JP2019029186A - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP2019029186A
JP2019029186A JP2017147387A JP2017147387A JP2019029186A JP 2019029186 A JP2019029186 A JP 2019029186A JP 2017147387 A JP2017147387 A JP 2017147387A JP 2017147387 A JP2017147387 A JP 2017147387A JP 2019029186 A JP2019029186 A JP 2019029186A
Authority
JP
Japan
Prior art keywords
base material
electrode assembly
membrane electrode
catalyst ink
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017147387A
Other languages
Japanese (ja)
Other versions
JP6816674B2 (en
Inventor
一輝 藤井
Kazuki Fujii
一輝 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017147387A priority Critical patent/JP6816674B2/en
Publication of JP2019029186A publication Critical patent/JP2019029186A/en
Application granted granted Critical
Publication of JP6816674B2 publication Critical patent/JP6816674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To suppress the size of a manufacturing apparatus as compared with a membrane electrode assembly manufacturing apparatus that uses only a drying furnace to dry a catalyst ink.SOLUTION: A manufacturing method of a membrane electrode assembly includes a coating step of coating a catalytic ink 50 on the surface of an electrically-conductive elongated base material 100 and a transporting step of transporting the base material 100 coated with the catalyst ink 50. The transporting step includes a step of applying a voltage to the base material 100 to raise the temperature of the base material 100. As the temperature of the base material 100 rises, the catalyst ink 50 is dried.SELECTED DRAWING: Figure 1

Description

本発明は、固体高分子形燃料電池に使用される膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly used in a polymer electrolyte fuel cell.

膜電極接合体は、電解質膜の両側から2つの電極によって挟まれて構成される。膜電極接合体の製造においては、シート状の基材の表面に触媒インクを塗工し、触媒インクを乾燥させて触媒層を形成し、基材上に形成された触媒層を電解質膜上に転写することによって、膜電極接合体を形成する(例えば、特許文献1)。   The membrane electrode assembly is sandwiched between two electrodes from both sides of the electrolyte membrane. In the production of a membrane electrode assembly, a catalyst ink is applied to the surface of a sheet-like substrate, the catalyst ink is dried to form a catalyst layer, and the catalyst layer formed on the substrate is placed on the electrolyte membrane. By transferring, a membrane electrode assembly is formed (for example, Patent Document 1).

特開2015−228378号公報JP2015-228378A

従来技術では、基材に塗工された触媒インクは、乾燥炉により乾燥されている。加工コストを低減させるために、基材の搬送速度の向上が望まれている。しかしながら、本発明の発明者は、搬送速度を増加させると触媒インクが乾燥炉内で吸収する熱量が減少するため、元々設備スペースが嵩張る乾燥炉の長さを更に長く設ける必要があり、製造装置のサイズが増大してしまうという問題を見出した。   In the prior art, the catalyst ink applied to the substrate is dried in a drying furnace. In order to reduce the processing cost, it is desired to improve the conveyance speed of the substrate. However, since the inventor of the present invention reduces the amount of heat absorbed by the catalyst ink in the drying furnace when the conveying speed is increased, the length of the drying furnace where the equipment space is originally bulky needs to be further increased. I found the problem that the size of the would increase.

本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。   The present invention has been made to solve the above-described problems, and can be realized as the following forms.

(1)本発明の一形態によれば、膜電極接合体の製造方法が提供される。この膜電極接合体の製造方法は、導電性を有する長尺状の基材の表面に触媒インクを塗工する塗工工程と、前記触媒インクが塗工された前記基材を搬送する搬送工程と、を備える。前記搬送工程は、前記基材に電圧を印加して前記基材を昇温させる工程を含む。
この形態の膜電極接合体の製造方法によれば、基材に電圧を印加することによって基材を昇温させるので、搬送工程において触媒インクを乾燥させることができ、従来の乾燥炉のみを利用して触媒インクを乾燥させる方法を採用する膜電極接合体製造装置に比べて製造装置のサイズを抑制できる。
(1) According to one form of this invention, the manufacturing method of a membrane electrode assembly is provided. The manufacturing method of this membrane electrode assembly includes a coating step of applying a catalyst ink on the surface of a long substrate having conductivity, and a transporting step of transporting the substrate coated with the catalyst ink. And comprising. The conveyance step includes a step of applying a voltage to the base material to raise the temperature of the base material.
According to the method of manufacturing a membrane electrode assembly of this embodiment, the temperature of the base material is raised by applying a voltage to the base material, so that the catalyst ink can be dried in the transport process, and only a conventional drying furnace is used. Thus, the size of the manufacturing apparatus can be reduced as compared with a membrane electrode assembly manufacturing apparatus that employs a method of drying the catalyst ink.

本発明は、上記以外の種々の形態で実現することも可能である。例えば、膜電極接合体製造装置等の形態で実現することができる。   The present invention can be implemented in various forms other than the above. For example, it is realizable with forms, such as a membrane electrode assembly manufacturing apparatus.

本発明の一実施形態における膜電極接合体製造装置の側面図。The side view of the membrane electrode assembly manufacturing apparatus in one Embodiment of this invention. 給電ローラと押圧ローラの正面図。The front view of a feed roller and a press roller. 給電ローラと押圧ローラの側面図。The side view of a feed roller and a press roller. 押圧ローラと基材の上面図。The top view of a press roller and a base material.

図1は、本発明の一実施形態における膜電極接合体製造装置900の側面図である。図2は、図1の破線で囲まれた領域IIを膜電極接合体製造装置900の正面から見た時の説明図である。膜電極接合体製造装置900は、固体高分子形燃料電池に使用される膜電極接合体(MEA:Membrane Electrode Assembly)を製造するための装置である。膜電極接合体製造装置900は、巻出ローラ210と、巻取ローラ220と、給電ローラ231,232と、押圧ローラ241,242と、塗工機300と、乾燥炉400と、を備える。   FIG. 1 is a side view of a membrane electrode assembly manufacturing apparatus 900 according to an embodiment of the present invention. FIG. 2 is an explanatory diagram when the region II surrounded by the broken line in FIG. 1 is viewed from the front of the membrane electrode assembly manufacturing apparatus 900. The membrane electrode assembly manufacturing apparatus 900 is an apparatus for manufacturing a membrane electrode assembly (MEA) used for a polymer electrolyte fuel cell. The membrane electrode assembly manufacturing apparatus 900 includes an unwinding roller 210, a winding roller 220, power feeding rollers 231 and 232, pressing rollers 241 and 242, a coating machine 300, and a drying furnace 400.

巻出ローラ210と巻取ローラ220は、モータ(図示せず)によって駆動され、図示矢印の方向に回転する。巻出ローラ210には、予め長尺状の基材100が巻き付けられている。膜電極接合体の製造を行う前には、基材100の一端が、巻出ローラ210から繰り出され、乾燥炉400を介して巻取ローラ220に固定されている。膜電極接合体の製造時には、触媒インク50が塗工された基材100が、巻出ローラ210と巻取ローラ220によって搬送される。基材100の搬送区間TSは、巻出ローラ210と塗工機300と巻取ローラ220とを含まない区間である。   The unwinding roller 210 and the winding roller 220 are driven by a motor (not shown) and rotate in the direction of the arrow shown. The long base material 100 is wound around the unwinding roller 210 in advance. Before manufacturing the membrane electrode assembly, one end of the substrate 100 is unwound from the unwinding roller 210 and fixed to the winding roller 220 via the drying furnace 400. At the time of manufacturing the membrane electrode assembly, the substrate 100 coated with the catalyst ink 50 is conveyed by the unwinding roller 210 and the winding roller 220. The conveyance section TS of the substrate 100 is a section that does not include the unwinding roller 210, the coating machine 300, and the winding roller 220.

図2を参照して基材100の構成について説明する。図示の便宜上、基材100は断面図で表している。基材100は、導電性を有する。図2の例では、基材100は、1つの中間層120を2つの外層110で挟まれた構成を有する。基材100の中間層120は、導電性を有するCNT(カーボンナノチューブ)によって形成されることが好ましい。外層110は、PTFE(ポリテトラフルオロエチレン)によって形成されることが好ましい。これらの理由については後述する。   The structure of the base material 100 will be described with reference to FIG. For convenience of illustration, the substrate 100 is shown in a sectional view. The base material 100 has conductivity. In the example of FIG. 2, the base material 100 has a configuration in which one intermediate layer 120 is sandwiched between two outer layers 110. The intermediate layer 120 of the substrate 100 is preferably formed of conductive CNTs (carbon nanotubes). The outer layer 110 is preferably formed of PTFE (polytetrafluoroethylene). These reasons will be described later.

図1に戻り、塗工機300は、巻出ローラ210の近傍に設置されている。塗工機300は、基材100の表面に対向するダイヘッド310と、塗工液を収容する塗工液タンク320とを有する。塗工機300は、巻出ローラ210から繰り出された基材100の表面に触媒インク50を塗工する。触媒インク50は、触媒を担持した導電性粒子を電解質樹脂と共にバインダーに分散させて一定の粘度に調整されている。触媒としては、例えば、白金や白金合金が採用される。導電性粒子としては、例えば、カーボンブラックが採用される。電解質樹脂としては、例えば、フッ素系樹脂が採用される。   Returning to FIG. 1, the coating machine 300 is installed in the vicinity of the unwinding roller 210. The coating machine 300 includes a die head 310 that faces the surface of the substrate 100 and a coating liquid tank 320 that stores a coating liquid. The coating machine 300 applies the catalyst ink 50 to the surface of the base material 100 fed out from the unwinding roller 210. The catalyst ink 50 is adjusted to a constant viscosity by dispersing conductive particles carrying a catalyst together with an electrolyte resin in a binder. For example, platinum or a platinum alloy is used as the catalyst. For example, carbon black is used as the conductive particles. As the electrolyte resin, for example, a fluorine resin is employed.

給電ローラ231,232及び押圧ローラ241,242は、モータによって駆動されない、すなわち、回転自在なフリーローラである。給電ローラ231,232は、搬送区間TS内に設置されており、乾燥炉400の両側にそれぞれ設置されている。給電ローラ231,232は、基材100と接触している。押圧ローラ241,242はそれぞれ、基材100を挟んで給電ローラ231,232の反対側に設置されている。押圧ローラ241は給電ローラ231と対向しており、押圧ローラ242は給電ローラ232と対向している。   The power feeding rollers 231 and 232 and the pressing rollers 241 and 242 are free rollers that are not driven by a motor, that is, are rotatable. The power feeding rollers 231 and 232 are installed in the transport section TS, and are installed on both sides of the drying furnace 400, respectively. The power supply rollers 231 and 232 are in contact with the base material 100. The pressure rollers 241 and 242 are respectively installed on the opposite sides of the power supply rollers 231 and 232 with the base material 100 interposed therebetween. The pressure roller 241 faces the power supply roller 231, and the pressure roller 242 faces the power supply roller 232.

図2を参照して給電ローラ231と押圧ローラ241の構成について説明する。図2の例では、給電ローラ231の長手方向の両端にはそれぞれ、輪状の電極235,236が設けられている。電極235,236はそれぞれ、導電性のブラシ255,256を介して直流の電源251と電気的に接続されている。一方、電極235,236はそれぞれ、基材100の中間層120の端部E1,E2と接触し、基材100に電圧を印加して基材100を昇温させる。押圧ローラ241は、第1押圧ローラ241aと第2押圧ローラ241bとを有する。押圧ローラ241a,241bはそれぞれ、基材100の中間層120の端部E1,E2を電極235,236に押し付けて、中間層120と電極235,236との接触を確保する。給電ローラ232、電源252及び押圧ローラ242(図1)についても同様である。なお、給電ローラ231,232は、1つのみ設置してもよいし、3つ以上設置してもよい。搬送区間TS内の基材100の温度分布を予め定めた状態とするために、二つ以上の給電ローラを予め定めた電圧に設定して予め定めた位置に設けることが好ましい。基材100が搬送区間TSにおいて給電ローラ231,232の電圧印加により昇温されるので、基材100に塗工された触媒インク50は、搬送区間TSにおいて基材100の昇温によって乾燥される。   The configuration of the power supply roller 231 and the pressure roller 241 will be described with reference to FIG. In the example of FIG. 2, ring-shaped electrodes 235 and 236 are provided at both ends of the power supply roller 231 in the longitudinal direction, respectively. The electrodes 235 and 236 are electrically connected to a DC power source 251 via conductive brushes 255 and 256, respectively. On the other hand, the electrodes 235 and 236 are in contact with the end portions E1 and E2 of the intermediate layer 120 of the substrate 100, respectively, and a voltage is applied to the substrate 100 to raise the temperature of the substrate 100. The pressure roller 241 includes a first pressure roller 241a and a second pressure roller 241b. The pressing rollers 241a and 241b respectively press the ends E1 and E2 of the intermediate layer 120 of the base material 100 against the electrodes 235 and 236 to ensure contact between the intermediate layer 120 and the electrodes 235 and 236. The same applies to the power supply roller 232, the power source 252, and the pressing roller 242 (FIG. 1). Note that only one power supply roller 231 or 232 may be installed, or three or more power supply rollers 231 and 232 may be installed. In order to set the temperature distribution of the base material 100 in the transport section TS in a predetermined state, it is preferable that two or more power supply rollers are set at a predetermined voltage and provided at a predetermined position. Since the temperature of the base material 100 is increased by voltage application of the power supply rollers 231 and 232 in the transport section TS, the catalyst ink 50 applied to the base material 100 is dried by the temperature increase of the base material 100 in the transport section TS. .

図1に戻り、乾燥炉400は、搬送区間TS内に設置されている。乾燥炉400の内部には、加熱機410が設けられている。乾燥炉400は、乾燥炉400を通過する基材100に塗工された触媒インク50を加熱することによって、触媒インク50を乾燥させる。こうすれば、基材100の昇温による触媒インク50の乾燥を補助することができ、触媒インク50の乾燥速度を速めることができる。なお、乾燥炉400は省略されてもよい。   Returning to FIG. 1, the drying furnace 400 is installed in the transport section TS. A heater 410 is provided inside the drying furnace 400. The drying furnace 400 dries the catalyst ink 50 by heating the catalyst ink 50 applied to the substrate 100 that passes through the drying furnace 400. In this way, drying of the catalyst ink 50 by increasing the temperature of the substrate 100 can be assisted, and the drying speed of the catalyst ink 50 can be increased. Note that the drying furnace 400 may be omitted.

膜電極接合体製造装置900には、更に、温度センサ510と、放射温度計520,530とが設けられている。温度センサ510は、乾燥炉400内に設置されており、乾燥炉400内の温度を測定する。温度センサ510によって測定された温度値は、乾燥炉400内の温度を予め定めた値となるように制御するために利用される。放射温度計520,530は、搬送区間TS内の基材100の温度を測定する。   The membrane electrode assembly manufacturing apparatus 900 is further provided with a temperature sensor 510 and radiation thermometers 520 and 530. The temperature sensor 510 is installed in the drying furnace 400 and measures the temperature in the drying furnace 400. The temperature value measured by the temperature sensor 510 is used to control the temperature in the drying furnace 400 to be a predetermined value. The radiation thermometers 520 and 530 measure the temperature of the base material 100 in the transport section TS.

膜電極接合体の製造を開始すると、巻出ローラ210と巻取ローラ220は、図示矢印の方向に回転し、基材100は、白抜きの矢印A1の方向に搬送される。塗工機300は、間欠的に触媒インク50を吐出し、触媒インク50を基材100の表面に塗工する。給電ローラ231,232は、基材100に電圧を印加して基材100を昇温させる。基材100の昇温により、基材100に塗工された触媒インク50が乾燥される。乾燥炉400は、基材100の移動に伴って乾燥炉400の内部に搬送された触媒インク50を加熱し、触媒インク50の乾燥を補助する。この膜電極接合体製造装置900によれば、乾燥炉400を設けなくても、搬送区間TSにおいて触媒インク50を乾燥させることができ、膜電極接合体製造装置900のサイズを抑制できる。   When the manufacture of the membrane electrode assembly is started, the unwinding roller 210 and the winding roller 220 rotate in the direction of the illustrated arrow, and the substrate 100 is conveyed in the direction of the outlined arrow A1. The coating machine 300 intermittently discharges the catalyst ink 50 and applies the catalyst ink 50 to the surface of the substrate 100. The power supply rollers 231 and 232 apply a voltage to the base material 100 to raise the temperature of the base material 100. As the temperature of the substrate 100 is increased, the catalyst ink 50 applied to the substrate 100 is dried. The drying furnace 400 heats the catalyst ink 50 conveyed inside the drying furnace 400 as the substrate 100 moves, and assists in drying the catalyst ink 50. According to the membrane electrode assembly manufacturing apparatus 900, the catalyst ink 50 can be dried in the transport section TS without providing the drying furnace 400, and the size of the membrane electrode assembly manufacturing apparatus 900 can be suppressed.

図3は、図2に示す第2押圧ローラ241bと触媒インク50と基材100と給電ローラ231とを、第2押圧ローラ241bの外側から見た図である。図示の便宜上、基材100を断面図で表している。給電ローラ231及び第2押圧ローラ241bは、基材100の中間層120と接触している。ここで、中間層120にCNTを採用すれば、中間層120に電圧を印加すると中間層120が発熱し、その熱量が外層110に伝導することによって基材100を加熱することができる。また、基材100の外層110にPTFEを採用すれば、外層110に十分な耐熱性を与えることができる。一方、外層110にPTFEを採用すれば、触媒インク50が乾燥して触媒層を形成した後に触媒層を容易に外層110から剥離することができる。なお、中間層120にCNTを採用し、外層110にPTFEを採用した基材100は、例えば、8.5Vの電圧を印加すると100℃まで上昇し、11.2Vの電圧を印加すると160℃まで上昇する。また、基材100は、触媒インク50側の外層110と中間層120の2つの層によって構成されてもよいし、中間層120のみによって構成されてもよい。なお、基材100は、2つの外層110を貼り替えて重複に使用可能である。   FIG. 3 is a view of the second pressing roller 241b, the catalyst ink 50, the base material 100, and the power supply roller 231 shown in FIG. 2 as viewed from the outside of the second pressing roller 241b. For convenience of illustration, the substrate 100 is shown in a cross-sectional view. The power feeding roller 231 and the second pressing roller 241 b are in contact with the intermediate layer 120 of the base material 100. Here, if CNT is employed for the intermediate layer 120, the intermediate layer 120 generates heat when a voltage is applied to the intermediate layer 120, and the amount of heat is conducted to the outer layer 110, whereby the substrate 100 can be heated. In addition, if PTFE is used for the outer layer 110 of the substrate 100, sufficient heat resistance can be given to the outer layer 110. On the other hand, when PTFE is employed for the outer layer 110, the catalyst layer can be easily peeled off from the outer layer 110 after the catalyst ink 50 is dried to form the catalyst layer. In addition, the base material 100 which employ | adopted CNT for the intermediate | middle layer 120, and employ | adopted PTFE for the outer layer 110 raises to 100 degreeC, for example when a voltage of 8.5V is applied, and to 160 degreeC when a voltage of 11.2V is applied. To rise. Further, the base material 100 may be constituted by two layers of the outer layer 110 and the intermediate layer 120 on the catalyst ink 50 side, or may be constituted only by the intermediate layer 120. In addition, the base material 100 can be used by duplicating the two outer layers 110.

図4は、図2に示す押圧ローラ241a,241bと触媒インク50と基材100を上面から見た時の説明図である。図示の便宜上、触媒インク50及び基材100の外層110と中間層120をハッチングしている。基材100の中間層120の短手方向における2つの端部E1,E2は、外層110よりも外側に露出している。押圧ローラ241a,241bはそれぞれ、中間層120の端部E1,E2と接触している。   FIG. 4 is an explanatory diagram when the pressing rollers 241a and 241b, the catalyst ink 50, and the substrate 100 shown in FIG. 2 are viewed from above. For convenience of illustration, the catalyst ink 50 and the outer layer 110 and the intermediate layer 120 of the substrate 100 are hatched. Two ends E1 and E2 in the short direction of the intermediate layer 120 of the substrate 100 are exposed to the outside of the outer layer 110. The pressing rollers 241a and 241b are in contact with the end portions E1 and E2 of the intermediate layer 120, respectively.

以上説明したように、本発明の一実施形態では、基材100に電圧を印加することによって基材100を昇温させるので、搬送区間TSにおいて触媒インク50を乾燥させることができ、膜電極接合体製造装置900のサイズを抑制できる。   As described above, in one embodiment of the present invention, the temperature of the base material 100 is raised by applying a voltage to the base material 100. Therefore, the catalyst ink 50 can be dried in the transport section TS, and membrane electrode bonding is performed. The size of the body manufacturing apparatus 900 can be suppressed.

本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present invention. For example, the technical features in the embodiments corresponding to the technical features in each embodiment described in the summary section of the invention are intended to solve part or all of the above-described problems, or one of the above-described effects. In order to achieve part or all, replacement or combination can be appropriately performed. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

50…触媒インク
100…基材
110…外層
120…中間層
210…巻出ローラ
220…巻取ローラ
231,232…給電ローラ
235,236…電極
241,242…押圧ローラ
241a…第1押圧ローラ
241b…第2押圧ローラ
251,252…電源
255,256…ブラシ
300…塗工機
310…ダイヘッド
320…塗工液タンク
400…乾燥炉
410…加熱機
510…温度センサ
520,530…放射温度計
900…膜電極接合体製造装置
E1,E2…端部
TS…搬送区間
DESCRIPTION OF SYMBOLS 50 ... Catalyst ink 100 ... Base material 110 ... Outer layer 120 ... Intermediate | middle layer 210 ... Unwinding roller 220 ... Winding roller 231,232 ... Feeding roller 235,236 ... Electrode 241,242 ... Pressing roller 241a ... First pressing roller 241b ... Second pressure roller 251, 252... Power source 255, 256... Brush 300... Coating machine 310 .. Die head 320... Coating liquid tank 400 ... Drying furnace 410 ... Heater 510 ... Temperature sensor 520, 530 ... Radiation thermometer 900. Electrode assembly manufacturing apparatus E1, E2 ... End TS ... Conveyance section

Claims (1)

膜電極接合体の製造方法であって、
導電性を有する長尺状の基材の表面に触媒インクを塗工する塗工工程と、
前記触媒インクが塗工された前記基材を搬送する搬送工程と、
を備え、
前記搬送工程は、前記基材に電圧を印加して前記基材を昇温させる工程を含む、
膜電極接合体の製造方法。
A method for producing a membrane electrode assembly, comprising:
A coating step of coating a catalyst ink on the surface of a long substrate having conductivity;
A transporting process for transporting the base material coated with the catalyst ink;
With
The transporting step includes a step of applying a voltage to the substrate to raise the temperature of the substrate.
Manufacturing method of membrane electrode assembly.
JP2017147387A 2017-07-31 2017-07-31 Manufacturing method of membrane electrode assembly Active JP6816674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147387A JP6816674B2 (en) 2017-07-31 2017-07-31 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147387A JP6816674B2 (en) 2017-07-31 2017-07-31 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2019029186A true JP2019029186A (en) 2019-02-21
JP6816674B2 JP6816674B2 (en) 2021-01-20

Family

ID=65478692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147387A Active JP6816674B2 (en) 2017-07-31 2017-07-31 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP6816674B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157490A (en) * 1997-08-25 1999-03-02 Matsushita Electric Ind Co Ltd Catalyst heater and catalyst device comprising the catalyst heater
JP2005209607A (en) * 2003-12-24 2005-08-04 Mitsubishi Materials Corp Gas diffusion layer member of solid polymer fuel cell and its manufacturing method
JP2007059246A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Manufacturing device and manufacturing method of electrode diffusion layer for fuel cell
JP2007234469A (en) * 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2010050001A (en) * 2008-08-22 2010-03-04 Toyota Motor Corp Manufacturing method of diffusion layer for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157490A (en) * 1997-08-25 1999-03-02 Matsushita Electric Ind Co Ltd Catalyst heater and catalyst device comprising the catalyst heater
JP2005209607A (en) * 2003-12-24 2005-08-04 Mitsubishi Materials Corp Gas diffusion layer member of solid polymer fuel cell and its manufacturing method
JP2007059246A (en) * 2005-08-25 2007-03-08 Toyota Motor Corp Manufacturing device and manufacturing method of electrode diffusion layer for fuel cell
JP2007234469A (en) * 2006-03-02 2007-09-13 Toshiba Fuel Cell Power Systems Corp Electrode for solid polyelectrolyte fuel cell and its process of manufacture
JP2010050001A (en) * 2008-08-22 2010-03-04 Toyota Motor Corp Manufacturing method of diffusion layer for fuel cell

Also Published As

Publication number Publication date
JP6816674B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP3373973B2 (en) Heating roller for fixing
JP2010103095A (en) Apparatus and method for manufacturing electrode
US20070007267A1 (en) Method and apparatus for manufacturing thin film heaters
TWI467098B (en) Beheizte praegewalze
JP2012069266A (en) Press method for electrode foil for battery
JP2017010020A5 (en)
JP2011064406A (en) Composite material sheet manufacturing machine and method of manufacturing composite material sheet
JP6149850B2 (en) Manufacturing method of membrane electrode assembly
JP6816674B2 (en) Manufacturing method of membrane electrode assembly
JP2017142897A (en) Membrane-catalyst layer assembly manufacturing device and method
JP5535755B2 (en) Electrode sheet manufacturing apparatus and electrode sheet manufacturing method
CN109967313A (en) Graphene electric heating membrane production equipment
JP5644856B2 (en) Coating device
JP5853194B2 (en) Membrane-catalyst layer assembly manufacturing method and manufacturing apparatus thereof
JP2000233298A (en) Device and method for pressure treatment of belt-like member
JP2013157270A (en) Method for manufacturing membrane electrode assembly
KR102027931B1 (en) Sheet Type Heating Element for reducing heating
CN111106375B (en) Processing device for gas diffusion layer sheet
CN204769428U (en) Improve coating machine of coating thickness precision
CN205357954U (en) Electromagnetic heating spring roll system skin machine
JP5855787B1 (en) Roller press apparatus and roller press method
KR102029699B1 (en) Manufacturing method for sheet type heating element
WO2024063094A1 (en) Toilet seat warming device
JP2015164711A (en) Coating device and coating method
JPH0922208A (en) Fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151