B (en) Gas sensor
JP2016031364A (en) Gas concentration detector
JP2019015190A (en) Exhaust system for internal combustion engine
US20110081276A1 (en) Particulate sensing element and particulate sensor having the particulate sensing element
EP2775113A1 (en) Device for controlling electrically heated catalyst
EP2258931B1 (en) Particulate matter reducing apparatus for diesel engine
US10088405B2 (en) Method for operating a particle sensor
WO2016147711A1 (en) Particulate matter detection system
JP2011080780A (en) Particulate detection element
US10487716B2 (en) Particulate matter detection apparatus
JP2019035338A (en) Control device
CN103153436B (en) Electrically heated catalyst
US11078858B2 (en) Control apparatus for an internal combustion engine
US10352213B2 (en) Electrically heated catalyst
JP6365501B2 (en) Particulate matter detector
JP6505578B2 (en) Filter failure detection device, particulate matter detection device
JP2008202511A (en) Exhaust emission control device for diesel engine
CN108138620B (en) Granular substance detection device
JP2018109379A (en) Determination device
JP7071951B2 (en) Gas sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191028