JP2019035333A - Drain device for intercooler - Google Patents

Drain device for intercooler Download PDF

Info

Publication number
JP2019035333A
JP2019035333A JP2017155383A JP2017155383A JP2019035333A JP 2019035333 A JP2019035333 A JP 2019035333A JP 2017155383 A JP2017155383 A JP 2017155383A JP 2017155383 A JP2017155383 A JP 2017155383A JP 2019035333 A JP2019035333 A JP 2019035333A
Authority
JP
Japan
Prior art keywords
intake
intercooler
passage
intake passage
condensed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017155383A
Other languages
Japanese (ja)
Other versions
JP6958097B2 (en
Inventor
岩本 和久
Kazuhisa Iwamoto
和久 岩本
多賀志 吉野
Takashi Yoshino
多賀志 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017155383A priority Critical patent/JP6958097B2/en
Priority to CN201880051721.1A priority patent/CN111051664B/en
Priority to PCT/JP2018/029850 priority patent/WO2019031567A1/en
Publication of JP2019035333A publication Critical patent/JP2019035333A/en
Application granted granted Critical
Publication of JP6958097B2 publication Critical patent/JP6958097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

To provide a drain device for an intercooler capable of well draining condensate water without performing complicated condensate water drain control using a dedicated detection sensor and a control device.SOLUTION: The drain device includes the intercooler arranged in an intake passage on the downstream side further than a supercharger for supercharging intake air in an internal combustion engine, an intake control valve arranged in the intake passage on the downstream side further than the intercooler, and a condensate water removing passage connected at one end to the intercooler and connected at the other end to the intake passage on the downstream side further than the intake control valve for discharging air including the condensate water produced by the intercooler to the intake passage. The condensate water removing passage has a discharge passage cross section area perpendicular to the discharge direction of the air including the condensate water and narrower than an intake passage cross section area perpendicular to the intake direction of the intake passage, where an orifice further narrower than the discharge passage cross section area is provided at its passage terminal.SELECTED DRAWING: Figure 2

Description

本発明は、インタークーラの水抜き装置に関し、特に、過給機によって加圧された吸気をインタークーラで冷却する際に生成された凝縮水を排出するインタークーラの水抜き装置に関する。   The present invention relates to a drainage device for an intercooler, and more particularly to a drainage device for an intercooler that discharges condensed water generated when intake air pressurized by a supercharger is cooled by the intercooler.

過給機(ターボチャージャ等)を備えたエンジンは、過給機によって加圧された吸気を冷却するためのインタークーラを吸気通路内に配置している。   In an engine equipped with a supercharger (such as a turbocharger), an intercooler for cooling the intake air pressurized by the supercharger is disposed in the intake passage.

また、インタークーラによって吸気を冷却する際には、水分が凝縮されて凝縮水が生成される。この凝縮水がインタークーラの内部にそのまま溜まってしまうと、インタークーラが腐食してしまう虞がある。   Further, when the intake air is cooled by the intercooler, the moisture is condensed to generate condensed water. If this condensed water accumulates as it is inside the intercooler, the intercooler may corrode.

そこで、エンジンの運転状態に応じた適切なタイミングでインタークーラで生成した凝縮水を吸気通路に良好に排出制御するインタークーラの水抜き装置が既に知られている(例えば、特許文献1参照)。   Thus, there is already known an intercooler draining device that satisfactorily controls the discharge of condensed water generated by the intercooler into the intake passage at an appropriate timing according to the operating state of the engine (for example, see Patent Document 1).

特開2012−140868号公報JP 2012-140868 A

しかしながら、このような先行技術文献に開示のインタークーラの水抜き装置にあっては、エンジンの運転状態に応じた適切なタイミングで凝縮水を排出制御するため、通常の吸気系の制御に加えて凝縮水の排出制御をおこなわなければならず、制御系がより一層複雑になるという問題が生じていた。   However, in the intercooler draining device disclosed in such prior art documents, in order to control the discharge of condensed water at an appropriate timing according to the operating state of the engine, in addition to the normal control of the intake system Condensed water discharge control must be performed, and the control system becomes more complicated.

本開示の技術は、上述のような課題を解決するために、専用の検出センサや制御装置を用いた複雑な凝縮水の排出制御を行うことなく、良好に凝縮水を排出することができるインタークーラの水抜き装置を提供することを目的とする。   In order to solve the above-described problems, the technology of the present disclosure is capable of discharging condensed water well without performing complicated condensed water discharging control using a dedicated detection sensor or control device. It aims at providing the drainage device of a cooler.

本開示の技術は、上記目的を達成のため、内燃機関の吸気を過給する過給機よりも下流側の吸気通路に配置されたインタークーラと、インタークーラよりも下流側の吸気通路に配置された吸気調整弁と、一端がインタークーラに接続され、他端が吸気調整弁よりも下流側の吸気通路に接続されてインタークーラによって生成された凝縮水を含む空気を吸気通路に排出する凝縮水除去通路と、を備え、凝縮水除去通路は、吸気通路の吸気方向と直交する吸気通路断面積に対して凝縮水を含む空気の排出方向と直交する排出通路断面積が狭くされるとともに、通路終端部に排出通路断面積よりもさらに狭いオリフィスが設けられている。   In order to achieve the above object, the technology of the present disclosure is arranged in an intercooler disposed in an intake passage downstream of a supercharger that supercharges intake air of an internal combustion engine, and in an intake passage downstream of the intercooler. Condensation that discharges air containing condensed water generated by the intercooler by connecting one end of the intake control valve to the intercooler and connecting the other end to the intake passage downstream of the intake adjustment valve A water removal passage, and the condensed water removal passage has a discharge passage cross-sectional area perpendicular to the discharge direction of the air containing condensed water with respect to the intake passage cross-sectional area perpendicular to the intake direction of the intake passage, An orifice that is narrower than the cross-sectional area of the discharge passage is provided at the end of the passage.

また、凝縮水除去通路は、一端をインタークーラに接続した排水配管と、排水配管の他端と吸気調整弁よりも下流側の吸気通路とを接続するとともに、オリフィスを配置した接続部と、によって画成されている、のが好ましい。   The condensate removal passage is connected to a drainage pipe having one end connected to the intercooler, a connection part where the other end of the drainage pipe is connected to the intake passage on the downstream side of the intake adjustment valve, and an orifice is disposed. Preferably, it is defined.

また、吸気通路は、吸気調整弁と吸気マニホールドとの間に吸気通路よりも拡径したコモンチャンバを備え、凝縮水除去通路は、一端をインタークーラに接続した排水配管と、排水配管の他端とコモンチャンバとを接続するとともに、オリフィスを配置した接続部と、によって画成されている、のが好ましい。   The intake passage includes a common chamber having a diameter larger than that of the intake passage between the intake adjustment valve and the intake manifold. The condensed water removal passage includes a drain pipe having one end connected to the intercooler and the other end of the drain pipe. And a common chamber, and is preferably defined by a connection portion in which an orifice is disposed.

また、排水配管は、少なくとも他端において接続部と水平方向で接続される接続流路を備え、接続部は、コモンチャンバの上面と垂直方向下向きで接続される排出流路を備え、オリフィスは、接続流路の終端部と水平方向で接続されているとともに、排出流路と水平方向で接続されている、のが好ましい。   Further, the drainage pipe includes a connection flow path that is connected to the connection portion in the horizontal direction at least at the other end, the connection portion includes a discharge flow path that is connected vertically downward to the upper surface of the common chamber, It is preferable that the end of the connection channel is connected in the horizontal direction and the discharge channel is connected in the horizontal direction.

本開示の技術によれば、専用の検出センサや制御装置を用いた複雑な凝縮水の排出制御を行うことなく、良好に凝縮水を排出することができる。   According to the technique of the present disclosure, condensed water can be discharged well without performing complicated condensed water discharge control using a dedicated detection sensor or control device.

本実施形態に係るインタークーラの水抜き装置を適用したエンジン系の説明図である。It is explanatory drawing of the engine type | system | group to which the draining device of the intercooler which concerns on this embodiment is applied. 本実施形態に係るインタークーラの水抜き装置の要部の拡大断面図である。It is an expanded sectional view of the important section of the drainage device of the intercooler concerning this embodiment.

以下、添付図面に基づいて、本発明の一実施形態に係るインタークーラの水抜き装置について説明する。なお、同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a drainage device for an intercooler according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the same components and those names and functions are also the same. Therefore, detailed description thereof will not be repeated.

また、以下の説明において、前後左右上下の各方向は、車両前進走行時における運転者から見た前後左右上下と同じとして説明する。したがって、左右方向は車幅方向と同義である。ただし、前後左右上下方向には、厳密な意味での前後左右上下方向を示すものとは限らない。例えば、前後左右方向は水平面内を基準とするとは限らず、上下方向は鉛直方向を基準とするとは限らず、機能的な意味で各方向を示す場合を含むものとする。   Further, in the following description, the front, rear, left, right and up directions will be described as being the same as the front, back, left, right, up and down as viewed from the driver during forward traveling of the vehicle. Therefore, the left-right direction is synonymous with the vehicle width direction. However, the front-rear, left-right, up-down directions do not necessarily indicate the front-rear, left-right, up-down directions. For example, the front-rear and left-right directions are not necessarily based on the horizontal plane, and the up-down direction is not necessarily based on the vertical direction, and includes cases where each direction is indicated in a functional sense.

図1に示すように、エンジン(内燃機関)1は、車両に搭載された多気筒の圧縮着火式内燃機関としてのディーゼルエンジンである。なお、図1に示す例では直列4気筒エンジンとなっているが、エンジン1のシリンダ配置形式や気筒数等は任意である。   As shown in FIG. 1, an engine (internal combustion engine) 1 is a diesel engine as a multi-cylinder compression ignition internal combustion engine mounted on a vehicle. Although the example shown in FIG. 1 is an in-line four-cylinder engine, the cylinder arrangement type, the number of cylinders, and the like of the engine 1 are arbitrary.

エンジン1は、エンジン本体2と、エンジン本体2に接続された吸気通路3及び排気通路4と、過給機5と、燃料噴射装置6と、を備える。エンジン本体2は、図示は省略するが、シリンダヘッド、シリンダブロック、クランクケース等の構造部品と、その内部に収容されたピストン、クランクシャフト、バルブ等の可動部品と、を含む。   The engine 1 includes an engine body 2, an intake passage 3 and an exhaust passage 4 connected to the engine body 2, a supercharger 5, and a fuel injection device 6. Although not shown, the engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts such as a piston, a crankshaft, and a valve housed therein.

燃料噴射装置6は、例えば、コモンレール式燃料噴射装置が用いられ、各気筒に設けられた燃料噴射弁としてのインジェクタ7と、インジェクタ7に接続されたコモンレール8と、を備える。インジェクタ7は、シリンダ9の内部である燃焼室内に燃料を直接噴射する。コモンレール8は、インジェクタ7から噴射される燃料を高圧状態で貯留する。   The fuel injection device 6 is, for example, a common rail fuel injection device, and includes an injector 7 as a fuel injection valve provided in each cylinder, and a common rail 8 connected to the injector 7. The injector 7 directly injects fuel into the combustion chamber inside the cylinder 9. The common rail 8 stores the fuel injected from the injector 7 in a high pressure state.

吸気通路3は、エンジン本体2(特に、シリンダヘッド)に接続された吸気マニホールド10と、吸気マニホールド10の上流端に接続された吸気管11と、によって主に吸気系が画成されている。吸気マニホールド10は、吸気管11から送られてきた吸気を各気筒の吸気ポートに分配供給する。   The intake passage 3 mainly defines an intake system by an intake manifold 10 connected to the engine body 2 (particularly a cylinder head) and an intake pipe 11 connected to an upstream end of the intake manifold 10. The intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder.

吸気管11には、上流側から順に、エアクリーナ12、過給機5のコンプレッサ5C、インタークーラ13、電子制御式の吸気調整弁14、コモンチャンバ15、が設けられている。   In the intake pipe 11, an air cleaner 12, a compressor 5 </ b> C of the supercharger 5, an intercooler 13, an electronically controlled intake adjustment valve 14, and a common chamber 15 are provided in this order from the upstream side.

排気通路4は、エンジン本体2(特に、シリンダヘッド)に接続された排気マニホールド20と、排気マニホールド20の下流側に配置された排気管21と、によって主に排気系が画成されている。排気マニホールド20は、各気筒の排気ポートから送られてきた排気ガスを集合させる。   The exhaust passage 4 mainly defines an exhaust system by an exhaust manifold 20 connected to the engine body 2 (particularly, a cylinder head) and an exhaust pipe 21 disposed on the downstream side of the exhaust manifold 20. The exhaust manifold 20 collects exhaust gas sent from the exhaust port of each cylinder.

排気管21(若しくは排気マニホールド20と排気管21との間)には、過給機5のタービン5Tが設けられる。排気管21には、タービン5Tよりも下流側に各種触媒やセンサ等が設けられる。   A turbine 5T of the supercharger 5 is provided in the exhaust pipe 21 (or between the exhaust manifold 20 and the exhaust pipe 21). The exhaust pipe 21 is provided with various catalysts and sensors on the downstream side of the turbine 5T.

一方、エンジン1はEGR装置30を備える。EGR装置30は、排気通路4、特に、排気マニホールド20の内部を流れる排気ガスの一部(以下、「EGRガス」とも称する。)を吸気通路3に還流させるためのEGR通路31と、EGR通路31を流れるEGRガスを冷却するEGRクーラ32と、EGRガスの流量を調節するためのEGR弁33と、を備える。   On the other hand, the engine 1 includes an EGR device 30. The EGR device 30 includes an EGR passage 31 for returning a part of exhaust gas flowing through the exhaust passage 4, particularly the exhaust manifold 20 (hereinafter also referred to as “EGR gas”) to the intake passage 3, and an EGR passage. The EGR cooler 32 that cools the EGR gas that flows through 31 and an EGR valve 33 that adjusts the flow rate of the EGR gas are provided.

また、エンジン1は、図示は省略するが、制御ユニット若しくはコントローラをなす電子制御ユニット(以下、「ECU」と称する。)が設けられる。このECUは、中央処理装置(CPU)や半導体記憶素子(ROM、RAM)等の各種回路部品を含み、インジェクタ7、吸気調整弁14、EGR弁33、等を制御する。   Although not shown, the engine 1 is provided with an electronic control unit (hereinafter referred to as “ECU”) that forms a control unit or a controller. The ECU includes various circuit components such as a central processing unit (CPU) and semiconductor memory elements (ROM, RAM), and controls the injector 7, the intake adjustment valve 14, the EGR valve 33, and the like.

なお、ECUは、例えば、図示を略す吸気系並びに排気系に配置した各種センサ及びエンジン回転速度センサやアクセル開度センサ等からの検出信号に基づいて、インジェクタ7の燃料噴射量や吸気調整弁14の開度等を含むエンジン駆動に関する各種制御を実行する。   Note that the ECU, for example, the fuel injection amount of the injector 7 and the intake adjustment valve 14 based on detection signals from various sensors arranged in an intake system and an exhaust system (not shown), an engine speed sensor, an accelerator opening sensor, and the like. Various controls related to engine driving including the opening of the engine are executed.

ところで、上述したように、インタークーラ13によって吸気を冷却する際には、水分が凝縮されて凝縮水が生成される。この凝縮水がインタークーラ13の内部にそのまま溜まってしまうと、インタークーラ13が腐食してしまう虞がある。   By the way, as described above, when the intake air is cooled by the intercooler 13, the moisture is condensed to generate condensed water. If this condensed water accumulates as it is inside the intercooler 13, the intercooler 13 may be corroded.

特に、EGR装置30を配置したエンジン1では、排気再循環により吸気通路3に供給されるEGRガスは温度が比較的高いこともあり、水分が水蒸気として比較的多く含まれている。   In particular, in the engine 1 in which the EGR device 30 is arranged, the EGR gas supplied to the intake passage 3 by the exhaust gas recirculation may have a relatively high temperature and contain a relatively large amount of moisture as water vapor.

そのため、EGR装置30のEGR通路31は、吸気調整弁14とコモンチャンバ15との間で吸気通路3と接続されている。これにより、EGR装置30で発生した水蒸気はコモンチャンバ15によって回収することが可能となっている。   Therefore, the EGR passage 31 of the EGR device 30 is connected to the intake passage 3 between the intake adjustment valve 14 and the common chamber 15. Thereby, the water vapor generated in the EGR device 30 can be recovered by the common chamber 15.

コモンチャンバ15は、吸気通路3の吸気の流れの慣性を利用して吸気充填効率を高めることによって出力向上を図るうえ、内部に残存する空気によってエンジン1の始動時における回転数の立ち上がり量を増大させる。コモンチャンバ15は、内部で結露した水分(凝縮水)が下流側に流れ込まないように少なくとも下側に拡径している。なお、コモンチャンバ15は、その水分を大気に排水可能としてもよい。     The common chamber 15 improves the output by increasing the intake air charging efficiency by utilizing the inertia of the intake air flow in the intake passage 3 and increases the rising amount of the rotational speed at the start of the engine 1 due to the air remaining inside. Let The common chamber 15 has a diameter expanded at least downward so that moisture (condensed water) condensed inside does not flow downstream. The common chamber 15 may be capable of draining the moisture to the atmosphere.

また、本実施の形態におけるエンジン1は、上述したインタークーラ13により吸気を冷却した際に生成した凝縮水を排出する凝縮水除去通路40を備える。   Further, the engine 1 in the present embodiment includes a condensed water removal passage 40 that discharges condensed water generated when the intake air is cooled by the intercooler 13 described above.

凝縮水除去通路40は、一端をインタークーラ13に接続した排水配管41と、排水配管41の他端と吸気調整弁14よりも下流側の吸気通路3とを接続する接続部42と、によって画成されている。   The condensed water removal passage 40 is defined by a drain pipe 41 having one end connected to the intercooler 13 and a connection portion 42 connecting the other end of the drain pipe 41 and the intake passage 3 downstream of the intake adjustment valve 14. It is made.

図2に示すように、接続部42は、一端を開放して水平方向に延びる排水配管41の他端とインロー方式で接続されるジョイント部材43と、ジョイント部材43を貫通するボルト部材44と、ジョイント部材43の外周においてボルト部材44との間に位置するパッキン45と、を備える。   As shown in FIG. 2, the connecting portion 42 has a joint member 43 that is connected to the other end of the drainage pipe 41 that extends in the horizontal direction with one end open, and a bolt member 44 that penetrates the joint member 43. A packing 45 positioned between the bolt member 44 and the outer periphery of the joint member 43.

ボルト部材44は、ねじ部44aがコモンチャンバ15の上面から上向きに隆起する隆起部15aに形成された雌ねじ穴15bと螺合することにより排水配管41をコモンチャンバ15に固定する。これにより、パッキン45は、ボルト部材44の頭部44bと隆起部15aとに挟まれた状態でジョイント部材43とボルト部材44との間を密閉する。   The bolt member 44 fixes the drain pipe 41 to the common chamber 15 by screwing with a female screw hole 15 b formed in a raised portion 15 a where the screw portion 44 a is raised upward from the upper surface of the common chamber 15. Thereby, the packing 45 seals between the joint member 43 and the bolt member 44 in a state of being sandwiched between the head portion 44b of the bolt member 44 and the raised portion 15a.

ねじ部44aには、軸線方向に沿って先端に開放する排出流路44cと、頭部44bに近接する基部付近に軸線方向と直交するオリフィス44dと、が形成されている。   The screw portion 44a is formed with a discharge flow path 44c that opens to the tip along the axial direction, and an orifice 44d that is orthogonal to the axial direction near the base near the head portion 44b.

したがって、排水配管41の他端が水平方向でジョイント部材43と接続され、ボルト部材44のねじ部44aは、コモンチャンバ15の上面側で隆起する隆起部15aと垂直方向でジョイント部材43を貫通している。   Accordingly, the other end of the drainage pipe 41 is connected to the joint member 43 in the horizontal direction, and the threaded portion 44a of the bolt member 44 penetrates the joint member 43 in the vertical direction with the raised portion 15a raised on the upper surface side of the common chamber 15. ing.

これにより、排水配管41は、少なくとも他端において接続部42のジョイント部材43と水平方向で接続される接続流路41aを備え、接続部42は、コモンチャンバ15の上面と垂直方向下向きで貫通穴15cと接続される排出流路44cを備え、オリフィス44dは、接続流路41aの終端部と水平方向で接続されているとともに、排出流路44cとも水平方向で接続されていることとなる。   Accordingly, the drain pipe 41 includes a connection flow path 41a that is connected to the joint member 43 of the connection portion 42 in the horizontal direction at least at the other end, and the connection portion 42 is a through hole that is vertically downward with respect to the upper surface of the common chamber 15. The orifice 44d is connected to the terminal end of the connection channel 41a in the horizontal direction, and is also connected to the discharge channel 44c in the horizontal direction.

オリフィス44dは、排水配管41を吸気通路3へと接続する接続部42に水平方向に設けることにより、排水配管41を通して空気が過剰にエンジン1に供給されることを防いでいる。これにより、特に、天然ガスを燃料とするCNG車両等に有効である。すなわち、CNG車両では、エンジン1の出力を吸気調整弁14の開度(吸気量)で制御するため、吸気量のコントロールが重要となる。   The orifice 44 d prevents the air from being excessively supplied to the engine 1 through the drainage pipe 41 by providing the drainage pipe 41 in the connecting portion 42 that connects the intake passage 3 in the horizontal direction. This is particularly effective for CNG vehicles that use natural gas as fuel. That is, in the CNG vehicle, since the output of the engine 1 is controlled by the opening degree (intake amount) of the intake adjustment valve 14, control of the intake amount is important.

具体的に、オリフィス44dの流路と直交する断面積は、例えば、吸気調整弁14が吸気通路3を設計上の全閉としたときに発生する吸気通路3との隙間によって吸気を許容する断面積を1とした場合に、0.08以下の割合に設定している。   Specifically, the cross-sectional area orthogonal to the flow path of the orifice 44d is, for example, a section that allows intake air by a clearance with the intake passage 3 that is generated when the intake adjustment valve 14 makes the intake passage 3 fully closed by design. When the area is 1, the ratio is set to 0.08 or less.

これにより、吸気通路3を流れる吸気に伴ってコモンチャンバ15の貫通穴15cに発生する負圧によって、インタークーラ13から凝縮水を含む空気を、排水配管41、ジョイント部材43を含む水平方向に延びる接続流路41a、オリフィス44d、排出流路44c、貫通穴15c、をこの順に経由してコモンチャンバ15の内部の吸気通路3に排出することができる。   As a result, the air containing the condensed water extends from the intercooler 13 in the horizontal direction including the drain pipe 41 and the joint member 43 due to the negative pressure generated in the through hole 15c of the common chamber 15 with the intake air flowing through the intake passage 3. The connection passage 41a, the orifice 44d, the discharge passage 44c, and the through hole 15c can be discharged to the intake passage 3 inside the common chamber 15 in this order.

このように、本実施の形態に係るインタークーラ13の水抜き装置は、エンジン(内燃機関)1の吸気を過給する過給機5よりも下流側の吸気通路3に配置されたインタークーラ13と、インタークーラ13よりも下流側の吸気通路3に配置された吸気調整弁14と、一端がインタークーラ13に接続され、他端が吸気調整弁14よりも下流側の吸気通路3に接続されてインタークーラ13によって生成された凝縮水を含む空気を吸気通路3に排出する凝縮水除去通路40と、を備え、凝縮水除去通路40は、吸気通路3の吸気方向と直交する吸気通路断面積に対して凝縮水を含む空気の排出方向と直交する排出通路44cの断面積が狭くされるとともに、通路終端部に排出通路44cの断面積よりもさらに狭いオリフィス44dが設けられていることにより、専用の検出センサや制御装置を用いた複雑な凝縮水の排出制御を行うことなく、良好に凝縮水を排出することができる。   As described above, the drainage device for the intercooler 13 according to this embodiment includes the intercooler 13 disposed in the intake passage 3 on the downstream side of the supercharger 5 that supercharges the intake air of the engine (internal combustion engine) 1. And an intake adjustment valve 14 disposed in the intake passage 3 downstream of the intercooler 13, one end connected to the intercooler 13, and the other end connected to the intake passage 3 downstream of the intake adjustment valve 14. A condensed water removal passage 40 for discharging air containing condensed water generated by the intercooler 13 to the intake passage 3, and the condensed water removal passage 40 is an intake passage cross-sectional area perpendicular to the intake direction of the intake passage 3. In contrast, the cross-sectional area of the discharge passage 44c perpendicular to the discharge direction of the air containing condensed water is made narrower, and an orifice 44d that is narrower than the cross-sectional area of the discharge passage 44c is provided at the end of the passage. By are, without performing discharge control of complex condensed water using a special sensor or the control device, can be discharged satisfactorily condensed water.

また、本実施の形態に係るインタークーラ13の水抜き装置は、凝縮水除去通路40は、一端をインタークーラ13に接続した排水配管41と、排水配管41の他端と吸気調整弁14よりも下流側の吸気通路3とを接続するとともに、オリフィス44dを配置した接続部42と、によって画成されている。具体的には、吸気通路3は、吸気調整弁14と吸気マニホールド10との間に吸気通路3よりも拡径したコモンチャンバ15を備え、凝縮水除去通路40は、一端をインタークーラ13に接続した排水配管41と、排水配管41の他端とコモンチャンバ15とを接続するとともに、オリフィス44dを配置した接続部42と、によって画成されていることにより、凝縮水をコモンチャンバ15に排水することができるとともに、吸気マニホールド10への凝縮水の過剰な混入を抑制することができる。   Further, in the drainage device for the intercooler 13 according to the present embodiment, the condensed water removal passage 40 has a drain pipe 41 having one end connected to the intercooler 13, the other end of the drain pipe 41, and the intake adjustment valve 14. The downstream side intake passage 3 is connected, and is defined by a connection portion 42 in which an orifice 44d is disposed. Specifically, the intake passage 3 includes a common chamber 15 having a diameter larger than that of the intake passage 3 between the intake adjustment valve 14 and the intake manifold 10, and the condensed water removal passage 40 has one end connected to the intercooler 13. The drainage pipe 41 is connected to the other end of the drainage pipe 41 and the common chamber 15, and the condensate is drained into the common chamber 15. In addition, excessive mixing of condensed water into the intake manifold 10 can be suppressed.

また、本実施の形態に係るインタークーラの水抜き装置は、排水配管41は、少なくとも他端において接続部42と水平方向で接続される接続流路41aを備え、接続部42は、コモンチャンバ15の上面と垂直方向下向きで接続される排出流路44cを備え、オリフィス44dは、接続流路41aの終端部と水平方向で接続されているとともに、排出流路44cと水平方向で接続されていることにより、オリフィス44dにおけるエマルジョンや異物の詰まりを抑制することができる。   In addition, in the intercooler draining device according to the present embodiment, the drain pipe 41 includes a connection channel 41 a that is connected to the connection part 42 in the horizontal direction at least at the other end, and the connection part 42 includes the common chamber 15. The orifice 44d is connected to the terminal end of the connection channel 41a in the horizontal direction and is connected to the discharge channel 44c in the horizontal direction. As a result, clogging of the emulsion and foreign matter in the orifice 44d can be suppressed.

ところで、本発明のインタークーラの水抜き装置は、上記の実施の形態に限定されるものでなく、特許請求の範囲に記載した技術的範囲には、発明の要旨を逸脱しない範囲内で種々、設計変更した形態が含まれる。   By the way, the intercooler draining device of the present invention is not limited to the above embodiment, and the technical scope described in the claims is variously within the scope of the invention. Designed forms are included.

例えば、インタークーラ13の水抜き装置は、排水配管41と接続部42とを備えた構成となっているが、これに限らず、例えば、排水配管41の他端をエルボ管構造としてコモンチャンバ15の上面に直接接続するとともに、排水配管41の中途部(水平部分)にオリフィス構造を有するように小孔を形成したブロック部材を配置した構成であってもよい。   For example, the water draining device of the intercooler 13 has a configuration including the drain pipe 41 and the connection portion 42, but is not limited thereto, and for example, the common chamber 15 has the other end of the drain pipe 41 as an elbow pipe structure. The block member which formed the small hole so that it may have an orifice structure in the middle part (horizontal part) of the drain piping 41 may be arrange | positioned.

なお、以上の説明において、「水平」「垂直」等の記載がある場合に、これらの各記載は厳密な意味ではない。すなわち、「水平」「垂直」とは、設計上や製造上等における公差や誤差が許容され、「実質的に水平」「実質的に垂直」という意味である。なお、ここでの公差や誤差とは、本発明の構成・作用・効果を逸脱しない範囲における単位のことを意味するものである。   In the above description, when there are descriptions such as “horizontal” and “vertical”, each of these descriptions is not a strict meaning. That is, “horizontal” and “vertical” mean tolerances and errors in design, manufacturing, etc., and mean “substantially horizontal” and “substantially vertical”. Here, the tolerance and error mean units in a range not departing from the configuration, operation, and effect of the present invention.

1 エンジン
13 インタークーラ
40 凝縮水除去通路
41 排水配管
41a 接続流路
42 接続部
44 ボルト部材
44c 排出流路
44d オリフィス
DESCRIPTION OF SYMBOLS 1 Engine 13 Intercooler 40 Condensate removal passage 41 Drain piping 41a Connection flow path 42 Connection part 44 Bolt member 44c Discharge flow path 44d Orifice

Claims (4)

内燃機関の吸気を過給する過給機よりも下流側の吸気通路に配置されたインタークーラと、
前記インタークーラよりも下流側の前記吸気通路に配置された吸気調整弁と、
一端が前記インタークーラに接続され、他端が前記吸気調整弁よりも下流側の前記吸気通路に接続されて前記インタークーラによって生成された凝縮水を含む空気を前記吸気通路に排出する凝縮水除去通路と、を備え、
前記凝縮水除去通路は、
前記吸気通路の吸気方向と直交する吸気通路断面積に対して凝縮水を含む空気の排出方向と直交する排出通路断面積が狭くされるとともに、通路終端部に前記排出通路断面積よりもさらに狭いオリフィスが設けられている、
ことを特徴とするインタークーラの水抜き装置。
An intercooler disposed in an intake passage downstream of a supercharger for supercharging intake air of an internal combustion engine;
An intake adjustment valve disposed in the intake passage downstream of the intercooler;
One end is connected to the intercooler, and the other end is connected to the intake passage downstream of the intake adjustment valve, and condensed water removal is performed to discharge air containing condensed water generated by the intercooler to the intake passage. A passage,
The condensed water removal passage is
The discharge passage cross-sectional area perpendicular to the discharge direction of the air containing condensed water is made narrower than the intake passage cross-sectional area perpendicular to the intake direction of the intake passage, and is further narrower than the discharge passage cross-sectional area at the end of the passage. An orifice is provided,
An intercooler drainage device characterized by that.
前記凝縮水除去通路は、
一端を前記インタークーラに接続した排水配管と、
前記排水配管の他端と前記吸気調整弁よりも下流側の前記吸気通路とを接続するとともに、前記オリフィスを配置した接続部と、
によって画成されている、
請求項1に記載のインタークーラの水抜き装置。
The condensed water removal passage is
Drainage pipe with one end connected to the intercooler;
Connecting the other end of the drainage pipe and the intake passage on the downstream side of the intake adjustment valve, and connecting the orifice disposed;
Defined by the
The drainage device for an intercooler according to claim 1.
前記吸気通路は、
前記吸気調整弁と吸気マニホールドとの間に前記吸気通路よりも拡径したコモンチャンバを備え、
前記凝縮水除去通路は、
一端を前記インタークーラに接続した排水配管と、
前記排水配管の他端と前記コモンチャンバとを接続するとともに、前記オリフィスを配置した接続部と、
によって画成されている、
請求項1に記載のインタークーラの水抜き装置。
The intake passage is
A common chamber having a diameter larger than that of the intake passage is provided between the intake adjustment valve and the intake manifold,
The condensed water removal passage is
Drainage pipe with one end connected to the intercooler;
While connecting the other end of the drainage pipe and the common chamber, and a connection portion where the orifice is disposed,
Defined by the
The drainage device for an intercooler according to claim 1.
前記排水配管は、
少なくとも前記他端において前記接続部と水平方向で接続される接続流路を備え、
前記接続部は、
前記コモンチャンバの上面と垂直方向下向きで接続される排出流路を備え、
前記オリフィスは、
前記接続流路の終端部と水平方向で接続されているとともに、前記排出流路と水平方向で接続されている、
請求項3に記載のインタークーラの水抜き装置。
The drainage pipe is
A connection flow path connected in the horizontal direction with the connection portion at least at the other end;
The connecting portion is
A discharge passage connected vertically downward with the upper surface of the common chamber;
The orifice is
It is connected in the horizontal direction with the terminal end of the connection flow path, and is connected in the horizontal direction with the discharge flow path,
The intercooler draining device according to claim 3.
JP2017155383A 2017-08-10 2017-08-10 Intercooler drainage device Active JP6958097B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017155383A JP6958097B2 (en) 2017-08-10 2017-08-10 Intercooler drainage device
CN201880051721.1A CN111051664B (en) 2017-08-10 2018-08-09 Drainage device of intercooler
PCT/JP2018/029850 WO2019031567A1 (en) 2017-08-10 2018-08-09 Water discharge device for intercooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155383A JP6958097B2 (en) 2017-08-10 2017-08-10 Intercooler drainage device

Publications (2)

Publication Number Publication Date
JP2019035333A true JP2019035333A (en) 2019-03-07
JP6958097B2 JP6958097B2 (en) 2021-11-02

Family

ID=65271979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155383A Active JP6958097B2 (en) 2017-08-10 2017-08-10 Intercooler drainage device

Country Status (3)

Country Link
JP (1) JP6958097B2 (en)
CN (1) CN111051664B (en)
WO (1) WO2019031567A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100661A (en) * 1994-10-03 1996-04-16 Toyota Motor Corp Discharge structure for oil gathered in intake passage
JP2005226476A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Discharge structure of oil accumulated in air intake passage
JP2009108761A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Intercooler
US20090223493A1 (en) * 2008-03-07 2009-09-10 Gm Global Technology Operations, Inc. Condensate Extractor for Charge Air Cooler Systems
US20110094219A1 (en) * 2009-10-27 2011-04-28 Ford Global Technologies, Llc Condensation trap for charge air cooler
FR2957980A1 (en) * 2010-03-24 2011-09-30 Renault Sas Intake circuit for diesel engine of e.g. four-cylinder motor, has cooler comprising product storage zone that is connected to circuit in cylinder by purging pipe emerging downstream from regulation valves
JP2014074357A (en) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp Engine condensed water discharge device
WO2016031495A1 (en) * 2014-08-27 2016-03-03 トヨタ自動車株式会社 Intercooler device for turbocharger internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549142A1 (en) * 1995-12-29 1997-07-03 Asea Brown Boveri Method and device for wet cleaning the nozzle ring of an exhaust gas turbocharger turbine
US6035834A (en) * 1997-02-10 2000-03-14 Industrial Power Generating Corporation Nitrogen oxides reducing aftercooler for turbocharged engines
CN1896587A (en) * 2005-07-13 2007-01-17 三浦工业株式会社 High function water generation system
US20080087017A1 (en) * 2006-10-16 2008-04-17 Van Nimwegen Robert R Van Nimwegen efficient pollution free internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100661A (en) * 1994-10-03 1996-04-16 Toyota Motor Corp Discharge structure for oil gathered in intake passage
JP2005226476A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Discharge structure of oil accumulated in air intake passage
JP2009108761A (en) * 2007-10-30 2009-05-21 Toyota Motor Corp Intercooler
US20090223493A1 (en) * 2008-03-07 2009-09-10 Gm Global Technology Operations, Inc. Condensate Extractor for Charge Air Cooler Systems
US20110094219A1 (en) * 2009-10-27 2011-04-28 Ford Global Technologies, Llc Condensation trap for charge air cooler
FR2957980A1 (en) * 2010-03-24 2011-09-30 Renault Sas Intake circuit for diesel engine of e.g. four-cylinder motor, has cooler comprising product storage zone that is connected to circuit in cylinder by purging pipe emerging downstream from regulation valves
JP2014074357A (en) * 2012-10-04 2014-04-24 Mitsubishi Motors Corp Engine condensed water discharge device
WO2016031495A1 (en) * 2014-08-27 2016-03-03 トヨタ自動車株式会社 Intercooler device for turbocharger internal combustion engine

Also Published As

Publication number Publication date
JP6958097B2 (en) 2021-11-02
CN111051664B (en) 2021-12-21
CN111051664A (en) 2020-04-21
WO2019031567A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US10196992B2 (en) Engine control device
US9163590B2 (en) Vaporized-fuel processing system
JP5673896B2 (en) Control device for internal combustion engine
US20180066572A1 (en) Blowby gas treatment device for internal combustion engine with supercharger
JP5799963B2 (en) Exhaust circulation device for internal combustion engine
JP2015078637A (en) Internal combustion engine control device
JP6213424B2 (en) Internal combustion engine
JP2011080396A (en) Egr device
JP2014001703A (en) Cooling system of internal combustion engine
JP5062142B2 (en) PCV system abnormality detection device
JP2007262956A (en) Control device for internal combustion engine with egr device
JP6958097B2 (en) Intercooler drainage device
US10196969B2 (en) Exhaust device for engine
US10408120B2 (en) Opening/closing valve structure
JP2016031063A (en) Exhaust gas recirculation device of engine with turbocharger
JP7371570B2 (en) engine equipment
JP2012237231A (en) Blowby gas reflux device
JP6825541B2 (en) EGR controller
JP2009281247A (en) Blowby gas treatment system for multiple cylinder engine
JP2010031688A (en) Spark-ignition internal combustion engine
JP4919056B2 (en) Control device for internal combustion engine
JP2017089585A (en) Control method and device for vehicle
JP6540541B2 (en) Internal combustion engine
JP2007327422A (en) Fuel injection control device of internal combustion engine
KR100233612B1 (en) Auxiliary intake devices of engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210920

R150 Certificate of patent or registration of utility model

Ref document number: 6958097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150