JP2019029129A - Sealing valve control system and fuel cell system - Google Patents

Sealing valve control system and fuel cell system Download PDF

Info

Publication number
JP2019029129A
JP2019029129A JP2017145552A JP2017145552A JP2019029129A JP 2019029129 A JP2019029129 A JP 2019029129A JP 2017145552 A JP2017145552 A JP 2017145552A JP 2017145552 A JP2017145552 A JP 2017145552A JP 2019029129 A JP2019029129 A JP 2019029129A
Authority
JP
Japan
Prior art keywords
valve
sealing
control
valve body
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017145552A
Other languages
Japanese (ja)
Other versions
JP7002876B2 (en
Inventor
吉岡 衛
Mamoru Yoshioka
衛 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2017145552A priority Critical patent/JP7002876B2/en
Publication of JP2019029129A publication Critical patent/JP2019029129A/en
Application granted granted Critical
Publication of JP7002876B2 publication Critical patent/JP7002876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a sealing valve control system and a fuel cell system capable of preventing gas from leaking in a fully closed sealing valve.SOLUTION: In a sealing valve control system according to an embodiment, an inlet sealing valve 174 is provided with a rubber seal portion 13a for sealing a gap between a valve body 14 and a valve seat 13 in the valve seat 13. When controller 201 receives a request for sealing by the inlet sealing valve 174, the controller 201 causes the inlet sealing valve 174 to be in a fully closed state after executing opening and closing repetition control of moving the valve body 14 in the valve opening direction and the valve closing direction while increasing the degree of opening change B compared with the degree of opening change A in a state where the valve body 14 and the rubber seal portion 13a are sliding.SELECTED DRAWING: Figure 9

Description

本開示は、流路を開閉する封止弁の開閉動作を制御する封止弁制御システム、および、この封止弁制御システムを有する燃料電池システムに関するものである。   The present disclosure relates to a sealing valve control system that controls an opening / closing operation of a sealing valve that opens and closes a flow path, and a fuel cell system including the sealing valve control system.

従来技術として、特許文献1に開示されるような燃料電池システムが存在する。この燃料電池システムは、水素ガスの配管系より供給される水素ガスおよび酸素ガスの配管系より供給される酸素ガスの供給を受けて、電力を発生する燃料電池を備えている。そして、酸素ガスの配管系は、酸素オフガス排気流路と、酸素オフガス排気流路を開閉する電磁バルブを備えている。   As a prior art, there is a fuel cell system as disclosed in Patent Document 1. This fuel cell system includes a fuel cell that generates power upon receiving supply of hydrogen gas supplied from a hydrogen gas piping system and oxygen gas supplied from an oxygen gas piping system. The oxygen gas piping system includes an oxygen off-gas exhaust passage and an electromagnetic valve that opens and closes the oxygen off-gas exhaust passage.

特開2005−285686号公報JP 2005-285686 A

上記した電磁バルブのようにガス流路を開閉する封止弁について、弁座と弁体との間の封止性(シール性)を向上させるため弁座における弁体との接触部分にゴムシール部を備える場合がある。この場合、開弁状態の封止弁が閉弁するときに、弁座に備わるゴムシール部が弁体との間に生じる摺動抵抗により捩れて、ゴムシール部における弁体と接触するシート面にて凹凸が生じて、全閉状態の封止弁においてガス洩れが発生するおそれがある。   For a sealing valve that opens and closes a gas flow path like the above-described electromagnetic valve, a rubber seal portion is provided at a contact portion of the valve seat with the valve body in order to improve the sealing performance (sealability) between the valve seat and the valve body. May be provided. In this case, when the sealing valve in the valve open state is closed, the rubber seal portion provided in the valve seat is twisted by the sliding resistance generated between the valve body and the seat surface in contact with the valve body in the rubber seal portion. Concavities and convexities occur, and gas leakage may occur in the fully closed sealing valve.

そこで、本開示は上記した問題点を解決するためになされたものであり、全閉状態の封止弁においてガス洩れを防ぐことができる封止弁制御システムおよび燃料電池システムを提供することを目的とする。   Accordingly, the present disclosure has been made to solve the above-described problems, and an object thereof is to provide a sealing valve control system and a fuel cell system that can prevent gas leakage in a fully closed sealing valve. And

上記課題を解決するためになされた本開示の一形態は、ガスが流れるガス流路と、前記ガス流路を開閉する封止弁と、前記封止弁の開閉動作を制御する制御部とを備える封止弁制御システムにおいて、前記封止弁は、弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、前記制御部は、前記封止弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記封止弁を全閉状態にすること、を特徴とする。   An embodiment of the present disclosure made to solve the above problems includes a gas flow path through which a gas flows, a sealing valve that opens and closes the gas flow path, and a control unit that controls an opening and closing operation of the sealing valve. In the sealing valve control system, the sealing valve is provided with a seal member that seals between the valve body and the valve seat on either the valve seat or the valve body, and the control unit When there is a sealing request by the sealing valve, the valve body or the valve body and the seal member are slid in a state in which the valve body moves more than the amount of movement in the valve opening direction. After performing opening / closing control to move the valve body in the valve opening direction and the valve closing direction while increasing the amount of movement in the valve closing direction, the sealing valve is fully closed.

この態様によれば、開弁状態の封止弁を閉弁させて全閉状態にするまでに、弁体または弁座とシール部材とを摺動させながら、弁体を開弁方向と閉弁方向へ移動させるように制御する。これにより、シール部材の捩れを解消(抑制)させながら、シール部材における弁体または弁座との接触面を平面にして、封止弁を全閉状態にすることができる。そして、これにより、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。そのため、弁体または弁座とシール部材の間において、シール幅の確保と接地状態の安定化の両立を図ることができる。したがって、封止弁を全閉状態にしたときに、弁体または弁座とシール部材との間において、封止性が向上し、ガス洩れを防ぐことができる。   According to this aspect, the valve body is opened and closed while the valve body or the valve seat and the seal member are slid until the sealing valve in the open state is closed and fully closed. Control to move in the direction. As a result, the sealing valve can be fully closed by making the contact surface of the seal member with the valve body or the valve seat flat while eliminating (suppressing) the twist of the seal member. As a result, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is stabilized. Therefore, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body or the valve seat and the seal member. Therefore, when the sealing valve is fully closed, sealing performance is improved between the valve body or the valve seat and the seal member, and gas leakage can be prevented.

上記の態様においては、前記開閉制御では、前記弁体を開弁方向と閉弁方向へ繰り返し移動させること、が好ましい。   In the above aspect, in the opening / closing control, it is preferable that the valve body is repeatedly moved in a valve opening direction and a valve closing direction.

この態様によれば、開弁状態の封止弁を閉弁させて全閉状態にするまでに、弁体または弁座とシール部材とを摺動させながら、弁体を開弁方向と閉弁方向へ繰り返し移動させて、徐々に開度が小さくなるように制御する。これにより、より効果的に、シール部材の捩れを解消させながら、シール部材における弁体または弁座との接触面を平面にして、封止弁を全閉状態にすることができる。そして、これにより、より効果的に、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。   According to this aspect, the valve body is opened and closed while the valve body or the valve seat and the seal member are slid until the sealing valve in the open state is closed and fully closed. It is repeatedly moved in the direction and controlled so that the opening gradually decreases. As a result, the sealing valve can be fully closed by making the contact surface of the seal member with the valve body or the valve seat flat while effectively eliminating the twist of the seal member. Thereby, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is more effectively stabilized.

上記の態様においては、前記制御部は、前記封止弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行うこと、が好ましい。   In the above aspect, the control unit, after making the sealing valve fully closed, operates the valve body in a direction to press the valve body against the valve seat, and the valve body from the valve seat. It is preferable to perform full-closed holding release control that acts in the direction of releasing.

この態様によれば、封止弁を全閉状態にした後に、全閉保持制御と全閉保持解除制御とを行うことで、シール部材の捩れを解消させることができる。これにより、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。   According to this aspect, the twist of the seal member can be eliminated by performing the fully closed holding control and the fully closed holding release control after the sealing valve is fully closed. Thereby, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is stabilized.

上記の態様においては、前記制御部は、前記全閉保持制御と前記全閉保持解除制御とを繰り返し行うこと、が好ましい。   In the above aspect, it is preferable that the control unit repeatedly performs the fully closed hold control and the fully closed hold release control.

この態様によれば、全閉保持制御と全閉保持解除制御とを繰り返し行うことで、より効果的に、シール部材の捩れを解消させることができる。これにより、より効果的に、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。   According to this aspect, the twist of the seal member can be more effectively eliminated by repeatedly performing the fully closed holding control and the fully closed holding release control. Thereby, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is more effectively stabilized.

上記課題を解決するためになされた本開示の他の形態は、ガスが流れるガス流路と、前記ガス流路を開閉する封止弁と、前記封止弁の開閉動作を制御する制御部とを備える封止弁制御システムにおいて、前記封止弁は、弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、前記制御部は、前記封止弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行うこと、を特徴とする。   Another aspect of the present disclosure made to solve the above problems includes a gas flow path through which a gas flows, a sealing valve that opens and closes the gas flow path, and a control unit that controls an opening and closing operation of the sealing valve. In the sealing valve control system, the sealing valve is provided with a seal member that seals between the valve body and the valve seat on either the valve seat or the valve body, and the control And a fully-closed holding control in which the valve body is operated in a direction to push the valve body against the valve seat, and a fully-closed holding control in which the valve body is operated in a direction away from the valve seat after the sealing valve is fully closed. And release control.

この態様によれば、封止弁を全閉状態にした後に、全閉保持制御と全閉保持解除制御とを行うことで、シール部材の捩れを解消(抑制)させることができる。これにより、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。そのため、弁体または弁座とシール部材の間において、シール幅の確保と接地状態の安定化の両立を図ることができる。したがって、封止弁を全閉状態にしたときに、弁体または弁座とシール部材の間において、封止性が向上し、ガス洩れを防ぐことができる。   According to this aspect, the twist of the seal member can be eliminated (suppressed) by performing the fully closed holding control and the fully closed holding release control after the sealing valve is fully closed. Thereby, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is stabilized. Therefore, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body or the valve seat and the seal member. Therefore, when the sealing valve is fully closed, sealing performance is improved between the valve body or the valve seat and the seal member, and gas leakage can be prevented.

上記の態様においては、前記制御部は、前記全閉保持制御と前記全閉保持解除制御とを繰り返し行うこと、が好ましい。   In the above aspect, it is preferable that the control unit repeatedly performs the fully closed hold control and the fully closed hold release control.

この態様によれば、全閉保持制御と全閉保持解除制御とを繰り返し行うことで、より効果的に、シール部材の捩れを解消させることができる。これにより、より効果的に、封止弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。   According to this aspect, the twist of the seal member can be more effectively eliminated by repeatedly performing the fully closed holding control and the fully closed holding release control. Thereby, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the sealing valve is more effectively stabilized.

上記課題を解決するためになされた本開示の他の形態は、燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、前記上流側弁と前記下流側弁は、弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、前記制御部は、前記上流側弁または前記下流側弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記上流側弁または前記下流側弁を全閉状態にし、前記上流側弁における前記弁体の開弁方向または閉弁方向の移動量を、前記下流側弁における前記弁体の開弁方向または閉弁方向の移動量よりも小さくすること、を特徴とする。   Another aspect of the present disclosure made to solve the above problems is provided in a fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, and the oxidant gas supply passage. An upstream valve, an oxidant gas discharge passage for discharging the oxidant gas supplied to the fuel cell, a downstream valve provided in the oxidant gas discharge passage, a control unit for performing various controls, In the fuel cell system, the upstream valve and the downstream valve are provided with a seal member for sealing between the valve body and the valve seat on either the valve seat or the valve body. The valve opening direction of the valve body in a state in which the valve seat or the valve body and the seal member are slid when there is a sealing request by the upstream valve or the downstream valve. The amount of movement of the valve body in the valve closing direction is larger than the amount of movement of After performing open / close control to move the valve body in the valve opening direction and the valve closing direction, the upstream valve or the downstream valve is fully closed, and the valve body opening direction in the upstream valve or The movement amount in the valve closing direction is made smaller than the movement amount in the valve opening direction or valve closing direction of the valve body in the downstream valve.

この態様によれば、例えば乾燥状態になり易い上流側弁について、下流側弁よりも小刻みに開閉させながら徐々に閉弁させて全閉状態にすることができるので、シール部材の捩れを解消(抑制)させることができる。そのため、下流側弁と同様に上流側弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。したがって、上流側弁と下流側弁について、弁体または弁座とシール部材の間において、シール幅の確保と接地状態の安定化の両立を図ることができる。ゆえに、上流側弁と下流側弁を全閉状態にしたときに、弁体または弁座とシール部材の間において、封止性が向上し、ガス洩れを防ぐことができる。   According to this aspect, for example, the upstream valve that is likely to be in a dry state can be gradually closed while being opened and closed more gradually than the downstream valve, so that the seal member is twisted ( Suppression). Therefore, similarly to the downstream valve, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the upstream valve is stabilized. Therefore, for the upstream side valve and the downstream side valve, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body or the valve seat and the seal member. Therefore, when the upstream side valve and the downstream side valve are fully closed, the sealing performance is improved between the valve body or the valve seat and the seal member, and gas leakage can be prevented.

上記の態様においては、前記制御部は、前記上流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数を、前記下流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数よりも多くすること、が好ましい。   In the above aspect, the control unit closes the valve body in the valve opening direction in the downstream valve, and sets the number of times of opening and closing the valve body in the valve opening direction and the valve closing direction in the upstream valve. It is preferable to increase the number of times of opening and closing to be moved in the valve direction.

この態様によれば、上流側弁について、下流側弁よりも多くの回数について弁体または弁座とシール部材を摺動させて全閉状態にすることができるので、より効果的に、下流側弁と同様に上流側弁についてもシール部材の捩れを解消させることができる。そのため、より効果的に、上流側弁と下流側弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。   According to this aspect, the upstream side valve can be fully closed by sliding the valve body or the valve seat and the seal member more times than the downstream side valve. Similar to the valve, twisting of the seal member can be eliminated for the upstream valve. Therefore, the ground contact state of the valve body or the valve seat and the seal member in the fully closed state of the upstream side valve and the downstream side valve is more effectively stabilized.

上記課題を解決するためになされた本開示の他の形態は、燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、前記上流側弁と前記下流側弁は、弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、前記制御部は、前記上流側弁または前記下流側弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記上流側弁または前記下流側弁を全閉状態にし、前記上流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数を、前記下流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数よりも多くすること、を特徴とする。   Another aspect of the present disclosure made to solve the above problems is provided in a fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, and the oxidant gas supply passage. An upstream valve, an oxidant gas discharge passage for discharging the oxidant gas supplied to the fuel cell, a downstream valve provided in the oxidant gas discharge passage, a control unit for performing various controls, In the fuel cell system, the upstream valve and the downstream valve are provided with a seal member for sealing between the valve body and the valve seat on either the valve seat or the valve body. The valve opening direction of the valve body in a state in which the valve seat or the valve body and the seal member are slid when there is a sealing request by the upstream valve or the downstream valve. The amount of movement of the valve body in the valve closing direction is larger than the amount of movement of After opening / closing control for moving the valve body in the valve opening direction and the valve closing direction, the upstream valve or the downstream valve is fully closed, and the valve body is opened in the upstream valve. The number of times of opening and closing to be moved in the valve closing direction is made larger than the number of times of opening and closing to move the valve body in the valve opening direction and the valve closing direction at the downstream valve.

この態様によれば、上流側弁について、下流側弁よりも多くの回数について弁体または弁座とシール部材を摺動させて全閉状態にすることができるので、下流側弁と同様に上流側弁についてもシール部材の捩れを解消させることができる。そのため、上流側弁と下流側弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。したがって、上流側弁と下流側弁について、弁体または弁座とシール部材の間において、シール幅の確保と接地状態の安定化の両立を図ることができる。ゆえに、上流側弁と下流側弁を全閉状態にしたときに、弁体または弁座とシール部材の間において、封止性が向上し、ガス洩れを防ぐことができる。   According to this aspect, the upstream side valve can be fully closed by sliding the valve body or the valve seat and the seal member more times than the downstream side valve. Also for the side valve, the twist of the seal member can be eliminated. Therefore, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the upstream side valve and the downstream side valve is stabilized. Therefore, for the upstream side valve and the downstream side valve, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body or the valve seat and the seal member. Therefore, when the upstream side valve and the downstream side valve are fully closed, the sealing performance is improved between the valve body or the valve seat and the seal member, and gas leakage can be prevented.

上記課題を解決するためになされた本開示の他の形態は、燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、前記上流側弁と前記下流側弁は、弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、前記制御部は、前記上流側弁または前記下流側弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行い、前記上流側弁にて前記全閉保持制御と前記全閉保持解除制御を行う回数を、前記下流側弁にて前記全閉保持制御と前記全閉保持解除制御を行う回数よりも多くすること、を特徴とする。   Another aspect of the present disclosure made to solve the above problems is provided in a fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, and the oxidant gas supply passage. An upstream valve, an oxidant gas discharge passage for discharging the oxidant gas supplied to the fuel cell, a downstream valve provided in the oxidant gas discharge passage, a control unit for performing various controls, In the fuel cell system, the upstream valve and the downstream valve are provided with a seal member for sealing between the valve body and the valve seat on either the valve seat or the valve body. The control unit, after bringing the upstream side valve or the downstream side valve into a fully closed state, operates the valve body in a direction to press the valve body against the valve seat, and the valve body from the valve seat. Fully closed hold release control that acts in the direction of release Increasing the number of times the full-closed holding control and the full-closed holding release control are performed in the upstream valve from the number of times performing the full-closed holding control and the full-closed holding release control in the downstream valve; It is characterized by.

この態様によれば、上流側弁について、下流側弁よりも多くの回数について弁体を弁座に押し付けたり弁体を弁座から離したりするので、下流側弁と同様に上流側弁についてもシール部材の捩れを解消させることができる。そのため、上流側弁と下流側弁の全閉状態における弁体または弁座とシール部材の接地状態が安定する。したがって、上流側弁と下流側弁について、弁体または弁座とシール部材の間において、シール幅の確保と接地状態の安定化の両立を図ることができる。ゆえに、上流側弁と下流側弁を全閉状態にしたときに、弁体または弁座とシール部材の間において、封止性が向上し、ガス洩れを防ぐことができる。   According to this aspect, for the upstream side valve, the valve body is pressed against the valve seat or separated from the valve seat for a greater number of times than the downstream side valve. The twist of the seal member can be eliminated. Therefore, the grounding state of the valve body or the valve seat and the seal member in the fully closed state of the upstream side valve and the downstream side valve is stabilized. Therefore, for the upstream side valve and the downstream side valve, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body or the valve seat and the seal member. Therefore, when the upstream side valve and the downstream side valve are fully closed, the sealing performance is improved between the valve body or the valve seat and the seal member, and gas leakage can be prevented.

本開示の封止弁制御システムおよび燃料電池システムによれば、全閉状態の封止弁においてガス洩れを防ぐことができる。   According to the sealing valve control system and the fuel cell system of the present disclosure, it is possible to prevent gas leakage in the fully closed sealing valve.

実施形態に係る燃料電池システムの概略構成図である。1 is a schematic configuration diagram of a fuel cell system according to an embodiment. 二重偏心弁を備えた電動式の流量制御弁の斜視図である。It is a perspective view of the electric flow control valve provided with the double eccentric valve. 全閉状態における弁部を一部破断して示す斜視図である。It is a perspective view which partially fractures | ruptures and shows the valve | bulb part in a fully closed state. 全開状態における弁部を一部破断して示す斜視図である。It is a perspective view which fractures | ruptures and shows the valve part in a fully open state. 全閉状態の弁座、弁体及び回転軸を示す側面図である。It is a side view which shows the valve seat of a fully closed state, a valve body, and a rotating shaft. 図5のA−A線断面図である。It is the sectional view on the AA line of FIG. 第1実施形態における入口封止弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the inlet sealing valve in 1st Embodiment. 第1実施形態における出口統合弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the exit integrated valve in 1st Embodiment. 第1実施形態における制御タイムチャートの一例を示す図である。It is a figure which shows an example of the control time chart in 1st Embodiment. 第1実施形態において、全閉状態における弁体と弁座のゴムシール部との接地状態が安定することを示す図である。In 1st Embodiment, it is a figure which shows that the grounding state of the valve body and rubber seal part of a valve seat in a fully closed state is stabilized. 第2実施形態における入口封止弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the inlet sealing valve in 2nd Embodiment. 第2実施形態における入口封止弁の制御タイムチャートの一例を示す図である。It is a figure which shows an example of the control time chart of the inlet sealing valve in 2nd Embodiment. 第2実施形態において、全閉状態における弁体と弁座のゴムシール部との接地状態が安定することを示す図である。In 2nd Embodiment, it is a figure which shows that the grounding state of the valve body and rubber seal part of a valve seat in a fully closed state is stabilized. 第2実施形態における出口統合弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the exit integrated valve in 2nd Embodiment. 第2実施形態における出口統合弁の制御タイムチャートの一例を示す図である。It is a figure which shows an example of the control time chart of the exit integrated valve in 2nd Embodiment. 第3実施形態における入口封止弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the inlet sealing valve in 3rd Embodiment. 第3実施形態における入口封止弁の制御タイムチャートの一例を示す図である。It is a figure which shows an example of the control time chart of the inlet sealing valve in 3rd Embodiment. 第3実施形態における出口統合弁の制御フローチャートを示す図である。It is a figure which shows the control flowchart of the exit integrated valve in 3rd Embodiment. 第3実施形態における出口統合弁の制御タイムチャートの一例を示す図である。It is a figure which shows an example of the control time chart of the exit integrated valve in 3rd Embodiment. 全閉状態における弁体と弁座のゴムシール部との接地状態が不安定になる課題を示す図である。It is a figure which shows the subject which the grounding state of the valve body and rubber seal part of a valve seat in a fully closed state becomes unstable.

本開示の封止弁制御システムおよび燃料電池システムの実施形態について、図面を参照しながら詳細に説明する。   Embodiments of a sealing valve control system and a fuel cell system according to the present disclosure will be described in detail with reference to the drawings.

<第1実施形態>
本開示に係る実施形態である燃料電池システムについて、図1を参照しながら詳細に説明する。本実施形態では、燃料電池車に搭載され、その駆動用モータ(図示略)に電力を供給する燃料電池システムに、本開示を適用した場合について説明する。
<First Embodiment>
A fuel cell system according to an embodiment of the present disclosure will be described in detail with reference to FIG. In the present embodiment, a case will be described in which the present disclosure is applied to a fuel cell system that is mounted on a fuel cell vehicle and supplies power to a drive motor (not shown).

本実施形態の燃料電池システム101は、図1に示すように、燃料電池スタック(燃料電池)111と、水素系112と、エア系113を有する。   As shown in FIG. 1, the fuel cell system 101 of the present embodiment includes a fuel cell stack (fuel cell) 111, a hydrogen system 112, and an air system 113.

燃料電池スタック111は、燃料ガスの供給と酸化剤ガスの供給を受けて発電を行う。本実施形態では、燃料ガスは水素ガスであり、酸化剤ガスはエアである。すなわち、燃料電池スタック111は、水素系112からの水素ガスの供給と、エア系113からのエアの供給を受けて発電を行う。そして、燃料電池スタック111で発電された電力は、インバータ(図示略)を介して駆動用モータ(図示略)に供給される。   The fuel cell stack 111 generates power by receiving supply of fuel gas and supply of oxidant gas. In the present embodiment, the fuel gas is hydrogen gas, and the oxidant gas is air. That is, the fuel cell stack 111 generates power by receiving supply of hydrogen gas from the hydrogen system 112 and supply of air from the air system 113. The electric power generated by the fuel cell stack 111 is supplied to a drive motor (not shown) via an inverter (not shown).

水素系112は、燃料電池スタック111のアノード側に設けられている。この水素系112は、水素供給通路121、水素排出通路122、充填通路123を備えている。水素供給通路121は、水素タンク131から燃料電池スタック111へ水素ガスを供給するための通路である。水素排出通路122は、燃料電池スタック111から排出される水素ガス(以下、適宜、「水素オフガス」という。)を排出するための通路である。充填通路123は、充填口151から水素タンク131に水素ガスを充填するための通路である。   The hydrogen system 112 is provided on the anode side of the fuel cell stack 111. The hydrogen system 112 includes a hydrogen supply passage 121, a hydrogen discharge passage 122, and a filling passage 123. The hydrogen supply passage 121 is a passage for supplying hydrogen gas from the hydrogen tank 131 to the fuel cell stack 111. The hydrogen discharge passage 122 is a passage for discharging hydrogen gas discharged from the fuel cell stack 111 (hereinafter referred to as “hydrogen offgas” as appropriate). The filling passage 123 is a passage for filling the hydrogen tank 131 with hydrogen gas from the filling port 151.

水素系112は、水素供給通路121において、水素タンク131側から順に、主止弁132、高圧レギュレータ133、中圧リリーフ弁134、圧力センサ135、インジェクタ部(燃料ガス供給部)136、低圧リリーフ弁137、圧力センサ138を備えている。主止弁132は、水素タンク131から水素供給通路121への水素ガスの供給と遮
断を切り換える弁である。高圧レギュレータ133は、水素ガスを減圧するための圧力調整弁である。中圧リリーフ弁134は、水素供給通路121における高圧レギュレータ133とインジェクタ部136の間の圧力が所定圧力以上になると開弁して圧力を所定圧力未満に調整する弁である。圧力センサ135は、水素供給通路121における高圧レギュレータ133とインジェクタ部136の間の圧力を検出するセンサである。インジェクタ部136は、水素ガスの流量を調節する機構である。低圧リリーフ弁137は、水素供給通路121におけるインジェクタ部136と燃料電池スタック111の間の圧力が所定圧力以上になると開弁して圧力を所定圧力未満に調整する弁である。圧力センサ138は、水素供給通路121におけるインジェクタ部136と燃料電池スタック111の間の圧力を検出するセンサである。
The hydrogen system 112 includes a main stop valve 132, a high pressure regulator 133, an intermediate pressure relief valve 134, a pressure sensor 135, an injector unit (fuel gas supply unit) 136, and a low pressure relief valve in order from the hydrogen tank 131 side in the hydrogen supply passage 121. 137 and a pressure sensor 138 are provided. The main stop valve 132 is a valve that switches between supply and shutoff of hydrogen gas from the hydrogen tank 131 to the hydrogen supply passage 121. The high pressure regulator 133 is a pressure adjustment valve for reducing the pressure of hydrogen gas. The intermediate pressure relief valve 134 is a valve that opens when the pressure between the high pressure regulator 133 and the injector unit 136 in the hydrogen supply passage 121 exceeds a predetermined pressure, and adjusts the pressure below the predetermined pressure. The pressure sensor 135 is a sensor that detects the pressure between the high-pressure regulator 133 and the injector unit 136 in the hydrogen supply passage 121. The injector unit 136 is a mechanism that adjusts the flow rate of hydrogen gas. The low-pressure relief valve 137 is a valve that opens when the pressure between the injector section 136 and the fuel cell stack 111 in the hydrogen supply passage 121 is equal to or higher than a predetermined pressure, and adjusts the pressure below the predetermined pressure. The pressure sensor 138 is a sensor that detects the pressure between the injector unit 136 and the fuel cell stack 111 in the hydrogen supply passage 121.

また、水素系112は、水素排出通路122において、燃料電池スタック111側から順に、気液分離器141、排気排水弁142が配置されている。気液分離器141は、水素オフガス内の水分を分離する機器である。排気排水弁142は、気液分離器141からエア系113の希釈器182への水素オフガスや水分の排出と遮断を切り換える弁である。   Further, in the hydrogen system 112, a gas-liquid separator 141 and an exhaust / drain valve 142 are arranged in this order from the fuel cell stack 111 side in the hydrogen discharge passage 122. The gas-liquid separator 141 is a device that separates moisture in the hydrogen off-gas. The exhaust / drain valve 142 is a valve that switches between discharging and shutting off hydrogen off-gas and moisture from the gas-liquid separator 141 to the diluter 182 of the air system 113.

エア系113は、燃料電池スタック111のカソード側に設けられている。このエア系113は、エア供給通路161、エア排出通路162、バイパス通路163を備えている。エア供給通路161は、エアが流れる流路であり、燃料電池システム101の外部から燃料電池スタック111へ、エアを供給するための通路である。エア排出通路162は、エアが流れる流路であり、燃料電池スタック111から排出されるエア(以下、適宜、「エアオフガス」という。)を排出するための通路である。バイパス通路163は、エア供給通路161から燃料電池スタック111を介さずにエア排出通路162へ、エアを流すための通路である。   The air system 113 is provided on the cathode side of the fuel cell stack 111. The air system 113 includes an air supply passage 161, an air discharge passage 162, and a bypass passage 163. The air supply passage 161 is a passage through which air flows, and is a passage for supplying air from the outside of the fuel cell system 101 to the fuel cell stack 111. The air discharge passage 162 is a passage through which air flows, and is a passage for discharging air discharged from the fuel cell stack 111 (hereinafter, referred to as “air off gas” as appropriate). The bypass passage 163 is a passage through which air flows from the air supply passage 161 to the air discharge passage 162 without passing through the fuel cell stack 111.

エア系113は、エア供給通路161において、エアクリーナ171側から順に、コンプレッサ172、インタークーラ173、入口封止弁(上流側弁)174を備えている。エアクリーナ171は、燃料電池システム101の外部から取り込んだエアを清浄化する機器である。コンプレッサ172は、エアを燃料電池スタック111に供給する機器である。インタークーラ173は、エアを冷却する機器である。入口封止弁174は、エア供給通路161を開閉する封止弁であり、燃料電池スタック111へのエアの供給と遮断を切り換える弁である。   The air system 113 includes a compressor 172, an intercooler 173, and an inlet sealing valve (upstream valve) 174 in order from the air cleaner 171 side in the air supply passage 161. The air cleaner 171 is a device that cleans the air taken from the outside of the fuel cell system 101. The compressor 172 is a device that supplies air to the fuel cell stack 111. The intercooler 173 is a device that cools air. The inlet sealing valve 174 is a sealing valve that opens and closes the air supply passage 161 and is a valve that switches between supply and shutoff of air to the fuel cell stack 111.

また、エア系113は、エア排出通路162において、燃料電池スタック111側から順に、出口統合弁(下流側弁)181、希釈器182が配置されている。   In the air system 113, an outlet integrated valve (downstream valve) 181 and a diluter 182 are arranged in order from the fuel cell stack 111 side in the air discharge passage 162.

出口統合弁181は、エア排出通路162を開閉する封止弁であり、燃料電池スタック111からのエアオフガスの排出と遮断を切り換える弁(封止機能を有する弁)である。また、出口統合弁181は、燃料電池スタック111の背圧を調整して燃料電池スタック111からのエアオフガスの排出量を制御する弁(調圧(流量制御)機能を有する弁)である。   The outlet integrated valve 181 is a sealing valve that opens and closes the air discharge passage 162, and is a valve (a valve having a sealing function) that switches between discharging and shutting off the air-off gas from the fuel cell stack 111. Further, the outlet integrated valve 181 is a valve (a valve having a pressure adjustment (flow rate control) function) that controls the discharge amount of the air-off gas from the fuel cell stack 111 by adjusting the back pressure of the fuel cell stack 111.

希釈器182は、エアオフガス及びバイパス通路163を流れるエアにより、水素排出通路122から排出される水素オフガスを希釈する機器である。   The diluter 182 is a device that dilutes the hydrogen off gas discharged from the hydrogen discharge passage 122 by the air off gas and the air flowing through the bypass passage 163.

また、エア系113は、バイパス通路163において、バイパス弁191を備えている。バイパス弁191は、バイパス通路163におけるエアの流量を制御する弁である。   The air system 113 includes a bypass valve 191 in the bypass passage 163. The bypass valve 191 is a valve that controls the flow rate of air in the bypass passage 163.

また、燃料電池システム101は、システムの制御を司るコントローラ(制御部)201を備えている。コントローラ201は、燃料電池システム101に備わる各機器を制御するとともに各種判定を行う。本実施形態では、コントローラ201は、入口封止弁174および出口統合弁181の開閉動作も制御する。なお、燃料電池システム101は、その他、燃料電池スタック111の冷却を行う冷却系(不図示)も有する。なお、本実施形態では、コントローラ201は、例えばECUである。   The fuel cell system 101 also includes a controller (control unit) 201 that controls the system. The controller 201 controls each device provided in the fuel cell system 101 and makes various determinations. In the present embodiment, the controller 201 also controls the opening / closing operations of the inlet sealing valve 174 and the outlet integrated valve 181. The fuel cell system 101 also includes a cooling system (not shown) that cools the fuel cell stack 111. In the present embodiment, the controller 201 is an ECU, for example.

以上のような構成の燃料電池システム101において、水素供給通路121から燃料電池スタック111に供給された水素ガスは、燃料電池スタック111にて発電に使用される。その後、水素ガスは、燃料電池スタック111から水素オフガスとして水素排出通路122と希釈器182を介して、燃料電池システム101の外部に排出される。また、エア供給通路161から燃料電池スタック111に供給されたエアは、燃料電池スタック111にて発電に使用された後、燃料電池スタック111からエアオフガスとしてエア排出通路162と希釈器182を介して、燃料電池システム101の外部に排出される。   In the fuel cell system 101 configured as described above, the hydrogen gas supplied from the hydrogen supply passage 121 to the fuel cell stack 111 is used for power generation in the fuel cell stack 111. Thereafter, the hydrogen gas is discharged from the fuel cell stack 111 to the outside of the fuel cell system 101 through the hydrogen discharge passage 122 and the diluter 182 as a hydrogen off gas. In addition, the air supplied from the air supply passage 161 to the fuel cell stack 111 is used for power generation in the fuel cell stack 111, and then the air off gas from the fuel cell stack 111 is passed through the air discharge passage 162 and the diluter 182. It is discharged outside the fuel cell system 101.

なお、本実施形態では、エア供給通路161およびエア排出通路162と、入口封止弁174および出口統合弁181と、コントローラ201とによって封止弁制御システムが構成されている。   In the present embodiment, the air supply passage 161 and the air discharge passage 162, the inlet sealing valve 174, the outlet integrated valve 181 and the controller 201 constitute a sealing valve control system.

図2に、二重偏心弁を備えた電動式の流量制御弁1(「封止弁」の一例)を斜視図により示す。本実施形態では、前記の入口封止弁174および出口統合弁181として、この流量制御弁1を採用している。なお、前記のバイパス弁191についても、流量制御弁1を採用してもよい。   FIG. 2 is a perspective view of an electric flow control valve 1 (an example of a “sealing valve”) provided with a double eccentric valve. In the present embodiment, the flow control valve 1 is employed as the inlet sealing valve 174 and the outlet integrated valve 181. Note that the flow control valve 1 may also be adopted for the bypass valve 191.

流量制御弁1は、二重偏心弁より構成される弁部2と、モータを内蔵したモータ部3と、複数のギヤを内蔵した減速機構部4とを備える。弁部2は、内部に流体が流れる流路11を有する金属製の管部12を含み、流路11の中には弁座13、弁体14及び回転軸15が配置される。流路11の内形、弁座13の外形、弁体14の外形は、それぞれ平面視で円形又はほぼ円形をなしている。回転軸15には、モータの回転力が複数のギヤを介して伝えられるようになっている。この実施形態で、流路11を有する管部12は、ハウジング6の一部に相当し、モータ部3のモータや減速機構部4の複数のギヤは、このハウジング6により覆われる。ハウジング6は、アルミ等の金属により形成される。   The flow control valve 1 includes a valve portion 2 constituted by a double eccentric valve, a motor portion 3 incorporating a motor, and a speed reduction mechanism portion 4 incorporating a plurality of gears. The valve section 2 includes a metal pipe section 12 having a flow path 11 through which a fluid flows. A valve seat 13, a valve body 14, and a rotating shaft 15 are disposed in the flow path 11. The inner shape of the flow path 11, the outer shape of the valve seat 13, and the outer shape of the valve element 14 are each circular or almost circular in plan view. The rotational force of the motor is transmitted to the rotating shaft 15 via a plurality of gears. In this embodiment, the pipe portion 12 having the flow path 11 corresponds to a part of the housing 6, and the motor of the motor portion 3 and the plurality of gears of the speed reduction mechanism portion 4 are covered by the housing 6. The housing 6 is made of a metal such as aluminum.

図3と図4に示すように、流路11には段部10が形成され、その段部10に弁座13が組み込まれる。弁座13は、円環状をなし、中央に円形又はほぼ円形の弁孔16を有する。弁孔16の縁部には環状のシート面17が形成される。本実施形態では、弁座13に、弁座13と弁体14との間を封止するためのゴムシール部13a(「シール部材」の一例)が設けられており、このゴムシール部13aにシート面17が形成されている。弁体14は、円板状をなし、その外周には、シート面17に対応する環状のシール面18が形成される。弁体14は回転軸15に固定され、回転軸15と一体的に回動するようになっている。   As shown in FIGS. 3 and 4, a step portion 10 is formed in the flow path 11, and a valve seat 13 is incorporated in the step portion 10. The valve seat 13 has an annular shape and has a circular or substantially circular valve hole 16 in the center. An annular seat surface 17 is formed at the edge of the valve hole 16. In this embodiment, the valve seat 13 is provided with a rubber seal portion 13a (an example of a “seal member”) for sealing between the valve seat 13 and the valve body 14, and the rubber seal portion 13a has a seat surface. 17 is formed. The valve body 14 has a disc shape, and an annular seal surface 18 corresponding to the seat surface 17 is formed on the outer periphery thereof. The valve body 14 is fixed to the rotary shaft 15 and rotates integrally with the rotary shaft 15.

図3〜図6に示すように、回転軸15の軸線L1は、弁体14及び弁孔16の径方向と平行に伸び、弁孔16の中心P1から弁孔16の径方向へ偏心して配置されると共に、弁体14のシール面18が回転軸15の軸線L1から弁体14の軸線L2が伸びる方向へ偏心して配置される。また、弁体14を回転軸15の軸線L1を中心に回動させることにより、弁体14のシール面18が、弁座13のシート面17に面接触する全閉位置(図3参照)とシート面17から最も離れる全開位置(図4参照)との間で移動可能に構成される。   As shown in FIGS. 3 to 6, the axis L <b> 1 of the rotary shaft 15 extends parallel to the radial direction of the valve body 14 and the valve hole 16, and is eccentrically arranged from the center P <b> 1 of the valve hole 16 to the radial direction of the valve hole 16. At the same time, the sealing surface 18 of the valve body 14 is arranged eccentrically in the direction in which the axis L2 of the valve body 14 extends from the axis L1 of the rotating shaft 15. Further, by rotating the valve body 14 about the axis L1 of the rotary shaft 15, a fully closed position (see FIG. 3) where the seal surface 18 of the valve body 14 comes into surface contact with the seat surface 17 of the valve seat 13 is obtained. It is configured to be movable between a fully open position (see FIG. 4) farthest from the sheet surface 17.

この実施形態では、図6において、全閉位置から弁体14が開弁方向(図6に示す矢印F1の方向、すなわち図6において時計方向)へ回動し始めると同時に、弁体14のシール面18が弁座13のシート面17から離れ始めると共に回転軸15の軸線L1を中心とする回動軌跡T1,T2に沿って移動し始めるようになっている。   In this embodiment, in FIG. 6, the valve body 14 starts to rotate in the valve opening direction (the direction of the arrow F1 shown in FIG. 6, ie, the clockwise direction in FIG. 6) from the fully closed position, and at the same time the seal of the valve body 14 The surface 18 starts to move away from the seat surface 17 of the valve seat 13 and starts to move along the rotation trajectories T1 and T2 about the axis L1 of the rotation shaft 15.

図5と図6に示すように、弁体14は、その上側の板面14aから突出し回転軸15に固定される山形状の固定部14bを含む。この固定部14bは回転軸15の軸線L1から回転軸15の径方向へずれた位置にて、回転軸15の先端から突出するピン15aを介して回転軸15に固定される。また、図6に示すように、固定部14bは、弁体14の軸線L2上に配置され、固定部14bを含む弁体14が、弁体14の軸線L2を中心に左右対称形状をなすように形成される。   As shown in FIGS. 5 and 6, the valve body 14 includes a mountain-shaped fixing portion 14 b that protrudes from the upper plate surface 14 a and is fixed to the rotating shaft 15. The fixing portion 14b is fixed to the rotating shaft 15 via a pin 15a protruding from the tip of the rotating shaft 15 at a position shifted from the axis L1 of the rotating shaft 15 in the radial direction of the rotating shaft 15. In addition, as shown in FIG. 6, the fixed portion 14 b is disposed on the axis L <b> 2 of the valve body 14, and the valve body 14 including the fixed portion 14 b has a bilaterally symmetric shape about the axis L <b> 2 of the valve body 14. Formed.

図1に示すエア系113において、燃料電池スタック111の上流には、コンプレッサ172等、洗浄しても完全に異物を除去出来ない部品が存在する。そのため、微少な異物(数百μmの大きさの異物)が、入口封止弁174や出口統合弁181における弁座13と弁体14の間に噛み込む可能性がある。したがって、入口封止弁174や出口統合弁181に異物が噛み込まれても弁体14が全閉位置にある全閉状態においてエアの洩れをゼロに維持するためには、弁座13のゴムシール部13aと弁体14が接触する部分の幅であるシール幅を異物の大きさ(数百μm)以上確保する必要がある。すると、必然的に、ゴムシール部13aと弁体14の摺動範囲(摺動抵抗)が大きくなって、図20に示すように、ゴムシール部13aが捩れて、これに伴い、全閉状態におけるゴムシール部13aの変位量は大きくなる。そのため、全閉状態におけるゴムシール部13aと弁体14の接地状態が不安定になる。したがって、全閉状態において、ゴムシール部13aと弁体14の接地不良により、エア洩れ(ガス洩れ)が発生し易くなる。   In the air system 113 shown in FIG. 1, there are parts such as a compressor 172 that cannot completely remove foreign matter even after cleaning, upstream of the fuel cell stack 111. Therefore, there is a possibility that minute foreign matter (foreign matter having a size of several hundred μm) may be caught between the valve seat 13 and the valve body 14 in the inlet sealing valve 174 or the outlet integrated valve 181. Therefore, in order to maintain zero air leakage in the fully closed state in which the valve body 14 is in the fully closed position even if foreign matter is caught in the inlet sealing valve 174 or the outlet integrated valve 181, the rubber seal of the valve seat 13 is used. It is necessary to secure the seal width, which is the width of the portion where the portion 13a and the valve body 14 are in contact, to be equal to or greater than the size of foreign matter (several hundreds of micrometers). Then, the sliding range (sliding resistance) between the rubber seal portion 13a and the valve element 14 is inevitably increased, and the rubber seal portion 13a is twisted as shown in FIG. The amount of displacement of the portion 13a increases. Therefore, the ground contact state of the rubber seal portion 13a and the valve body 14 in the fully closed state becomes unstable. Accordingly, in the fully closed state, air leakage (gas leakage) is likely to occur due to poor grounding between the rubber seal portion 13a and the valve body 14.

そこで、本実施形態では、このような全閉状態におけるエア洩れを防ぐために、開弁状態の入口封止弁174が閉弁する時に、コントローラ201は、図7に示す制御フローチャートに基づく制御を実行する。   Therefore, in the present embodiment, in order to prevent such air leakage in the fully closed state, the controller 201 executes control based on the control flowchart shown in FIG. 7 when the valve-opened inlet sealing valve 174 is closed. To do.

まず、図7に示すように、入口封止弁174による封止要求の有無を判断する(ステップS1)。そして、入口封止弁174による封止要求が有る場合(ステップS1:YES)には、入口封止弁174の開度ta_inを取り込む(ステップS2)。開度ta_inは、入口封止弁174の実開度(現在の開度)であり、例えば、入口封止弁174に設けられた開度センサ(不図示)により検出される。   First, as shown in FIG. 7, it is determined whether or not there is a sealing request by the inlet sealing valve 174 (step S1). If there is a request for sealing by the inlet sealing valve 174 (step S1: YES), the opening degree ta_in of the inlet sealing valve 174 is taken in (step S2). The opening degree ta_in is the actual opening degree (current opening degree) of the inlet sealing valve 174, and is detected by, for example, an opening degree sensor (not shown) provided in the inlet sealing valve 174.

次に、開度ta_inが所定開度αよりも小さいか否かを判断する(ステップS3)。ここで、所定開度αは、弁体14と弁座13のゴムシール部13aとが接触する(摺動する)開度であり、例えば、8°である。   Next, it is determined whether the opening degree ta_in is smaller than the predetermined opening degree α (step S3). Here, the predetermined opening degree α is an opening degree at which the valve body 14 and the rubber seal portion 13a of the valve seat 13 are in contact (sliding), and is, for example, 8 °.

そして、開度ta_inが所定開度αよりも小さい場合(ステップS3:YES)には、後述する開閉繰り返し制御を行うため、開閉繰り返し制御の開始時の入口封止弁174の開度として、現在の開度ta_inを開度TA_IN(i)として記憶する(ステップS5)。   When the opening degree ta_in is smaller than the predetermined opening degree α (step S3: YES), the opening / closing repetition control described later is performed, so that the opening degree of the inlet sealing valve 174 at the start of the opening / closing repetition control is set as the current opening degree. Is stored as the opening degree TA_IN (i) (step S5).

一方、開度ta_inが所定開度α以上である場合(ステップS3:NO)には、開度ta_inが所定開度αよりも小さくなるまで、入口封止弁174を閉弁する制御を実施した(ステップS4)後、開度TA_IN(i)を記憶する(ステップS5)。   On the other hand, when the opening degree ta_in is equal to or larger than the predetermined opening degree α (step S3: NO), control is performed to close the inlet sealing valve 174 until the opening degree ta_in becomes smaller than the predetermined opening degree α. After (Step S4), the opening degree TA_IN (i) is stored (Step S5).

次に、開閉繰り返し制御として、まず、入口封止弁174の開弁制御を実施する(ステップS6)ことにより、弁体14とゴムシール部13aとを摺動させながら弁体14を開弁方向へ移動させる。そして、開度ta_inを取り込み(ステップS7)、開度ta_inが開度(TA_IN(i)+A)よりも大きいか否かを判断する(ステップS8)。そして、開度ta_inが開度(TA_IN(i)+A)よりも大きくなる(ステップS8:YES)まで、入口封止弁174の開弁制御を実施して(ステップS6)、開度ta_inを取り込む(ステップS7)。ここで、開度変化量Aは、入口封止弁174における弁体14の開弁方向の移動量であり、すなわち、入口封止弁174の開弁制御を実施して弁体14を開弁方向へ移動させるときの開度変化量(上流側弁の開弁時の開度変化量)である。そして、開度(TA_IN(i)+A)は、入口封止弁174の開弁制御を実施して弁体14を開弁方向へ移動させるときの目標開度である。なお、開度変化量Aは、例えば、2°である。   Next, as opening / closing repetition control, first, the valve opening control of the inlet sealing valve 174 is performed (step S6), and the valve body 14 is moved in the valve opening direction while sliding the valve body 14 and the rubber seal portion 13a. Move. Then, the opening degree ta_in is taken in (step S7), and it is determined whether or not the opening degree ta_in is larger than the opening degree (TA_IN (i) + A) (step S8). Then, until the opening degree ta_in becomes larger than the opening degree (TA_IN (i) + A) (step S8: YES), the valve opening control of the inlet sealing valve 174 is performed (step S6), and the opening degree ta_in is taken in. (Step S7). Here, the opening degree change amount A is a movement amount of the valve body 14 in the valve opening direction in the inlet sealing valve 174, that is, the valve body 14 is opened by performing valve opening control of the inlet sealing valve 174. The amount of change in opening when moving in the direction (the amount of change in opening when the upstream valve is opened). The opening degree (TA_IN (i) + A) is a target opening degree when valve opening control of the inlet sealing valve 174 is performed to move the valve body 14 in the valve opening direction. The opening change amount A is, for example, 2 °.

そして、開度ta_inが開度(TA_IN(i)+A)よりも大きくなったら(ステップS8:YES)、入口封止弁174の閉弁制御を実施する(ステップS9)ことにより、弁体14とゴムシール部13aとを摺動させながら弁体14を閉弁方向へ移動させる。このようにして、弁体14を開度変化量A分の開度幅について開弁方向へ移動させたら、弁体14を閉弁方向へ移動させる。   Then, when the opening degree ta_in is larger than the opening degree (TA_IN (i) + A) (step S8: YES), the valve closing control of the inlet sealing valve 174 is performed (step S9). The valve body 14 is moved in the valve closing direction while sliding the rubber seal portion 13a. Thus, if the valve body 14 is moved in the valve opening direction for the opening width corresponding to the opening change amount A, the valve body 14 is moved in the valve closing direction.

また、このとき、以下の数式に示すように、開度TA_IN(i)を更新する(ステップS10)。ここで、開度変化量Bは、入口封止弁174における弁体14の閉弁方向の移動量であり、すなわち、入口封止弁174の閉弁制御を実施して弁体14を閉弁方向へ移動させるときの開度変化量(上流側弁の閉弁時の開度変化量)である。そして、開度(TA_IN(i−1)−B)は、入口封止弁174の閉弁制御を実施して弁体14を閉弁方向へ移動させるときの目標開度である。なお、開度変化量Bは、開度変化量Aよりも大きく、例えば、3°である。
[数1]
TA_IN(i)←TA_IN(i−1)−B
At this time, as shown in the following formula, the opening degree TA_IN (i) is updated (step S10). Here, the opening change amount B is the amount of movement of the valve body 14 in the valve closing direction of the inlet sealing valve 174, that is, the valve body 14 is closed by performing the valve closing control of the inlet sealing valve 174. The amount of change in opening when moving in the direction (the amount of change in opening when the upstream valve is closed). The opening degree (TA_IN (i-1) -B) is a target opening degree when the valve closing control of the inlet sealing valve 174 is performed to move the valve element 14 in the valve closing direction. The opening change amount B is larger than the opening change amount A, for example, 3 °.
[Equation 1]
TA_IN (i) <-TA_IN (i-1) -B

次に、開度TA_IN(i)が0°以上であるか否かを判断する(ステップS11)。すなわち、開度TA_IN(i)が、入口封止弁174の全閉状態における開度よりも大きい否かを判断する。さらに言い換えると、入口封止弁174が全閉状態になったか否かを判断する。   Next, it is determined whether the opening degree TA_IN (i) is 0 ° or more (step S11). That is, it is determined whether or not the opening degree TA_IN (i) is larger than the opening degree of the inlet sealing valve 174 in the fully closed state. In other words, it is determined whether or not the inlet sealing valve 174 has been fully closed.

そして、開度TA_IN(i)が0°以上である場合(ステップS11:YES)には、開閉繰り返し制御を継続させる。そこで、開度ta_inを取り込み(ステップS12)、開度ta_inが開度TA_IN(i)よりも小さくなったら(ステップS13:YES)、ステップS6の処理に戻って、入口封止弁174を開弁する。このようにして、弁体14を開度変化量B分の開度幅について閉弁方向へ移動させたら、弁体14を開弁方向へ移動させる。   And when opening degree TA_IN (i) is 0 degree or more (step S11: YES), opening / closing repetition control is continued. Therefore, the opening degree ta_in is taken in (step S12), and when the opening degree ta_in becomes smaller than the opening degree TA_IN (i) (step S13: YES), the process returns to step S6 and the inlet sealing valve 174 is opened. To do. Thus, if the valve body 14 is moved in the valve closing direction for the opening width corresponding to the opening change amount B, the valve body 14 is moved in the valve opening direction.

このようにして、本実施形態では、入口封止弁174による封止要求があり入口封止弁174を閉弁するときに、入口封止弁174を全閉状態にする手前で、開閉繰り返し制御(「開閉制御」の一例)を行う。ここで、開閉繰り返し制御は、弁体14とゴムシール部13aとを摺動させた状態で、弁体14を開弁方向と閉弁方向へ繰り返し移動させる制御である。そして、このとき詳しくは、弁体14の開弁方向の移動量(開度変化量A)よりも弁体14の閉弁方向の移動量(開度変化量B)を大きくして、弁体14を閉弁方向に徐々に推移させながら、弁体14を開弁方向と閉弁方向へ繰り返し移動させる。   In this way, in this embodiment, when there is a request for sealing by the inlet sealing valve 174, when the inlet sealing valve 174 is closed, the opening / closing repeated control is performed before the inlet sealing valve 174 is fully closed. (An example of “open / close control”). Here, the repeated opening / closing control is control in which the valve body 14 is repeatedly moved in the valve opening direction and the valve closing direction in a state where the valve body 14 and the rubber seal portion 13a are slid. More specifically, at this time, the valve element 14 is moved in the valve closing direction (opening amount change amount B) larger than the valve element 14 moving amount in the valve opening direction (opening degree change amount A). The valve body 14 is repeatedly moved in the valve opening direction and the valve closing direction while gradually shifting the valve 14 in the valve closing direction.

一方、ステップS11において、開度TA_IN(i)が0°未満である場合(ステップS11:NO)には、開閉繰り返し制御を完了させるため、開度ta_inが0以下になったら(ステップS14,ステップS15:YES)、入口封止弁174の封止閉弁制御(開閉繰り返し制御)を完了させる(ステップS16)。このようにして、コントローラ201は、開閉繰り返し制御を行った後に、入口封止弁174を全閉状態にする。   On the other hand, in step S11, when the opening degree TA_IN (i) is less than 0 ° (step S11: NO), in order to complete the opening / closing repeated control, the opening degree ta_in becomes 0 or less (step S14, step S14). S15: YES), the sealing valve closing control (opening / closing repetition control) of the inlet sealing valve 174 is completed (step S16). In this way, the controller 201 fully closes the inlet sealing valve 174 after performing repeated opening / closing control.

また、このような入口封止弁174に関する制御は、図8に示すように、出口統合弁181に関する制御においても、適用できる。   Further, such control related to the inlet sealing valve 174 can also be applied to control related to the outlet integrated valve 181 as shown in FIG.

図8に示す制御は、図7に示す制御と異なる点として、開度ta_inが開度ta_outとなり、開度TA_IN(i)が開度TA_OUT(i)となり、所定開度αが所定開度β(例えば、6°)となる。また、開度変化量Aが開度変化量C(下流側弁の開弁時の開度変化量)(例えば、3°)となり、開度変化量Bが開度変化量D(下流側弁の閉弁時の開度変化量)(例えば、5°)となる。なお、α>βであり、A<Cであり、B<Dであり、C<Dである。それ以外については、共通するので、説明を省略する。   The control shown in FIG. 8 differs from the control shown in FIG. 7 in that the opening degree ta_in becomes the opening degree ta_out, the opening degree TA_IN (i) becomes the opening degree TA_OUT (i), and the predetermined opening degree α becomes the predetermined opening degree β. (For example, 6 °). Further, the opening change amount A becomes an opening change amount C (opening amount change amount when the downstream valve is opened) (for example, 3 °), and the opening change amount B becomes an opening change amount D (downstream valve). (Amount of change in opening when the valve is closed) (for example, 5 °). Note that α> β, A <C, B <D, and C <D. The rest is common and will not be described.

上記の制御フローチャートに基づく制御が実行されることにより、例えば、図9に示すような制御タイムチャートで表される制御が実行される。図9に示すように、入口封止弁174(図中、一部、点線で示す)について、開度ta_inが所定開度α未満になり、その後、開閉繰り返し制御が行われた後、全閉状態になる。また、出口統合弁181について、開度ta_inが所定開度β未満になり、その後、開閉繰り返し制御が行われた後、全閉状態になる。   By executing the control based on the above control flowchart, for example, the control represented by the control time chart as shown in FIG. 9 is executed. As shown in FIG. 9, with respect to the inlet sealing valve 174 (partially indicated by a dotted line in the figure), the opening degree ta_in becomes less than the predetermined opening degree α, and then the opening / closing repeated control is performed, and then the valve is fully closed. It becomes a state. Further, the outlet integrated valve 181 is fully closed after the opening degree ta_in is less than the predetermined opening degree β, and thereafter the opening / closing repeated control is performed.

以上のように本実施形態によれば、コントローラ201は、入口封止弁174(出口統合弁181)による封止要求があるときに、開閉繰り返し制御を行った後に、入口封止弁174(出口統合弁181)を全閉状態にする。   As described above, according to the present embodiment, the controller 201 performs the opening / closing repetition control when there is a sealing request by the inlet sealing valve 174 (outlet integrated valve 181), and then performs the inlet sealing valve 174 (outlet). The integrated valve 181) is fully closed.

このようにして、開弁状態の入口封止弁174(出口統合弁181)を閉弁させて全閉状態にするまでに、弁体14と弁座13のゴムシール部13aとを摺動させながら、弁体14を開弁方向と閉弁方向へ繰り返し移動させて、徐々に開度が小さくなるように制御する。これにより、ゴムシール部13aの捩れを解消(抑制)させて、ゴムシール部13aの変位量を緩和しながら、図10に示すように、シート面17を平面にして、入口封止弁174(出口統合弁181)を全閉状態にすることができる。そして、これにより、入口封止弁174(出口統合弁181)の全閉状態における弁体14とゴムシール部13aの接地状態が安定する。そのため、弁体14とゴムシール部13aの間において、シール幅の確保と接地状態の安定化の両立を図ることができる。したがって、入口封止弁174(出口統合弁181)を全閉状態にしたときに、弁体14とゴムシール部13aとの間において、封止性が向上し、エア洩れを防ぐことができる。   In this way, the valve body 14 and the rubber seal portion 13a of the valve seat 13 are slid until the inlet sealing valve 174 (exit integrated valve 181) in the opened state is closed and fully closed. Then, the valve body 14 is repeatedly moved in the valve opening direction and the valve closing direction, and the opening degree is controlled to be gradually reduced. Accordingly, the twist of the rubber seal portion 13a is eliminated (suppressed) and the displacement amount of the rubber seal portion 13a is reduced, and the seat surface 17 is made flat as shown in FIG. The valve 181) can be fully closed. As a result, the grounding state of the valve body 14 and the rubber seal portion 13a in the fully closed state of the inlet sealing valve 174 (outlet integrated valve 181) is stabilized. Therefore, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body 14 and the rubber seal portion 13a. Therefore, when the inlet sealing valve 174 (outlet integrated valve 181) is fully closed, sealing performance is improved between the valve body 14 and the rubber seal portion 13a, and air leakage can be prevented.

ここで、入口封止弁174は燃料電池システム101の外部から取り込まれるエアが流れるエア供給通路161に設けられており、エア排出通路162に設けられ燃料電池スタック111で生成された水(生成水)が付着しうる出口統合弁181よりも乾燥状態になり易い。そのため、入口封止弁174において、弁体14とゴムシール部13aとの間の摩擦抵抗(摺動抵抗)は、出口統合弁181に比べて大きくなり易い。   Here, the inlet sealing valve 174 is provided in an air supply passage 161 through which air taken in from the outside of the fuel cell system 101 flows, and is provided in the air discharge passage 162 and is generated in the fuel cell stack 111 (generated water). ) Is more likely to be in a dry state than the outlet integrated valve 181 that may adhere thereto. Therefore, in the inlet sealing valve 174, the frictional resistance (sliding resistance) between the valve body 14 and the rubber seal portion 13a is likely to be larger than that of the outlet integrated valve 181.

そこで、本実施形態では、コントローラ201は、入口封止弁174にて弁体14を開弁方向へ移動させるときの開度変化量Aを、出口統合弁181にて弁体14を開弁方向へ移動させるときの開度変化量Cよりも小さくする。また、コントローラ201は、入口封止弁174にて弁体14を閉弁方向へ移動させるときの開度変化量Bを、出口統合弁181にて弁体14を閉弁方向へ移動させるときの開度変化量Dよりも小さくする。そして、図9に示すように、コントローラ201は、入口封止弁174にて弁体14を開弁方向と閉弁方向へ移動させる開閉回数(上流側弁開閉回数)を、出口統合弁181にて弁体14を開弁方向と閉弁方向へ移動させる開閉回数(下流側弁開閉回数)よりも多くする。   Therefore, in the present embodiment, the controller 201 uses the opening change amount A when the valve element 14 is moved in the valve opening direction by the inlet sealing valve 174, and the valve element 14 is opened by the outlet integrated valve 181. It is made smaller than the opening degree change amount C when moving to. Further, the controller 201 uses the opening degree change amount B when the valve body 14 is moved in the valve closing direction by the inlet sealing valve 174, and is used when the valve body 14 is moved in the valve closing direction by the outlet integrated valve 181. The opening degree change amount D is made smaller. Then, as shown in FIG. 9, the controller 201 gives the outlet integrated valve 181 the number of opening / closing operations (upstream valve opening / closing frequency) for moving the valve element 14 in the valve opening direction and the valve closing direction by the inlet sealing valve 174. Thus, the number of opening / closing operations for moving the valve body 14 in the valve opening direction and the valve closing direction (the number of downstream valve opening / closing operations) is increased.

これにより、乾燥状態になり易い入口封止弁174について、出口統合弁181よりも小刻みに開閉させながら徐々に閉弁させて全閉状態にすることができるので、シール部材の捩れを解消(抑制)させることができる。そのため、出口統合弁181と同様に入口封止弁174の全閉状態における弁体14とゴムシール部13aの接地状態が安定する。   As a result, the inlet sealing valve 174 that is likely to be in a dry state can be gradually closed while being opened / closed in smaller increments than the outlet integrated valve 181 so as to be fully closed. ). Therefore, similarly to the outlet integrated valve 181, the grounding state of the valve body 14 and the rubber seal portion 13a in the fully closed state of the inlet sealing valve 174 is stabilized.

<第2実施形態>
次に、第2実施形態について説明するが、第1実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。
Second Embodiment
Next, the second embodiment will be described. The same components as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different points will be mainly described.

本実施形態では、前記の第1実施形態の制御とともに、後述する全閉保持Duty制御(「全閉保持制御」の一例)と全閉Duty0%(カット)制御(「全閉保持解除制御」の一例)とを繰り返し行う制御が行われる。具体的には、コントローラ201は、図11に示す制御フローチャートに基づく制御を実行する。   In the present embodiment, in addition to the control of the first embodiment, a fully-closed hold duty control (an example of “fully closed hold control”) and a fully closed duty 0% (cut) control (“fully closed hold release control”), which will be described later, are performed. (Example) is repeatedly performed. Specifically, the controller 201 executes control based on the control flowchart shown in FIG.

図11に示すように、入口封止弁174による封止要求の有無を判断する(ステップS201)。そして、入口封止弁174による封止要求が有る場合(ステップS201:YES)には、入口封止弁174について開閉繰り返し制御(前記の図7に示す制御)が完了したか否かを判断する(ステップS202)。   As shown in FIG. 11, it is determined whether or not there is a sealing request by the inlet sealing valve 174 (step S201). If there is a request for sealing by the inlet sealing valve 174 (step S201: YES), it is determined whether or not the opening / closing repeated control (the control shown in FIG. 7) has been completed for the inlet sealing valve 174. (Step S202).

そして、入口封止弁174について開閉繰り返し制御が完了した場合(ステップS202:YES)、すなわち、開閉繰り返し制御が完了して入口封止弁174が全閉状態になった場合には、印加オンオフ回数n(i)が所定回数E以上であるか否かを判断する(ステップS203)。ここで、印加オンオフ回数n(i)とは、入口封止弁174における弁体14の駆動部に対する電圧の印加のオンとオフの回数である。   When the opening / closing repetition control is completed for the inlet sealing valve 174 (step S202: YES), that is, when the opening / closing repetition control is completed and the inlet sealing valve 174 is fully closed, the number of applied on / off times It is determined whether n (i) is equal to or greater than a predetermined number E (step S203). Here, the number of applied on / off times n (i) is the number of on / off times of voltage application to the drive unit of the valve body 14 in the inlet sealing valve 174.

そして、印加オンオフ回数n(i)が所定回数E未満である場合(ステップS203:NO)には、全閉保持Duty制御を実行した(ステップS204)後に、全閉Duty0%制御を100ms実行する(ステップS205)。ここで、全閉保持Duty制御は、弁体14をゴムシール部13aに押し付ける方向に作用させる制御であり、例えば、弁体14の駆動部(例えば、モータ)に対して電圧がデューティ比(Duty比)100%で100ms(0.1秒)印加される制御である。また、全閉Duty0%制御は、弁体14をゴムシール部13aから離す方向に作用させる制御であり、例えば、弁体14の駆動部に対して電圧が100ms印加されない制御である。   When the number of applied on / off times n (i) is less than the predetermined number E (step S203: NO), the fully-closed hold duty control is executed (step S204), and then the fully-closed duty 0% control is executed for 100 ms (step S204). Step S205). Here, the fully-closed hold duty control is a control that causes the valve body 14 to be pressed in the direction of pressing the rubber seal portion 13a. For example, the voltage is applied to a drive portion (for example, a motor) of the valve body 14 with a duty ratio (Duty ratio). ) 100% (100 seconds (0.1 second) applied control). Further, the fully closed duty 0% control is a control in which the valve body 14 is actuated in a direction away from the rubber seal portion 13a. For example, the voltage is not applied to the drive portion of the valve body 14 for 100 ms.

次に、印加オンオフ回数n(i)を以下の数式に示すようにして1回分増加させて(ステップS206)、ステップS203の処理に戻る。
[数2]
n(i)←n(i−1)+1
Next, the application ON / OFF count n (i) is increased by one as shown in the following equation (step S206), and the process returns to step S203.
[Equation 2]
n (i) ← n (i−1) +1

そして、印加オンオフ回数n(i)が所定回数E以上になったら(ステップS203:YES)、入口封止弁174の封止閉弁制御を完了する(ステップS207)。   When the application ON / OFF count n (i) becomes equal to or greater than the predetermined count E (step S203: YES), the sealing valve closing control of the inlet sealing valve 174 is completed (step S207).

なお、ステップS201において入口封止弁174による封止要求が無い場合(ステップS201:NO)には、通常の入口封止弁174の制御ルーチンの処理へ移行する。また、ステップS202において入口封止弁174の開閉繰り返し制御が未完了である場合(ステップS202:NO)には、印加オンオフ回数n(i)を「0」として(ステップS208)、入口封止弁174の開閉繰り返し制御ルーチンの処理へ移行する。   If there is no request for sealing by the inlet sealing valve 174 in step S201 (step S201: NO), the routine proceeds to the processing of the normal control routine for the inlet sealing valve 174. If the opening / closing repeated control of the inlet sealing valve 174 is not completed in step S202 (step S202: NO), the application ON / OFF count n (i) is set to “0” (step S208), and the inlet sealing valve is set. The process proceeds to the process of the open / close repetitive control routine of 174.

上記の制御フローチャートに基づく制御が実行されることにより、例えば、図12に示すような制御タイムチャートで表される制御が実行される。図12に示すように、時刻t1で、開閉繰り返し制御が完了して、その後、時刻t2まで、全閉保持Duty制御と全閉Duty0%制御が所定回数E(図12では一例として、4回)分繰り返し行われる。   By executing the control based on the above control flowchart, for example, the control represented by the control time chart as shown in FIG. 12 is executed. As shown in FIG. 12, the opening / closing repetition control is completed at time t1, and then the fully-closed hold duty control and the fully-closed duty 0% control are performed a predetermined number of times E (four times as an example in FIG. 12) until time t2. Repeated for minutes.

また、このような入口封止弁174に関する制御は、図14に示すように、出口統合弁181に関する制御においても、適用できる。   Further, such control related to the inlet sealing valve 174 can be applied to control related to the outlet integrated valve 181 as shown in FIG.

図14に示す制御は、図11に示す制御と異なる点として、所定回数Eが所定回数Fとなる。なお、E>Fである。それ以外については、共通するので、説明を省略する。   The control shown in FIG. 14 is different from the control shown in FIG. Note that E> F. The rest is common and will not be described.

上記の制御フローチャートに基づく制御が実行されることにより、例えば、図15に示すような制御タイムチャートで表される制御が実行される。図15に示すように、時刻t1で開閉繰り返し制御が完了して、その後、時刻t2まで、全閉保持Duty制御と全閉Duty0%制御が所定回数F(図15では一例として、3回)分繰り返し行われる。   By executing the control based on the above control flowchart, for example, the control represented by the control time chart as shown in FIG. 15 is executed. As shown in FIG. 15, the opening / closing repetition control is completed at time t1, and then the fully-closed hold duty control and the fully-closed duty 0% control are performed a predetermined number of times F (three times as an example in FIG. 15) until time t2. Repeatedly.

以上のように本実施形態によれば、コントローラ201は、入口封止弁174(出口統合弁181)を全閉状態にした後に、全閉保持Duty制御と全閉Duty0%制御とを繰り返し行う。   As described above, according to the present embodiment, the controller 201 repeatedly performs the fully-closed hold duty control and the fully-closed duty 0% control after the inlet seal valve 174 (outlet integrated valve 181) is fully closed.

このようにして、入口封止弁174(出口統合弁181)を全閉状態にした後に、全閉保持Duty制御と全閉Duty0%制御とを繰り返し行うことで、ゴムシール部13aの捩れを解消(抑制)させることができる。これにより、入口封止弁174(出口統合弁181)の全閉状態における弁体14とゴムシール部13aの接地状態が安定する。そのため、弁体14とゴムシール部13aの間において、シール幅の確保と接地状態の安定化の両立を図ることができる。したがって、入口封止弁174(出口統合弁181)を全閉状態にしたときに、弁体14とゴムシール部13aとの間において、封止性が向上し、エア洩れを防ぐことができる。   In this way, after the inlet sealing valve 174 (outlet integrated valve 181) is fully closed, the fully-closed hold duty control and the fully-closed duty 0% control are repeatedly performed to eliminate the twist of the rubber seal portion 13a ( Suppression). Thereby, the grounding state of the valve body 14 and the rubber seal part 13a in the fully closed state of the inlet sealing valve 174 (outlet integrated valve 181) is stabilized. Therefore, it is possible to achieve both the securing of the seal width and the stabilization of the ground contact state between the valve body 14 and the rubber seal portion 13a. Therefore, when the inlet sealing valve 174 (outlet integrated valve 181) is fully closed, sealing performance is improved between the valve body 14 and the rubber seal portion 13a, and air leakage can be prevented.

すなわち、図13に示すように、入口封止弁174や出口統合弁181について、全閉状態における弁体14とゴムシール部13aの接地状態が安定し、弁体14とゴムシール部13aの間におけるエア洩れが発生しない。   That is, as shown in FIG. 13, with respect to the inlet sealing valve 174 and the outlet integrated valve 181, the grounding state of the valve body 14 and the rubber seal portion 13a in the fully closed state is stabilized, and the air between the valve body 14 and the rubber seal portion 13a is stabilized. There is no leakage.

ここで、入口封止弁174は、前記のように、出口統合弁181よりも乾燥状態になり易い。そのため、入口封止弁174において、弁体14とゴムシール部13aとの間の摩擦抵抗(摺動抵抗)は、出口統合弁181に比べて大きくなり易い。そこで、本実施形態では、所定回数Eを所定回数Fよりも多くする。すなわち、入口封止弁174にて全閉保持Duty制御と全閉Duty0%制御を行う回数(上流側弁の全閉保持解除回数)を、出口統合弁181にて全閉保持Duty制御と全閉Duty0%制御を行う回数(下流側弁の全閉保持解除回数)よりも多くする。   Here, the inlet sealing valve 174 is more likely to be dry than the outlet integrated valve 181 as described above. Therefore, in the inlet sealing valve 174, the frictional resistance (sliding resistance) between the valve body 14 and the rubber seal portion 13a is likely to be larger than that of the outlet integrated valve 181. Therefore, in the present embodiment, the predetermined number E is made larger than the predetermined number F. That is, the number of times that the fully-closed hold duty control and the fully-closed duty 0% control are performed at the inlet sealing valve 174 (the number of times when the upstream valve is fully closed and held is released) and the fully integrated hold duty control and the fully closed state at the outlet integrated valve 181 are set. More than the number of times Duty 0% control is performed (the number of times the downstream valve is fully closed).

これにより、入口封止弁174について、出口統合弁181よりも多くの回数について弁体14とゴムシール部13aを摺動させて全閉状態にすることができるので、出口統合弁181と同様に入口封止弁174についてもゴムシール部13aの捩れを解消させることができる。そのため、入口封止弁174と出口統合弁181の全閉状態における弁体14とゴムシール部13aの接地状態が安定する。   As a result, the inlet sealing valve 174 can be fully closed by sliding the valve body 14 and the rubber seal portion 13a more times than the outlet integrated valve 181. The sealing valve 174 can also eliminate the twist of the rubber seal portion 13a. Therefore, the grounding state of the valve body 14 and the rubber seal portion 13a in the fully closed state of the inlet sealing valve 174 and the outlet integrated valve 181 is stabilized.

<第3実施形態>
次に、第3実施形態について説明するが、第1,2実施形態と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。
<Third Embodiment>
Next, the third embodiment will be described. The same components as those in the first and second embodiments are denoted by the same reference numerals, description thereof will be omitted, and different points will be mainly described.

本実施形態では、前記の第2実施形態で行う制御のうち、全閉保持Duty制御と全閉Duty0%制御を繰り返し行う制御が単独で行われる。具体的には、コントローラ201は、図16に示す制御フローチャートに基づく制御を実行する。   In the present embodiment, among the controls performed in the second embodiment, the control for repeatedly performing the fully closed duty control and the fully closed duty 0% control is performed independently. Specifically, the controller 201 executes control based on the control flowchart shown in FIG.

まず、図16に示すように、入口封止弁174による封止要求の有無を判断する(ステップS401)。そして、入口封止弁174による封止要求が有る場合(ステップS401:YES)には、開弁状態の入口封止弁174を閉弁する制御を行う(ステップS402)。そして、入口封止弁174が全閉状態になった(ステップS403:YES)後に、全閉保持Duty制御と全閉Duty0%制御とを所定回数E分繰り返し行ったら(ステップS404〜S407)、入口封止弁174の封止閉弁制御を完了する(ステップS408)。   First, as shown in FIG. 16, it is determined whether or not there is a sealing request by the inlet sealing valve 174 (step S401). When there is a request for sealing by the inlet sealing valve 174 (step S401: YES), control is performed to close the inlet sealing valve 174 in the opened state (step S402). Then, after the inlet sealing valve 174 is in the fully closed state (step S403: YES), when the fully closed hold duty control and the fully closed duty 0% control are repeated for a predetermined number of times E (steps S404 to S407), the inlet The sealing valve closing control of the sealing valve 174 is completed (step S408).

上記の制御フローチャートに基づく制御が実行されることにより、例えば、図17に示すような制御タイムチャートで表される制御が実行される。図17に示すように、時刻t1で入口封止弁174が全閉状態になると、時刻t2から時刻t3まで全閉保持Duty制御と全閉Dutyカット制御が繰り返し行われる。   By executing the control based on the above control flowchart, for example, the control represented by the control time chart as shown in FIG. 17 is executed. As shown in FIG. 17, when the inlet sealing valve 174 is fully closed at time t1, the fully closed hold duty control and the fully closed duty cut control are repeatedly performed from time t2 to time t3.

また、このような入口封止弁174に関する制御は、図18に示すように、出口統合弁181に関する制御においても、適用できる。   Further, such control related to the inlet sealing valve 174 can be applied to control related to the outlet integrated valve 181 as shown in FIG.

図18に示す制御は、図16に示す制御と異なる点として、所定回数Eが所定回数Fとなる。それ以外については、共通するので、説明を省略する。   The control shown in FIG. 18 is different from the control shown in FIG. The rest is common and will not be described.

上記の制御フローチャートに基づく制御が実行されることにより、例えば、図19に示すような制御タイムチャートで表される制御が実行される。図19に示すように、時刻t1で出口統合弁181が全閉状態になると、時刻t2から時刻t3まで全閉保持Duty制御と全閉Dutyカット制御が繰り返し行われる。   By executing the control based on the above control flowchart, for example, the control represented by the control time chart as shown in FIG. 19 is executed. As shown in FIG. 19, when the outlet integrated valve 181 enters the fully closed state at time t1, the fully closed hold duty control and the fully closed duty cut control are repeatedly performed from time t2 to time t3.

なお、上記した実施の形態は単なる例示にすぎず、本開示を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。   It should be noted that the above-described embodiment is merely an example, and does not limit the present disclosure in any way, and various improvements and modifications can be made without departing from the scope of the present invention.

例えば、前記のように弁座13にゴムシール部13aが設けられている代わりに、弁体14にゴムシール部が設けられていてもよい。また、前記の制御フローチャートに基づく制御は、バイパス弁191に適用してもよい。また、弁体14と弁座13の位置を入れ替えて、全閉保持Duty制御について弁体14を弁座13のゴムシール部13aから離す方向に作用させる制御とし、全閉Duty0%制御について弁体14を弁座13のゴムシール部13aに押し付ける方向に作用させる制御としてもよい。また、弁体14を開弁方向と閉弁方向へ1回のみ移動させる制御(「開閉制御」の一例)を行うとしてもよい。また、全閉保持Duty制御と全閉Duty0%制御を1回のみ行うとしてもよい。   For example, instead of providing the rubber seal portion 13a on the valve seat 13 as described above, the valve body 14 may be provided with a rubber seal portion. Further, the control based on the control flowchart may be applied to the bypass valve 191. In addition, the positions of the valve body 14 and the valve seat 13 are exchanged, and the valve body 14 is controlled to operate in the direction of separating the valve body 14 from the rubber seal portion 13a of the valve seat 13 for the fully closed hold duty control, and the valve body 14 for the fully closed duty 0% control. It is good also as control which acts on the rubber seal part 13a of the valve seat 13 in the direction pressed. Further, control (an example of “open / close control”) in which the valve body 14 is moved only once in the valve opening direction and the valve closing direction may be performed. Further, the fully closed hold duty control and the fully closed duty 0% control may be performed only once.

1 流量制御弁
2 弁部
13 弁座
13a ゴムシール部
14 弁体
16 弁孔
17 シート面
18 シール面
101 燃料電池システム
111 燃料電池スタック(燃料電池)
112 水素系
113 エア系
161 エア供給通路
162 エア排出通路
174 入口封止弁
181 出口統合弁
191 バイパス弁
201 コントローラ
ta_in 開度(実開度)
TA_IN(i) 開度
α 所定開度
A 開度変化量
B 開度変化量
ta_out 開度(実開度)
TA_OUT(i) 開度
β 所定開度
C 開度変化量
D 開度変化量
n(i) 印加オンオフ回数
E 所定回数
F 所定回数
t1,t2 時刻
DESCRIPTION OF SYMBOLS 1 Flow control valve 2 Valve part 13 Valve seat 13a Rubber seal part 14 Valve body 16 Valve hole 17 Seat surface 18 Seal surface 101 Fuel cell system 111 Fuel cell stack (fuel cell)
112 Hydrogen system 113 Air system 161 Air supply passage 162 Air discharge passage 174 Inlet sealing valve 181 Outlet integrated valve 191 Bypass valve 201 Controller ta_in Opening (actual opening)
TA_IN (i) Opening α Predetermined opening A Opening change B Opening change ta_out Opening (actual opening)
TA_OUT (i) Opening β Predetermined opening C Opening change amount D Opening change amount n (i) Application ON / OFF count E Predetermined count F Predetermined count t1, t2 Time

Claims (10)

ガスが流れるガス流路と、前記ガス流路を開閉する封止弁と、前記封止弁の開閉動作を制御する制御部とを備える封止弁制御システムにおいて、
前記封止弁は、
弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、
前記制御部は、
前記封止弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記封止弁を全閉状態にすること、
を特徴とする封止弁制御システム。
In a sealing valve control system comprising a gas flow path through which a gas flows, a sealing valve that opens and closes the gas flow path, and a control unit that controls an opening and closing operation of the sealing valve,
The sealing valve is
Either one of the valve seat and the valve body is provided with a seal member for sealing between the valve body and the valve seat,
The controller is
When there is a sealing request by the sealing valve, the valve body is closed more than the amount of movement in the valve opening direction of the valve body in a state where the valve seat or the valve body and the seal member are slid. After opening and closing control to move the valve body in the valve opening direction and the valve closing direction while increasing the amount of movement in the direction, the sealing valve is fully closed;
A sealing valve control system.
請求項1の封止弁制御システムにおいて、
前記開閉制御では、前記弁体を開弁方向と閉弁方向へ繰り返し移動させること、
を特徴とする封止弁制御システム。
The sealing valve control system of claim 1,
In the opening / closing control, the valve body is repeatedly moved in the valve opening direction and the valve closing direction,
A sealing valve control system.
請求項1または2の封止弁制御システムにおいて、
前記制御部は、
前記封止弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行うこと、
を特徴とする封止弁制御システム。
In the sealing valve control system according to claim 1 or 2,
The controller is
After the sealing valve is fully closed, a fully closed holding control that acts in a direction to press the valve body against the valve seat; and a fully closed holding release control that acts in a direction to separate the valve body from the valve seat; Doing,
A sealing valve control system.
請求項3の封止弁制御システムにおいて、
前記制御部は、
前記全閉保持制御と前記全閉保持解除制御とを繰り返し行うこと、
を特徴とする封止弁制御システム。
The sealing valve control system according to claim 3,
The controller is
Repeatedly performing the fully closed holding control and the fully closed holding release control,
A sealing valve control system.
ガスが流れるガス流路と、前記ガス流路を開閉する封止弁と、前記封止弁の開閉動作を制御する制御部とを備える封止弁制御システムにおいて、
前記封止弁は、
弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、
前記制御部は、
前記封止弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行うこと、
を特徴とする封止弁制御システム。
In a sealing valve control system comprising a gas flow path through which a gas flows, a sealing valve that opens and closes the gas flow path, and a control unit that controls an opening and closing operation of the sealing valve,
The sealing valve is
Either one of the valve seat and the valve body is provided with a seal member for sealing between the valve body and the valve seat,
The controller is
After the sealing valve is fully closed, a fully closed holding control that acts in a direction to press the valve body against the valve seat; and a fully closed holding release control that acts in a direction to separate the valve body from the valve seat; Doing,
A sealing valve control system.
請求項5の封止弁制御システムにおいて、
前記制御部は、
前記全閉保持制御と前記全閉保持解除制御とを繰り返し行うこと、
を特徴とする封止弁制御システム。
The sealing valve control system of claim 5,
The controller is
Repeatedly performing the fully closed holding control and the fully closed holding release control,
A sealing valve control system.
燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、
前記上流側弁と前記下流側弁は、
弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、
前記制御部は、
前記上流側弁または前記下流側弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記上流側弁または前記下流側弁を全閉状態にし、
前記上流側弁における前記弁体の開弁方向または閉弁方向の移動量を、前記下流側弁における前記弁体の開弁方向または閉弁方向の移動量よりも小さくすること、
を特徴とする燃料電池システム。
A fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, an upstream valve provided in the oxidant gas supply passage, and an oxidant gas supplied to the fuel cell are discharged. In a fuel cell system having an oxidant gas discharge passage, a downstream valve provided in the oxidant gas discharge passage, and a control unit that performs various controls,
The upstream valve and the downstream valve are:
Either one of the valve seat and the valve body is provided with a seal member for sealing between the valve body and the valve seat,
The controller is
When there is a sealing request by the upstream side valve or the downstream side valve, the valve seat or the valve body and the seal member are slid in a state in which the valve body moves more than the amount of movement in the valve opening direction. After performing open / close control to move the valve body in the valve opening direction and the valve closing direction while increasing the amount of movement in the valve closing direction of the valve body, the upstream valve or the downstream valve is fully closed,
The amount of movement in the valve opening direction or valve closing direction of the valve body in the upstream valve is smaller than the amount of movement in the valve opening direction or valve closing direction of the valve body in the downstream valve;
A fuel cell system.
請求項7の燃料電池システムにおいて、
前記制御部は、
前記上流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数を、前記下流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数よりも多くすること、
を特徴とする燃料電池システム。
The fuel cell system according to claim 7, wherein
The controller is
The number of times of opening and closing that moves the valve body in the valve opening direction and the valve closing direction at the upstream side valve is greater than the number of times of opening and closing that moves the valve body in the valve opening and closing direction at the downstream side valve. about,
A fuel cell system.
燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、
前記上流側弁と前記下流側弁は、
弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、
前記制御部は、
前記上流側弁または前記下流側弁による封止要求があるときに、前記弁座又は前記弁体と前記シール部材とを摺動させた状態で前記弁体の開弁方向の移動量よりも前記弁体の閉弁方向の移動量を大きくしながら前記弁体を開弁方向と閉弁方向へ移動させる開閉制御を行った後に、前記上流側弁または前記下流側弁を全閉状態にし、
前記上流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数を、前記下流側弁にて前記弁体を開弁方向と閉弁方向へ移動させる開閉回数よりも多くすること、
を特徴とする燃料電池システム。
A fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, an upstream valve provided in the oxidant gas supply passage, and an oxidant gas supplied to the fuel cell are discharged. In a fuel cell system having an oxidant gas discharge passage, a downstream valve provided in the oxidant gas discharge passage, and a control unit that performs various controls,
The upstream valve and the downstream valve are:
Either one of the valve seat and the valve body is provided with a seal member for sealing between the valve body and the valve seat,
The controller is
When there is a sealing request by the upstream side valve or the downstream side valve, the valve seat or the valve body and the seal member are slid in a state in which the valve body moves more than the amount of movement in the valve opening direction. After performing open / close control to move the valve body in the valve opening direction and the valve closing direction while increasing the amount of movement in the valve closing direction of the valve body, the upstream valve or the downstream valve is fully closed,
The number of times of opening and closing that moves the valve body in the valve opening direction and the valve closing direction at the upstream side valve is greater than the number of times of opening and closing that moves the valve body in the valve opening and closing direction at the downstream side valve. about,
A fuel cell system.
燃料電池と、前記燃料電池に酸化剤ガスを供給するための酸化剤ガス供給通路と、前記酸化剤ガス供給通路に設けられた上流側弁と、前記燃料電池に供給された酸化剤ガスを排出するための酸化剤ガス排出通路と、前記酸化剤ガス排出通路に設けられた下流側弁と、各種制御を行う制御部と、を有する燃料電池システムにおいて、
前記上流側弁と前記下流側弁は、
弁座又は弁体のいずれか一方に、前記弁体と前記弁座との間を封止するシール部材が設けられており、
前記制御部は、
前記上流側弁または前記下流側弁を全閉状態にした後に、前記弁体を前記弁座に押し付ける方向に作用させる全閉保持制御と、前記弁体を前記弁座から離す方向に作用させる全閉保持解除制御と、を行い、
前記上流側弁にて前記全閉保持制御と前記全閉保持解除制御を行う回数を、前記下流側弁にて前記全閉保持制御と前記全閉保持解除制御を行う回数よりも多くすること、
を特徴とする燃料電池システム。
A fuel cell, an oxidant gas supply passage for supplying an oxidant gas to the fuel cell, an upstream valve provided in the oxidant gas supply passage, and an oxidant gas supplied to the fuel cell are discharged. In a fuel cell system having an oxidant gas discharge passage, a downstream valve provided in the oxidant gas discharge passage, and a control unit that performs various controls,
The upstream valve and the downstream valve are:
Either one of the valve seat and the valve body is provided with a seal member for sealing between the valve body and the valve seat,
The controller is
After the upstream side valve or the downstream side valve is fully closed, a fully closed holding control that acts in a direction to press the valve body against the valve seat, and a full closure control that acts in a direction to separate the valve body from the valve seat. Closed hold release control,
Increasing the number of times the full-closed holding control and the full-closed holding release control are performed in the upstream valve from the number of times performing the full-closed holding control and the full-closed holding release control in the downstream valve;
A fuel cell system.
JP2017145552A 2017-07-27 2017-07-27 Check valve control system and fuel cell system Active JP7002876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017145552A JP7002876B2 (en) 2017-07-27 2017-07-27 Check valve control system and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017145552A JP7002876B2 (en) 2017-07-27 2017-07-27 Check valve control system and fuel cell system

Publications (2)

Publication Number Publication Date
JP2019029129A true JP2019029129A (en) 2019-02-21
JP7002876B2 JP7002876B2 (en) 2022-02-04

Family

ID=65478655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017145552A Active JP7002876B2 (en) 2017-07-27 2017-07-27 Check valve control system and fuel cell system

Country Status (1)

Country Link
JP (1) JP7002876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021003548T5 (en) 2020-09-23 2023-04-20 Aisan Kogyo Kabushiki Kaisha flow control valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194252A (en) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd Fluid control device
JP2005009562A (en) * 2003-06-18 2005-01-13 Tomoe Tech Res Co Valve element opening/closing mechanism of butterfly valve
JP2009037770A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Fuel cell system and its operation stop method
WO2012007989A1 (en) * 2010-07-13 2012-01-19 トヨタ自動車株式会社 Piping unit for use in fuel cell and fuel cell unit provided therewith, and fuel cell system
WO2015098952A1 (en) * 2013-12-25 2015-07-02 愛三工業株式会社 Double eccentric valve
JP2017116012A (en) * 2015-12-25 2017-06-29 愛三工業株式会社 Eccentric valve
JP2017180611A (en) * 2016-03-29 2017-10-05 愛三工業株式会社 Sealing valve control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194252A (en) * 2001-12-28 2003-07-09 Matsushita Electric Ind Co Ltd Fluid control device
JP2005009562A (en) * 2003-06-18 2005-01-13 Tomoe Tech Res Co Valve element opening/closing mechanism of butterfly valve
JP2009037770A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Fuel cell system and its operation stop method
WO2012007989A1 (en) * 2010-07-13 2012-01-19 トヨタ自動車株式会社 Piping unit for use in fuel cell and fuel cell unit provided therewith, and fuel cell system
WO2015098952A1 (en) * 2013-12-25 2015-07-02 愛三工業株式会社 Double eccentric valve
JP2017116012A (en) * 2015-12-25 2017-06-29 愛三工業株式会社 Eccentric valve
JP2017180611A (en) * 2016-03-29 2017-10-05 愛三工業株式会社 Sealing valve control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021003548T5 (en) 2020-09-23 2023-04-20 Aisan Kogyo Kabushiki Kaisha flow control valve

Also Published As

Publication number Publication date
JP7002876B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6795748B2 (en) Air valve device for fuel cell system
JP6887892B2 (en) Air valve device for fuel cell system and its control method
JP6490002B2 (en) Eccentric valve
JP6989669B2 (en) Fuel cell system
JP2009026673A (en) Fuel cell
WO2018216409A1 (en) Fuel cell system
JP5630214B2 (en) Fuel cell system
JP6653643B2 (en) Fuel cell system
JP2019029129A (en) Sealing valve control system and fuel cell system
US10862147B2 (en) Fuel cell system
JP2012247011A (en) Valve device
JP2010135214A (en) Fuel cell system
JP2018026319A (en) Fuel cell system
JP2019027569A (en) Double eccentric valve and fuel cell system using it
JP2017116011A (en) Flow control valve
JP2009076247A (en) Fuel cell system and its control method
JP5904128B2 (en) Fuel cell system having a relief valve
JP2018066386A (en) Double-eccentric valve
US20230304583A1 (en) Flow rate control valve
JP2017162759A (en) Fuel cell system
JP2018137150A (en) Fuel cell system
JP2011140907A (en) Ejector
JP2019108924A (en) Relief valve and gas fuel supply unit
JP5720176B2 (en) Gas control valve
JP2017180611A (en) Sealing valve control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211228

R150 Certificate of patent or registration of utility model

Ref document number: 7002876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150