JP2019032234A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2019032234A
JP2019032234A JP2017153461A JP2017153461A JP2019032234A JP 2019032234 A JP2019032234 A JP 2019032234A JP 2017153461 A JP2017153461 A JP 2017153461A JP 2017153461 A JP2017153461 A JP 2017153461A JP 2019032234 A JP2019032234 A JP 2019032234A
Authority
JP
Japan
Prior art keywords
display device
route
acquisition unit
display
altitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017153461A
Other languages
English (en)
Other versions
JP7055324B2 (ja
Inventor
和雄 市原
Kazuo Ichihara
和雄 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prodrone Co Ltd
Original Assignee
Prodrone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodrone Co Ltd filed Critical Prodrone Co Ltd
Priority to JP2017153461A priority Critical patent/JP7055324B2/ja
Publication of JP2019032234A publication Critical patent/JP2019032234A/ja
Application granted granted Critical
Publication of JP7055324B2 publication Critical patent/JP7055324B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】移動体が自動走行または自動飛行する経路を現実の光景に重ねて確認可能な表示装置を提供する。【解決手段】透明な部材または映像を表示するディスプレイである表示部と、水平面上の自装置の位置を取得する水平座標取得部と、自装置の前方を特定可能な前方取得部と、鉛直方向における自装置の位置を取得する鉛直座標取得部と、自装置の傾きを検出する傾き取得部と、自動走行または自律飛行が可能な移動体の移動経路情報が記憶される移動経路記憶部と、前記表示部を通して視認される現実の光景またはその映像に、該移動体の移動経路を示す仮想的な点または線である仮想経路を重ねて該表示部に映し出す経路マッピング手段と、を備えることを特徴とする表示装置により解決する。【選択図】図4

Description

本発明は、拡張現実技術に関する。
下記特許文献1には、カメラで撮影した実写画像に、経路案内のための画像を重ねて表示するナビゲーション装置が開示されている。
国際公開第2012/120607号
自動走行や自動飛行を行う移動体の移動経路を地図データ上で指定した後に、その移動体が実際の現場をどのように移動するのか事前に確認しておきたい場合がある。例えば地図データ上の地物の位置や形状が実際の地物とは異なる可能性があるときや、高さを含む立体的な移動経路を確認したいときなどである。
上記問題に鑑み、本発明が解決しようとする課題は、移動体が自動走行または自動飛行する経路を現実の光景に重ねて確認可能な表示装置を提供することにある。
上記課題を解決するため、本発明の表示装置は、透明な部材または映像を表示するディスプレイである表示部と、水平面上の自装置の位置を取得する水平座標取得部と、自装置の前方を特定可能な前方取得部と、鉛直方向における自装置の位置を取得する鉛直座標取得部と、自装置の傾きを検出する傾き取得部と、自動走行または自律飛行が可能な移動体の移動経路情報が記憶される移動経路記憶部と、前記表示部を通して視認される現実の光景またはその映像に、該移動体の移動経路を示す仮想的な点または線である仮想経路を重ねて該表示部に映し出す経路マッピング手段と、を備えることを特徴とする。
表示装置が自装置の位置や向きを検出可能であり、移動体の移動経路を現実の光景に重ねて表示可能であることにより、実際の現場において移動体がどのように移動するのか事前に確認することが可能となる。
また、前記移動体は無人航空機であることが好ましい。
マルチコプターに代表される小型の無人航空機は、機体の飛行動作を制御するフライトコントローラとよばれる制御装置を備えている。市場に流通するフライトコントローラ製品の中には、オートパイロット機能を備えているものがある。オートパイロット機能とは、無人航空機の姿勢や飛行位置を自動的に維持したり、操縦者が作成した飛行計画に基づいて無人航空機を自律的に飛行させたりする機能である。一般的なオートパイロット機能の飛行計画には、機体の離着陸地点や、飛行ルートの経緯度、高度、速度、機首の方位角などを指定することができる。その他、空撮に特化した一部のフライトコントローラでは、カメラによる撮影の開始・終了、PTZなどを指定可能なものもある。平面的な地図データ上で飛行計画を作成する場合、飛行高度を含む実際の飛行経路を立体的に把握することは困難である。本発明の表示装置によれば、実際の現場における無人航空機の飛行経路を、その高度も含め立体的に確認することができる。
また、前記水平座標取得部は、自装置の経緯度情報を取得するGPS受信器を有し、前記前方取得部は、自装置の前方の方位を特定可能な方位センサを有し、前記鉛直座標取得部は、自装置の海抜高度または対地高度を測定可能な高度センサ、または、ユーザに指定された対地高度を記憶する高度記憶部を有し、前記傾き取得部は、2軸または3軸の加速度センサを有することが好ましい。
上記構成とすることにより、例えば市販のスマートフォンやタブレット端末などを使って効率的に本発明の表示装置を実現することができる。
また、前記経路マッピング手段は、前記仮想経路の各部に付加された属性情報に基づいて、該仮想経路の各部を異なる外観で表示可能であることが好ましい。
移動体の速度や、経路上の各位置における撮影動作などを、仮想経路の外観を使って表示可能であることにより、移動体の動作をより詳細に把握することが可能となる。
また、本発明の表示装置は、水平面上の地物の位置および形状がマッピングされた地図データを取得する地図データ取得手段をさらに備え、前記経路マッピング手段は、自装置から見たときに前記地物の背後を通過する前記仮想経路を、該仮想経路の他の部分とは異なる外観で表示可能であることが好ましい。
実際には地物の背後を通る仮想経路がその地物の前に表示されると、使用者が移動体の移動経路を誤解するおそれがある。地物の背後を通過する仮想経路を、それが地物の背後であることが分かる外観で表示することにより、表示装置の使用者は移動体の移動経路をより正確に把握することが可能となる。
また、本発明の表示装置は、前記鉛直座標取得部および/または前記傾き取得部の較正手段をさらに備えることが好ましい。
表示装置の鉛直座標取得部として例えば気圧センサが用いられた場合、気圧高度からでは表示装置の対地高度を直接取得することはできない。また、傾き取得部が本発明の経路マッピング手段専用ではない場合、自装置がまっすぐ正面に向けられているときの傾き取得部の検出値や、自装置が傾いたときの角度と検出値の変化との関係は不明である。そこで、これら鉛直座標取得部および傾き取得部の較正手段を備えることにより、経路マッピング手段は、自装置の対地高度や傾きについての基準を得ることができる。これにより、現実の光景に対する仮想経路のマッピング精度を高めることができる。
以上のように、本発明の飛行制御装置によれば、移動体の移動経路を実際に即して確認することが可能となる。
表示装置の外観を示す平面図および底面図である。 表示装置の機能構成を示すブロック図である。 マルチコプターの機能構成を示すブロック図である。 ユーザが表示装置を使ってマルチコプターの飛行経路を確認する様子を上方から見た模式図である。 ユーザが表示装置を使ってマルチコプターの飛行経路を確認する様子を側方から見た模式図である。 図4および図5の仮想経路が表示装置のディスプレイに表示されている様子を示す模式図である。
以下、本発明の実施形態について説明する。本実施形態(以下、「本例」ともいう。)は、小型の無人回転翼航空機であるマルチコプター50が飛行する経路を、本発明の表示装置を用いて事前に確認する例である。なお、本発明の表示装置を適用可能な移動体は本例のマルチコプター50には限られない。本発明の表示装置は、予め指定された経路に沿って自動走行または自動飛行を行う移動体であれば適用可能である。例えば、無人固定翼航空機などの他の無人航空機、無人車両、さらには有人の移動体にも適用可能であり、移動体の大型・小型も問わない。
[表示装置]
(構成概要)
図1は本例の表示装置10の外観を示す平面図および底面図である。図1(a)は表示装置10の表側の面を示している。表示装置10の表側には、ユーザに情報を表示するディスプレイ13が設けられている。本例のディスプレイ13はタッチスクリーンであり、表示装置10の入力手段131を兼ねている。図1(b)は表示装置10の裏側の面を示している。表示装置10の裏側にはカメラ14が設けられている。ディスプレイ13には、カメラ14で撮影された光景の映像がリアルタイムで表示される。
図2は表示装置10の機能構成を示すブロック図である。表示装置10の機能は、上記ディスプレイ13およびカメラ14のほか、中央処理装置であるCPU11、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ12、通信モジュールであるLTE(Long Term Evolution)モジュール16およびWi−Fi(Wireless Fidelity)モジュール17、表示装置10の位置や姿勢を検出するセンサ15(以下、「位置・姿勢センサ15」という。)、および、これらに電力を供給するバッテリー19により構成されている。
(位置・姿勢センサ)
本例の位置・姿勢センサ15は、GPS受信器151、加速度センサ152、電子コンパス153、および気圧センサ154を含んでいる。
GPS受信器151は、表示装置10の水平面上の位置を取得する水平座標取得部である。GPS受信器151は、正確には航法衛星システム(NSS:Navigation Satellite System)の受信器である。GPS受信器151は、全地球航法衛星システム(GNSS:Global Navigation Satellite System)または地域航法衛星システム(RNSS:Regional Navigational Satellite System)から現在の経緯度値および時刻情報を取得する。
加速度センサ152は、表示装置10の傾きを検出する傾き取得部である。本例の加速度センサ152は3軸の加速度センサであり、XYZ軸の3方向の加速度を検出する。表示装置10は加速度センサ152の検出値から、表示装置10のそのときの姿勢を特定する。なお、加速度センサ152は常に3軸加速度センサである必要はなく、要求される検出精度によっては2軸加速度センサを用いることも可能である。
電子コンパス153は、表示装置10の前方(本例では表示装置10のカメラ14が向けられる方向)を特定する前方取得部である。本例の電子コンパス153には、方位センサである3軸の地磁気センサが用いられている。表示装置10は電子コンパス153の検出値から、表示装置10のカメラ14が向けられている方位、つまり表示装置10の前方を特定する。
気圧センサ154は、表示装置10の鉛直方向における位置を取得する鉛直座標取得部である。気圧センサ154は高度センサの一態様であり、気圧高度に基づいて表示装置10の海抜高度(標高)を算出する。
本発明の鉛直座標取得部の目的は、最終的に表示装置10の対地高度を求めることである。しかし、気圧センサ154で得られる海抜高度は、直接対地高度に変換可能な値ではない。そのため、本例の表示装置10は、後述するキャリブレーションプログラムCBにより、表示装置10の利用位置における地表の気圧高度、またはユーザの目線位置の気圧高度とその実際の高さとを取得し、これを基準として表示装置10の対地高度を算出する。なお、鉛直座標取得部の形態は本例の気圧センサ154には限られず、例えば、レーザや赤外線、超音波などを利用した測距センサにより、表示装置10の対地高度を直接的に取得してもよい。さらには、鉛直座標取得部はセンサを用いた形態にも限られない。例えば、メモリ12に別途高度記憶部を設け、ユーザに自身の目線の高さを入力させ、その値を表示装置10の対地高度として取得する形態や、ユーザの一般的な目線の高さを150〜170cmと決めつけて、例えば160cmの固定値を高度記憶部に登録しておき、その値を表示装置10の対地高度として取得する形態も含まれる。
市販のスマートフォンやタブレット端末には、予めこれらの位置・姿勢センサ15を備えているものがある。本例の表示装置10にもこのようなスマートフォンやタブレット端末が用いられている。
なお、本例では、マルチコプター50を屋外で飛行させる前提で表示装置10の位置・姿勢センサ15が構成されているが、本発明の移動体や表示装置の使用範囲は屋外には限定されない。例えば、無線信号を送出するビーコンを施設の屋内に所定間隔で配置し、これらビーコンから受信した信号の電波強度から表示装置と各ビーコンとの相対的な距離を計測することで、その施設内における表示装置の水平面上の位置、および鉛直方向における位置を特定してもよい。その他、例えば表示装置が備えるカメラで撮影した周囲の映像から画像認識により施設内の特徴箇所を検出し、これに基づいて施設内における表示装置の水平面上の位置、鉛直方向における位置、および前方を特定することも可能である。
(プログラム)
表示装置10のメモリ12には、飛行計画FPが登録されている。また、表示装置10には、経路マッピングプログラムRM、地図データ取得プログラムMP、および、気圧センサ154の較正手段であるキャリブレーションプログラムCBがインストールされている。
本例のメモリ12は、飛行計画FPという形でマルチコプター50の移動経路が記憶される移動経路記憶部である。そして、本例の飛行計画FPは、マルチコプター50の離着陸地点、飛行ルートの経緯度および高度からなる飛行経路情報r、並びに、飛行ルートの各位置における速度やカメラ14による撮影動作などの経路属性情報iを有している。
なお、本例の表示装置10は、Wi−Fiモジュール17を介してマルチコプター50から飛行計画FPをダウンロードする。その他、無人航空機分野において一般にGCS(Ground Control Station)と呼ばれ、飛行計画FPの作成や、マルチコプター50の各種設定、状態監視、操縦を行う端末から飛行計画FPをダウンロードする構成としてもよい。または、表示装置10自体がGCSの機能を備え、表示装置10で飛行計画FPを作成し、それをマルチコプター50へアップロードする構成としてもよい。
経路マッピングプログラムRMは、カメラ14で撮影され、ディスプレイ13を通して視認される現実の光景の映像に、マルチコプター50の飛行経路を示す仮想的な線である仮想経路vを重ねて映し出す経路マッピング手段である。なお、仮想経路vは線ではなく点群で構成されてもよい。
飛行計画FPの飛行経路情報rは、現実の経緯度や高さに対応した仮想的な三次元座標上に仮想経路vを再現可能な設計情報である。経路マッピングプログラムRMは、表示装置10の経緯度、対地高度、前方の方位、および傾きを位置・姿勢センサ15から取得し、表示装置10がその位置およびその姿勢のときにカメラ14の画角内に収められる空間の三次元座標を特定する。そして、仮想経路vのうち、その現実の空間内に含まれる部位を、カメラ14で撮影された像に重ねてディスプレイ13に立体的に描画する。
さらに、本例の経路マッピングプログラムRMは、飛行計画FPの経路属性情報iを参照して、仮想経路vの各部を異なる外観で表示することにより、マルチコプター50の速度や撮影動作などを表現する。これにより、ユーザがマルチコプター50の動作をより詳細に把握することが可能とされている。
このように、表示装置10が自装置の位置や向き、姿勢を検出することができ、そして、マルチコプター50の飛行経路を仮想経路vとして現実の光景に重ねて表示することにより、ユーザは、実際の現場においてマルチコプター50がどのような経路で飛行するのかを事前に確認することができる。
ここで、本例のように、加速度センサ152が経路マッピングプログラムRM専用ではなく、スマートフォンやタブレット端末が備える加速度センサを利用したものである場合、そのスマートフォンやタブレット端末が提供するAPIの仕様によっては、表示装置のカメラがまっすぐ正面に向けられているときの加速度センサの検出値や、表示装置が傾けられたときの角度と加速度センサの検出値の変化との関係が不明な場合がある。このような場合には、上述の較正手段(キャリブレーションプログラムCB)に加速度センサの較正機能を追加し、事前に表示装置の姿勢と加速度センサの検出値との関係を特定すればよい。
地図データ取得プログラムMPは、経緯度上の地物の位置および形状がマッピングされた地図データを取得する地図データ取得手段である。本例の地図データ取得プログラムMPは、表示装置10が備えるLTEモジュール16を介して、インターネット上の地図データサーバ90から地図データを取得する。なお、本例のLTEモジュール16は、例えば3GやWiMAX(Worldwide Interoperability for Microwave Access)など、他の移動体通信網への接続モジュールであってもよく、または、Wi−Fiモジュール17で最寄りのアクセスポイントを経由して地図データサーバ90に接続してもよい。さらには、表示装置10自体が地図データを有していてもよい。
経路マッピングプログラムRMは、地図データサーバ90から取得した地図データを参照し、仮想経路vのうち、表示装置10の位置から見たときに地物の背後を通過する部分を、仮想経路vの他の部分とは異なる外観で表示する。つまり、仮想経路vのその部分が地物の背後を通っていることが分かる外観で表示する。
[マルチコプター]
(構成概要)
図3は本例のマルチコプター50の機能構成を示すブロック図である。マルチコプター50は、主に、フライトコンローラ51、複数のブラシレスモータであるロータ54、ロータ54の駆動回路であるESC541(Electric Speed Controller)、ユーザ(送信機521)からの操縦信号を受信する受信器522、表示装置10と双方向通信を行うWi−Fiモジュール53、動画および静止画が撮影可能なカメラ55、および、これらに電力を供給するバッテリー59により構成されている。
フライトコンローラ51は、マイクロコントローラである制御装置60を備えている。制御装置60は、中央処理装置であるCPU61、RAMやROM・フラッシュメモリなどの記憶装置からなるメモリ62、および、ESC541を介して各ロータ54の回転数を制御するPWM(Pulse Width Modulation:パルス幅変調)コントローラ63を有している。
フライトコンローラ51はさらに、IMU651(Inertial Measurement Unit:慣性計測装置)、GPS受信器652、気圧センサ653、および電子コンパス654を含む位置・姿勢センサ65を有しており、これらは制御装置60に接続されている。
IMU651は、主に3軸加速度センサおよび3軸角速度センサにより構成されている。GPS受信器652、気圧センサ653、および電子コンパス654の機能は、表示装置10が備えるものと同様である。フライトコンローラ51は、これら位置・姿勢センサ65により、機体の傾きや回転のほか、飛行中の経緯度、高度、および機首の方位角を含む自機の位置情報を取得することが可能とされている。
制御装置60は、マルチコプター50の飛行時における姿勢や基本的な飛行動作を制御するプログラムである飛行制御プログラムFCを有している。飛行制御プログラムFCは、位置・姿勢センサ65から取得した情報を基に個々のロータ54の回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター50を飛行させる。
また、制御装置60はマルチコプター50を自動飛行させるプログラムである自律飛行プログラムAPを有している。また、制御装置60のメモリ62には、飛行計画FPが登録されている。自律飛行プログラムAPは、ユーザ(送信機521)からの開始指示や所定の時刻を開始条件として、飛行計画FPに従ってマルチコプター50を自動的に飛行させる。本例ではこのような自動飛行機能を「オートパイロット」という。本例のマルチコプター50は基本的にオートパイロットで飛行させることを想定しているが、ユーザが送信機521を使って逐次手動で操縦することも可能である。
[経路確認方法]
以下、表示装置10の経路マッピングプログラムRMが、カメラ14で撮影された現実の光景に仮想経路vを重ねて表示する手順について説明する。図4は、マルチコプター50を自動飛行させる現場において、ユーザuが表示装置10を使ってその飛行経路を確認している様子を上方から見た模式図である。図5は、図4のユーザuを側方から見た模式図である。図6は、図4および図5の仮想経路vが表示装置10のディスプレイ13に表示されている様子を示す模式図である。
(仮想経路)
本例の仮想経路vは、飛行計画FPの飛行経路情報rおよび経路属性情報iにより定義されている。表示装置10の経路マッピングプログラムRMは、カメラ14で撮影された現実の光景にこの仮想経路vを立体的に重ねてディスプレイ13に表示する。
より具体的には、本例の飛行計画FPの飛行経路情報rには、ユーザuの北東にある離陸地点p1からマルチコプター50を高度aまで垂直に離陸させ、そこから北西方向へ直線的に水平飛行させた後、着陸地点p2に垂直に着陸させる経路が指定されている。
また、飛行計画FPの経路属性情報iには、マルチコプター50を水平飛行させる経路の途中で、一度、マルチコプター50の北東をカメラ55で撮影する動作が指定されている(図4の矢印s)。
(撮影空間の特定)
図4および図5に示されるように、本例のユーザuは表示装置10のカメラ14を北に向けて立っている。また、ユーザuは表示装置10を自身の目の高さに構え、カメラ14を斜め上方に傾けている。
ここで、表示装置10のGPS受信器151は、表示装置10の経緯度(本例では、緯度35.xxx654、および経度136.xxx430)を取得する。加速度センサ152は、表示装置10の傾きtを検出する。電子コンパス153は、表示装置10の前方が北であることを特定する。そして、気圧センサ154は、対地高度hを特定する。経路マッピングプログラムRMは、これら位置・姿勢センサ15の検出値に基づいて、カメラ14の画角fに収められる現実の空間の三次元座標、すなわち、カメラ14の画角fに収められる現実の空間の経緯度と対地高度の範囲を特定する。
なお、上でも述べたように、気圧センサ154で得られる海抜高度は、直接対地高度hに変換できる値ではない。そのため本例では、ユーザuが表示装置10を現場の地面に置いて、その状態でキャリブレーションプログラムCBを実行し、地表付近の気圧高度を取得している。そして、経路マッピングプログラムRMは、その地表付近の気圧高度と、表示装置10の現在の気圧高度との差から、表示装置10の対地高度hを算出する。なお、対地高度hを算出するプログラムは経路マッピングプログラムRM以外のプログラムであってもよい。また、対地高度hを算出する基準気圧高度としては、現場の地表付近の気圧高度のほか、ユーザuの目線位置の気圧高度を使うこともできる。具体的には、ユーザuの目線位置の高さを対地高度160cmと決めつけ、現場において一度、ユーザuの目線位置でキャリブレーションプログラムCBを実行させ、その位置における気圧高度との差分で現在の対地高度hを算出するようにしてもよい。
(経路の表示)
経路マッピングプログラムRMは、位置・高度センサ15により特定された現実の空間に含まれる仮想経路vの部位、並びに、その仮想経路vの各部とカメラ14との位置関係および距離を算出する。仮想経路vの各部とカメラ14との位置関係および距離は、表示装置10の経緯度と仮想経路vの各部の経緯度、および、表示装置10の対地高度と仮想経路vの各部の対地高度が分かれば、三角関数を使った単純な計算で算出することができる。例えば、図4に示されるように、表示装置10の経緯度(緯度35.xxx654,経度136.xxx430)と、離陸地点p1の経緯度(緯度35.xxx707,経度136.xxx487)とが分かれば、表示装置10と離陸地点p1の直線距離d1(本例では8m前後)を算出することができる。また、表示装置10の経緯度(緯度35.xxx654,経度136.xxx430)と、着陸地点p2の経緯度(緯度35.xxx852,経度136.xxx294)とが分かれば、表示装置10と着陸地点p2の直線距離d2(本例では24m前後)を算出することができる。また、図5に示されるように、表示装置10と離陸地点p1の直線距離と、仮想経路vの対地高度aが分かれば、高さを含む直線距離d3を算出することができる。
そして、経路マッピングプログラムRMは、カメラ14で撮影された現実の光景を背景として、その空間内に含まれる仮想経路vをそこに立体的に重ねてディスプレイ13に表示する。このとき、仮想経路vの各部は、表示装置10からの距離に応じてその線の太さが自動調節され、これにより仮想経路vの奥行きが表現される。
(属性情報の表示)
また、本例の飛行計画FPは経路属性情報iを有している。本例の経路属性情報iには、マルチコプター50の飛行経路の各部における飛行速度およびカメラ55による撮影動作に関する情報が登録されている。図6の仮想経路vのうち細く表示されている範囲nは、マルチコプター50が他の部分よりも低速で飛行する範囲である。そして、矢印sは、マルチコプター50がカメラ55をその方向に向けて撮影するという動作を表している。なお、経路属性情報iとして登録可能な情報の種類は本例の飛行速度や撮影動作には限られない。例えば、マルチコプター50が農薬散布用の無人航空機であるときは、飛行経路の各位置における農薬の散布量を経路属性情報iとして登録し、これを仮想経路vの外観で表現することも可能である。
(地物背後の仮想経路の描き分け)
さらに、経路マッピングプログラムRMは、地図データ取得プログラムMPで取得した地図データから、画角fに収められる空間内の地物の形状をその地物の高さとともに特定し、仮想経路vのうち、表示装置10の位置から見たときに地物の背後を通過する部分を、仮想経路vの他の部分とは異なる外観で表示する。本例では、表示装置10の位置から見て、仮想経路vの一部が樹木gの背後を通過している。経路マッピングプログラムRMは、その部分が樹木gの背後を通過していることが分かるように、その部分のみを破線mで表示する。樹木gの背後を通る仮想経路vが樹木gの前に表示されると、ユーザuがマルチコプター50の飛行経路を誤解するおそれがある。樹木gの背後を通過する仮想経路vを、それが樹木gの背後であることが分かる外観で表示することにより、表示装置10のユーザuがマルチコプター50の飛行経路をより正確に把握することが可能とされている
なお、地物の背後を通過する仮想経路vをそれと分かるように表示する機能は必須ではない。かかる機能を省略する場合には、地図データサーバ90および地図データ取得プログラムMPも省略することができる。また、本例の地図データサーバ90が有する地図データは、自然物である樹木gの形状までが含まれている特別な地図データであるが、その他、例えば、経時的な変化の少ないビルなどの構造物の形状のみが登録された、より一般的な地図データを使用することもできる。
以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えることができる。
例えば、本例の表示装置10には市販のスマートフォンやタブレット端末が利用されているが、ヘッドマウントディスプレイなどのウェアラブルデバイスも、本発明の表示装置の形態として好適と考えられる。さらには、ウェアラブルデバイスが有するメガネレンズのような透明な部材に仮想経路を表示することで、現実の光景に仮想経路を重ねることも可能である。
その他、例えば、飛行計画FPに基づいてマルチコプター50を飛行させたときのGPS受信器652と気圧センサ653の検出値とを記録しておき、飛行計画FPに基づいて再現された仮想経路vと、その飛行計画FPによりマルチコプター50が実際に飛行した経路とをディスプレイ13上に重ねて表示し、これらのずれを視覚的・立体的に確認可能とする機能を表示装置10に実装することも有意と考えられる。
10 表示装置
12 メモリ(移動経路記憶部)
FP 飛行計画
r 飛行経路情報
i 経路属性情報
v 仮想経路
g 地物
RM 経路マッピングプログラム(経路マッピング手段)
MP 地図データ取得プログラム(地図データ取得手段)
CB キャリブレーションプログラム(較正手段)
15 位置・姿勢センサ
151 GPS受信器(水平座標取得部)
152 加速度センサ(傾き取得部)
153 電子コンパス(前方取得部)
154 気圧センサ(高度センサ(鉛直座標取得部))
13 ディスプレイ(表示部)
14 カメラ
90 地図データサーバ
50 マルチコプター(無人航空機)
51 フライトコントローラ
54 ロータ
60 制御装置
FC 飛行制御プログラム
AP 自律飛行プログラム(自律飛行制御手段)
65 位置・姿勢センサ
651 IMU
652 GPS受信器
653 気圧センサ
654 電子コンパス
55 カメラ

Claims (6)

  1. 透明な部材または映像を表示するディスプレイである表示部と、
    水平面上の自装置の位置を取得する水平座標取得部と、
    自装置の前方を特定可能な前方取得部と、
    鉛直方向における自装置の位置を取得する鉛直座標取得部と、
    自装置の傾きを検出する傾き取得部と、
    自動走行または自律飛行が可能な移動体の移動経路情報が記憶される移動経路記憶部と、
    前記表示部を通して視認される現実の光景またはその映像に、該移動体の移動経路を示す仮想的な点または線である仮想経路を重ねて該表示部に映し出す経路マッピング手段と、
    を備えることを特徴とする表示装置。
  2. 前記移動体は無人航空機であることを特徴とする請求項1に記載の表示装置。
  3. 前記水平座標取得部は、自装置の経緯度情報を取得するGPS受信器を有し、
    前記前方取得部は、自装置の前方の方位を特定可能な方位センサを有し、
    前記鉛直座標取得部は、自装置の海抜高度または対地高度を測定可能な高度センサ、または、ユーザに指定された対地高度を記憶する高度記憶部を有し、
    前記傾き取得部は、2軸または3軸の加速度センサを有することを特徴とする請求項1に記載の表示装置。
  4. 前記経路マッピング手段は、前記仮想経路の各部に付加された属性情報に基づいて、該仮想経路の各部を異なる外観で表示可能であることを特徴とする請求項1に記載の表示装置。
  5. 水平面上の地物の位置および形状がマッピングされた地図データを取得する地図データ取得手段をさらに備え、
    前記経路マッピング手段は、自装置から見たときに前記地物の背後を通過する前記仮想経路を、該仮想経路の他の部分とは異なる外観で表示可能であることを特徴とする請求項4に記載の表示装置。
  6. 前記鉛直座標取得部および/または前記傾き取得部の較正手段をさらに備えることを特徴とする請求項1に記載の表示装置。
JP2017153461A 2017-08-08 2017-08-08 表示装置 Active JP7055324B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017153461A JP7055324B2 (ja) 2017-08-08 2017-08-08 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153461A JP7055324B2 (ja) 2017-08-08 2017-08-08 表示装置

Publications (2)

Publication Number Publication Date
JP2019032234A true JP2019032234A (ja) 2019-02-28
JP7055324B2 JP7055324B2 (ja) 2022-04-18

Family

ID=65523384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153461A Active JP7055324B2 (ja) 2017-08-08 2017-08-08 表示装置

Country Status (1)

Country Link
JP (1) JP7055324B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080089A (ja) * 2018-11-14 2020-05-28 エヌ・ティ・ティ・コムウェア株式会社 情報表示システム、情報表示方法及び情報表示プログラム
JP6730764B1 (ja) * 2019-12-26 2020-07-29 株式会社センシンロボティクス 飛行体の飛行経路表示方法及び情報処理装置
JP6829513B1 (ja) * 2020-04-03 2021-02-10 株式会社センシンロボティクス 位置算出方法及び情報処理システム
WO2021106436A1 (ja) * 2019-11-28 2021-06-03 ソニーグループ株式会社 画像処理装置、および画像処理方法、並びにプログラム
WO2021250914A1 (ja) * 2020-06-09 2021-12-16 ソニーグループ株式会社 情報処理装置、移動装置、情報処理システム、および方法、並びにプログラム
EP4068247A1 (en) * 2021-03-31 2022-10-05 Sumitomo Heavy Industries Construction Cranes Co., Ltd. Display device and route display program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041143A (ja) * 2005-08-01 2007-02-15 Asahi Kasei Electronics Co Ltd 携帯機器及びその描画処理制御方法
JP2011047843A (ja) * 2009-08-28 2011-03-10 Kenwood Corp ナビゲーション装置、プログラム及び表示方法
JP2011529569A (ja) * 2008-07-31 2011-12-08 テレ アトラス ベスローテン フエンノートシャップ ナビゲーションデータを三次元で表示するコンピュータ装置および方法
JP2012233904A (ja) * 2012-06-29 2012-11-29 Pioneer Electronic Corp 情報表示装置、情報表示方法、情報表示プログラムおよび記録媒体
JP2016176962A (ja) * 2016-06-15 2016-10-06 パイオニア株式会社 表示装置、ヘッドアップディスプレイ、制御方法、プログラム及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041143A (ja) * 2005-08-01 2007-02-15 Asahi Kasei Electronics Co Ltd 携帯機器及びその描画処理制御方法
JP2011529569A (ja) * 2008-07-31 2011-12-08 テレ アトラス ベスローテン フエンノートシャップ ナビゲーションデータを三次元で表示するコンピュータ装置および方法
JP2011047843A (ja) * 2009-08-28 2011-03-10 Kenwood Corp ナビゲーション装置、プログラム及び表示方法
JP2012233904A (ja) * 2012-06-29 2012-11-29 Pioneer Electronic Corp 情報表示装置、情報表示方法、情報表示プログラムおよび記録媒体
JP2016176962A (ja) * 2016-06-15 2016-10-06 パイオニア株式会社 表示装置、ヘッドアップディスプレイ、制御方法、プログラム及び記憶媒体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080089A (ja) * 2018-11-14 2020-05-28 エヌ・ティ・ティ・コムウェア株式会社 情報表示システム、情報表示方法及び情報表示プログラム
JP7195117B2 (ja) 2018-11-14 2022-12-23 エヌ・ティ・ティ・コムウェア株式会社 情報表示システム、情報表示方法及び情報表示プログラム
WO2021106436A1 (ja) * 2019-11-28 2021-06-03 ソニーグループ株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP6730764B1 (ja) * 2019-12-26 2020-07-29 株式会社センシンロボティクス 飛行体の飛行経路表示方法及び情報処理装置
WO2021130980A1 (ja) * 2019-12-26 2021-07-01 株式会社センシンロボティクス 飛行体の飛行経路表示方法及び情報処理装置
JP6829513B1 (ja) * 2020-04-03 2021-02-10 株式会社センシンロボティクス 位置算出方法及び情報処理システム
WO2021199449A1 (ja) * 2020-04-03 2021-10-07 株式会社センシンロボティクス 位置算出方法及び情報処理システム
WO2021250914A1 (ja) * 2020-06-09 2021-12-16 ソニーグループ株式会社 情報処理装置、移動装置、情報処理システム、および方法、並びにプログラム
EP4068247A1 (en) * 2021-03-31 2022-10-05 Sumitomo Heavy Industries Construction Cranes Co., Ltd. Display device and route display program

Also Published As

Publication number Publication date
JP7055324B2 (ja) 2022-04-18

Similar Documents

Publication Publication Date Title
US10648809B2 (en) Adaptive compass calibration based on local field conditions
JP7055324B2 (ja) 表示装置
US10414494B2 (en) Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object
US11794890B2 (en) Unmanned aerial vehicle inspection system
US11550315B2 (en) Unmanned aerial vehicle inspection system
US10914590B2 (en) Methods and systems for determining a state of an unmanned aerial vehicle
US10599149B2 (en) Salient feature based vehicle positioning
JP6390013B2 (ja) 小型無人飛行機の制御方法
EP3428766B1 (en) Multi-sensor environmental mapping
US8953933B2 (en) Aerial photogrammetry and aerial photogrammetric system
CN107203219B (zh) 无人飞行器的飞行辅助系统和方法
US9158305B2 (en) Remote control system
CN112722300A (zh) 空中捕获平台
US10800344B2 (en) Aerial photogrammetric device and aerial photogrammetric method
US11029707B2 (en) Moving object, moving object control method, moving object control system, and moving object control program
CN110333735B (zh) 一种实现无人机水陆二次定位的系统和方法
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
CN109032184B (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
JP2020170213A (ja) ドローン作業支援システム及びドローン作業支援方法
US20210229810A1 (en) Information processing device, flight control method, and flight control system
JP7031997B2 (ja) 飛行体システム、飛行体、位置測定方法、プログラム
CN110892353A (zh) 控制方法、控制装置、无人飞行器的控制终端
WO2023139628A1 (ja) エリア設定システム、及びエリア設定方法
EP3331758B1 (en) An autonomous vehicle control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7055324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150