JP2019033123A - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
JP2019033123A
JP2019033123A JP2017151751A JP2017151751A JP2019033123A JP 2019033123 A JP2019033123 A JP 2019033123A JP 2017151751 A JP2017151751 A JP 2017151751A JP 2017151751 A JP2017151751 A JP 2017151751A JP 2019033123 A JP2019033123 A JP 2019033123A
Authority
JP
Japan
Prior art keywords
extinguishing agent
fire extinguishing
negative electrode
lithium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017151751A
Other languages
Japanese (ja)
Other versions
JP6431147B1 (en
Inventor
富山 昇吾
Shogo Tomiyama
昇吾 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Protec Corp
Original Assignee
Yamato Protec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Protec Corp filed Critical Yamato Protec Corp
Priority to JP2017151751A priority Critical patent/JP6431147B1/en
Application granted granted Critical
Publication of JP6431147B1 publication Critical patent/JP6431147B1/en
Publication of JP2019033123A publication Critical patent/JP2019033123A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide an electrochemical device capable of suppressing fire caused by ignition of lithium as initial extinguishing while securing the size and weight reduction of the entire power storage device.SOLUTION: An electrochemical device 1 includes an electrode laminate 10 formed by laminating a negative electrode 12, a separator 13, and a positive electrode 11, a fire extinguishing agent 40 for generating aerosol by burning when the temperature reaches a predetermined temperature, an electrolytic solution that contains a lithium ion-containing electrolyte and in which the electrode laminate and the fire extinguishing agent are immersed, and an exterior body 20 for accommodating the electrode laminate, fire extinguishing agent, and electrolytic solution.SELECTED DRAWING: Figure 2

Description

本発明は、電気化学デバイスに関し、特に、デバイス内に初期消火機能を有する電気化学デバイスに関する。   The present invention relates to an electrochemical device, and more particularly to an electrochemical device having an initial fire extinguishing function in the device.

例えば動力、発電などの種々の用途のために、高エネルギー密度及び高出力特性を有する蓄電装置の開発が行われている。このような蓄電デバイスの例として、リチウムイオンキャパシタやリチウムイオン電池のような、リチウムを含む電気化学デバイスが挙げられる(例えば、特許文献1参照)。   For example, power storage devices having high energy density and high output characteristics have been developed for various uses such as power and power generation. Examples of such an electricity storage device include an electrochemical device containing lithium, such as a lithium ion capacitor and a lithium ion battery (see, for example, Patent Document 1).

特開2007−67105号公報JP 2007-67105 A

この種の電気化学デバイスにおいては、エネルギー密度及び出力特性が高いほど、内部短絡が生じた時に大電流が流れ、それに伴って急激な発熱が生じる。かかる発熱により、リチウムが発火し、火災が発生するおそれがある。   In this type of electrochemical device, the higher the energy density and the output characteristics, the larger the current flows when an internal short circuit occurs, and the more sudden heat is generated. Such heat generation may ignite lithium and cause a fire.

このようなデバイスの発熱を抑制するべく、電気化学デバイスの外部に冷却システムを付設することが考えられるものの、このような冷却システムは装置全体の大型化や重量の増加を招く。   Although it is conceivable to provide a cooling system outside the electrochemical device in order to suppress the heat generation of such a device, such a cooling system leads to an increase in the size and weight of the entire apparatus.

そこで、本発明は、蓄電装置全体の小型化及び軽量化を確保しながら、リチウムの発火による火災を初期消火で抑制することができる電気化学デバイスを提供することを目的とする。   Therefore, an object of the present invention is to provide an electrochemical device capable of suppressing a fire due to lithium ignition by initial fire extinguishing while ensuring miniaturization and weight reduction of the entire power storage device.

上述した課題を解決すべく、本発明は、負極、セパレータ及び正極を積層してなる電極積層体と、所定温度に達すると燃焼してエアロゾルを発生させる消火薬剤と、リチウムイオン含有電解質を含み、前記電極積層体及び前記消火薬剤を浸漬する電解液と、前記電極積層体、前記消火薬剤及び前記電解液を収納する外装体と、を含むことを特徴とする電気化学デバイスを提供する。   In order to solve the above-described problems, the present invention includes an electrode laminate formed by laminating a negative electrode, a separator, and a positive electrode, a fire extinguishing agent that burns to generate aerosol when a predetermined temperature is reached, and a lithium ion-containing electrolyte, There is provided an electrochemical device comprising: an electrolytic solution in which the electrode laminate and the fire extinguishing agent are immersed; and an exterior body that houses the electrode laminate, the fire extinguishing agent, and the electrolyte.

上記のように、本発明の電気化学デバイスは、所定温度に達すると燃焼してエアロゾルを発生させる消火薬剤が、電解液に接触した状態で内蔵される点に最大の特徴を有する。   As described above, the electrochemical device of the present invention has the greatest feature in that a fire extinguishing agent that burns to generate aerosol when reaching a predetermined temperature is incorporated in contact with the electrolytic solution.

また、上記のような構成を有する本発明の電気化学デバイスでは、前記負極にリチウムをドープするためのリチウム源(例えばリチウム箔)を更に具備すること、が好ましい。   In the electrochemical device of the present invention having the above-described configuration, it is preferable that the negative electrode further includes a lithium source (for example, lithium foil) for doping lithium.

また、上記のような構成を有する本発明の電気化学デバイスでは、前記消火薬剤が、前記セパレータと、前記正極及び前記負極のうちの少なくとも一方と、の間に設けられていること、が好ましい。   In the electrochemical device of the present invention having the above-described configuration, it is preferable that the fire-extinguishing agent is provided between the separator and at least one of the positive electrode and the negative electrode.

また、上記のような構成を有する本発明の電気化学デバイスでは、前記消火薬剤が、シート状に成型され、前記セパレータにおける前記正極側の面上及び前記負極側の面上のうちの少なくとも一方に設けられていること、が好ましい。   Further, in the electrochemical device of the present invention having the above-described configuration, the fire extinguishing agent is molded into a sheet shape, and is formed on at least one of the positive electrode side surface and the negative electrode side surface of the separator. It is preferable that it is provided.

また、上記のような構成を有する本発明の電気化学デバイスでは、前記消火薬剤が塩素酸カリウムを含み、DSC評価(100〜400℃、10℃毎分昇温)吸熱ピーク総量が100J/g〜900J/gであること、が好ましい。   Moreover, in the electrochemical device of the present invention having the above-described configuration, the fire extinguishing agent contains potassium chlorate, and the DSC evaluation (100 to 400 ° C., 10 ° C./min) endothermic peak total amount is 100 J / g to It is preferably 900 J / g.

本発明によれば、蓄電装置全体の小型化及び軽量化を確保しながら、リチウムの発火による火災を初期消火で抑制することができる電気化学デバイスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrochemical device which can suppress the fire by ignition of lithium by initial fire extinguishing can ensure the size reduction and weight reduction of the whole electrical storage apparatus.

本発明の代表的な実施形態に係るリチウムイオンキャパシタ1の外観を示す概略図である。It is the schematic which shows the external appearance of the lithium ion capacitor 1 which concerns on typical embodiment of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のリチウムイオンキャパシタ1の製造工程のうち、正極11、負極12、及びセパレータを積層して電極ユニット10を作製する工程の説明図である。It is explanatory drawing of the process of producing the electrode unit 10 by laminating | stacking the positive electrode 11, the negative electrode 12, and a separator among the manufacturing processes of the lithium ion capacitor 1 of FIG. 図1のリチウムイオンキャパシタ1の製造工程のうち、電極ユニット10及びリチウムイオン源30を外装容器20に収納する工程の説明図である。FIG. 2 is an explanatory diagram of a process of housing an electrode unit 10 and a lithium ion source 30 in an outer container 20 among the manufacturing processes of the lithium ion capacitor 1 of FIG. 1. 図1のリチウムイオンキャパシタ1の製造工程のうち、外装容器20に電解液を注入し、外装容器20を封止する工程の説明図である。FIG. 2 is an explanatory diagram of a step of injecting an electrolyte into the outer container 20 and sealing the outer container 20 among the manufacturing steps of the lithium ion capacitor 1 of FIG. 1.

以下、図面を参照し、本発明の代表的な実施形態として、リチウムイオンキャパシタの例を用いて詳細に説明する。ただし、本発明はリチウムイオンキャパシタに限定されるものではない。また、本発明はこれら図面に限定されるものではない。なお、図面は、本発明を概念的に説明するためのものであるから、理解容易のために、必要に応じて寸法、比又は数を誇張又は簡略化して表している場合もある。   Hereinafter, a representative embodiment of the present invention will be described in detail using an example of a lithium ion capacitor with reference to the drawings. However, the present invention is not limited to the lithium ion capacitor. The present invention is not limited to these drawings. Note that the drawings are for conceptual description of the present invention, and in order to facilitate understanding, the dimensions, ratios, or numbers may be exaggerated or simplified as necessary.

一般に、リチウムイオンキャパシタは、ハイブリッドキャパシタに属する電気化学デバイスである。リチウムイオンキャパシタでは、正極を構成する材料として、電気二重層キャパシタの電極として用いられる活性炭電極が使用され、負極を構成する材料として、リチウムイオン二次電池の負極に使用されている炭素系電極が使用される。そして、リチウムイオンキャパシタは、負極にリチウムが予め(乃至は使用前に)吸蔵(プレドープ)された状態で、蓄電デバイスとして使用される。   Generally, a lithium ion capacitor is an electrochemical device belonging to a hybrid capacitor. In a lithium ion capacitor, an activated carbon electrode used as an electrode of an electric double layer capacitor is used as a material constituting a positive electrode, and a carbon-based electrode used as a negative electrode of a lithium ion secondary battery is used as a material constituting a negative electrode. used. The lithium ion capacitor is used as an electricity storage device in a state where lithium is occluded (pre-doped) in advance (or before use) in the negative electrode.

また、リチウムイオンキャパシタは、ラミネート型セルと円筒型セルとに大別されるが、ここでは、ラミネート型のリチウムイオンキャパシタを例に説明することとする。もっとも、本発明は、円筒型のリチウムイオンキャパシタにも適用可能である。   Lithium ion capacitors are roughly classified into a laminate type cell and a cylindrical type cell. Here, a laminate type lithium ion capacitor will be described as an example. However, the present invention can also be applied to a cylindrical lithium ion capacitor.

[リチウムイオンキャパシタの構成]
図1及び図2を参照して、本実施形態に係るリチウムイオンキャパシタ1の構成を説明する。本実施形態のリチウムイオンキャパシタ1は、図2に示すように、外装体(外装容器)20、電極積層体(電極ユニット)10、電解液、及び消火薬剤40を含んで構成される。リチウムイオンキャパシタ1では、電極ユニット10に含まれる負極12にリチウムイオンを吸蔵させるために、リチウムイオン源30が用いられる。以下、これら各要素を詳述する。
[Configuration of lithium ion capacitor]
With reference to FIG.1 and FIG.2, the structure of the lithium ion capacitor 1 which concerns on this embodiment is demonstrated. The lithium ion capacitor 1 of this embodiment is comprised including the exterior body (exterior container) 20, the electrode laminated body (electrode unit) 10, electrolyte solution, and the fire extinguishing agent 40, as shown in FIG. In the lithium ion capacitor 1, a lithium ion source 30 is used to occlude lithium ions in the negative electrode 12 included in the electrode unit 10. Hereinafter, each of these elements will be described in detail.

(外装容器)
外装容器20は、外装体の一例であり、電極ユニット10、消火薬剤40、及び電解液を収納する。外装容器20は、外装フィルム21,22をそれぞれの外周縁部21A,22Aで相互に気密に接合することで形成される。
(Exterior container)
The exterior container 20 is an example of an exterior body, and accommodates the electrode unit 10, the fire extinguishing agent 40, and the electrolytic solution. The exterior container 20 is formed by airtightly bonding the exterior films 21 and 22 to each other at the outer peripheral edge portions 21A and 22A.

ここでは、外装フィルム21,22として、矩形のラミネートフィルムが用いられるが、これに限られない。外装フィルム21,22における中央部分には、絞り加工が施されており、これにより、外装容器20の内部には、電極ユニット10の収容空間が形成される。外装容器20としては、例えば金属製の外装缶を用いることもできる。   Here, rectangular laminate films are used as the exterior films 21 and 22, but are not limited thereto. The central portions of the exterior films 21 and 22 are subjected to drawing processing, whereby an accommodation space for the electrode unit 10 is formed inside the exterior container 20. As the exterior container 20, for example, a metal exterior can can be used.

(電極ユニット)
電極ユニット10は、電極積層体の一例であり、負極、セパレータ及び正極を積層することで形成される。具体的に、電極ユニット10は、複数の正極11及び複数の負極12がセパレータを介して交互に積層されて構成されている。
以下、個々の負極12、正極11及びセパレータ13について説明する。
(Electrode unit)
The electrode unit 10 is an example of an electrode laminate, and is formed by laminating a negative electrode, a separator, and a positive electrode. Specifically, the electrode unit 10 is configured by alternately laminating a plurality of positive electrodes 11 and a plurality of negative electrodes 12 via separators.
Hereinafter, the individual negative electrode 12, the positive electrode 11, and the separator 13 will be described.

<負極>
負極12は、シート状の電極であり、負極集電体12Aと、その表面に設けられた負極活物質12Bと、を含んで構成されている。負極集電体12Aの各々は、外装容器20の一端に設けられた負極端子52と電気的に接続されている。
<Negative electrode>
The negative electrode 12 is a sheet-like electrode, and includes a negative electrode current collector 12A and a negative electrode active material 12B provided on the surface thereof. Each of the negative electrode current collectors 12 </ b> A is electrically connected to a negative electrode terminal 52 provided at one end of the outer container 20.

負極集電体12Aは、シート状ないし薄膜状の多孔質であり、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいは、エッチングにより貫通孔が形成された多孔質箔等の形態を取る。負極集電体12Aの材質の具体例としては、ステンレス、銅、ニッケル等が挙げられる。   The negative electrode current collector 12A is a sheet-like or thin-film-like porous material, for example, an expanded metal, a punching metal, a metal net, a foam, or a porous foil having through holes formed by etching. Specific examples of the material of the negative electrode current collector 12A include stainless steel, copper, nickel, and the like.

負極集電体12Aの孔の形状は、例えば円形、矩形等の多角形、その他の形状に設定することができる。かかる孔の形態及び数は、後述する電解液中のリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるように、適宜設定される。また、負極集電体12Aの厚みは、例えば出力密度、強度及び軽量化の観点から、適宜設定される。   The shape of the hole of the negative electrode current collector 12A can be set to, for example, a circle, a polygon such as a rectangle, or other shapes. The form and the number of the holes are appropriately set so that lithium ions in the electrolyte solution described later can move between the front and back of the electrode without being blocked by the current collector. Further, the thickness of the negative electrode current collector 12A is appropriately set from the viewpoint of, for example, output density, strength, and weight reduction.

負極活物質12Bは、リチウムイオンを可逆的に担持可能な活物質を含有しており、追って述べるドーピングによりリチウムイオンを保持することとなる。負極活物質12Bとしては、例えば黒鉛(グラファイト)等を用いることができる。   The negative electrode active material 12B contains an active material capable of reversibly supporting lithium ions, and retains lithium ions by doping described later. As the negative electrode active material 12B, for example, graphite (graphite) or the like can be used.

本実施形態において、負極活物質12Bは、負極集電体12Aの表面上に設けられる。負極活物質12Bの厚みは、得られるリチウムイオンキャパシタ1に十分なエネルギー密度を確保されるよう、正極11の厚みとのバランスを考慮して設定される。   In the present embodiment, the negative electrode active material 12B is provided on the surface of the negative electrode current collector 12A. The thickness of the negative electrode active material 12B is set in consideration of the balance with the thickness of the positive electrode 11 so that a sufficient energy density is ensured for the obtained lithium ion capacitor 1.

負極活物質12Bは、例えば、負極活物質粉末及びバインダーが水系媒体又は有機溶媒中に分散されてなるスラリーを調製し、このスラリーを負極集電体12Aの表面に塗布して乾燥することによって形成される。あるいは、上記スラリーを予めシート状に成形し、得られる成形体を負極集電体12Aの表面に貼り付けてもよい。なお、必要に応じて導電性助剤が使用されてもよい。   The negative electrode active material 12B is formed, for example, by preparing a slurry in which a negative electrode active material powder and a binder are dispersed in an aqueous medium or an organic solvent, applying the slurry to the surface of the negative electrode current collector 12A, and drying the slurry. Is done. Alternatively, the slurry may be formed into a sheet shape in advance, and the resulting molded body may be attached to the surface of the negative electrode current collector 12A. In addition, an electroconductive auxiliary agent may be used as needed.

バインダーとしては、例えばスチレンブタジエンゴム(SBR)等のゴム系バインダーや、アクリル系バインダー、ポリ四フッ化エチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が挙げられる。バインダーの使用量は、負極活物質12Bの種類や電極形状等により適宜設定されてよい。   Examples of the binder include rubber-based binders such as styrene butadiene rubber (SBR), fluorine-based resins such as acrylic binders, polytetrafluoroethylene and polyvinylidene fluoride, and thermoplastic resins such as polypropylene and polyethylene. The usage-amount of a binder may be suitably set with the kind of negative electrode active material 12B, an electrode shape, etc.

導電性助剤としては、例えばアセチレンブラック、金属粉末等が用いられてもよい。この導電性粉末の使用量は、負極活物質12Bの電気伝導度、電極形状等に応じて適宜設定される。   As the conductive auxiliary agent, for example, acetylene black, metal powder, or the like may be used. The amount of the conductive powder used is appropriately set according to the electrical conductivity of the negative electrode active material 12B, the electrode shape, and the like.

<正極>
正極11は、シート状の電極であり、正極集電体11Aと、その表面に設けられた正極活物質11Bと、を含んで構成されている。正極集電体11Aの各々は、外装容器20の一端に設けられた正極端子51と電気的に接続されている。
<Positive electrode>
The positive electrode 11 is a sheet-like electrode, and includes a positive electrode current collector 11A and a positive electrode active material 11B provided on the surface thereof. Each of the positive electrode current collectors 11 </ b> A is electrically connected to a positive electrode terminal 51 provided at one end of the outer container 20.

正極集電体11Aは、シート状ないし薄膜状の多孔質であり、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいは、エッチングにより貫通孔が形成された多孔質箔等の形態を取る。正極集電体11Aの材質としては、例えばアルミニウム、ステンレスが挙げられる。   The positive electrode current collector 11A is a sheet-like or thin-film-like porous material, for example, an expanded metal, a punching metal, a metal net, a foam, or a porous foil in which through holes are formed by etching. Examples of the material of the positive electrode current collector 11A include aluminum and stainless steel.

正極集電体11Aの孔の形状は、例えば円形、矩形等の多角形、その他の形状に設定することができる。かかる孔の形態及び数は、後述する電解液中のリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるように、適宜設定される。また、正極集電体11Aの厚みは、例えば出力密度、強度及び軽量化の観点から、適宜設定される。   The shape of the hole of the positive electrode current collector 11A can be set to, for example, a circle, a polygon such as a rectangle, or other shapes. The form and the number of the holes are appropriately set so that lithium ions in the electrolyte solution described later can move between the front and back of the electrode without being blocked by the current collector. Further, the thickness of the positive electrode current collector 11A is appropriately set from the viewpoint of, for example, output density, strength, and weight reduction.

正極活物質11Bは、アニオンを可逆的に担持できる正極活物質11Bを含有している。正極活物質11Bとしては、例えば活性炭、カーボンナノチューブ等を用いることができる。   The positive electrode active material 11B contains a positive electrode active material 11B that can reversibly carry anions. As the positive electrode active material 11B, for example, activated carbon, carbon nanotube, or the like can be used.

正極活物質11Bは、負極活物質12Bと同様の方法によって形成することができる。また、正極活物質11Bの厚みは、得られるリチウムイオンキャパシタ1に十分なエネルギー密度が確保されるよう負極活物質12Bの厚みとのバランスで設計される。   The positive electrode active material 11B can be formed by a method similar to that of the negative electrode active material 12B. Moreover, the thickness of the positive electrode active material 11B is designed in balance with the thickness of the negative electrode active material 12B so that a sufficient energy density is ensured in the obtained lithium ion capacitor 1.

<セパレータ>
セパレータ13は、正極11と負極12との間に介在するシート材である。セパレータ13としては、電解液、正極活物質11B、及び負極活物質12Bに対して耐久性があり、電気伝導性の小さい織布又は不織布からなる多孔体を用いることができる。セパレータ13の材質としては、例えば、セルロース(紙)、ポリエチレン、ポリプロピレン、セルロース/レーヨン、エンジニアプラスチック・スーパーエンジニアプラスチック等の熱可塑性樹脂、ガラス繊維を用いることができる。
<Separator>
The separator 13 is a sheet material interposed between the positive electrode 11 and the negative electrode 12. As the separator 13, a porous body made of a woven fabric or a non-woven fabric that is durable with respect to the electrolytic solution, the positive electrode active material 11 </ b> B, and the negative electrode active material 12 </ b> B can be used. As a material of the separator 13, for example, a thermoplastic resin such as cellulose (paper), polyethylene, polypropylene, cellulose / rayon, engineer plastic / super engineer plastic, or glass fiber can be used.

ここで、本実施形態のセパレータ13の表面には、消火薬剤40の層が形成されている。消火薬剤40は、所定温度に達すると燃焼してエアロゾルを発生させる。ここで、所定温度は、例えば、リチウム金属の発火温度を踏まえ、150℃〜180℃に設定されてもよい。また、消火薬剤40の層は、セパレータ13の表面をほぼ覆うように形成され、ほぼ均一の厚みを有する。   Here, a layer of the fire extinguishing agent 40 is formed on the surface of the separator 13 of the present embodiment. The fire extinguishing agent 40 burns and generates aerosol when it reaches a predetermined temperature. Here, the predetermined temperature may be set to 150 ° C. to 180 ° C. based on the ignition temperature of lithium metal, for example. Further, the layer of the fire extinguishing agent 40 is formed so as to substantially cover the surface of the separator 13 and has a substantially uniform thickness.

本実施形態では、消火薬剤40は、セパレータ13の両面に形成されているが、セパレータ13の片面に消火薬剤40が配置されていてもよい。また、消火薬剤40は、全てのセパレータ13に設けられている必要はなく、一部分のセパレータ13に設けられてもよい。即ち、セパレータ13の面の法線方向からみた場合に、消火薬剤40の層は、セパレータ13の全面にわたって連続して存在していても、例えば島(アイランド)状に不連続に存在していてもよい。本発明の効果をより確実に得るという観点からはセパレータ13の全面にわたって連続して存在しているのが好ましい。   In the present embodiment, the fire extinguishing agent 40 is formed on both surfaces of the separator 13, but the fire extinguishing agent 40 may be disposed on one surface of the separator 13. Moreover, the fire extinguishing agent 40 does not need to be provided in all the separators 13 and may be provided in a part of the separators 13. That is, when viewed from the normal direction of the surface of the separator 13, the layer of the fire extinguishing agent 40 is present discontinuously, for example, in the form of islands even if the layer of the fire extinguishing agent 40 exists continuously over the entire surface of the separator 13. Also good. From the viewpoint of obtaining the effects of the present invention more reliably, it is preferable that the separator 13 exists continuously over the entire surface.

また、消火薬剤40は、セパレータ13に付着している必要はなく、セパレータ13から独立してセパレータ13と電極との間に介在するだけでもよい。つまり、消火薬剤40は、外装容器20内において、電解液に接触する位置に配置されていればよい。   Moreover, the fire extinguishing agent 40 does not need to adhere to the separator 13 and may be interposed between the separator 13 and the electrode independently of the separator 13. That is, the fire extinguishing agent 40 may be disposed at a position in contact with the electrolytic solution in the outer container 20.

消火薬剤40は、電解液と接触しても、溶解せず、化学的な性質を変化させないものであることが望ましい。例えば、消火薬剤40は、塩素酸カリウムを含み、DSC評価(100〜400℃、10℃毎分昇温)吸熱ピーク総量が100J/g〜900J/gであることが好ましい。消火薬剤40の具体的な組成については追って述べる。   It is desirable that the fire extinguishing agent 40 does not dissolve even when it comes into contact with the electrolytic solution and does not change the chemical properties. For example, it is preferable that the fire extinguishing agent 40 contains potassium chlorate and has a DSC evaluation (100 to 400 ° C., 10 ° C./min) endothermic peak total amount of 100 J / g to 900 J / g. The specific composition of the fire extinguishing agent 40 will be described later.

<リチウムイオン源>
外装容器20には、電極ユニット10とともに、膜状のリチウムイオン源30が収納されてもよい。リチウムイオン源30は、負極にリチウムをドープするために使用され、例えば箔やシート状のリチウム金属31、及びリチウム極集電体32を含む。リチウム金属31は、リチウム極集電体32に付着され、リチウム極集電体32は、負極端子52に電気的に接続される。
<Lithium ion source>
A film-like lithium ion source 30 may be housed in the outer container 20 together with the electrode unit 10. The lithium ion source 30 is used to dope lithium into the negative electrode, and includes, for example, a foil or sheet-like lithium metal 31 and a lithium electrode current collector 32. The lithium metal 31 is attached to the lithium electrode current collector 32, and the lithium electrode current collector 32 is electrically connected to the negative electrode terminal 52.

リチウム金属31の寸法(体積)は、負極活物質12Bにドーピングされるリチウムイオンの量を考慮して適宜定められる。例えば、両電極を短絡させた場合における正極11の電位が所定値(例えば2.0V以下)となるように、リチウムイオンのドーピング量が設定される。   The dimension (volume) of the lithium metal 31 is appropriately determined in consideration of the amount of lithium ions doped into the negative electrode active material 12B. For example, the doping amount of lithium ions is set so that the potential of the positive electrode 11 becomes a predetermined value (for example, 2.0 V or less) when both electrodes are short-circuited.

リチウム極集電体32としては、リチウム金属31が付着しやすく、必要に応じてリチウムイオンが通過するよう、上述した電極集電体と同様な多孔構造のものを用いることが好ましい。ただし、リチウム極集電体32は、例えばステンレス等のように、リチウム金属31と反応しない材料で作製される。   As the lithium electrode current collector 32, it is preferable to use a material having a porous structure similar to the electrode current collector described above so that the lithium metal 31 is easily attached and lithium ions pass as necessary. However, the lithium electrode current collector 32 is made of a material that does not react with the lithium metal 31, such as stainless steel.

<電極端子>
外装容器20の一端には、板状の正極端子51が、外装容器20の内部から外部に突出するよう設けられている。また、外装容器20の他端には、板状の負極端子52が、外装容器20の内部から外装容器20の外部に突出するよう設けられている。ただし、正極端子51と負極端子52とは、外装容器20の同じ辺に設けられてもよい。
<Electrode terminal>
A plate-like positive electrode terminal 51 is provided at one end of the outer container 20 so as to protrude from the inside of the outer container 20 to the outside. In addition, a plate-like negative electrode terminal 52 is provided at the other end of the outer container 20 so as to protrude from the inside of the outer container 20 to the outside of the outer container 20. However, the positive electrode terminal 51 and the negative electrode terminal 52 may be provided on the same side of the outer container 20.

負極端子52としては、銅、ニッケルなどの金属材料や、このような金属材料の表面にニッケルメッキなどの被膜が施されたものなどを用いることができる。   As the negative electrode terminal 52, a metal material such as copper or nickel, or a metal material having a surface such as nickel plating applied on the surface thereof can be used.

<電解液>
外装容器20内には、電解液が充填されている。電解液は、リチウムイオン含有電解質と有機溶媒とを含み、電極ユニット10がこれに浸漬されている。電解液は非水系であるのが好ましい。
<Electrolyte>
The exterior container 20 is filled with an electrolytic solution. The electrolytic solution includes a lithium ion-containing electrolyte and an organic solvent, and the electrode unit 10 is immersed therein. The electrolytic solution is preferably non-aqueous.

電解質を構成するリチウム塩としては、リチウムイオンを移送可能で、高電圧下においても電気分解を起こさず、リチウムイオンが安定に存在し得るものであればよい。例えば、イミド構造を有するリチウム塩を採用することができ、一例を挙げれば、リチウムビス(フルオロスルホニル)イミド[LiFSI]、リチウムビス(トリフルオロメタンスルホニル)イミド[LiTFSI]、リチウムビス(ペンタフルオロエタンスルホニル)イミド[LiBETI]等である。なお、これらのリチウム塩は、1種のみを用いても2種以上を用いてもよい。なかでも、イミド構造を有するリチウム塩が好ましい。   The lithium salt constituting the electrolyte is not particularly limited as long as it can transfer lithium ions, does not cause electrolysis even under a high voltage, and can stably exist. For example, a lithium salt having an imide structure can be employed. For example, lithium bis (fluorosulfonyl) imide [LiFSI], lithium bis (trifluoromethanesulfonyl) imide [LiTFSI], lithium bis (pentafluoroethanesulfonyl) ) Imido [LiBETI] and the like. In addition, these lithium salts may use only 1 type, or may use 2 or more types. Of these, lithium salts having an imide structure are preferable.

また、有機溶媒の具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート(FEC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、アセトニトリル、アクリロニトリル、アジポニトリル、バレロニトリル、イソブチロ二トリル、γ‐ブチロラクトン、γ‐バレロラクトン、テトラヒドロフランやジオキサン、1,2−ジメトキシエタンやジメチルエーテル、トリグライム、エチルアルコール、エチレングリコール、酢酸メチル、酢酸プロピル、リン酸トリメチル、ジメチルサルフェート、ジメチルサルファイト、N−メチル−2−ピロリドン、エチレンジアミン、ジメチルスルホン、3‐スルホレン、メチルエチルケトンなどが挙げられる。これらの有機溶媒は、単独で又は2種以上を混合して用いることができる。   Specific examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), acetonitrile, Acrylonitrile, adiponitrile, valeronitrile, isobutyronitrile, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, dimethyl ether, triglyme, ethyl alcohol, ethylene glycol, methyl acetate, propyl acetate, trimethyl phosphate , Dimethyl sulfate, dimethyl sulfite, N-methyl-2-pyrrolidone, ethylenediamine, dimethylsulfone, 3-sulfolene, methylethyl Examples include ketones. These organic solvents can be used individually or in mixture of 2 or more types.

電解液は、上記の電解質及び有機溶媒を充分に脱水された状態で混合することによって調製されるが、電解液中の電解質の濃度は、電解液による内部抵抗が小さくなるように適宜設定されてよい。また、電解液には、適宜添加剤を添加してもよい。   The electrolytic solution is prepared by mixing the above electrolyte and organic solvent in a sufficiently dehydrated state, but the concentration of the electrolyte in the electrolytic solution is appropriately set so that the internal resistance due to the electrolytic solution is reduced. Good. Moreover, you may add an additive suitably to electrolyte solution.

<消火薬剤>
ここで、本実施形態で用いられる消火薬剤を構成する組成物について説明する。かかる消火薬剤組成物としては、以下に述べるとおり、種々のものを用いることができる。
<Fire extinguishing agent>
Here, the composition which comprises the fire extinguishing agent used by this embodiment is demonstrated. As such a fire extinguishing agent composition, various types can be used as described below.

本実施形態における消火薬剤40は、例えば、燃料(A成分)20〜50質量%及び塩素酸塩(B成分)80〜50質量%を含有し、更に前記燃料及び前記塩素酸塩の合計量100質量部に対して、6〜1000質量部のカリウム塩(C成分)を含有し、熱分解開始温度が90℃超〜450℃の範囲である。   The fire extinguishing agent 40 in this embodiment contains, for example, 20 to 50% by mass of fuel (component A) and 80 to 50% by mass of chlorate (component B), and further the total amount of the fuel and chlorate is 100. 6-1000 mass parts potassium salt (C component) is contained with respect to a mass part, and thermal decomposition start temperature is the range of more than 90 degreeC-450 degreeC.

A成分である燃料は、B成分である塩素酸塩と共に燃焼により熱エネルギーを発生させて、C成分のカリウム塩に由来するエアロゾル(カリウムラジカル)を発生させるための成分である。   The fuel as the A component is a component for generating aerosol (potassium radical) derived from the potassium salt of the C component by generating thermal energy by combustion together with the chlorate as the B component.

かかるA成分の燃料としては、例えば、ジシアンジアミド、ニトログアニジン、硝酸グアニジン、尿素、メラミン、メラミンシアヌレート、アビセル、グアガム、カルボキシルメチルセルロースナトリウム、カルボキシルメチルセルロースカリウム、カルボキシルメチルセルロースアンモニウム、ニトロセルロース、アルミニウム、ホウ素、マグネシウム、マグナリウム、ジルコニウム、チタン、水素化チタン、タングステン及びケイ素のうちの少なくとも1種から選ばれるものが好ましい。   Examples of such component A fuels include dicyandiamide, nitroguanidine, guanidine nitrate, urea, melamine, melamine cyanurate, Avicel, guar gum, sodium carboxymethylcellulose, carboxymethylcellulose potassium, carboxymethylcellulose ammonium, nitrocellulose, aluminum, boron, magnesium. , Magnalium, zirconium, titanium, titanium hydride, tungsten and silicon are preferred.

B成分の塩素酸塩は強力な酸化剤であり、A成分の燃料と共に燃焼により熱エネルギーを発生させ、C成分のカリウム塩に由来するエアロゾル(カリウムラジカル)を発生させるための成分である。   The B component chlorate is a powerful oxidant, and is a component for generating thermal energy by combustion together with the A component fuel to generate aerosol (potassium radical) derived from the C component potassium salt.

かかるB成分の塩素酸塩としては、例えば塩素酸カリウム、塩素酸ナトリウム、塩素酸ストロンチウム、塩素酸アンモニウム及び塩素酸マグネシウムのうちの少なくとも1種から選ばれるものが好ましい。   The B component chlorate is preferably selected from at least one of potassium chlorate, sodium chlorate, strontium chlorate, ammonium chlorate and magnesium chlorate.

ここで、A成分の燃料とB成分の塩素酸塩の合計100質量%中の含有割合は、以下のとおりである。
A成分:20〜50質量%
好ましくは25〜40質量%
より好ましくは25〜35質量%
B成分:80〜50質量%
好ましくは75〜60質量%
より好ましくは75〜65質量%
Here, the content ratio in 100 mass% of the fuel of component A and the chlorate of component B is as follows.
A component: 20-50 mass%
Preferably 25-40 mass%
More preferably 25 to 35% by mass
B component: 80-50 mass%
Preferably 75-60 mass%
More preferably 75 to 65% by mass

次に、C成分のカリウム塩は、A成分とB成分の燃焼により生じた熱エネルギーによりエアロゾル(カリウムラジカル)を発生させるための成分である。   Next, the potassium salt of the C component is a component for generating an aerosol (potassium radical) by heat energy generated by the combustion of the A component and the B component.

かかるC成分のカリウム塩としては、例えば酢酸カリウム、プロピオン酸カリウム、クエン酸一カリウム、クエン酸二カリウム、クエン酸三カリウム、エチレンジアミン四酢酸三水素一カリウム、エチレンジアミン四酢酸二水素二カリウム、エチレンジアミン四酢酸一水素三カリウム、エチレンジアミン四酢酸四カリウム、フタル酸水素カリウム、フタル酸二カリウム、シュウ酸水素カリウム、シュウ酸二カリウム及び重炭酸カリウムのうちの少なくとも1種から選ばれるものが好ましい。   Examples of the potassium salt of component C include potassium acetate, potassium propionate, monopotassium citrate, dipotassium citrate, tripotassium citrate, ethylenediaminetetraacetic acid monohydrogentripotassium, ethylenediaminetetraacetic acid dipotassium dihydrogen, ethylenediaminetetraacetate. Preference is given to at least one selected from tripotassium acetate hydrogen acetate, tetrapotassium ethylenediaminetetraacetate, potassium hydrogen phthalate, dipotassium phthalate, potassium hydrogen oxalate, dipotassium oxalate and potassium bicarbonate.

C成分の含有割合は、A成分とB成分の合計量100質量部に対して、6〜1000質量部であるのが好ましく、より好ましくは10〜900質量部である。   It is preferable that the content rate of C component is 6-1000 mass parts with respect to 100 mass parts of total amounts of A component and B component, More preferably, it is 10-900 mass parts.

更に、本実施形態の消火薬剤組成物は、熱分解開始温度が90℃超〜450℃の範囲のものであり、好ましくは150℃〜260℃のものである。リチウム金属による火災の初期消火等との関係で特に好ましい熱分解開始温度は、150℃〜180℃である。このような熱分解開始温度の範囲は、上記のA成分、B成分及びC成分を上記の割合で組み合わせることで調製することができる。   Furthermore, the fire-extinguishing agent composition of the present embodiment has a thermal decomposition start temperature in the range of more than 90 ° C. to 450 ° C., preferably 150 ° C. to 260 ° C. The thermal decomposition starting temperature is particularly preferably 150 ° C. to 180 ° C. in relation to the initial extinguishing of a fire caused by lithium metal. Such a range of the thermal decomposition start temperature can be prepared by combining the A component, the B component, and the C component in the above ratio.

なお、消火薬剤のシート等の成型体は、上記の消火薬剤組成物の各成分を混合して、温度を管理しながらシート状に成型し、適宜乾燥することによって、作製すればよい。   In addition, what is necessary is just to produce molded bodies, such as a sheet | seat of a fire extinguishing agent, mixing each component of said fire extinguishing agent composition, shape | molding in a sheet form, controlling temperature, and drying suitably.

本実施形態の消火薬剤組成物は、上記の熱分解開始温度の範囲を満たすことで、火災発生時の熱を受けてA成分とB成分が自動的に着火燃焼して、C成分に由来するエアロゾル(カリウムラジカル)を発生させて消火することができる。   The fire extinguishing agent composition of the present embodiment is derived from the C component by satisfying the above thermal decomposition start temperature range so that the A component and the B component are automatically ignited and burned in response to the heat at the time of the fire. It can extinguish fire by generating aerosol (potassium radical).

[リチウムイオンキャパシタの製造工程]
図3〜図5を参照して、上述した構成を有するリチウムイオンキャパシタ1の製造工程を説明する。
[Lithium ion capacitor manufacturing process]
With reference to FIGS. 3 to 5, a manufacturing process of the lithium ion capacitor 1 having the above-described configuration will be described.

図3に示すように、電極ユニット10を準備する。具体的には、まず、正極11、負極12、及びセパレータ13を準備する。その際、セパレータ13の表面(片面又は両面)に消火薬剤40の層を形成してもよい。   As shown in FIG. 3, the electrode unit 10 is prepared. Specifically, first, the positive electrode 11, the negative electrode 12, and the separator 13 are prepared. At that time, a layer of the fire extinguishing agent 40 may be formed on the surface (one side or both sides) of the separator 13.

そして、正極11及び負極12をセパレータ13を介して積層し、電極ユニット10を作製する。このとき、セパレータ13の表面に消火薬剤40の層を形成しない場合には、例えば、セパレータ13と、正極11及び負極12のそれぞれと、の間に、例えばシート状の消火薬剤40を介在させるとよい。   And the positive electrode 11 and the negative electrode 12 are laminated | stacked through the separator 13, and the electrode unit 10 is produced. At this time, when the layer of the fire extinguishing agent 40 is not formed on the surface of the separator 13, for example, when the sheet-like extinguishing agent 40 is interposed between the separator 13 and each of the positive electrode 11 and the negative electrode 12, for example. Good.

次いで、図4に示すように、電極ユニット10及びリチウムイオン源30を外装容器20内に収容する。その際、電極ユニット10を構成する正極集電体11Aを正極端子51と、負極集電体12Aを負極端子52と、それぞれ接続しておく。   Next, as shown in FIG. 4, the electrode unit 10 and the lithium ion source 30 are accommodated in the outer container 20. At that time, the positive electrode current collector 11A constituting the electrode unit 10 is connected to the positive electrode terminal 51, and the negative electrode current collector 12A is connected to the negative electrode terminal 52.

その後、図5に示すように、外装容器20内に電解液を充填し、外装容器20を封止する。これによって、リチウムイオンキャパシタ1が得られる。   Thereafter, as shown in FIG. 5, the exterior container 20 is filled with an electrolytic solution, and the exterior container 20 is sealed. Thereby, the lithium ion capacitor 1 is obtained.

このようにして作製されたリチウムイオンキャパシタ1においては、外装容器20内にリチウムイオンを供給し得る電解液が充填されているため、適宜の期間放置されると、リチウムイオン源30から放出されたリチウムイオンが負極12にドーピングされる。   In the lithium ion capacitor 1 manufactured in this manner, the outer container 20 is filled with an electrolyte solution that can supply lithium ions, and therefore, when left for an appropriate period, the lithium ion capacitor 1 was released from the lithium ion source 30. Lithium ions are doped into the negative electrode 12.

[本実施形態の効果]
本実施形態では、外装容器20内に、電極ユニット10とともに消火薬剤40が封入されている。この消火薬剤40は、所定温度(例えば150℃〜180℃)に達すると燃焼してエアロゾルを発生させる。したがって、電極に使用されているリチウム金属が例えば正極11と負極12との短絡に伴って発火しても、消火薬剤40からのエアロゾルによって消火される。これにより、容器内の更なる温度上昇が抑制され、初期消火が可能となる。
[Effect of this embodiment]
In the present embodiment, the extinguishing agent 40 is enclosed with the electrode unit 10 in the exterior container 20. When the fire extinguishing agent 40 reaches a predetermined temperature (for example, 150 ° C. to 180 ° C.), it burns and generates aerosol. Therefore, even if the lithium metal used for the electrode ignites due to, for example, a short circuit between the positive electrode 11 and the negative electrode 12, it is extinguished by the aerosol from the extinguishing agent 40. Thereby, the further temperature rise in a container is suppressed and initial fire extinguishing becomes possible.

また、消火薬剤40が、セパレータ13と、正極11及び負極12と、の間に設けられていると、消火薬剤40は正極11及び負極12に隣り合うことになる。したがって、短絡により温度が上昇した特定の電極に隣り合う消火薬剤40が当該電極の周囲にエアロゾルを供給し、早急な初期消火が実現可能となる。   Further, when the fire extinguishing agent 40 is provided between the separator 13 and the positive electrode 11 and the negative electrode 12, the fire extinguishing agent 40 is adjacent to the positive electrode 11 and the negative electrode 12. Therefore, the fire extinguishing agent 40 adjacent to the specific electrode whose temperature has risen due to the short circuit supplies the aerosol around the electrode, so that rapid initial fire fighting can be realized.

また、消火薬剤40が、シート状に成型され、セパレータ13の両面又は片面に設けられることで、リチウムイオンキャパシタ1の製造工程が簡略化される。また、消火薬剤40の入れ忘れなどを防止することができるから、リチウムイオンキャパシタ1の品質の確保が可能となる。   Moreover, the manufacturing process of the lithium ion capacitor 1 is simplified by the fire-extinguishing agent 40 being molded into a sheet and provided on both sides or one side of the separator 13. Further, forgetting to put in the fire extinguishing agent 40 can be prevented, so that the quality of the lithium ion capacitor 1 can be ensured.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらに限定されるものではなく、種々の設計変更が可能であり、それらも本発明に含まれる。   As mentioned above, although typical embodiment of this invention was described, this invention is not limited to these, A various design change is possible and they are also contained in this invention.

例えば、電極ユニット10は、積層型ユニット以外の構成のもの、例えば正極11と負極12とがセパレータ13を介して積層された状態で捲回されてなる捲回型ユニットであってもよい。
また、本発明の電気化学デバイスは、リチウムイオンキャパシタに限定されず、例えばリチウムイオン二次電池として構成することができる。
For example, the electrode unit 10 may be of a configuration other than the stacked unit, for example, a wound type unit in which the positive electrode 11 and the negative electrode 12 are wound in a state of being stacked via the separator 13.
Moreover, the electrochemical device of the present invention is not limited to a lithium ion capacitor, and can be configured as, for example, a lithium ion secondary battery.

リチウムイオン源30は、外装容器20に収納されている必要はない。例えば、製造工程において外装容器20内にリチウムイオンを注入する場合、リチウムイオン源は電気化学デバイスの構成要素とする必要はない。   The lithium ion source 30 does not need to be stored in the outer container 20. For example, when lithium ions are injected into the outer container 20 in the manufacturing process, the lithium ion source does not need to be a component of the electrochemical device.

以下において、実施例及び比較例を用いて本発明をより具体的に説明する。これら実施例及び比較例では、 図1〜図4の構造を有するリチウムイオンキャパシタを以下のようにして作製した。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In these examples and comparative examples, lithium ion capacitors having the structures of FIGS. 1 to 4 were produced as follows.

≪実施例≫
(1)シート状負極の作製
負極活物質としてのグラファイト95質量部、バインダーとしてのSBR1質量部、増粘材としてのカルボキシメチルセルロース(CMC)1質量部、溶媒としての水100質量部を混合し、負極用スラリーを調製した。
次に、負極集電体として厚み10μmの銅箔(多孔箔)を用い、負極用スラリーを負極集電体に塗工し、乾燥させてシート状負極を作製した。負極用スラリーの塗布量は、乾燥後のグラファイトの質量が4mg/cmとなるように調整した。
<< Example >>
(1) Production of sheet-like negative electrode 95 parts by mass of graphite as a negative electrode active material, 1 part by mass of SBR as a binder, 1 part by mass of carboxymethyl cellulose (CMC) as a thickener, and 100 parts by mass of water as a solvent are mixed. A negative electrode slurry was prepared.
Next, a 10 μm-thick copper foil (porous foil) was used as the negative electrode current collector, and the negative electrode slurry was applied to the negative electrode current collector and dried to prepare a sheet-like negative electrode. The coating amount of the negative electrode slurry was adjusted so that the mass of graphite after drying was 4 mg / cm 2 .

(2)シート状正極の作製
正極活物質として粉体の活性炭90質量部、バインダーとしてポリアクリル酸(ポリアクリル酸のナトリウム中和塩)6質量部、導電助剤としてアセチレンブラック15質量部、溶媒として水345質量部を混合し、正極用スラリーを調製した。
次に、正極集電体として厚み15μmのアルミニウム箔(多孔箔)を用い、正極用スラリーを正極集電体に塗工し、乾燥させてシート状正極を作製した。正極用スラリーの塗布量は、乾燥後の活性炭の質量が4mg/cmとなるように調整した。
(2) Preparation of sheet-like positive electrode 90 parts by mass of powdered activated carbon as a positive electrode active material, 6 parts by mass of polyacrylic acid (polyacrylic acid sodium neutralized salt), 15 parts by mass of acetylene black as a conductive additive, solvent As a mixture, 345 parts by mass of water was mixed to prepare a positive electrode slurry.
Next, an aluminum foil (porous foil) having a thickness of 15 μm was used as the positive electrode current collector, and the positive electrode slurry was applied to the positive electrode current collector and dried to prepare a sheet-like positive electrode. The coating amount of the positive electrode slurry was adjusted so that the mass of the activated carbon after drying was 4 mg / cm 2 .

(3)シート状消火薬剤の作製

カルボキシメチルセルロースナトリウム30質量部、KClO370質量部及びクエン酸三カリウム10質量部を混合し、消火薬剤組成物を調製した。この消火薬剤組成物を、周囲温度を管理しながらシート状に成型し、自然乾燥して、シート状消火薬剤を作製した。得られたシート状消火薬剤の、厚みは0.5mm、カリウム塩単体の吸熱ピーク総量(J/g)@DSC10℃/min昇温時(100〜440℃範囲)は300、見かけ密度は2.0g/cmであった。
(3) Preparation of sheet fire extinguishing agent

30 parts by mass of sodium carboxymethyl cellulose, 370 parts by mass of KClO and 10 parts by mass of tripotassium citrate were mixed to prepare a fire extinguishing agent composition. This fire-extinguishing agent composition was molded into a sheet shape while controlling the ambient temperature, and air-dried to prepare a sheet-like fire extinguishing agent. The obtained sheet-shaped fire extinguishing agent has a thickness of 0.5 mm, a total endothermic peak of potassium salt (J / g) @ DSC of 10 ° C./min when heated (100 to 440 ° C. range), and an apparent density of 2. It was 0 g / cm 3 .

(4)電解液の調製
溶媒として、エチレンカーボネート(EC)35体積%、ジメチルカーボネート(DMC)35体積%及びエチルメチルカーボネート(EMC)30体積%の混合溶媒を用い、混合溶媒にリチウムビス(フルオロスルホニルイミド)(LiFSI)を1mol/l添加して電解液を調製した。
(4) Preparation of electrolyte solution As a solvent, a mixed solvent of 35% by volume of ethylene carbonate (EC), 35% by volume of dimethyl carbonate (DMC) and 30% by volume of ethyl methyl carbonate (EMC) was used. An electrolyte solution was prepared by adding 1 mol / l of sulfonylimide) (LiFSI).

(5)リチウムイオンキャパシタの作製
上記のようにして作製した正極及び負極をそれぞれ打ち抜き、60mm×40mmのサイズの長方形とし、40mm×40mmの塗膜を残して長辺の一端側の20mm×40mmの領域の塗膜を剥ぎ落として集電用タブを取り付けた。そして、厚さ20μmのセルロース製セパレータを間に介した状態で正極と負極の塗膜部分を対向させて電極積層体を作製した。但し、このとき、電極積層体において、各セパレータの両側に、40mm×40mmのサイズに切断したシート状消火薬剤を配置した。
この電極積層体とリチウムプレドープ用の金属リチウム箔とを、アルミラミネート箔に内包し、上記のように調製した電解液を注入し、封止して本発明のリチウムイオンキャパシタを作製した。
(5) Production of Lithium Ion Capacitor The positive electrode and the negative electrode produced as described above were each punched out into a rectangle of 60 mm × 40 mm, leaving a 40 mm × 40 mm coating film and 20 mm × 40 mm on one end side of the long side. The coating film in the area was peeled off and a current collecting tab was attached. And the electrode laminated body was produced by making the coating-film part of a positive electrode and a negative electrode face each other in the state which interposed the separator made from a cellulose of 20 micrometers in thickness. However, at this time, in the electrode laminate, a sheet-shaped fire extinguishing agent cut to a size of 40 mm × 40 mm was disposed on both sides of each separator.
The electrode laminate and the lithium metal foil for lithium pre-doping were encapsulated in an aluminum laminate foil, and the electrolyte prepared as described above was injected and sealed to produce the lithium ion capacitor of the present invention.

≪比較例≫
電極積層体内にシート状消火薬剤を配置しなかった以外は、上記実施例と同様にして、比較用リチウムイオンキャパシタを作製した。
≪Comparative example≫
A comparative lithium ion capacitor was produced in the same manner as in the above example except that no sheet-like fire extinguishing agent was disposed in the electrode laminate.

[評価試験]
上記のようにして作製した本発明のリチウムイオンキャパシタ及び比較用リチウムイオンキャパシタにおいて、リチウムプレドープ、充放電、エージングを行った後、常温(25℃)にて、カットオフ電圧:2.5〜3.5V、測定電流10Cで内部抵抗及び放電容量を測定したところ、いずれも同等の初期性能を発揮した。
その後、鉄製の棒を突き刺して正極及び負極を短絡させて発火するか否かを評価したところ、本発明のリチウムイオンキャパシタでは発火しなかったのに対し、比較用リチウムイオンキャパシタでは発火が認められた。これは、リチウムイオンキャパシタ内で正極及び負極が短絡して着火した際に、その熱を受けて消火薬剤中のA成分とB成分が自動的に着火燃焼して、C成分に由来するエアロゾル(カリウムラジカル)を発生させ、その後の発火を効果的に抑制(消火)したものと考えられる。
[Evaluation test]
In the lithium ion capacitor of the present invention and the comparative lithium ion capacitor produced as described above, after lithium pre-doping, charge / discharge, and aging, at room temperature (25 ° C.), a cut-off voltage: 2.5 to When the internal resistance and discharge capacity were measured at 3.5 V and a measurement current of 10 C, all exhibited equivalent initial performance.
Then, when an iron rod was pierced and the positive electrode and the negative electrode were short-circuited to evaluate whether or not to ignite, the lithium ion capacitor of the present invention did not ignite, whereas the comparative lithium ion capacitor ignited. It was. This is because when a positive electrode and a negative electrode are short-circuited in a lithium ion capacitor and ignited, the A component and B component in the fire extinguishing agent are automatically ignited and burned, and an aerosol derived from the C component ( It is considered that (potassium radical) was generated and the subsequent ignition was effectively suppressed (fire extinguishing).

上記の実施例及び比較例から、本発明の電気化学デバイスであるリチウムイオンキャパシタにおいては、消火薬剤が電解液に接触した状態で内蔵されており、このような状態で内蔵されていても、消火機能を十分に発揮することがわかった。   From the above Examples and Comparative Examples, in the lithium ion capacitor that is the electrochemical device of the present invention, the fire extinguishing agent is built in a state of being in contact with the electrolytic solution. It turns out that the function is fully demonstrated.

1・・・リチウムイオンキャパシタ(電気化学デバイス)、
10・・・電極ユニット、
11・・・正極、
12・・・負極、
13・・・セパレータ、
20・・・外装容器、
30・・・リチウムイオン源、
40・・・消火薬剤。
1 Lithium ion capacitor (electrochemical device),
10 ... Electrode unit,
11 ... positive electrode,
12 ... negative electrode,
13 ... Separator,
20 ... exterior container,
30 ... lithium ion source,
40 ... extinguishing agent.

Claims (5)

負極、セパレータ及び正極を積層してなる電極積層体と、
所定温度に達すると燃焼してエアロゾルを発生させる消火薬剤と、
リチウムイオン含有電解質を含み、前記電極積層体及び前記消火薬剤を浸漬する電解液と、
前記電極積層体、前記消火薬剤及び前記電解液を収納する外装体と、
を含むことを特徴とする電気化学デバイス。
An electrode laminate formed by laminating a negative electrode, a separator and a positive electrode;
A fire extinguishing agent that burns and generates aerosol when it reaches a certain temperature;
An electrolyte containing a lithium ion-containing electrolyte and immersing the electrode laminate and the fire extinguishing agent;
An exterior body that houses the electrode laminate, the fire extinguishing agent, and the electrolyte;
An electrochemical device comprising:
前記負極にリチウムをドープするためのリチウム源を更に具備すること、
を特徴とする請求項1に記載の電気化学デバイス。
Further comprising a lithium source for doping the negative electrode with lithium;
The electrochemical device according to claim 1.
前記消火薬剤は、前記セパレータと、前記正極及び前記負極のうちの少なくとも一方と、の間に設けられていること、
を特徴とする請求項1又は2に記載の電気化学デバイス。
The fire extinguishing agent is provided between the separator and at least one of the positive electrode and the negative electrode;
The electrochemical device according to claim 1 or 2.
前記消火薬剤は、シート状に成型され、前記セパレータにおける前記正極側の面上及び前記負極側の面上のうちの少なくとも一方に設けられていること、
を特徴とする請求項1〜3のいずれかに記載の電気化学デバイス。
The fire extinguishing agent is molded into a sheet and is provided on at least one of the positive electrode side surface and the negative electrode side surface of the separator;
The electrochemical device according to any one of claims 1 to 3.
前記消火薬剤が塩素酸カリウムを含み、
DSC評価(100〜400℃、10℃毎分昇温)吸熱ピーク総量が100J/g〜900J/gであること、
を特徴とする請求項1〜4のいずれかに記載の電気化学デバイス。
The fire extinguishing agent comprises potassium chlorate,
DSC evaluation (100 to 400 ° C., 10 ° C./minute heating) endothermic peak total amount is 100 J / g to 900 J / g,
The electrochemical device according to claim 1, wherein:
JP2017151751A 2017-08-04 2017-08-04 Electrochemical devices Active JP6431147B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151751A JP6431147B1 (en) 2017-08-04 2017-08-04 Electrochemical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151751A JP6431147B1 (en) 2017-08-04 2017-08-04 Electrochemical devices

Publications (2)

Publication Number Publication Date
JP6431147B1 JP6431147B1 (en) 2018-11-28
JP2019033123A true JP2019033123A (en) 2019-02-28

Family

ID=64480587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151751A Active JP6431147B1 (en) 2017-08-04 2017-08-04 Electrochemical devices

Country Status (1)

Country Link
JP (1) JP6431147B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149766A1 (en) * 2020-01-22 2021-07-29
WO2022080174A1 (en) 2020-10-14 2022-04-21 三洋電機株式会社 Sealed battery
JP2022549573A (en) * 2019-08-26 2022-11-28 エー. マレー,ドナルド Fire prevention and extinguishing equipment, fire prevention and extinguishing materials, fire prevention and extinguishing systems, and methods of using these

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375742B2 (en) * 2018-03-05 2023-11-08 株式会社ジェイテクト Energy storage device
CN114496597B (en) * 2022-02-23 2024-05-28 滁州学院 Preparation method and application of electronic reinforced carbon nano-network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532687A (en) * 2007-07-10 2010-10-14 シャンシー ジェイ アンド アール ファイア ファイティング カンパニー リミテッド Aerosol fire extinguishing composition applied to ordinary electrical equipment
JP2013187089A (en) * 2012-03-08 2013-09-19 Kurita Water Ind Ltd Ignition prevention material of power storage device, ignition prevention system including ignition prevention material, and power storage system using ignition prevention system
JP2014007089A (en) * 2012-06-26 2014-01-16 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2014090782A (en) * 2012-11-01 2014-05-19 Hochiki Corp Electric power storage system
JP2014235863A (en) * 2013-05-31 2014-12-15 三菱自動車工業株式会社 Solid-state secondary battery
US20150017491A1 (en) * 2012-02-15 2015-01-15 Key Safety Systems, Inc. Fire prevention or fire extinguishing in an electrochemical energy storage system
JP2016168255A (en) * 2015-03-13 2016-09-23 株式会社ダイセル Aerosol fire extinguishing agent composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532687A (en) * 2007-07-10 2010-10-14 シャンシー ジェイ アンド アール ファイア ファイティング カンパニー リミテッド Aerosol fire extinguishing composition applied to ordinary electrical equipment
US20150017491A1 (en) * 2012-02-15 2015-01-15 Key Safety Systems, Inc. Fire prevention or fire extinguishing in an electrochemical energy storage system
JP2013187089A (en) * 2012-03-08 2013-09-19 Kurita Water Ind Ltd Ignition prevention material of power storage device, ignition prevention system including ignition prevention material, and power storage system using ignition prevention system
JP2014007089A (en) * 2012-06-26 2014-01-16 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2014090782A (en) * 2012-11-01 2014-05-19 Hochiki Corp Electric power storage system
JP2014235863A (en) * 2013-05-31 2014-12-15 三菱自動車工業株式会社 Solid-state secondary battery
JP2016168255A (en) * 2015-03-13 2016-09-23 株式会社ダイセル Aerosol fire extinguishing agent composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022549573A (en) * 2019-08-26 2022-11-28 エー. マレー,ドナルド Fire prevention and extinguishing equipment, fire prevention and extinguishing materials, fire prevention and extinguishing systems, and methods of using these
JP7492000B2 (en) 2019-08-26 2024-05-28 エー. マレー,ドナルド Fire prevention and extinguishing devices, fire prevention and extinguishing materials, fire prevention and extinguishing systems, and methods for using the same
JPWO2021149766A1 (en) * 2020-01-22 2021-07-29
WO2021149758A1 (en) * 2020-01-22 2021-07-29 ヤマトプロテック株式会社 Fire extinguishing sheet
WO2021149766A1 (en) * 2020-01-22 2021-07-29 ヤマトプロテック株式会社 Fire extinguishing sheet
JP7116511B2 (en) 2020-01-22 2022-08-10 ヤマトプロテック株式会社 Firefighting laminate
CN115190817A (en) * 2020-01-22 2022-10-14 雅托普罗德克株式会社 Fire extinguishing piece
CN115335125A (en) * 2020-01-22 2022-11-11 雅托普罗德克株式会社 Fire extinguishing sheet
EP4094809A4 (en) * 2020-01-22 2024-02-28 Yamato Protec Corporation Fire extinguishing sheet
EP4094810A4 (en) * 2020-01-22 2024-02-28 Yamato Protec Corporation Fire extinguishing sheet
WO2022080174A1 (en) 2020-10-14 2022-04-21 三洋電機株式会社 Sealed battery

Also Published As

Publication number Publication date
JP6431147B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6431147B1 (en) Electrochemical devices
Rahman et al. High energy density metal-air batteries: a review
JP5150193B2 (en) Battery pack
CN108140888B (en) Additive for electrolyte
KR101596511B1 (en) Positive electrode active material for lithium ion storage device and lithium ion storage device making use of the same
JP5633630B2 (en) Non-aqueous electrolyte air battery
JPWO2012067102A1 (en) Non-aqueous secondary battery
WO2002021629A1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2005020365A1 (en) Nonflammable nonaqueous electrolyte and lithium-ion battery containing the same
JP6278385B2 (en) Non-aqueous secondary battery pre-doping method and battery obtained by the pre-doping method
JPH0850917A (en) Secondary cell
JP2013077421A (en) Nonaqueous electrolyte secondary battery
US20170222290A1 (en) Lithium oxygen battery and electrolyte composition
JP5421853B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2015088437A5 (en)
JP7375742B2 (en) Energy storage device
TW201528584A (en) Electrolyte solution for zinc air battery and zinc air battery comprising the same
JP2016149189A (en) Lithium ion secondary battery
TW201436337A (en) Cathode material for lithium-oxygen battery
JP7400193B2 (en) Energy storage device
JP5479162B2 (en) Capacitors
CN110100332B (en) Electrochemical device
CN106252714A (en) A kind of lithium ion battery with long charged storage life and preparation method thereof
JP6010763B2 (en) Electrochemical capacitor
JP5840429B2 (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181101

R150 Certificate of patent or registration of utility model

Ref document number: 6431147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250