JP2019032282A - Driving method, driving device, and vortex flowmeter for thermo-sensitive element - Google Patents

Driving method, driving device, and vortex flowmeter for thermo-sensitive element Download PDF

Info

Publication number
JP2019032282A
JP2019032282A JP2017154667A JP2017154667A JP2019032282A JP 2019032282 A JP2019032282 A JP 2019032282A JP 2017154667 A JP2017154667 A JP 2017154667A JP 2017154667 A JP2017154667 A JP 2017154667A JP 2019032282 A JP2019032282 A JP 2019032282A
Authority
JP
Japan
Prior art keywords
temperature
sensing element
temperature sensing
sensor
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017154667A
Other languages
Japanese (ja)
Other versions
JP6537566B2 (en
Inventor
義寛 高橋
Yoshihiro Takahashi
義寛 高橋
義峰 田名部
Yoshimine Tanabe
義峰 田名部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2017154667A priority Critical patent/JP6537566B2/en
Priority to KR1020180090193A priority patent/KR102065262B1/en
Publication of JP2019032282A publication Critical patent/JP2019032282A/en
Application granted granted Critical
Publication of JP6537566B2 publication Critical patent/JP6537566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids

Abstract

To provide a driving method, a driving device and a vortex flowmeter of a thermo-sensitive element for automatically maintaining sensitivity of a sensor even when the temperature changes.SOLUTION: There is provided a driving method of a thermo-sensitive element for compensating an output change caused by temperature characteristics of the thermo-sensitive element whose resistance value changes due to a change in the temperature, which includes: a resistance value calculation step 40 for calculating a resistance value of the thermo-sensitive element; a temperature compensation calculation step 41 for obtaining a drive voltage or drive currents of the thermo-sensitive element for making constant the output change with respect to a change in the temperature of the thermo-sensitive element even when an ambient temperature or the temperature of a measured fluid changes from the calculated resistance value; and a drive voltage or drive current control step 42 for outputting the obtained drive voltage or drive currents to the thermo-sensitive element.SELECTED DRAWING: Figure 4

Description

本発明は、感温素子の駆動方法、駆動装置、および渦流量計に関し、より詳細には、温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動方法、駆動装置、および渦流量計に関する。   The present invention relates to a temperature sensing element driving method, a driving apparatus, and a vortex flowmeter, and more specifically, a temperature sensing element that compensates for an output change due to a temperature characteristic of a temperature sensing element whose resistance value changes due to a temperature change. The present invention relates to a driving method, a driving device, and a vortex flowmeter.

渦流量計は、カルマン渦を発生させる渦発生体(ブラッフボディともいう)、カルマン渦を検出するセンサ(その一例として、感温素子)、および、センサで検出した信号を処理する変換器から構成される。渦発生体は、例えば三角柱状に形成され、測定管内で流体の流れに直角に置かれる。センサ(感温素子)では、渦発生体に生ずるカルマン渦によって発生した差圧を流速の変化と捕らえ、検出できる。   A vortex flowmeter is composed of a vortex generator (also called a bluff body) that generates Karman vortices, a sensor that detects Karman vortices (for example, a temperature sensing element), and a transducer that processes the signals detected by the sensors. Is done. The vortex generator is formed in a triangular prism shape, for example, and is placed at right angles to the fluid flow in the measurement tube. The sensor (temperature sensing element) can detect and detect the differential pressure generated by the Karman vortex generated in the vortex generator as a change in flow velocity.

カルマン渦の発生する周波数(渦周波数ともいう)は流速に比例する。変換器では、検出した渦周波数から測定管内の流速を求め、この流速に測定管の断面積を乗じて流量を求めている。
また、変換器では、渦周波数を検出する際に、センサから出力された信号を帯域通過フィルタに通過させてノイズを除去する。例えば、特許文献1には、通過させる帯域通過フィルタを選択する技術が開示されている。
The frequency at which Karman vortices are generated (also called vortex frequency) is proportional to the flow velocity. In the converter, the flow velocity in the measurement tube is obtained from the detected vortex frequency, and the flow rate is obtained by multiplying this flow velocity by the cross-sectional area of the measurement tube.
In the converter, when detecting the eddy frequency, the signal output from the sensor is passed through a band-pass filter to remove noise. For example, Patent Document 1 discloses a technique for selecting a band pass filter to pass.

特開2001−153698号公報JP 2001-153698 A

ところで、周囲温度あるいは被測定流体の温度が低い場合には、センサの感度(詳しくは、温度変化に対する出力変化の大きさ)が低下する。センサの感度が低下した場合、フィルタ後の信号波形の振幅が小さくなり、適切な帯域通過フィルタを選択できない。このため、この信号波形をパルス化すると、ノイズを信号としてパルス化したり、逆に信号をノイズとしてパルス化しないため、トリガ波形は間隔や振幅が不揃いになり、出力パルスにはノイズが混ざってしまう。   By the way, when the ambient temperature or the temperature of the fluid to be measured is low, the sensitivity of the sensor (specifically, the magnitude of the output change with respect to the temperature change) decreases. When the sensitivity of the sensor is reduced, the amplitude of the signal waveform after filtering is reduced, and an appropriate bandpass filter cannot be selected. For this reason, if this signal waveform is pulsed, noise will not be pulsed as a signal, or conversely, the signal will not be pulsed as noise, so the trigger waveform will have irregular intervals and amplitudes, and the output pulse will be mixed with noise. .

まれに、周囲温度あるいは被測定流体の温度が低くなり、出力パルスにノイズが混ざりそうな場合、センサの感度を上げるために、作業者は、渦流量計の設置現場にてセンサの駆動電圧を手動で調整する必要がある。
しかしながら、工業計器である渦流量計は危険場所(防爆機器を要す。)に設置されることが多く、センサの駆動電圧を調整し難く、また、この調整中はセンサによる計測を中断しなければならないという問題がある。
In rare cases, when the ambient temperature or the temperature of the fluid under measurement is low and noise is likely to be mixed with the output pulse, the operator must set the sensor drive voltage at the installation site of the vortex flowmeter to increase the sensitivity of the sensor. Manual adjustment is required.
However, vortex flowmeters, which are industrial instruments, are often installed in hazardous locations (explosion-proof equipment is required), making it difficult to adjust the sensor drive voltage, and during this adjustment, measurement by the sensor must be interrupted. There is a problem that must be.

本発明は、上述のような実情に鑑みてなされたもので、温度が変化してもセンサの感度を自動的に維持するための感温素子の駆動方法、駆動装置、および渦流量計を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a driving method, a driving device, and a vortex flowmeter for a temperature-sensitive element for automatically maintaining the sensitivity of the sensor even when the temperature changes. The purpose is to do.

上記課題を解決するために、本発明の第1の技術手段は、温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動方法であって、前記感温素子の抵抗値を求める抵抗値算出ステップと、該求めた抵抗値から、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の温度変化に対する出力変化が一定となる前記感温素子の駆動電圧または駆動電流を求める温度補償算出ステップと、該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御ステップとを含むことを特徴としたものである。   In order to solve the above-mentioned problem, a first technical means of the present invention is a method of driving a temperature sensing element that compensates for an output change due to a temperature characteristic of a temperature sensing element whose resistance value changes due to a temperature change. A resistance value calculating step for obtaining a resistance value of the temperature sensing element, and the sense that the output change with respect to the temperature change of the temperature sensing element is constant from the obtained resistance value even if the ambient temperature or the temperature of the fluid to be measured changes. A temperature compensation calculation step for obtaining a drive voltage or drive current of the temperature element; and a drive voltage or drive current control step for outputting the obtained drive voltage or drive current to the temperature sensitive element. .

第2の技術手段は、前記温度補償算出ステップが、前記求めた抵抗値に基づいて前記感温素子の温度を求める温度算出ステップと、該求めた温度に基づいて前記感温素子の感度を求める感度算出ステップと、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の感度を温度変化の前後で一定に維持するための前記感温素子の感度と該感温素子の駆動電圧または駆動電流との関係に基づいて、前記感度算出ステップで求めた感度から前記感温素子の駆動電圧または駆動電流の補償係数を求める補償係数算出ステップと、該求めた補償係数に基づいて前記感温素子の駆動電圧または駆動電流を求める駆動電圧または駆動電流算出ステップとを有することを特徴としたものである。   According to a second technical means, the temperature compensation calculating step calculates a temperature of the temperature sensitive element based on the obtained resistance value, and obtains the sensitivity of the temperature sensitive element based on the obtained temperature. A sensitivity calculation step, and the sensitivity of the temperature sensing element and the driving voltage of the temperature sensing element for maintaining the sensitivity of the temperature sensing element constant before and after the temperature change even if the ambient temperature or the temperature of the fluid to be measured changes. Alternatively, based on the relationship with the drive current, a compensation coefficient calculation step for obtaining a compensation coefficient for the drive voltage or drive current of the temperature sensing element from the sensitivity obtained in the sensitivity calculation step, and the sensitivity based on the obtained compensation coefficient. And a drive voltage or drive current calculation step for obtaining a drive voltage or drive current of the temperature element.

第3の技術手段は、前記感温素子が感温素子センサであることを特徴としたものである。   A third technical means is characterized in that the temperature sensitive element is a temperature sensitive element sensor.

第4の技術手段は、温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動装置であって、前記感温素子の抵抗値を求める抵抗値算出部と、該求めた抵抗値から、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の温度変化に対する出力変化が一定となる前記感温素子の駆動電圧または駆動電流を求める温度補償算出部と、該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御部とを有することを特徴としたものである。   A fourth technical means is a temperature sensing element driving device that compensates for a change in output due to a temperature characteristic of a temperature sensing element whose resistance value varies with a temperature change, and calculates a resistance value for obtaining a resistance value of the temperature sensing element. And a temperature for obtaining a driving voltage or a driving current of the temperature sensing element from which the output change with respect to the temperature change of the temperature sensing element is constant even if the ambient temperature or the temperature of the fluid to be measured changes from the obtained resistance value It has a compensation calculation part and a drive voltage or drive current control part for outputting the obtained drive voltage or drive current to the temperature sensitive element.

第5の技術手段は、上述の感温素子の駆動方法を実施することを特徴とする渦流量計である。   A fifth technical means is a vortex flowmeter characterized by implementing the above-described temperature sensing element driving method.

本発明によれば、温度変化に対する出力変化を一定にする駆動電圧(駆動電流)を、感温素子の抵抗値から求めて感温素子に出力するので、温度が変化しても感温素子の感度を自動的に維持できる。この結果、感温素子の感度を調整するために、作業者が渦流量計の設置現場に出向かなくて済み、また、感温素子による計測を中断する必要もない。   According to the present invention, the drive voltage (drive current) that makes the output change constant with respect to the temperature change is obtained from the resistance value of the temperature sensing element and output to the temperature sensing element. Sensitivity can be maintained automatically. As a result, in order to adjust the sensitivity of the temperature sensitive element, the operator does not have to go to the installation site of the vortex flowmeter, and there is no need to interrupt the measurement by the temperature sensitive element.

本発明の一実施形態に係る渦流量計の検出器を示す図である。It is a figure which shows the detector of the vortex flowmeter which concerns on one Embodiment of this invention. 図1の検出器によるカルマン渦の検出原理を説明する図である。It is a figure explaining the detection principle of Karman vortex by the detector of FIG. 図1の渦流量計の構成図である。It is a block diagram of the vortex flowmeter of FIG. 図3の温度補償算出部の構成図である。It is a block diagram of the temperature compensation calculation part of FIG. センサ温度と波高値の変化比率との関係、およびセンサ温度とセンサ駆動電圧との関係を説明する図である。It is a figure explaining the relationship between sensor temperature and the change rate of a crest value, and the relationship between sensor temperature and a sensor drive voltage. 本実施例の波形データを説明する図である。It is a figure explaining the waveform data of a present Example.

以下、添付図面を参照しながら本発明の感温素子の駆動方法、駆動装置、および渦流量計の好適な実施形態について説明する。
図1は、本発明の一実施形態に係る渦流量計の検出器を示す図であり、例えばフランジ形の検出器1を示している。図2は、図1の検出器によるカルマン渦の検出原理を説明する図である。
Hereinafter, preferred embodiments of a driving method, a driving device, and a vortex flowmeter of a temperature sensitive element of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram showing a detector of a vortex flowmeter according to an embodiment of the present invention, and shows, for example, a flange-type detector 1. FIG. 2 is a diagram for explaining the principle of Karman vortex detection by the detector of FIG.

検出器1は例えば三角柱状に形成された渦発生体3を有し、渦発生体3の側面が被測定流体の流れ(図2の矢印方向)に直角になるように、円筒状の測定管2内に設置されている。測定管2の上面にはセンサハウジング4が設けられ、例えばボルトなどの締結部材で測定管2に固定される。センサハウジング4の上方には、取付筒5を介して端子箱6が設置されている。   The detector 1 has a vortex generator 3 formed in, for example, a triangular prism shape, and a cylindrical measurement tube so that the side surface of the vortex generator 3 is perpendicular to the flow of the fluid to be measured (the arrow direction in FIG. 2). 2 is installed. A sensor housing 4 is provided on the upper surface of the measurement tube 2 and is fixed to the measurement tube 2 with a fastening member such as a bolt. A terminal box 6 is installed above the sensor housing 4 via a mounting cylinder 5.

また、検出器1にはバイパス流路が設けられている。このバイパス流路は、図2に示すように、渦発生体3の上流側に開口(バイアス流入口11)し、センサハウジング4を経由して渦発生体3の下流側に開口(バイアス流出口14)している。センサハウジング4には、例えばニードルバルブ12a,12b、フィルタ13、一対の感温素子センサ7が収納されている。なお、図2では検出原理の説明を容易にするために、ニードルバルブ12a,12bやフィルタ13をセンサハウジング4の外部に配置した図を示している。   The detector 1 is provided with a bypass flow path. As shown in FIG. 2, the bypass channel opens to the upstream side of the vortex generator 3 (bias inlet 11) and opens to the downstream side of the vortex generator 3 via the sensor housing 4 (bias outlet). 14) In the sensor housing 4, for example, needle valves 12a and 12b, a filter 13, and a pair of temperature sensing element sensors 7 are accommodated. Note that FIG. 2 shows a diagram in which the needle valves 12 a and 12 b and the filter 13 are arranged outside the sensor housing 4 in order to facilitate explanation of the detection principle.

一対の感温素子センサ7は、図3で後述するように、ブリッジ回路の2辺を構成し、定電流回路からの微弱な電流により加熱されている。なお、感温素子センサとは、例えば、サーミスタ、熱電対、測温抵抗体、半導体温度センサ等をいう。   As will be described later with reference to FIG. 3, the pair of temperature sensitive sensor 7 constitutes two sides of the bridge circuit and is heated by a weak current from the constant current circuit. Note that the temperature sensitive element sensor refers to, for example, a thermistor, a thermocouple, a resistance temperature detector, a semiconductor temperature sensor, and the like.

流体が測定管2内を流れると、渦発生体3の下流には流速に比例したカルマン渦が発生し、渦発生体3の両側には、カルマン渦による交互の圧力変動が生じる。バイパス流路にはカルマン渦に同期した交番的な流速変化が発生し、感温素子センサ7の表面には微弱な温度変化が生じる。これにより、感温素子センサ7では、渦発生体3に生ずる変動圧力に応じた信号(渦信号ともいう)が検出され、端子箱6を経由して図3で後述する変換器10に出力される。より具体的には、一対の感温素子センサ7の抵抗値が交互に変化するので、変換器10では、カルマン渦に同期した交番電流を検出できる。なお、変換器を検出器から分離した変換器分離形の例で説明するが、変換器一体形であってもよい。   When the fluid flows in the measuring tube 2, Karman vortices proportional to the flow velocity are generated downstream of the vortex generator 3, and alternating pressure fluctuations due to Karman vortices occur on both sides of the vortex generator 3. An alternating flow rate change in synchronization with the Karman vortex occurs in the bypass flow path, and a slight temperature change occurs on the surface of the temperature-sensitive element sensor 7. As a result, the temperature-sensitive element sensor 7 detects a signal (also referred to as a vortex signal) corresponding to the fluctuating pressure generated in the vortex generator 3 and outputs it to the converter 10 described later with reference to FIG. The More specifically, since the resistance values of the pair of temperature sensing element sensors 7 change alternately, the converter 10 can detect an alternating current synchronized with the Karman vortex. Although an example of a converter separated type in which the converter is separated from the detector will be described, a converter integrated type may be used.

図3は渦流量計の構成図である。
変換器10は、流量指示計16、制御部15、通信I/F17、アンプ部18、フィルタ部19等を有し、これらはバスで接続される。流量指示計16には、変換器10で求めた被測定流体の流量などが表示される。
制御部15は、通信I/F17を介して検出器1や外部機器と通信可能である。また、制御部15は、例えば1個あるいは複数個のCPU(Central Processing Unit)等からなり、例えばROMに格納されている各種のプログラムやデータをRAMにロードし、このロードしたRAM内のプログラムを実行する。これにより、渦流量計の動作を制御できる。
FIG. 3 is a configuration diagram of the vortex flowmeter.
The converter 10 includes a flow rate indicator 16, a control unit 15, a communication I / F 17, an amplifier unit 18, a filter unit 19, and the like, which are connected by a bus. The flow rate indicator 16 displays the flow rate of the fluid to be measured obtained by the converter 10.
The control unit 15 can communicate with the detector 1 and an external device via the communication I / F 17. The control unit 15 includes, for example, one or a plurality of CPUs (Central Processing Units) and the like, for example, loads various programs and data stored in the ROM into the RAM, and loads the programs in the loaded RAM. Run. Thereby, the operation of the vortex flowmeter can be controlled.

アンプ部18は、例えば定電流回路20、増幅器21、出力回路22、センサ電圧制御回路23等を有する。定電流回路20は検出器1の感温素子センサ7に電流を供給している。増幅器21は、感温素子センサ7から出力された渦信号を増幅する。この増幅された渦信号はフィルタ部19に出力される。
フィルタ部19は、可変BPF26、コンパレータ27を有している。可変BPF26は、増幅器21で増幅された渦信号を通し、この渦信号に含まれる不要な周波数帯域の信号を除去する。コンパレータ27は可変BPF26を通過したフィルタ後波形をパルス化する。パルス化されたトリガ波形は、アンプ部18の出力回路22に出力される。
The amplifier unit 18 includes, for example, a constant current circuit 20, an amplifier 21, an output circuit 22, a sensor voltage control circuit 23, and the like. The constant current circuit 20 supplies a current to the temperature sensing element sensor 7 of the detector 1. The amplifier 21 amplifies the vortex signal output from the temperature sensitive element sensor 7. The amplified vortex signal is output to the filter unit 19.
The filter unit 19 includes a variable BPF 26 and a comparator 27. The variable BPF 26 passes the vortex signal amplified by the amplifier 21 and removes an unnecessary frequency band signal included in the vortex signal. The comparator 27 pulses the filtered waveform that has passed through the variable BPF 26. The pulsed trigger waveform is output to the output circuit 22 of the amplifier unit 18.

流量に比例したパルス出力が得られると、カルマン渦の発生する周波数(渦周波数ともいう)を検出できる。渦周波数は流速に比例し、その関係式は以下のようになる。
f=St・V/d
fは渦周波数、Vは流体の平均流速、dは渦発生体の幅、Stはストローハル数(定数)である。このストローハル数は、レイノルズ数(流れの状態を決める数値)により変化するが、広範囲のレイノズル数においてほぼ一定となる。
When a pulse output proportional to the flow rate is obtained, a frequency (also referred to as a vortex frequency) at which Karman vortices are generated can be detected. The vortex frequency is proportional to the flow velocity, and the relational expression is as follows.
f = St · V / d
f is the vortex frequency, V is the average flow velocity of the fluid, d is the width of the vortex generator, and St is the Strouhal number (constant). This Strouhal number varies depending on the Reynolds number (a numerical value that determines the flow state), but is almost constant over a wide range of Raynozzle numbers.

したがって、ストローハル数が一定の範囲では、渦周波数fは平均流速Vに比例することが分かる。また、渦発生体の幅dは既知であるため、渦周波数fを検出すれば測定管内の平均流速Vを求めることができる。そこで、出力回路22では、この平均流速Vに測定管の断面積を乗じて流量を求めており、流量指示計16等に出力する。
また、上記の制御部15は、抵抗値算出部40、温度補償算出部41、駆動電圧・電流制御部42を有している。
Therefore, it can be seen that the vortex frequency f is proportional to the average flow velocity V in the range where the Strouhal number is constant. Further, since the width d of the vortex generator is known, the average flow velocity V in the measuring tube can be obtained by detecting the vortex frequency f. Therefore, the output circuit 22 obtains the flow rate by multiplying the average flow velocity V by the cross-sectional area of the measurement tube, and outputs the flow rate to the flow rate indicator 16 or the like.
The control unit 15 includes a resistance value calculation unit 40, a temperature compensation calculation unit 41, and a drive voltage / current control unit 42.

抵抗値算出部40は、感温素子センサ7の抵抗値を求めている。詳しくは、定電流回路20には、感温素子センサ7に生じた電流や電圧を検出する電流検出器や電圧検出器、A/Dコンバータが設けられており、抵抗値算出部40は、A/Dコンバータでデジタル変換された電流値および電圧値から感温素子センサ7の抵抗値を求めている。抵抗値算出部40の演算結果は温度補償算出部41に出力され、温度補償算出部41では、感温素子センサ7の温度特性による出力変化を補償している。なお、電流値および電圧値から感温素子センサ7の抵抗値を求める例で説明したが、他の手法で感温素子センサ7の抵抗値を求めてもよい。   The resistance value calculation unit 40 obtains the resistance value of the temperature sensitive element sensor 7. Specifically, the constant current circuit 20 is provided with a current detector, a voltage detector, and an A / D converter that detect current and voltage generated in the temperature sensing element sensor 7. The resistance value of the temperature-sensitive element sensor 7 is obtained from the current value and the voltage value digitally converted by the / D converter. The calculation result of the resistance value calculation unit 40 is output to the temperature compensation calculation unit 41, and the temperature compensation calculation unit 41 compensates for the output change due to the temperature characteristic of the temperature sensing element sensor 7. In addition, although demonstrated in the example which calculates | requires the resistance value of the temperature sensing element sensor 7 from an electric current value and a voltage value, you may obtain | require the resistance value of the temperature sensing element sensor 7 with another method.

図4は、図3の温度補償算出部の構成図である。温度補償算出部41は、周囲温度あるいは被測定流体の温度が変化しても感温素子センサの温度変化に対する出力変化の大きさを一定にするために、図3の抵抗値算出部40で求めたセンサ抵抗値から感温素子センサ7の駆動電圧を求めている。
まず、温度補償算出部41は、抵抗値算出部40で求めたセンサ抵抗値と図4(A)に示す抵抗−温度特性41aとから感温素子センサの温度Tを求めている。
FIG. 4 is a configuration diagram of the temperature compensation calculation unit of FIG. The temperature compensation calculation unit 41 is obtained by the resistance value calculation unit 40 of FIG. 3 in order to make the magnitude of the output change with respect to the temperature change of the temperature sensing element sensor constant even if the ambient temperature or the temperature of the fluid to be measured changes. The drive voltage of the temperature sensitive sensor 7 is obtained from the sensor resistance value.
First, the temperature compensation calculation unit 41 obtains the temperature T of the temperature-sensitive element sensor from the sensor resistance value obtained by the resistance value calculation unit 40 and the resistance-temperature characteristic 41a shown in FIG.

感温素子センサは、半導体の温度係数を用いて温度を検出できる素子であり、温度によって抵抗値が変化する。感温素子センサの抵抗−温度特性は、数1で表されることが知られている。

Figure 2019032282
Tはセンサの温度(K)、Rはセンサ抵抗値(Ω)、Bは感温素子定数(センサ固有の値である)、T0は基準温度、R0は基準温度のときのセンサ抵抗値であり、数1に示すように、抵抗値は、温度が高くなるに連れて指数関数的に小さくなる。 A temperature-sensitive element sensor is an element that can detect a temperature using a temperature coefficient of a semiconductor, and a resistance value changes depending on the temperature. It is known that the resistance-temperature characteristic of the temperature-sensitive element sensor is expressed by Equation 1.
Figure 2019032282
T is the sensor temperature (K), R is the sensor resistance value (Ω), B is the temperature sensing element constant (a value unique to the sensor), T 0 is the reference temperature, and R 0 is the sensor resistance value at the reference temperature. As shown in Equation 1, the resistance value decreases exponentially as the temperature increases.

また、数1は数2のように変形でき、この数2をTについて整理すると、数3で表される。この数2が抵抗−温度特性41aに相当し、図3の抵抗値算出部40でセンサ抵抗値Rを求めれば、数3からセンサの温度Tを求めることができる。

Figure 2019032282
Figure 2019032282
Further, Equation 1 can be transformed into Equation 2, and when this Equation 2 is arranged with respect to T, it is expressed by Equation 3. This equation 2 corresponds to the resistance-temperature characteristic 41a, and if the sensor resistance value R is obtained by the resistance value calculation unit 40 in FIG. 3, the sensor temperature T can be obtained from equation 3.
Figure 2019032282
Figure 2019032282

次に、温度補償算出部41は、求めたセンサの温度Tと図4(A)に示す温度−感度特性41bとから感温素子センサの感度を求めている。
感温素子センサに電流を流すと、ジュールの法則にしたがって発熱(自己発熱ともいう)するが、センサの抵抗値は温度に応じて変化するので、センサの感度を求める場合には自己発熱を考慮する必要がある。十分な時間が経過した平衡状態における周囲温度との温度差tは、後述の自己発熱による温度に相当し、センサに流す電流I、所定の比例定数(放熱係数、熱抵抗ともいう)Θによって数4で表される。

Figure 2019032282
Next, the temperature compensation calculation unit 41 obtains the sensitivity of the temperature sensitive element sensor from the obtained sensor temperature T and the temperature-sensitivity characteristic 41b shown in FIG.
When a current is passed through a temperature-sensitive element sensor, it generates heat according to Joule's law (also called self-heating), but the resistance value of the sensor changes with temperature. There is a need to. The temperature difference t from the ambient temperature in the equilibrium state after sufficient time is equivalent to the temperature due to self-heating described later, and is a number depending on the current I flowing through the sensor and a predetermined proportional constant (also referred to as a heat dissipation coefficient or thermal resistance) Θ. It is represented by 4.
Figure 2019032282

ここで、カルマン渦の発生によって感温素子センサに生じた温度変化ΔTは、自己発熱したセンサと流体との温度差による強制対流で生じたものと考えることができる。このときのセンサの抵抗変化ΔRは数5で表される。

Figure 2019032282
dR/dTはセンサの温度係数であり、センサの温度により決定される。このセンサの温度係数dR/dTは、数1をTで微分して数6で表される。
Figure 2019032282
よって、温度係数dR/dTは負の特性を持ち、その絶対値は温度が低いほど大きくなる。 Here, it can be considered that the temperature change ΔT generated in the temperature sensing element sensor due to the generation of Karman vortex is caused by forced convection due to the temperature difference between the self-heated sensor and the fluid. The resistance change ΔR of the sensor at this time is expressed by Equation 5.
Figure 2019032282
dR / dT is a temperature coefficient of the sensor and is determined by the temperature of the sensor. The temperature coefficient dR / dT of this sensor is expressed by Equation 6 by differentiating Equation 1 with T.
Figure 2019032282
Therefore, the temperature coefficient dR / dT has a negative characteristic, and its absolute value increases as the temperature decreases.

一方、流体に触れることによるセンサの温度変化を考えると、熱伝達率hは数7で表される。

Figure 2019032282
Qは熱移動量(W)、Aは伝搬面積(m2)、Twはセンサの温度(K)、Taは被測定流体の温度(K)である。
感温素子センサの周囲温度と流体の温度が等しい場合、Tw−Taは自己発熱による温度tになり、数7はQ=A・t・hとなる。また、センサの熱容量Cとすると、Q=CΔTであるので、センサの温度変化ΔTは数8で表される。
Figure 2019032282
On the other hand, considering the change in temperature of the sensor due to contact with the fluid, the heat transfer coefficient h is expressed by Equation 7.
Figure 2019032282
Q is the amount of heat transfer (W), A is the propagation area (m 2 ), Tw is the temperature (K) of the sensor, and Ta is the temperature (K) of the fluid to be measured.
When the ambient temperature of the temperature sensor is equal to the temperature of the fluid, Tw−Ta is a temperature t due to self-heating, and Equation 7 is Q = A · t · h. Further, assuming that the heat capacity C of the sensor is Q = CΔT, the temperature change ΔT of the sensor is expressed by Equation 8.
Figure 2019032282

また、上記の熱伝達率hは、ヌセルト数Nuを用いると、流体の熱伝導率k、代表長さLとして数9で表される。

Figure 2019032282
感温素子センサが平板であり、センサ付近の流れがセンサに対して平行な層流であると仮定すると、ヌセルト数Nu=0.664Re1/2Pr1/3である。Reはレイノルズ数であり(Re=ρvL/μ、ρは流体の密度、vは流体の速度、μは流体の粘性係数)、Re≦3.2×105である。また、Prはプラントル数であり、流体に固有の物性値である。 Moreover, said heat transfer coefficient h is represented by several 9 as the heat conductivity k of a fluid, and the representative length L, if the Nusselt number Nu is used.
Figure 2019032282
Assuming that the temperature-sensitive element sensor is a flat plate and the flow in the vicinity of the sensor is a laminar flow parallel to the sensor, the Nusselt number Nu = 0.664 Re 1/2 Pr 1/3 . Re is the Reynolds number (Re = ρvL / μ, ρ is the density of the fluid, v is the velocity of the fluid, μ is the viscosity coefficient of the fluid), and Re ≦ 3.2 × 10 5 . Pr is the Prandtl number and is a physical property value specific to the fluid.

数8のhに数9を代入し、数9のNuに上記ヌセルト数Nuを代入すると、数10で表される。

Figure 2019032282
この数10のうち、A、C、L、μ、Pr、kは定数とみなすことができるので、係数αにまとめると、数11で表される。
Figure 2019032282
そして、数5のdR/dTに数6を、数5のΔTに数11を、数11のtに数4をそれぞれ代入すると、数12で表される。
Figure 2019032282
Substituting Equation 9 into h in Equation 8 and substituting the above Nusselt Nu into Nu in Equation 9 yields Equation 10.
Figure 2019032282
Of these formulas 10, A, C, L, μ, Pr, and k can be regarded as constants.
Figure 2019032282
Then, when Expression 6 is substituted for dR / dT of Expression 5, Expression 11 is substituted for ΔT of Expression 5, and Expression 4 is substituted for t of Expression 11, the expression 12 is obtained.
Figure 2019032282

理想気体の状態方程式PV=nRτ(Pは圧力、Vは体積、nは物質量(モル数)、Rは気体定数、τは気体の温度)において、物質量nはw/M(wは質量、Mは気体の平均分子量)であり、密度ρ=w/V=PM/Rτとなる。
気体の温度τを一定とみなせば、密度ρは圧力Pに比例する。よって、この比例定数(つまり、M/Rτ)と上記α、Θ、Bを係数βにまとめると、感温素子センサの抵抗変化ΔRは数13で表される。

Figure 2019032282
In the ideal gas equation of state PV = nRτ (P is pressure, V is volume, n is the amount of substance (mole number), R is the gas constant, and τ is the temperature of the gas), the amount of substance n is w / M (w is mass) , M is the average molecular weight of the gas) and the density ρ = w / V = PM / Rτ.
If the temperature τ of the gas is regarded as constant, the density ρ is proportional to the pressure P. Therefore, when this proportionality constant (that is, M / Rτ) and the above α, Θ, and B are combined into a coefficient β, the resistance change ΔR of the temperature sensitive element sensor is expressed by Equation 13.
Figure 2019032282

このセンサの抵抗変化ΔRは、センサに流す電流Iから電圧に変換されて図3で説明した増幅器で増幅される。増幅器のゲインGとすると、出力される渦信号の波高値(振幅値ともいう)ΔVは、ΔV=G・I・ΔRであるから、このΔRに数13を代入すると、数14で表される。

Figure 2019032282
The resistance change ΔR of the sensor is converted from a current I flowing through the sensor into a voltage and amplified by the amplifier described with reference to FIG. When the gain G of the amplifier is used, the peak value (also referred to as amplitude value) ΔV of the vortex signal to be output is ΔV = G · I · ΔR. Therefore, when Expression 13 is substituted for ΔR, Expression 14 is obtained. .
Figure 2019032282

そして流速が一定の条件下で、温度や圧力などが変化した場合、つまり渦信号の波高値がΔV0からΔVに変化した場合(センサ抵抗値、センサ電流、センサの温度、圧力がそれぞれR0、I0、T0、P0からR、I、T、Pに変化した場合)、渦信号の波高値の変化比率(振幅比ともいい、センサの感度に相当する)mは、m=ΔV0/ΔVであるので数15で表される。このように、渦信号の波高値の変化比率は、感温素子センサの渦検出原理から理論的に導出できることが分かる。

Figure 2019032282
When the temperature, pressure, etc. change under the condition of constant flow velocity, that is, when the peak value of the vortex signal changes from ΔV 0 to ΔV (sensor resistance value, sensor current, sensor temperature, and pressure are R 0, respectively. , I 0 , T 0 , P 0 to R, I, T, P), the change ratio of the peak value of the vortex signal (also referred to as the amplitude ratio, which corresponds to the sensitivity of the sensor) m is m = ΔV Since it is 0 / ΔV, it is expressed by Equation 15. Thus, it can be seen that the change ratio of the peak value of the vortex signal can be theoretically derived from the vortex detection principle of the temperature-sensitive element sensor.
Figure 2019032282

より詳しくは、圧力も一定の条件下で、センサ電圧がそれぞれV0からVに変化した場合、I=V/Rであるので、数15は数16で表される。

Figure 2019032282
よって、数16のR/R0に数2を代入すると、数17で表されるので、渦信号の波高値の変化比率mは、温度によって変化し(つまり、後述の温度による波高値の変化比率の項を有し)、センサ駆動電圧の制御によって調整できることが分かる。
Figure 2019032282
More specifically, when the sensor voltage changes from V 0 to V under a constant pressure, I = V / R, and therefore, Expression 15 is expressed by Expression 16.
Figure 2019032282
Therefore, substituting Equation 2 into R / R 0 of Equation 16 is expressed by Equation 17, so the change ratio m of the peak value of the vortex signal changes depending on the temperature (that is, the change of the peak value due to the temperature described later). It can be seen that it can be adjusted by controlling the sensor drive voltage.
Figure 2019032282

この温度による波高値の変化比率を求める。T0を約20℃として電圧を一定にした場合、渦信号の波高値を縦軸、温度を横軸にして数17をグラフにすると、−40℃〜80℃の範囲ではほぼ直線であった。そこで計算を簡略化するために、温度による波高値の変化比率を一次式で近似する。電圧一定として数17をTで微分すると、数18で表される。

Figure 2019032282
The change ratio of the peak value due to this temperature is obtained. When the voltage was kept constant at T 0 of about 20 ° C., when the peak value of the vortex signal was plotted on the vertical axis and the temperature was plotted on the horizontal axis, the equation 17 was shown as a straight line in the range of −40 ° C. to 80 ° C. . Therefore, in order to simplify the calculation, the change ratio of the peak value due to temperature is approximated by a linear expression. When Expression 17 is differentiated by T with constant voltage, Expression 18 is obtained.
Figure 2019032282

T=T0としてT0付近の傾きを求めると、数19で表される。

Figure 2019032282
したがってT0付近における波高値の変化比率mの一次式近似(直線)は、温度(T−T0)が最低になってもm=1を維持すると想定すれば数20で表され、これを温度による波高値の変化比率とみなす。上記数19が温度−感度特性41bに相当し、センサの温度を求めれば、数17から感温素子センサの感度を求めることができる。
Figure 2019032282
When determining the slope in the vicinity of T 0 as T = T 0, is represented by the number 19.
Figure 2019032282
Therefore, the linear approximation (straight line) of the peak value change ratio m in the vicinity of T 0 is expressed by Equation 20 assuming that m = 1 is maintained even when the temperature (T−T 0 ) is the lowest. It is regarded as the rate of change of the peak value due to temperature. If the above Equation 19 corresponds to the temperature-sensitivity characteristic 41b and the temperature of the sensor is obtained, the sensitivity of the temperature sensitive element sensor can be obtained from Equation 17.
Figure 2019032282

続いて、温度補償算出部41は、センサの温度が変化しても感度を温度変化の前後で一定(m=1)に維持するための、図4(A)に示す感度−センサ電圧特性41cに基づいて、求めたセンサの感度からセンサ駆動電圧の補償係数を求めている。なお、図4(A)に示した温度−感度特性41bおよび感度−センサ電圧特性41cに替えて、図4(B)に示すように、温度−センサ電圧特性41dを用いてもよい。   Subsequently, the temperature compensation calculation unit 41 maintains the sensitivity constant (m = 1) before and after the temperature change even if the temperature of the sensor changes, and the sensitivity-sensor voltage characteristic 41c shown in FIG. The compensation coefficient of the sensor drive voltage is obtained from the obtained sensor sensitivity. Instead of the temperature-sensitivity characteristic 41b and the sensitivity-sensor voltage characteristic 41c shown in FIG. 4A, a temperature-sensor voltage characteristic 41d may be used as shown in FIG. 4B.

計算を簡略化するため、数17のうち温度による波高値の変化比率の項を数20で置き換えると数21で表される。これが感度−センサ電圧特性41cであり、センサの感度を求めれば、数21からセンサ駆動電圧を求めることができる。

Figure 2019032282
そして渦信号の波高値の変化比率が一定となる条件を求めるために、m=1として、温度補償によるセンサ電圧の変化比率V/V0について数21を変形すると、数22で表される。
Figure 2019032282
In order to simplify the calculation, when the term of the change ratio of the crest value due to the temperature is replaced with Expression 20, Expression 17 is expressed. This is the sensitivity-sensor voltage characteristic 41c. If the sensitivity of the sensor is obtained, the sensor drive voltage can be obtained from Equation 21.
Figure 2019032282
Then, in order to obtain a condition in which the change ratio of the peak value of the vortex signal is constant, when m = 1 and Equation 21 is transformed with respect to the sensor voltage change rate V / V 0 by temperature compensation, Equation 22 is obtained.
Figure 2019032282

温度補償算出部41は、この温度補償によるセンサ電圧の変化比率V/V0を電圧補償係数Vadjとして駆動電圧・電流制御部42に出力する。駆動電圧・電流制御部42は、センサ駆動電圧VをV0×Vadjに設定できる。
このV0を、周囲温度が常温(例えば20℃)時のセンサ電圧とすれば、センサ温度Tが常温よりも低くなった場合、駆動電圧・電流制御部42はセンサ駆動電圧VをV0×Vadjに設定し、センサ電圧制御回路23に出力している。
The temperature compensation calculation unit 41 outputs the change rate V / V 0 of the sensor voltage due to the temperature compensation to the drive voltage / current control unit 42 as the voltage compensation coefficient Vadj. The drive voltage / current control unit 42 can set the sensor drive voltage V to V 0 × Vadj.
If this V 0 is a sensor voltage when the ambient temperature is normal temperature (for example, 20 ° C.), when the sensor temperature T is lower than normal temperature, the drive voltage / current control unit 42 sets the sensor drive voltage V to V 0 × Vadj is set and output to the sensor voltage control circuit 23.

センサ電圧制御回路23は、駆動電圧・電流制御部42で設定されたセンサ駆動電圧VをD/Aコンバータでアナログ変換して感温素子センサ7に出力する。これにより、センサの感度は一定に維持される。
なお、上記では、求めたセンサの抵抗値、センサ温度、センサの感度を各式に代入してセンサ温度、センサの感度、センサ電圧をそれぞれ求める例を挙げて説明したが、抵抗−温度特性のテーブル、温度−感度特性のテーブル、感度−センサ電圧のテーブル、あるいは、温度−センサ電圧のテーブルを用いることも可能である。
The sensor voltage control circuit 23 converts the sensor drive voltage V set by the drive voltage / current control unit 42 into an analog signal using a D / A converter and outputs the analog signal to the temperature sensing element sensor 7. Thereby, the sensitivity of the sensor is kept constant.
In the above description, the sensor resistance value, the sensor temperature, and the sensor sensitivity obtained are substituted into the respective formulas to obtain the sensor temperature, the sensor sensitivity, and the sensor voltage. It is also possible to use a table, a temperature-sensitivity characteristic table, a sensitivity-sensor voltage table, or a temperature-sensor voltage table.

図5は、センサ温度と波高値の変化比率との関係、およびセンサ温度とセンサ駆動電圧との関係を説明する図であり、図6は、本実施例の波形データ(信号電圧の時間経過)を説明する図である。
センサ温度が約20℃を下回ったにもかかわらず、センサ駆動電圧を変更しなかった場合(比較例と称する)には、渦信号の波高値の変化比率は、図5に破線で示すように0.8を大きく下回るのでセンサの感度も大きく低下する。
FIG. 5 is a diagram for explaining the relationship between the sensor temperature and the change rate of the crest value, and the relationship between the sensor temperature and the sensor drive voltage. FIG. 6 shows the waveform data of this example (time lapse of the signal voltage). FIG.
When the sensor drive voltage is not changed even though the sensor temperature is lower than about 20 ° C. (referred to as a comparative example), the change ratio of the peak value of the vortex signal is as shown by the broken line in FIG. Since it is much lower than 0.8, the sensitivity of the sensor is also greatly reduced.

これに対し、本実施例では、センサ温度が約20℃を下回った場合、図5に1点鎖線で示すように、センサ駆動電圧を例えばV0×Vadjに上げているので、渦信号の波高値の変化比率は、図5に実線で示すように約20℃の時点と同等以上になり、センサの感度は良好になる。この場合、図6(A)に示すように安定した信号電圧が得られ、フィルタ後波形のピーク間隔や振幅値が揃うため、この波形をパルス化すると、トリガ波形は、図6(B)に示すように安定したパルスが得られて間隔や振幅が揃い、出力パルスにはノイズが混ざらなくなる。 On the other hand, in this embodiment, when the sensor temperature falls below about 20 ° C., the sensor drive voltage is increased to, for example, V 0 × Vadj as shown by the one-dot chain line in FIG. As shown by the solid line in FIG. 5, the change rate of the high value is equal to or higher than that at the time of about 20 ° C., and the sensitivity of the sensor is improved. In this case, as shown in FIG. 6 (A), a stable signal voltage is obtained, and the peak interval and amplitude value of the filtered waveform are uniform. Therefore, when this waveform is pulsed, the trigger waveform is shown in FIG. 6 (B). As shown, stable pulses are obtained, the intervals and amplitudes are uniform, and noise is not mixed in the output pulses.

また、図5の□印は、本実施例による波高値の変化比率の実測値であり、センサ温度が−20℃から85℃の範囲では、図5に実線で示した理論値にほぼ一致する。また、図5の○印は、本実施例によるセンサ駆動電圧の実測値であり、図5に1点鎖線で示した理論値にほぼ一致する。   5 is an actual measurement value of the change ratio of the crest value according to the present embodiment, and almost coincides with the theoretical value indicated by the solid line in FIG. 5 when the sensor temperature is in the range of −20 ° C. to 85 ° C. . Also, the circles in FIG. 5 are actually measured values of the sensor drive voltage according to this example, and almost coincide with the theoretical values indicated by the one-dot chain line in FIG.

このように、感度を温度変化の前後で一定に維持するためのセンサ駆動電圧を、センサ抵抗値から求めて感温素子センサに出力するので、温度が変化してもセンサの感度を自動的に維持できる。この結果、センサの感度を調整するために、作業者が渦流量計の設置現場に出向かなくて済み、また、センサによる計測を中断する必要もない。
さらに、感温素子センサの電圧と電流を計測しており、センサの異常(例えば断線や短絡)も検出可能になる。
なお、上記実施例では感温素子の駆動電圧を求める例で説明したが、感温素子の駆動電流を求めることも可能である。
In this way, the sensor drive voltage for maintaining the sensitivity constant before and after the temperature change is obtained from the sensor resistance value and output to the temperature sensitive element sensor, so the sensor sensitivity is automatically adjusted even if the temperature changes. Can be maintained. As a result, in order to adjust the sensitivity of the sensor, the operator does not have to go to the installation site of the vortex flowmeter, and there is no need to interrupt the measurement by the sensor.
Further, the voltage and current of the temperature sensitive element sensor are measured, and sensor abnormality (for example, disconnection or short circuit) can be detected.
In the above embodiment, the driving voltage of the temperature sensing element is described as an example. However, the driving current of the temperature sensing element can also be obtained.

1…検出器、2…測定管、3…渦発生体、4…センサハウジング、5…取付筒、6…端子箱、7…感温素子センサ、10…変換器、11…バイアス流入口、12a,12b…ニードルバルブ、13…フィルタ、14…バイアス流出口、15…制御部、16…流量指示計、17…通信I/F、18…アンプ部、19…フィルタ部、20…定電流回路、21…増幅器、22…出力回路、23…センサ電圧制御回路、26…可変BPF、27…コンパレータ、40…抵抗値算出部、41…温度補償算出部、41a…抵抗−温度特性、41b…温度−感度特性、41c…感度−センサ電圧特性、41d…温度−センサ電圧特性、42…駆動電圧・電流制御部。
DESCRIPTION OF SYMBOLS 1 ... Detector, 2 ... Measuring tube, 3 ... Vortex generator, 4 ... Sensor housing, 5 ... Mounting cylinder, 6 ... Terminal box, 7 ... Temperature-sensitive element sensor, 10 ... Converter, 11 ... Bias inlet, 12a , 12b ... Needle valve, 13 ... Filter, 14 ... Bias outlet, 15 ... Control part, 16 ... Flow indicator, 17 ... Communication I / F, 18 ... Amplifier part, 19 ... Filter part, 20 ... Constant current circuit, DESCRIPTION OF SYMBOLS 21 ... Amplifier, 22 ... Output circuit, 23 ... Sensor voltage control circuit, 26 ... Variable BPF, 27 ... Comparator, 40 ... Resistance value calculation part, 41 ... Temperature compensation calculation part, 41a ... Resistance-temperature characteristic, 41b ... Temperature- Sensitivity characteristics, 41c ... sensitivity-sensor voltage characteristics, 41d ... temperature-sensor voltage characteristics, 42 ... drive voltage / current control section.

上記課題を解決するために、本発明の第1の技術手段は、温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動方法であって、前記感温素子の抵抗値を求める抵抗値算出ステップと、前記感温素子の駆動電圧または駆動電流を求める温度補償算出ステップと、該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御ステップとを含み、前記温度補償算出ステップが、前記求めた抵抗値に基づいて前記感温素子の温度を求める温度算出ステップと、該求めた温度に基づいて前記感温素子の感度を求める感度算出ステップと、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の感度を温度変化の前後で一定に維持するための前記感温素子の感度と該感温素子の駆動電圧または駆動電流との関係に基づいて、前記感度算出ステップで求めた感度から前記感温素子の駆動電圧または駆動電流の補償係数を求める補償係数算出ステップと、該求めた補償係数に基づいて前記感温素子の駆動電圧または駆動電流を求める駆動電圧または駆動電流算出ステップとを有することを特徴としたものである。 In order to solve the above-mentioned problem, a first technical means of the present invention is a method of driving a temperature sensing element that compensates for an output change due to a temperature characteristic of a temperature sensing element whose resistance value changes due to a temperature change. a resistance value calculation step of obtaining the resistance value of the temperature sensing element, a temperature compensation calculation step of obtaining a drive voltage or drive current before Symbol temperature sensitive device, driving for outputting a drive voltage or drive current determined the said temperature sensitive device look including a voltage or drive current control step, said temperature compensation calculation step, the temperature calculation step of determining the temperature of the temperature sensitive device based on the resistance values obtained, the said temperature sensitive device based on the temperature obtained A sensitivity calculating step for determining the sensitivity of the temperature sensing element, and the sensitivity of the temperature sensing element for maintaining the sensitivity of the temperature sensing element constant before and after the temperature change even if the ambient temperature or the temperature of the fluid to be measured changes. Elementary A compensation coefficient calculating step for obtaining a compensation coefficient for the driving voltage or driving current of the temperature sensing element from the sensitivity obtained in the sensitivity calculating step based on the relationship with the driving voltage or driving current of And a driving voltage or driving current calculating step for obtaining a driving voltage or driving current of the temperature sensitive element .

の技術手段は、前記感温素子が感温素子センサであることを特徴としたものである。
第3の技術手段は、上述の感温素子の駆動方法を実施することを特徴とする渦流量計である。
The second technical means is characterized in that the temperature sensitive element is a temperature sensitive element sensor.
A third technical means is a vortex flowmeter characterized by implementing the above-described temperature sensing element driving method.

第4の技術手段は、温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動装置であって、前記感温素子の抵抗値を求める抵抗値算出部と、前記感温素子の駆動電圧または駆動電流を求める温度補償算出部と、該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御部とを有し、前記温度補償算出部が、前記求めた抵抗値に基づいて前記感温素子の温度を求め、該求めた温度に基づいて前記感温素子の感度を求め、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の感度を温度変化の前後で一定に維持するための前記感温素子の感度と該感温素子の駆動電圧または駆動電流との関係に基づいて、前記求めた感度から前記感温素子の駆動電圧または駆動電流の補償係数を求め、該求めた補償係数に基づいて前記感温素子の駆動電圧または駆動電流を求めることを特徴としたものである。 A fourth technical means is a temperature sensing element driving device that compensates for a change in output due to a temperature characteristic of a temperature sensing element whose resistance value varies with a temperature change, and calculates a resistance value for obtaining a resistance value of the temperature sensing element. and parts, a front Symbol sense temperature compensation calculator for determining the driving voltage or the driving current of the sensing element, and a driving voltage or driving current control unit for outputting a driving voltage or a driving current obtained the said temperature sensitive device possess, The temperature compensation calculation unit obtains the temperature of the temperature sensing element based on the obtained resistance value, obtains the sensitivity of the temperature sensing element based on the obtained temperature, and changes the ambient temperature or the temperature of the fluid to be measured. However, based on the relationship between the sensitivity of the temperature sensing element for maintaining the sensitivity of the temperature sensing element constant before and after the temperature change and the driving voltage or driving current of the temperature sensing element, Driving voltage or driving voltage of the temperature sensing element Seeking compensation coefficient is obtained by and obtains the driving voltage or the driving current of the temperature sensitive device on the basis of the compensation coefficient calculated the.

Claims (5)

温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動方法であって、
前記感温素子の抵抗値を求める抵抗値算出ステップと、
該求めた抵抗値から、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の温度変化に対する出力変化が一定となる前記感温素子の駆動電圧または駆動電流を求める温度補償算出ステップと、
該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御ステップと
を含むことを特徴とする感温素子の駆動方法。
A temperature sensing element driving method that compensates for a change in output due to a temperature characteristic of a temperature sensing element whose resistance value changes due to a temperature change,
A resistance value calculating step for obtaining a resistance value of the temperature sensing element;
A temperature compensation calculating step for obtaining a driving voltage or a driving current of the temperature sensing element from which the output change with respect to the temperature change of the temperature sensing element is constant even if the ambient temperature or the temperature of the fluid to be measured changes from the obtained resistance value When,
A driving voltage or driving current control step of outputting the determined driving voltage or driving current to the temperature sensing element.
前記温度補償算出ステップが、
前記求めた抵抗値に基づいて前記感温素子の温度を求める温度算出ステップと、
該求めた温度に基づいて前記感温素子の感度を求める感度算出ステップと、
周囲温度あるいは被測定流体の温度が変化しても前記感温素子の感度を温度変化の前後で一定に維持するための前記感温素子の感度と該感温素子の駆動電圧または駆動電流との関係に基づいて、前記感度算出ステップで求めた感度から前記感温素子の駆動電圧または駆動電流の補償係数を求める補償係数算出ステップと、
該求めた補償係数に基づいて前記感温素子の駆動電圧または駆動電流を求める駆動電圧または駆動電流算出ステップと
を有することを特徴とする請求項1に記載の感温素子の駆動方法。
The temperature compensation calculation step includes:
A temperature calculating step for determining the temperature of the thermosensitive element based on the determined resistance value;
A sensitivity calculating step for determining the sensitivity of the thermosensitive element based on the determined temperature;
The sensitivity of the temperature sensing element for maintaining the sensitivity of the temperature sensing element constant before and after the temperature change and the driving voltage or driving current of the temperature sensing element even if the ambient temperature or the temperature of the fluid to be measured changes. Based on the relationship, a compensation coefficient calculation step for obtaining a compensation coefficient for the drive voltage or drive current of the temperature sensing element from the sensitivity obtained in the sensitivity calculation step;
2. The temperature sensing element driving method according to claim 1, further comprising a driving voltage or driving current calculating step for obtaining a driving voltage or a driving current of the temperature sensing element based on the obtained compensation coefficient.
前記感温素子が感温素子センサであることを特徴とする請求項1または2に記載の感温素子の駆動方法。   The temperature sensing element driving method according to claim 1, wherein the temperature sensing element is a temperature sensing element sensor. 温度の変化により抵抗値が変化する感温素子の温度特性による出力変化を補償する感温素子の駆動装置であって、
前記感温素子の抵抗値を求める抵抗値算出部と、
該求めた抵抗値から、周囲温度あるいは被測定流体の温度が変化しても前記感温素子の温度変化に対する出力変化が一定となる前記感温素子の駆動電圧または駆動電流を求める温度補償算出部と、
該求めた駆動電圧または駆動電流を前記感温素子に出力する駆動電圧または駆動電流制御部と
を有することを特徴とする感温素子の駆動装置。
A temperature sensing element driving device that compensates for an output change due to a temperature characteristic of a temperature sensing element whose resistance value changes due to a temperature change,
A resistance value calculation unit for obtaining a resistance value of the temperature sensing element;
A temperature compensation calculation unit that obtains a driving voltage or a driving current of the temperature sensing element from which the output change with respect to the temperature change of the temperature sensing element is constant even if the ambient temperature or the temperature of the fluid to be measured changes from the obtained resistance value When,
A drive device for a temperature sensitive element, comprising: a drive voltage or drive current control unit for outputting the obtained drive voltage or drive current to the temperature sensitive element.
請求項1〜3のいずれか1項に記載の感温素子の駆動方法を実施することを特徴とする渦流量計。
A vortex flowmeter, wherein the temperature sensing element driving method according to any one of claims 1 to 3 is implemented.
JP2017154667A 2017-08-09 2017-08-09 Method of driving temperature sensitive device, driving device, and vortex flowmeter Active JP6537566B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017154667A JP6537566B2 (en) 2017-08-09 2017-08-09 Method of driving temperature sensitive device, driving device, and vortex flowmeter
KR1020180090193A KR102065262B1 (en) 2017-08-09 2018-08-02 A driving method and driving device for thermal-sensing element, and vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017154667A JP6537566B2 (en) 2017-08-09 2017-08-09 Method of driving temperature sensitive device, driving device, and vortex flowmeter

Publications (2)

Publication Number Publication Date
JP2019032282A true JP2019032282A (en) 2019-02-28
JP6537566B2 JP6537566B2 (en) 2019-07-03

Family

ID=65523403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154667A Active JP6537566B2 (en) 2017-08-09 2017-08-09 Method of driving temperature sensitive device, driving device, and vortex flowmeter

Country Status (2)

Country Link
JP (1) JP6537566B2 (en)
KR (1) KR102065262B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292745A (en) * 1976-01-30 1977-08-04 Yokogawa Hokushin Electric Corp Flow speed and rate measuring system
JPS6093933U (en) * 1983-12-01 1985-06-26 テルモ株式会社 temperature measuring device
WO2016034417A1 (en) * 2014-09-01 2016-03-10 Endress+Hauser Flowtec Ag Sensor component for a sensor, sensor, and measurement system formed therewith

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685854B2 (en) * 1988-12-09 1997-12-03 松下電工株式会社 Differential heat sensor
JP3570836B2 (en) 1997-01-17 2004-09-29 日本電気エンジニアリング株式会社 Temperature detection control circuit
JP3765384B2 (en) 1999-09-14 2006-04-12 横河電機株式会社 Vortex flow meter
JP2002148084A (en) 2000-11-14 2002-05-22 Fuji Electric Co Ltd Composite sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292745A (en) * 1976-01-30 1977-08-04 Yokogawa Hokushin Electric Corp Flow speed and rate measuring system
JPS6093933U (en) * 1983-12-01 1985-06-26 テルモ株式会社 temperature measuring device
WO2016034417A1 (en) * 2014-09-01 2016-03-10 Endress+Hauser Flowtec Ag Sensor component for a sensor, sensor, and measurement system formed therewith

Also Published As

Publication number Publication date
JP6537566B2 (en) 2019-07-03
KR20190016906A (en) 2019-02-19
KR102065262B1 (en) 2020-01-10

Similar Documents

Publication Publication Date Title
JP5096915B2 (en) Simplified fluid property measurement method
JP4020433B2 (en) Transmitter with average pitot tube type primary element and method of use thereof
EP2154489A1 (en) Heat flowmeter
WO2000065315A1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
JP2009085949A (en) Heat flow measurement system and method
KR20100128346A (en) Real-time non-stationary flowmeter
EP1523664A1 (en) System and method for mass flow detection device calibration
US5117691A (en) Heated element velocimeter
US7823444B2 (en) Device and process for measuring the velocity of flow of a fluid using pulse signal generated based on feedback
JP6537566B2 (en) Method of driving temperature sensitive device, driving device, and vortex flowmeter
JP5207210B2 (en) Thermal flow meter
US7347092B1 (en) Apparatus and method for fluid flow measurement
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JPH0961208A (en) Laminar flowmeter
WO2022070239A1 (en) Flow rate measurement device
KR920009907B1 (en) Swirling flow meter
US20120036925A1 (en) Digital Flow Meter with Enhanced Turndown Ratio
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JP5522826B2 (en) Thermal flow meter
JP3766601B2 (en) Flow sensor and flow measurement device
JP2000111372A (en) Eddy flowmeter
JPS59136619A (en) Vortex flowmeter
JPH085426A (en) Flow meter
JP2008046143A (en) Thermal fluid sensor and flow sensor
KR0156161B1 (en) Flow meter measuring device of semiconductor equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6537566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250