JP2019031485A - Manufacturing method of 2-(2-haloethyl)-1,3-dioxolane - Google Patents

Manufacturing method of 2-(2-haloethyl)-1,3-dioxolane Download PDF

Info

Publication number
JP2019031485A
JP2019031485A JP2018145713A JP2018145713A JP2019031485A JP 2019031485 A JP2019031485 A JP 2019031485A JP 2018145713 A JP2018145713 A JP 2018145713A JP 2018145713 A JP2018145713 A JP 2018145713A JP 2019031485 A JP2019031485 A JP 2019031485A
Authority
JP
Japan
Prior art keywords
compound
dioxolane
solvent
formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018145713A
Other languages
Japanese (ja)
Other versions
JP7227711B2 (en
Inventor
中村 将之
Masayuki Nakamura
将之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Publication of JP2019031485A publication Critical patent/JP2019031485A/en
Application granted granted Critical
Publication of JP7227711B2 publication Critical patent/JP7227711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/16Radicals substituted by halogen atoms or nitro radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a method for manufacturing 2-(2-haloethyl)-1,3-dioxolane from a commercially available raw material which can be easily obtained, without need for proper management or facility adapted thereto or the like.SOLUTION: There is provided a method of manufacturing a compound of the formula (II) by reacting a compound of the formula (I) with a hydrogen halide in a presence of a solvent.0012: X is a halogen atom.SELECTED DRAWING: None

Description

本発明は、医薬、農薬等の中間体やポリマーの原料として有用な2−(2−ハロエチル)−1,3−ジオキソランの製造方法に関する。   The present invention relates to a method for producing 2- (2-haloethyl) -1,3-dioxolane, which is useful as a raw material for intermediates and polymers such as pharmaceuticals and agricultural chemicals.

特許文献1には、アクロレイン、エチレングリコール及び塩化水素から2−(2−クロロエチル)−1,3−ジオキソランの製造方法が開示されているが、この方法で原料として使用されるアクロレインの取り扱いにおいては、適切な管理やそれに適合する設備等が必要である。   Patent Document 1 discloses a method for producing 2- (2-chloroethyl) -1,3-dioxolane from acrolein, ethylene glycol and hydrogen chloride. In the handling of acrolein used as a raw material in this method, Appropriate management and appropriate equipment are necessary.

非特許文献1には、容易に入手可能な2−ビニル−1,3−ジオキソランから、トリメチルシリルクロライド及び臭化ナトリウムを用いて、2−(2−ブロモエチル)−1,3−ジオキソランを製造する方法が開示されているが、収率は55%に留まる。また、この方法は、高価なトリメチルシリルクロライドを過剰量用いる必要があるので、コスト面から好ましくないだけでなく、トリメチルシリルクロライドやその派生物を含む廃水の発生が避けられないので、グリーンケミストリーの観点からも好ましくない。   Non-Patent Document 1 discloses a method for producing 2- (2-bromoethyl) -1,3-dioxolane from readily available 2-vinyl-1,3-dioxolane using trimethylsilyl chloride and sodium bromide. Is disclosed, but the yield is only 55%. In addition, since this method requires the use of an excessive amount of expensive trimethylsilyl chloride, it is not preferable from a cost standpoint, and generation of waste water containing trimethylsilyl chloride and its derivatives is inevitable, so from the viewpoint of green chemistry. Is also not preferred.

2−(2−ハロエチル)−1,3−ジオキソランを工業的に利用する場合、高純度であることが望ましいが、2−(2−ブロモエチル)−1,3−ジオキソランは、安定性が低く、蒸留精製の際に分解が生じ収率が低下するので、高収率で高純度の目的物を得ることは難しい。一方、2−(2−クロロエチル)−1,3−ジオキソランは、蒸留精製の際に安定であり、高純度の目的物を得やすく、工業的な生産において、2−(2−ブロモエチル)−1,3−ジオキソランよりも優位である。しかしながら、2−(2−クロロエチル)−1,3−ジオキソランを、安価で容易に入手可能な2−ビニル−1,3−ジオキソランから製造する方法は知られていない。   When 2- (2-haloethyl) -1,3-dioxolane is used industrially, high purity is desirable, but 2- (2-bromoethyl) -1,3-dioxolane has low stability, Since decomposition occurs during distillation purification and the yield decreases, it is difficult to obtain a high yield and high purity target product. On the other hand, 2- (2-chloroethyl) -1,3-dioxolane is stable during distillation purification, and it is easy to obtain a high-purity target product. In industrial production, 2- (2-bromoethyl) -1 This is superior to 3-dioxolane. However, there is no known method for producing 2- (2-chloroethyl) -1,3-dioxolane from 2-vinyl-1,3-dioxolane which is inexpensive and readily available.

米国特許第2,432,601号U.S. Pat. No. 2,432,601

Synthetic Communications,15(2),87−89,1985Synthetic Communications, 15 (2), 87-89, 1985

本発明は、環境負荷が小さく、適切な管理やそれに適合する設備等を必要とせず、容易に入手可能な市販の原料から、2−(2−ハロエチル)−1,3−ジオキソラン、特に、2−(2−クロロエチル)−1,3−ジオキソランを製造する方法を提供することを目的とする。   The present invention has a low environmental impact, does not require appropriate management, equipment suitable for it, and the like, and can be easily obtained from commercially available raw materials by using 2- (2-haloethyl) -1,3-dioxolane, particularly 2 The object is to provide a process for producing-(2-chloroethyl) -1,3-dioxolane.

本発明者らは、上記課題を解決するべく検討を行った結果、市販品として入手可能な2−ビニル−1,3−ジオキソランから、2−(2−ハロエチル)−1,3−ジオキソランを、高選択的、高収率かつコスト効率良く製造する方法を見出し、本発明を完成した。   As a result of studies to solve the above-mentioned problems, the present inventors have obtained 2- (2-haloethyl) -1,3-dioxolane from 2-vinyl-1,3-dioxolane available as a commercial product, The present invention has been completed by finding a method for producing a product with high selectivity, high yield and cost efficiency.

即ち、本発明は、式(I):   That is, the present invention relates to the formula (I):

Figure 2019031485
Figure 2019031485

の化合物(以下、化合物(I)ともいう)を、溶媒の存在中、ハロゲン化水素と反応させる、式(II): A compound of formula (II): wherein compound (hereinafter also referred to as compound (I)) is reacted with hydrogen halide in the presence of a solvent:

Figure 2019031485
Figure 2019031485

[式中、Xは、ハロゲン原子である]
の化合物(以下、化合物(II)ともいう)の製造方法(以下、本発明の方法ともいう)を提供する。
[Wherein X is a halogen atom]
A method for producing the compound (hereinafter also referred to as compound (II)) (hereinafter also referred to as the method of the present invention) is provided.

本発明の方法によれば、医薬、農薬等の中間体やポリマーの原料として有用な2−(2−ハロエチル)−1,3−ジオキソラン(化合物(II))を、高選択的、高収率かつコスト効率良く製造することができる。   According to the method of the present invention, 2- (2-haloethyl) -1,3-dioxolane (compound (II)), which is useful as a raw material for intermediates and polymers of pharmaceuticals, agricultural chemicals, and the like, is highly selective and has a high yield. And it can manufacture cost-effectively.

本発明の方法は、下記反応式で示すように、化合物(I)を、溶媒の存在中で、ハロゲン化水素と反応させることを特徴とする、化合物(II)の製造方法である。本発明の方法によれば、β位選択的にハロゲンが導入される。   The method of the present invention is a method for producing compound (II), characterized in that compound (I) is reacted with hydrogen halide in the presence of a solvent, as shown in the following reaction formula. According to the method of the present invention, halogen is selectively introduced at the β-position.

Figure 2019031485
Figure 2019031485

[式中、Xは前述の通りである] [Wherein X is as described above]

化合物(I)は市販品を使用できるが、本分野において公知の方法によって製造することもできる。   Although a commercial item can be used for compound (I), it can also be manufactured by a well-known method in this field | area.

本明細書において、ハロゲン原子は、塩素原子、臭素原子、又はヨウ素原子を示す。ハロゲン化水素としては、所望の化合物(II)に応じて、塩化水素、臭化水素又はヨウ化水素のいずれかを選択すればよい。ハロゲン化水素は、そのままガスとして使用してもよいし、後述する溶媒に溶解させて得られる溶液として使用してもよい。ハロゲン化水素ガスとしては、乾燥したものが好ましい。   In this specification, a halogen atom shows a chlorine atom, a bromine atom, or an iodine atom. As the hydrogen halide, any one of hydrogen chloride, hydrogen bromide or hydrogen iodide may be selected according to the desired compound (II). The hydrogen halide may be used as a gas as it is, or may be used as a solution obtained by dissolving in a solvent described later. The hydrogen halide gas is preferably dried.

ハロゲン化水素の使用量は、反応条件等の相違等により一概に規定できないが、化合物(I)1モルに対して、通常1〜10モル、好ましくは1〜2モル、より好ましくは1〜1.2モルである。反応条件によっては、この範囲外の量を使用してもよい。   The amount of hydrogen halide to be used cannot be generally specified due to differences in reaction conditions and the like, but is usually 1 to 10 mol, preferably 1 to 2 mol, more preferably 1 to 1 mol per 1 mol of compound (I). .2 moles. Depending on the reaction conditions, amounts outside this range may be used.

本発明の方法は、通常、溶媒の存在中で行う。溶媒としては、反応に悪影響を与えない溶媒であればいずれのものでもよい。溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、t−ブチルメチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキサン等のエーテル系溶媒;及びこれらの1種又は2種以上の混合溶媒が挙げられる。反応に悪影響を与えない範囲で、上記したもの以外の溶媒を使用してもよい。   The process of the present invention is usually carried out in the presence of a solvent. Any solvent may be used as long as it does not adversely affect the reaction. Examples of the solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride and chlorobenzene; diethyl ether and t-butyl. Examples include ether solvents such as methyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxane; and one or more mixed solvents thereof. Solvents other than those described above may be used as long as they do not adversely affect the reaction.

溶媒の使用量は、原料の使用量、溶媒の種類、反応条件等の相違により一概に規定できないが、化合物(I)に対して、通常1倍容量〜10倍容量である。   Although the amount of the solvent used cannot be defined unconditionally due to differences in the amount of raw materials used, the type of solvent, the reaction conditions, etc., it is usually 1 to 10 times the volume of the compound (I).

本発明の方法の反応形態は、バッチ式、連続式のいずれでもよい。バッチ式で反応を行う場合の原料の混合順序としては、特に限定されないが、例えば、(1)ハロゲン化水素ガスの溶液に化合物(I)又はその溶液を添加する、(2)化合物(I)又はその溶液に、ハロゲン化水素ガス又はその溶液を添加する等が挙げられる。また、原料の添加は、一度に又は分割して行ってもよいし、連続的に添加してもよい。   The reaction form of the method of the present invention may be either batch type or continuous type. The order of mixing the raw materials in the case of performing the reaction in a batch system is not particularly limited. For example, (1) Compound (I) or a solution thereof is added to a solution of hydrogen halide gas. (2) Compound (I) Alternatively, hydrogen halide gas or a solution thereof may be added to the solution. Moreover, addition of a raw material may be performed at once or divided | segmented, and you may add continuously.

本発明の方法における反応温度及び反応時間は、反応条件等によって異なり、一概に規定できないが、反応温度は、通常−78〜100℃程度、好ましくは0〜50℃程度、より好ましくは0〜30℃程度であり、反応時間は、通常10分〜48時間程度、好ましくは30分〜12時間程度、より好ましくは30分〜1時間程度である。   The reaction temperature and reaction time in the method of the present invention vary depending on the reaction conditions and cannot be generally specified, but the reaction temperature is usually about -78 to 100 ° C, preferably about 0 to 50 ° C, more preferably 0 to 30. The reaction time is usually about 10 minutes to 48 hours, preferably about 30 minutes to 12 hours, and more preferably about 30 minutes to 1 hour.

反応終了後、必要に応じて、例えば、中和、抽出、洗浄、乾燥、蒸留等の常法による後処理を行うことにより、化合物(II)を単離、精製することができる。例えば、化合物(I)とハロゲン化水素との反応により得られた反応混合物に未反応のハロゲン化水素が含まれる場合、塩基(例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素塩、水酸化ナトリウム、水酸化カリウム等の水酸化物)の水溶液で中和することによって、又は、窒素、アルゴン等の不活性ガスを反応混合物に導入ことによって、除去することができ、その後、例えば、蒸留によって精製して、所望の化合物(II)を得ることができる。   After completion of the reaction, the compound (II) can be isolated and purified by performing post-treatment by a conventional method such as neutralization, extraction, washing, drying, distillation and the like, if necessary. For example, when unreacted hydrogen halide is contained in the reaction mixture obtained by the reaction of compound (I) with hydrogen halide, a base (for example, carbonate such as sodium carbonate, potassium carbonate, cesium carbonate, hydrogen carbonate) By neutralizing with an aqueous solution of a hydrogen carbonate such as sodium or potassium hydrogen carbonate or a hydroxide such as sodium hydroxide or potassium hydroxide, or by introducing an inert gas such as nitrogen or argon into the reaction mixture. Can be removed and then purified, for example, by distillation, to give the desired compound (II).

本発明の特に好ましい実施形態として、本発明の方法は、反応終了後、得られた反応混合物から、必要により、未反応のハロゲン化水素を除去すること、および/または、反応混合物から、化合物(II)を精製することを更に含む。より具体的には、本発明は、以下の方法[A]〜[C]も包含する。   As a particularly preferred embodiment of the present invention, the method of the present invention comprises, after completion of the reaction, if necessary, removing unreacted hydrogen halide from the reaction mixture and / or removing the compound ( Further comprising purifying II). More specifically, the present invention also includes the following methods [A] to [C].

[A](1)式(I): [A] (1) Formula (I):

Figure 2019031485
Figure 2019031485

の化合物を、溶媒の存在中、ハロゲン化水素と反応させること;
(2)(1)において得られた反応混合物から、未反応のハロゲン化水素を除去すること;
を含む、式(II):
Reacting with a hydrogen halide in the presence of a solvent;
(2) removing unreacted hydrogen halide from the reaction mixture obtained in (1);
Including formula (II):

Figure 2019031485
Figure 2019031485

[式中、Xは、ハロゲン原子である]
の化合物の製造方法。
[Wherein X is a halogen atom]
A method for producing the compound.

[B](1)式(I): [B] (1) Formula (I):

Figure 2019031485
Figure 2019031485

の化合物を、溶媒の存在中、ハロゲン化水素と反応させること;
(2)(1)において得られた反応混合物から、式(II):
Reacting with a hydrogen halide in the presence of a solvent;
(2) From the reaction mixture obtained in (1), formula (II):

Figure 2019031485
Figure 2019031485

[式中、Xは、ハロゲン原子である]
の化合物を精製すること;
を含む、式(II)の化合物の製造方法。
[Wherein X is a halogen atom]
Purifying the compound of
A process for producing a compound of formula (II) comprising:

[C](1)式(I): [C] (1) Formula (I):

Figure 2019031485
Figure 2019031485

の化合物を、溶媒の存在中、ハロゲン化水素と反応させること;
(2)(1)において得られた反応混合物から、未反応のハロゲン化水素を除去すること;
(3)(2)において得られた反応混合物から、式(II):
Reacting with a hydrogen halide in the presence of a solvent;
(2) removing unreacted hydrogen halide from the reaction mixture obtained in (1);
(3) From the reaction mixture obtained in (2), formula (II):

Figure 2019031485
Figure 2019031485

[式中、Xは、ハロゲン原子である]
の化合物を精製すること;
を含む、式(II)の化合物の製造方法。
[Wherein X is a halogen atom]
Purifying the compound of
A process for producing a compound of formula (II) comprising:

環境負荷の低減の観点から、未反応のハロゲン化水素の除去は、中和による廃水の発生を伴わない、不活性ガス(窒素、アルゴン等)の反応混合物への導入によって行うことがさらに好ましい。この場合において、不活性ガスの導入は、当業者に公知の方法によって行えばよく、例えば、反応混合物のpHが3〜5程度になるまで、不活性ガス(窒素、アルゴン等)を、反応混合物にバブリングすることによって行うことができる。   From the viewpoint of reducing the environmental load, it is more preferable to remove the unreacted hydrogen halide by introducing an inert gas (nitrogen, argon, etc.) into the reaction mixture without generating waste water due to neutralization. In this case, the inert gas may be introduced by a method known to those skilled in the art. For example, the inert gas (nitrogen, argon, etc.) is added to the reaction mixture until the pH of the reaction mixture reaches about 3 to 5. Can be done by bubbling.

化合物(II)の精製は、蒸留によって行うことが好ましい。この場合において、化合物(II)の蒸留による精製は、当業者に公知の方法によって、行えばよく、例えば、減圧下(約30〜80hpa)、約70〜100℃の塔頂温度で行うことができる。   The purification of compound (II) is preferably performed by distillation. In this case, purification by distillation of the compound (II) may be carried out by a method known to those skilled in the art, for example, under reduced pressure (about 30 to 80 hpa) at a tower top temperature of about 70 to 100 ° C. it can.

本発明の方法における種々の構成要素は、前述した複数の例示や条件の中から適宜選択し、且つ、相互に組み合わせることができる。即ち、化合物(I)、ハロゲン化水素及び溶媒の、それぞれの種類、使用形態、又は使用量;反応温度;反応時間;操作;等は、前述した通常範囲の例示や条件と、好ましい範囲の例示や条件の中から適宜選択し、且つ、相互に組み合わせることができる。   Various components in the method of the present invention can be appropriately selected from the plurality of examples and conditions described above, and can be combined with each other. That is, each type, use form, or use amount of compound (I), hydrogen halide, and solvent; reaction temperature; reaction time; operation; and the like are examples of normal ranges and conditions described above, and examples of preferred ranges. And can be appropriately selected from the conditions and combined with each other.

以下に本発明の好ましい実施形態の一例を列記するが、本発明はこれらに限定されるものではない。
[1]式(I):
Examples of preferred embodiments of the present invention are listed below, but the present invention is not limited to these.
[1] Formula (I):

Figure 2019031485
Figure 2019031485

の化合物を、溶媒の存在中、ハロゲン化水素と反応させる、式(II): The compound of formula (II) is reacted with a hydrogen halide in the presence of a solvent:

Figure 2019031485
Figure 2019031485

[式中、Xは、ハロゲン原子である]
の化合物の製造方法。
[2]Xが、塩素原子である、前記[1]に記載の方法。
[3]溶媒が、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、及びエーテル系溶媒からなる群から選択される1種又は2種以上である、前記[1]又は[2]に記載の方法。
[4]得られた反応混合物を塩基で中和することを更に含む、前記[1]〜[3]のいずれかに記載の方法。
[5]中和温度が0〜10℃である、前記[4]に記載の方法。
[6]得られた反応混合物に、不活性ガスを導入することを更に含む、前記[1]〜[3]のいずれかに記載の方法。
[7]不活性ガスが、窒素である、前記[6]に記載の方法。
[8]蒸留によって、式(II)の化合物を精製することを更に含む、前記[1]〜[7]のいずれかに記載の方法。
[Wherein X is a halogen atom]
A method for producing the compound.
[2] The method according to [1], wherein X is a chlorine atom.
[3] The above [1] or [2], wherein the solvent is one or more selected from the group consisting of an aromatic hydrocarbon solvent, a halogenated hydrocarbon solvent, and an ether solvent. the method of.
[4] The method according to any one of [1] to [3], further comprising neutralizing the obtained reaction mixture with a base.
[5] The method according to [4], wherein the neutralization temperature is 0 to 10 ° C.
[6] The method according to any one of [1] to [3], further comprising introducing an inert gas into the obtained reaction mixture.
[7] The method according to [6], wherein the inert gas is nitrogen.
[8] The method according to any one of [1] to [7], further comprising purifying the compound of formula (II) by distillation.

次に本発明の実施例を記載するが、本発明はこれらに限定して解釈されるものではない。   Next, examples of the present invention will be described, but the present invention should not be construed as being limited thereto.

実施例1
500ml四つ口フラスコにジクロロメタン238gを加え、氷水で5℃まで冷却した。塩化水素ガスを19g導入し、次いで27.5%の2−ビニル−1,3−ジオキソランのジクロロメタン溶液36.4gを30分かけて滴下した。同温で2時間攪拌した後、塩化水素ガスを4g追加導入し、さらに1時間攪拌した。反応液を10%炭酸ナトリウム水溶液で中和した後、分液して、有機層を硫酸ナトリウムで乾燥し、ろ過、減圧濃縮した。得られた濃縮液を減圧蒸留(65hPa、バス温110℃)で精製し、2−(2−クロロエチル)−1,3−ジオキソランを6.0g(収率:44%)、純度99.0%で得た。
得られた2−(2−クロロエチル)−1,3−ジオキソランのNMRスペクトルデータは以下の通りであった。
1H-NMR(CD3Cl) δ 5.04 (t, J = 5.0 Hz, 1H), 4.00-3.95 (m, 2H), 3.90-3.85 (m, 2H), 3.65 (t, J = 6.5 Hz, 2H), 2.14 (dt, J = 6.5, 5.0 Hz, 2H).
Example 1
To a 500 ml four-necked flask, 238 g of dichloromethane was added and cooled to 5 ° C. with ice water. 19 g of hydrogen chloride gas was introduced, and then 36.4 g of 27.5% 2-vinyl-1,3-dioxolane in dichloromethane was added dropwise over 30 minutes. After stirring at the same temperature for 2 hours, an additional 4 g of hydrogen chloride gas was introduced, and the mixture was further stirred for 1 hour. The reaction solution was neutralized with 10% aqueous sodium carbonate solution and then separated, and the organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The obtained concentrated liquid was purified by distillation under reduced pressure (65 hPa, bath temperature 110 ° C.), 6.0 g (yield: 44%) of 2- (2-chloroethyl) -1,3-dioxolane, purity 99.0%. Got in.
The NMR spectrum data of the obtained 2- (2-chloroethyl) -1,3-dioxolane was as follows.
1H-NMR (CD 3 Cl) δ 5.04 (t, J = 5.0 Hz, 1H), 4.00-3.95 (m, 2H), 3.90-3.85 (m, 2H), 3.65 (t, J = 6.5 Hz, 2H) , 2.14 (dt, J = 6.5, 5.0 Hz, 2H).

実施例2
100ml四つ口フラスコに95.3%の2−ビニル−1,3−ジオキソラン40gとトルエン40gを加え、氷水で5℃まで冷却した。塩化水素ガス16.7gを10℃〜20℃下30分間かけて導入し、その後30分攪拌した。20℃以下で、反応液を1.5倍容量の10%炭酸ナトリウム水溶液で中和し、有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、ろ過した。得られたろ液を減圧蒸留(65hPa、搭頂温度88℃)し、2−(2−クロロエチル)−1,3−ジオキソランを38.2g(収率:71%)、純度96.6%で得た。
Example 2
To a 100 ml four-necked flask, 40 g of 95.3% 2-vinyl-1,3-dioxolane and 40 g of toluene were added and cooled to 5 ° C. with ice water. Hydrogen chloride gas 16.7g was introduce | transduced over 30 minutes under 10 to 20 degreeC, and it stirred for 30 minutes after that. At 20 ° C. or lower, the reaction solution was neutralized with a 1.5-fold volume of 10% aqueous sodium carbonate solution, and the organic layer was washed with saturated brine, dried over sodium sulfate, and filtered. The obtained filtrate was distilled under reduced pressure (65 hPa, top temperature 88 ° C.) to obtain 38.2 g (yield: 71%) of 2- (2-chloroethyl) -1,3-dioxolane with a purity of 96.6%. It was.

実施例3
100ml四つ口フラスコに93.3%の2−ビニル−1,3−ジオキソラン20gとトルエン20gを加え、氷水で5℃まで冷却した。塩化水素ガス8.15gを10℃〜20℃下30分間かけて導入し、その後1時間攪拌した(pH2〜3)。反応液に窒素ガスを1時間バブリングした(pH3〜4)。得られた溶液を減圧蒸留(65hPa、搭頂温度88℃)し、2−(2−クロロエチル)−1,3−ジオキソランを19.1g(収率:73%)、純度96.8%で得た。
Example 3
20 g of 93.3% 2-vinyl-1,3-dioxolane and 20 g of toluene were added to a 100 ml four-necked flask and cooled to 5 ° C. with ice water. Hydrogen chloride gas 8.15g was introduce | transduced over 30 minutes under 10 to 20 degreeC, and it stirred after that for 1 hour (pH 2-3). Nitrogen gas was bubbled through the reaction solution for 1 hour (pH 3-4). The resulting solution was distilled under reduced pressure (65 hPa, top temperature 88 ° C.) to obtain 19.1 g (yield: 73%) of 2- (2-chloroethyl) -1,3-dioxolane with a purity of 96.8%. It was.

実施例4
100ml四つ口フラスコに96.3%の2−ビニル−1,3−ジオキソラン40gとトルエン20gを加え、氷水で5℃まで冷却した。塩化水素ガス16.8gを12℃〜20℃下45分間かけて導入し、その後1時間攪拌した(pH2)。反応液に窒素ガスを1時間バブリングした(pH4)。得られた溶液を減圧蒸留(65hPa、搭頂温度88℃)し、2−(2−クロロエチル)−1,3−ジオキソランを41.1g(収率:77%)、純度98.8%で得た。
Example 4
To a 100 ml four-necked flask, 96.3% 2-vinyl-1,3-dioxolane (40 g) and toluene (20 g) were added and cooled to 5 ° C. with ice water. 16.8 g of hydrogen chloride gas was introduced at 12 ° C. to 20 ° C. over 45 minutes, and then stirred for 1 hour (pH 2). Nitrogen gas was bubbled through the reaction solution for 1 hour (pH 4). The resulting solution was distilled under reduced pressure (65 hPa, head temperature 88 ° C.) to obtain 41.1 g (yield: 77%) of 2- (2-chloroethyl) -1,3-dioxolane with a purity of 98.8%. It was.

Claims (8)

式(I):
Figure 2019031485
の化合物を、溶媒の存在中、ハロゲン化水素と反応させる、式(II):
Figure 2019031485
[式中、Xは、ハロゲン原子である]
の化合物の製造方法。
Formula (I):
Figure 2019031485
The compound of formula (II) is reacted with a hydrogen halide in the presence of a solvent:
Figure 2019031485
[Wherein X is a halogen atom]
A method for producing the compound.
Xが、塩素原子である、請求項1に記載の方法。   The method according to claim 1, wherein X is a chlorine atom. 溶媒が、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、及びエーテル系溶媒からなる群から選択される1種又は2種以上である、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the solvent is one or more selected from the group consisting of an aromatic hydrocarbon solvent, a halogenated hydrocarbon solvent, and an ether solvent. 得られた反応混合物を塩基で中和することを更に含む、請求項1〜3のいずれか1項に記載の方法。   The process according to any one of claims 1 to 3, further comprising neutralizing the resulting reaction mixture with a base. 中和温度が0〜10℃である、請求項4に記載の方法。   The method of Claim 4 whose neutralization temperature is 0-10 degreeC. 得られた反応混合物に、不活性ガスを導入することを更に含む、請求項1〜3のいずれかに記載の方法。   The method according to claim 1, further comprising introducing an inert gas into the obtained reaction mixture. 不活性ガスが、窒素である、請求項6に記載の方法。   The method of claim 6, wherein the inert gas is nitrogen. 蒸留によって、式(II)の化合物を精製することを更に含む、請求項1〜7のいずれかに記載の方法。   8. A process according to any of claims 1 to 7, further comprising purifying the compound of formula (II) by distillation.
JP2018145713A 2017-08-07 2018-08-02 Method for producing 2-(2-haloethyl)-1,3-dioxolane Active JP7227711B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017152289 2017-08-07
JP2017152289 2017-08-07

Publications (2)

Publication Number Publication Date
JP2019031485A true JP2019031485A (en) 2019-02-28
JP7227711B2 JP7227711B2 (en) 2023-02-22

Family

ID=65417507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145713A Active JP7227711B2 (en) 2017-08-07 2018-08-02 Method for producing 2-(2-haloethyl)-1,3-dioxolane

Country Status (2)

Country Link
JP (1) JP7227711B2 (en)
CN (1) CN109384763A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2432601A (en) * 1942-12-12 1947-12-16 Du Pont Polymers of alpha-methylene cyclic acetals
JP2016084325A (en) * 2014-10-28 2016-05-19 公立大学法人大阪府立大学 Method for producing bromine-containing cyclic acetal compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435009A1 (en) * 1994-09-30 1996-04-04 Degussa Process for the preparation of 2-vinyl-1,3-dioxolane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2432601A (en) * 1942-12-12 1947-12-16 Du Pont Polymers of alpha-methylene cyclic acetals
JP2016084325A (en) * 2014-10-28 2016-05-19 公立大学法人大阪府立大学 Method for producing bromine-containing cyclic acetal compound

Also Published As

Publication number Publication date
CN109384763A (en) 2019-02-26
JP7227711B2 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
TWI508956B (en) Preparation method of methylene disulfonate compound
WO2015180585A1 (en) Method of producing thiamethoxam
JP2023159350A (en) Method for producing alkoxymethyl=alkynyl=ether compound having terminal triple bond
KR101744046B1 (en) Process for preparing an intermediate useful for the synthesis of silodosin
JP7227711B2 (en) Method for producing 2-(2-haloethyl)-1,3-dioxolane
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
CN111170846A (en) Method for preparing 3, 3-dimethyl-2-oxo-butyric acid
JPWO2004022514A1 (en) Method for producing spirofluorenol
JPH04282326A (en) Production of asymmetric tricyclic compound
JP6072329B1 (en) Method for producing acetamide derivative
JP2003335735A (en) Method for producing perfluoroisopropylanilines
JP4020141B2 (en) Method for producing 1-acetoxy-3- (substituted phenyl) propene compound
EP2119693B1 (en) Process for producing 2-isopropenyl-5-methyl-4-hexene-1-yl- 3-methyl-2-butenoate
JP4038657B2 (en) Method for producing adamantanone
JP5920622B2 (en) Method for producing azodicarboxylic acid diester compound
JP6771775B2 (en) Method for producing 2-aminonicotinic acid benzyl ester derivative
JP4915609B2 (en) Process for producing 4-chloropyridine-2-carboxylic acid chloride
JP2007297352A (en) Method for producing alkyl iodide and method for producing 2-alkyl-substituted cyclohexanone
CN116178122A (en) Synthesis method of 1-chloro-1-chloroacetyl cyclopropane
JP4273913B2 (en) Method for producing sulfonic acid halogen compound
JPS61103872A (en) Preparation of 1,3,4-substituted-5-(4-methylphenacyloxy) pyrazole
KR100639705B1 (en) The preparation method of 1-methoxy-2-deoxy-L-ribose
KR100524453B1 (en) Process for the preparation of Levodropropizine
JP2725350B2 (en) Method for producing propargylfuran carbinols
JP2022035954A (en) N-boc-lactam derivative and method for producing the same, and method for producing cyclic amine derivative

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7227711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150