JP2019028319A - Lens device and imaging apparatus having the same - Google Patents

Lens device and imaging apparatus having the same Download PDF

Info

Publication number
JP2019028319A
JP2019028319A JP2017148616A JP2017148616A JP2019028319A JP 2019028319 A JP2019028319 A JP 2019028319A JP 2017148616 A JP2017148616 A JP 2017148616A JP 2017148616 A JP2017148616 A JP 2017148616A JP 2019028319 A JP2019028319 A JP 2019028319A
Authority
JP
Japan
Prior art keywords
temperature
heat
heat conducting
lens
lens device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017148616A
Other languages
Japanese (ja)
Inventor
信之 松宮
Nobuyuki Matsumiya
信之 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017148616A priority Critical patent/JP2019028319A/en
Publication of JP2019028319A publication Critical patent/JP2019028319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

To provide a lens device capable of preventing dew condensation without requiring electric power in a configuration that reduces the frequency of maintenance.SOLUTION: The lens device includes an optical member, an optical holding member holding the optical member, and an exterior member covering the optical holding member, and the lens device has thermal conduction means capable of conducting external heat of the lens device to the optical member via the exterior member. The heat conduction means switches between a conduction state where the means deforms in response to one of or both of the external temperature of the lens device and the temperature of the optical member so as to conduct the external heat to the optical member and a non-conduction state where the means does not conduct heat.SELECTED DRAWING: Figure 2

Description

本発明は、レンズ装置、およびこれを有する撮像装置に関する。   The present invention relates to a lens device and an imaging device having the lens device.

レンズ装置は、例えば、冷房のきいた室内から室外へ移動される場合など、レンズ装置の外部の温度が急に上昇する環境でも用いられている。このような場合にレンズが結露し、曇る課題があった。   The lens device is also used in an environment in which the temperature outside the lens device suddenly rises, for example, when the lens device is moved from a cooled room to the outside. In such a case, there is a problem that the lens is condensed and cloudy.

レンズ装置の外部温度が急激に上昇すると、レンズ装置内外に圧力差が生じ、レンズ近傍に高温の外気が流入する。このときレンズが十分に温まっていないと、外気の露点温度に対してレンズ表面が低温となり、結露が生じる。   When the external temperature of the lens apparatus rapidly increases, a pressure difference is generated inside and outside the lens apparatus, and high temperature outside air flows in the vicinity of the lens. If the lens is not sufficiently warmed at this time, the surface of the lens becomes lower than the dew point temperature of the outside air, and condensation occurs.

なお露点温度は、水蒸気量が一定の空間の空気を冷却した際に、空気中の水蒸気が凝結を始める温度であり、温度が露点温度よりも高ければ結露は生じず、低ければ結露が生じる。   The dew point temperature is a temperature at which water vapor in the air begins to condense when cooling air in a space where the amount of water vapor is constant. If the temperature is higher than the dew point temperature, condensation does not occur, and if it is lower, condensation occurs.

特に、レンズ装置に対して着脱可能なカバーを有するレンズ装置には、カバーとレンズ装置の間に着脱のために空間が設けられる。この空間は、カバー外部とレンズとの断熱層となるので、外気の熱がさらにレンズに伝熱しにくく、結露が発生しやすかった。   In particular, in a lens device having a cover that can be attached to and detached from the lens device, a space is provided between the cover and the lens device for attachment and detachment. Since this space becomes a heat insulating layer between the outside of the cover and the lens, the heat of the outside air is more difficult to transfer to the lens, and condensation is likely to occur.

従来、レンズを加熱したり保温したりする方法が知られている。特許文献1では、ガラスをヒーターで加熱する構成が開示されている。また、乾燥剤を設置したり乾燥空気を封入したりしてレンズ装置内の水蒸気量を減少させ、露点温度を下げ、露点温度に対するレンズの温度のマージンを稼ぐ方法が知られている。特許文献2では、レンズ装置内に乾燥剤を充填し、水蒸気量を減少させる技術が開示されている。   Conventionally, a method of heating or keeping a temperature of a lens is known. In patent document 1, the structure which heats glass with a heater is disclosed. Also known is a method of reducing the dew point temperature by installing a desiccant or enclosing dry air to reduce the amount of water vapor in the lens device, thereby increasing the lens temperature margin with respect to the dew point temperature. Patent Document 2 discloses a technique for filling a lens device with a desiccant to reduce the amount of water vapor.

特開2007−256849号公報JP 2007-256849 A 特開平6−258561号公報JP-A-6-258561

しかしながら、特許文献1に開示された構成では電力を用いて熱を発生する構成のため、消費電力が増大する課題があった。   However, the configuration disclosed in Patent Document 1 has a problem of increasing power consumption because it generates heat using electric power.

特許文献2に開示された構成では、定期的な乾燥剤の交換が必要となるため、メンテナンス面でユーザーに負担がかかる課題があった。   In the configuration disclosed in Patent Document 2, since it is necessary to periodically replace the desiccant, there is a problem that burdens the user in terms of maintenance.

そこで、本発明の目的は、電力を用いることなく結露を防止し、さらにメンテナンス頻度を低減したレンズ装置を提供することができる。   Accordingly, an object of the present invention is to provide a lens apparatus that prevents condensation without using electric power and further reduces the maintenance frequency.

上記目的を達成するために、本発明は、光学部材と、前記光学部材を保持する光学保持部材と、前記光学保持部材を覆う外装部材と、を有するレンズ装置であって、前記外装部材を介して前記レンズ装置の外部の熱を前記光学部材に伝導可能な熱伝導手段を有し、前記熱伝導手段は、前記レンズ装置の外部の温度、前記光学部材の温度の一方あるいは両方に応じて変形し、前記外部の熱を前記光学部材に伝導する伝導状態と、伝導しない非伝導状態を切り替えることを特徴とする。   In order to achieve the above object, the present invention provides a lens device that includes an optical member, an optical holding member that holds the optical member, and an exterior member that covers the optical holding member. Heat conduction means capable of conducting heat outside the lens device to the optical member, and the heat conduction means is deformed according to one or both of the temperature outside the lens device and the temperature of the optical member. And switching between a conduction state in which the external heat is conducted to the optical member and a non-conduction state in which the heat is not conducted.

本発明によれば、電力を用いることなく結露を防止し、さらにメンテナンス頻度を低減したレンズ装置を提供することができる。   According to the present invention, it is possible to provide a lens apparatus that prevents condensation without using electric power and further reduces the maintenance frequency.

実施例1のレンズ装置全体の概略図Schematic of the entire lens apparatus of Example 1 図1のA部(熱伝導手段)の概略図Schematic diagram of part A (heat conduction means) in FIG. 実施例1の各使用環境下における熱伝導手段の動作を示す概略図Schematic which shows operation | movement of the heat conduction means in each use environment of Example 1. FIG. 実施例1の使用環境の説明図Explanatory drawing of the use environment of Example 1 実施例1における図4の環境下における熱伝送手段の動作を示す図The figure which shows operation | movement of the heat-transfer means in the environment of FIG. 4 in Example 1. FIG. 実施例1の図4の環境下における効果を説明する概略図Schematic explaining the effect of Example 1 under the environment of FIG. 実施例2のレンズ装置全体の概略図Schematic of the entire lens device of Example 2 図7のA部詳細図Part A detail view of FIG. 図8のB方向矢視図B direction arrow view of FIG. 実施例2の第1の熱伝導部および第2の熱伝導部の動作を示す図The figure which shows operation | movement of the 1st heat conductive part of Example 2, and the 2nd heat conductive part. 実施例3のレンズ装置全体の概略図Schematic of the entire lens apparatus of Example 3 図12のC部詳細図Detailed view of part C in FIG. 実施例4のレンズ装置全体の概略図Schematic of the entire lens apparatus of Example 4 図14のE部拡大図E section enlarged view of FIG. 図15のD方向矢視図D direction view of FIG. 15

本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施例1)
はじめに図1から図5を参照して、本発明の第1の実施例を説明する。
Example 1
First, a first embodiment of the present invention will be described with reference to FIGS.

(レンズ装置の構成)
まず、図1および図2に基づいて、本発明のレンズ装置L1の構成を説明する。図1は本実施例における全体の概略図である。図1の一部には、レンズ装置L1の内部構造を示している。図2は、図1のA部の概略図である。
(Configuration of lens device)
First, based on FIG. 1 and FIG. 2, the structure of the lens apparatus L1 of this invention is demonstrated. FIG. 1 is an overall schematic diagram of the present embodiment. A part of FIG. 1 shows an internal structure of the lens device L1. FIG. 2 is a schematic view of part A of FIG.

鏡筒2は、押え環8によりレンズ3を保持しており、外側保持部材(外装部材)1にビス7で連結される。   The lens barrel 2 holds the lens 3 by a presser ring 8 and is connected to an outer holding member (exterior member) 1 with screws 7.

本実施例におけるレンズ装置は、被写体側からレンズ3を含むフォーカス群、バリエータ群(不図示)、コンペンセータ群(不図示)、リレー群(不図示)の各レンズ群を有するズームレンズであるが、レンズ装置の構成はこれに限られない。また、レンズ3はフォーカス群以外が有するレンズでもかまわない。   The lens apparatus in the present embodiment is a zoom lens having each lens group including a focus group including the lens 3 from the subject side, a variator group (not shown), a compensator group (not shown), and a relay group (not shown). The configuration of the lens device is not limited to this. The lens 3 may be a lens other than the focus group.

なお、本実施例のレンズ3はガラスで構成されているが、樹脂で構成されるレンズであっても本発明の効果を得ることができる。   In addition, although the lens 3 of a present Example is comprised with glass, even if it is a lens comprised with resin, the effect of this invention can be acquired.

図2に示すように、外側保持部材1の光軸に対する径方向の内側には、溝40が形成される。同じく鏡筒2の径方向の外側には、溝50が形成される。これらの溝40および50は互いに対抗しており、後述する熱伝導手段が取り付けられる。   As shown in FIG. 2, a groove 40 is formed inside the outer holding member 1 in the radial direction with respect to the optical axis. Similarly, a groove 50 is formed outside the lens barrel 2 in the radial direction. These grooves 40 and 50 are opposed to each other, and heat conduction means to be described later is attached.

(熱伝導手段の構成)
図2に示すように、本実施例における熱伝導手段は、板形状を有する第1の熱伝導部4、および第2の熱伝導部5で構成される。
(Configuration of heat conduction means)
As shown in FIG. 2, the heat conducting means in the present embodiment includes a first heat conducting unit 4 and a second heat conducting unit 5 having a plate shape.

第1の熱伝導部4は、両端に形成された長穴4cを通るビス6によって、外側保持部材1に取り付けられる。第2の熱伝導部5は、両端に形成された長穴5cを通るビス6によって、鏡筒2に取り付けられる。   The first heat conducting unit 4 is attached to the outer holding member 1 by screws 6 passing through the long holes 4c formed at both ends. The second heat conducting unit 5 is attached to the lens barrel 2 by screws 6 passing through the long holes 5c formed at both ends.

この構成により、第1の熱伝導部4および第2の熱伝導部5は伸縮の大きい長手方向(本実施例においては光軸方向であり、図2においては矢印Fの方向)に伸縮の自由度を有する。   With this configuration, the first heat conducting unit 4 and the second heat conducting unit 5 are free to expand and contract in the longitudinal direction (in the present embodiment, the optical axis direction in the present embodiment, and in the direction of arrow F in FIG. 2). Have a degree.

(第1の熱伝導部)
第1の熱伝導部4は、熱膨張率の互いに異なる第1の部材4aと第2の部材4bからなる。第1の部材4aの熱膨張率は、第2の部材4bの熱膨張率より大きい。第1の熱伝導部4では、第2の部材4bが、第1の部材4aの両端の領域に、板の厚み方向に貼り付けられる。本実施例では、これらの素材は金属であり、これらの素材の貼りつけには、冷間圧延など公知の手法を用いることができる。このように熱膨張率の異なる2つの金属の板材を貼り付けた構成は、一般的にバイメタル素子と呼ばれる。バイメタル素子に用いる金属は、その用途に応じて任意に選択することが可能であり、例えばニッケル合金、銅合金、等の合金が用いられる。
(First heat conduction part)
The first heat conducting unit 4 includes a first member 4a and a second member 4b having different coefficients of thermal expansion. The coefficient of thermal expansion of the first member 4a is greater than the coefficient of thermal expansion of the second member 4b. In the 1st heat conductive part 4, the 2nd member 4b is affixed on the area | region of the both ends of the 1st member 4a in the thickness direction of a board. In this embodiment, these materials are metals, and a known technique such as cold rolling can be used for attaching these materials. Such a configuration in which two metal plates having different coefficients of thermal expansion are attached is generally called a bimetal element. The metal used for a bimetal element can be arbitrarily selected according to the use, for example, alloys, such as a nickel alloy and a copper alloy, are used.

第1の熱伝導部4の温度が上昇すると、熱膨張率が相対的に大きい第1の部材4aは、第2の部材4bよりも大きく膨張する。この時、これらの部材は互いに貼り付けられ、変形が拘束されているため、第1の熱伝導部4は熱膨張率の小さい方の板材(第2の部材4b)が光軸に対して径方向の内側に凸となるように変形(湾曲)する。変形温度は、第1の部材4a、第2の部材4bの材質を前述のように公知のものから選択することにより、所定の温度(第1の温度)に設定できる。   When the temperature of the first heat conducting unit 4 rises, the first member 4a having a relatively large coefficient of thermal expansion expands more than the second member 4b. At this time, since these members are bonded to each other and deformation is restrained, the first heat conducting portion 4 has a plate material (second member 4b) having a smaller coefficient of thermal expansion with respect to the optical axis. It is deformed (curved) so as to be convex inward of the direction. The deformation temperature can be set to a predetermined temperature (first temperature) by selecting the material of the first member 4a and the second member 4b from known materials as described above.

なお図2では、第1の熱伝導部4が光軸に対して径方向の内側に凸となるように変形した状態を示している。   FIG. 2 shows a state where the first heat conducting unit 4 is deformed so as to protrude inward in the radial direction with respect to the optical axis.

(第2の熱伝導部)
第2の熱伝導部5も、第1の熱伝導部4と同様に、熱膨張率の互いに異なる第1の部材5aおよび第2の部材5bからなる。第1の部材5aの熱膨張率は、第2の部材5bの熱膨張率よりも小さい。
(Second heat conduction part)
Similarly to the first heat conducting unit 4, the second heat conducting unit 5 includes a first member 5a and a second member 5b having different coefficients of thermal expansion. The thermal expansion coefficient of the first member 5a is smaller than the thermal expansion coefficient of the second member 5b.

同じくバイメタル素子である第2の熱伝導部5は、所定の温度を越えた場合に、熱膨張率が相対的に小さい第1の部材5aが内側になるように変形する。ただし、本実施例においては、第2の熱伝導部5は所定の温度よりも低温の環境において、外側保持部材1(第1の熱伝導部4)の側に凸となるように、予め変形した状態で取り付けられる。図2に示す第2の熱伝導部5の状態は、所定の温度よりも低温で、予め変形した状態を示している。   Similarly, the second heat conducting portion 5 which is a bimetal element is deformed so that the first member 5a having a relatively low coefficient of thermal expansion is located inside when the temperature exceeds a predetermined temperature. However, in the present embodiment, the second heat conducting portion 5 is deformed in advance so as to protrude toward the outer holding member 1 (first heat conducting portion 4) in an environment lower than a predetermined temperature. It is attached in the state. The state of the second heat conducting unit 5 shown in FIG. 2 shows a state of being deformed in advance at a temperature lower than a predetermined temperature.

このように構成することで、第2の熱伝導部5は所定の温度(第2の温度)よりも高い温度になったときに、予めの湾曲状態から、その湾曲をキャンセルするように第1の部材5aが内側に変形(逆に湾曲)する。これにより、鏡筒2に密着することになる(図5(c)(d)に示す状態になる)。なお、第1の部材5aが鏡筒2に密着する必要はなく、第1の伝導部材4における第1の部材4aと互いに離間すれば、本発明は実施可能である。   With this configuration, when the second heat conducting unit 5 reaches a temperature higher than a predetermined temperature (second temperature), the first heat conduction unit 5 cancels the bending from the previously bent state. The member 5a is deformed inward (conversely curved). Thereby, it will contact | adhere to the lens-barrel 2 (it will be in the state shown to FIG.5 (c) (d)). The first member 5a does not need to be in close contact with the lens barrel 2, and the present invention can be implemented as long as the first member 5a is separated from the first member 4a in the first conductive member 4.

(第1、第2の熱伝導部の組み合わせ)
本実施例においては、第1の熱伝導部4も、第2の熱伝導部5も、熱膨張率が相対的に大きい部材がレンズ3の側になるように構成されている。つまり、第1の熱伝導部4も、第2の熱伝導部5も、自身の温度が所定の温度よりも高くなるとレンズ3の側に変形する。
(Combination of first and second heat conduction parts)
In the present embodiment, both the first heat conducting unit 4 and the second heat conducting unit 5 are configured such that a member having a relatively large coefficient of thermal expansion is on the lens 3 side. That is, both the first heat conducting unit 4 and the second heat conducting unit 5 are deformed to the lens 3 side when their own temperature becomes higher than a predetermined temperature.

しかし本実施例では、所定の温度以下の環境で、湾曲していない状態と、予め湾曲した状態の両方を組み合わせて用いている。これらの組み合わせにより、実施例における熱伝導手段は、その温度に応じて図3に示す状態をとることができる。   However, in this embodiment, a combination of both an uncurved state and a pre-curved state is used in an environment below a predetermined temperature. With these combinations, the heat conducting means in the embodiment can take the state shown in FIG. 3 according to the temperature.

図3は、各環境における熱伝導手段の動作の様子を概略図で示しており、Hを付した領域は所定の温度よりも温度が高いことを示し、Lを付した領域は所定の温度よりも温度が低いことを示している。   FIG. 3 schematically shows the operation of the heat conducting means in each environment. The region marked with H shows that the temperature is higher than the predetermined temperature, and the region marked with L is higher than the predetermined temperature. Also shows that the temperature is low.

図3(a)に示すように、(第1の熱伝導部4、第2の熱伝導部5)の温度の関係が、(L、L)である場合は、互いが離れた状態で構成されている。この状態では、熱伝導手段が外側保持部材1とレンズ3との間で熱伝導経路を形成しない。この状態を、非伝導状態と称する。   As shown in FIG. 3A, when the temperature relationship of (the first heat conducting unit 4 and the second heat conducting unit 5) is (L, L), the components are separated from each other. Has been. In this state, the heat conduction means does not form a heat conduction path between the outer holding member 1 and the lens 3. This state is referred to as a nonconductive state.

図3(b)に示すように、(H、L)である場合には、所定の温度を上回った第1の熱伝導部4の中央の領域が、レンズ3の側に凸となるように湾曲する。一方、第2の熱伝導部5は、その中央の領域が予め外側保持部材1の側に凸となるように湾曲されているから、互いに凸部が対向し接触する。   As shown in FIG. 3B, in the case of (H, L), the central region of the first heat conducting unit 4 that exceeds a predetermined temperature is convex toward the lens 3 side. Bend. On the other hand, the second heat conducting portion 5 is curved so that the central region thereof is convex toward the outer holding member 1 in advance, so that the convex portions face each other and come into contact with each other.

すなわち熱伝導手段を構成する第1の熱伝導部4、第2の熱伝導部5が接触することで、これらに接続する外側保持部材1、鏡筒2には熱伝導経路を形成する。この状態を、伝導状態と称する。   That is, when the first heat conducting part 4 and the second heat conducting part 5 constituting the heat conducting means are in contact with each other, a heat conduction path is formed in the outer holding member 1 and the lens barrel 2 connected thereto. This state is referred to as a conduction state.

図3(c)に示すように、(H、H)である場合には、第2の熱伝導部5が予めの湾曲をキャンセルする方向に変形するから、互いに接触しない。図3(d)に示すように(L、H)である場合には、第1の熱伝導部4は湾曲せず、第2の熱伝導部5は予めの湾曲をキャンセルしており、互いに接触しない。これらは、いずれも前述した非伝導状態である。   As shown in FIG. 3C, in the case of (H, H), the second heat conducting part 5 is deformed in a direction to cancel the pre-curvature, and thus does not contact each other. As shown in FIG. 3D, in the case of (L, H), the first heat conducting part 4 is not curved, and the second heat conducting part 5 is canceled in advance, Do not touch. These are all in the non-conductive state described above.

(熱伝導手段の構成条件)
各熱伝導手段における各所定の温度は一般的な使用環境を想定して、摂氏0度から摂氏60度の間が好ましい。より好ましくは、摂氏10〜20度の間に設定することが望ましい。より好ましくは、実質上摂氏15度で上記のように変形するように設計されることが望ましい(製造誤差等でのばらつきを含んでも良い)。第1の熱伝導部4、第2の熱伝導部5の各所定の温度(第1の温度、第2の温度)は等しくても、それぞれ異なっても良い。なお本実施例では、第1の熱伝導部4、第2の熱伝導部5の所定の温度が、いずれも摂氏15度の場合を説明する。
(Construction conditions of heat conduction means)
Each predetermined temperature in each heat conducting means is preferably between 0 degrees Celsius and 60 degrees Celsius assuming a general use environment. More preferably, it is desirable to set between 10 and 20 degrees Celsius. More preferably, it is desirable to be designed to deform as described above at substantially 15 degrees Celsius (may include variations due to manufacturing errors, etc.). The predetermined temperatures (first temperature and second temperature) of the first heat conducting unit 4 and the second heat conducting unit 5 may be the same or different. In the present embodiment, a case will be described in which the predetermined temperatures of the first heat conducting unit 4 and the second heat conducting unit 5 are both 15 degrees Celsius.

本実施例の各熱伝導部においては、熱膨張率の相対的に高い方の部材が、レンズ3の側に設けられる必要がある。また、第1の熱伝導部4及び第2の熱伝導部5の材質は、空気よりも熱伝導率が高い部材である。   In each heat conduction part of the present embodiment, a member having a relatively high thermal expansion coefficient needs to be provided on the lens 3 side. Moreover, the material of the 1st heat conductive part 4 and the 2nd heat conductive part 5 is a member whose heat conductivity is higher than air.

(熱伝導手段の動作)
以下、図4から図6を用いて、本実施例における動作について述べる。本実施例においては、各熱伝導手段における各所定の温度がともに15度の例で説明する。
(Operation of heat conduction means)
Hereinafter, the operation in this embodiment will be described with reference to FIGS. In the present embodiment, an example in which each predetermined temperature in each heat conducting means is 15 degrees will be described.

(使用条件の定義)
はじめに図4を用いて、本実施例の説明において用いる4条件を定義する。
(Definition of usage conditions)
First, with reference to FIG. 4, four conditions used in the description of this embodiment are defined.

第1の使用条件E1として、レンズ装置の外部の温度が摂氏0度(相対湿度0%)の環境において十分時間が経過し、レンズ装置の内部と外部が平衡状態に達し、(第1の熱伝導部4、第2の熱伝導部5)の温度が(L、L)となっている状態を定義する。   As a first use condition E1, sufficient time has passed in an environment where the temperature outside the lens device is 0 degrees Celsius (relative humidity 0%), and the inside and outside of the lens device reach an equilibrium state (first heat A state is defined in which the temperatures of the conduction part 4 and the second heat conduction part 5) are (L, L).

第2の使用条件E2として、第1の使用条件E1から、外部の温度が摂氏60度(設定温度以上の高い温度)に上昇(相対湿度100%)する、温度変化の大きい条件を定義する。   As the second use condition E2, a condition with a large temperature change is defined in which the external temperature rises to 60 degrees Celsius (a high temperature equal to or higher than the set temperature) from the first use condition E1 (relative humidity 100%).

第3の使用条件E3として、外部の温度が摂氏60度(相対湿度100%)の環境において十分に時間が経過し、レンズ装置の内部と外部が平衡状態に達し、(第1の熱伝導部4、第2の熱伝導部5)の温度の関係が、(H、H)となっている状態を定義する。   As the third use condition E3, a sufficient time has passed in an environment where the external temperature is 60 degrees Celsius (relative humidity 100%), and the inside and the outside of the lens apparatus reach an equilibrium state. 4. Define a state in which the temperature relationship of the second heat conducting section 5) is (H, H).

第4の使用条件E4として、第3の使用条件E3から、外部の温度が摂氏0度近傍(相対湿度0%)に下降する、温度変化の大きい条件を定義する。   As the fourth use condition E4, a condition with a large temperature change is defined in which the external temperature drops to around 0 degrees Celsius (relative humidity 0%) from the third use condition E3.

(動作および効果)
図5(a)はE1、図5(b)はE2、図5(c)はE3、図5(d)はE4の各使用条件における熱伝導手段の状態を示す図である。
(Operation and effect)
5A is a diagram showing the state of the heat conducting means in each use condition of E1, FIG. 5B is E2, FIG. 5C is E3, and FIG. 5D is E4.

図5(a)に示す使用条件E1では、第1の熱伝導部4は変形せず、外側保持部材1の側に位置する。第2の熱伝導部5は、その中央の領域が、予め外側保持部材1の側に凸となるように湾曲された状態である。この場合、第1の熱伝導部4と第2の熱伝導部5は接触しないように構成されている。つまりレンズ3と外側保持部材1が非伝導状態になる。   In the use condition E1 shown to Fig.5 (a), the 1st heat conductive part 4 does not deform | transform but is located in the outer side holding member 1 side. The 2nd heat conductive part 5 is the state curved so that the center area | region may become convex on the outer side holding member 1 side previously. In this case, the 1st heat conduction part 4 and the 2nd heat conduction part 5 are comprised so that it may not contact. That is, the lens 3 and the outer holding member 1 become nonconductive.

第1の使用条件E1では、曇りが発生する可能性が低い。このような条件下においては、熱伝導手段が非伝導状態となることで、鏡筒2を介してレンズ3を冷やしすぎ、光学性能に悪影響が生じることを防ぐことができる。   In the first use condition E1, the possibility of fogging is low. Under such conditions, it is possible to prevent the lens 3 from being cooled too much via the lens barrel 2 and adversely affecting the optical performance due to the non-conductive state of the heat conducting means.

図5(b)に示す第2の使用条件E2では、第1の熱伝導部4は外側保持部材1に接続しているため、外側保持部材1を介して外気の熱を吸収する。したがって第2の熱伝導部5より先に所定の設定温度以上となり、図5(b)に示すように、中央の領域がレンズ3の側に凸になるように変形する。すなわち、外側保持部材1の外部の温度に応じて変形する。   In the second use condition E2 shown in FIG. 5B, the first heat conducting unit 4 is connected to the outer holding member 1, and therefore absorbs the heat of the outside air through the outer holding member 1. Therefore, the second heat conducting portion 5 is deformed so that the temperature becomes a predetermined set temperature or more before the second heat conducting portion 5 and the central region is convex toward the lens 3 as shown in FIG. That is, it deforms according to the temperature outside the outer holding member 1.

一方、第2の熱伝導部5は伝熱が遅く、外側保持部材1の側に湾曲した状態を維持する。すなわち、レンズ3の温度に応じて湾曲を維持する。   On the other hand, the second heat conducting unit 5 is slow in heat transfer and maintains a curved state toward the outer holding member 1. That is, the curvature is maintained according to the temperature of the lens 3.

この場合、図5(b)に示す通り、第1の熱伝導部4と第2の熱伝導部5は、中央の領域で互いに接触し、熱伝導経路(矢印101)を形成するように構成されている。つまりレンズ3と外側保持部材1が伝導状態になる。   In this case, as shown in FIG. 5 (b), the first heat conducting part 4 and the second heat conducting part 5 are in contact with each other in the central region to form a heat conduction path (arrow 101). Has been. That is, the lens 3 and the outer holding member 1 are in a conductive state.

伝導状態では、従来の矢印100で示される経路で熱が鏡筒2に伝導するのに加えて、矢印101の経路でも伝熱される。このため、レンズ3の表面温度がレンズ装置内部の露点温度を上回る可能性が高くなり、レンズ3の表面における曇りの発生を抑制できる。   In the conductive state, in addition to the heat conducted to the lens barrel 2 through the path indicated by the conventional arrow 100, heat is also transferred through the path indicated by the arrow 101. For this reason, possibility that the surface temperature of the lens 3 will exceed the dew point temperature inside a lens apparatus becomes high, and generation | occurrence | production of the cloudiness in the surface of the lens 3 can be suppressed.

さらに本実施例では、第1の熱伝導部4、および第2の熱伝導部5のうち、二種類の金属が貼りあわされていない中央の領域(両端を除いた領域)が接触するように構成されている。この領域の湾曲は小さいので、面接触の状態を構成することができる。このため、さらに効率的に熱を伝導できる。   Further, in this embodiment, the central region (region excluding both ends) where the two kinds of metals are not bonded is in contact with the first heat conducting unit 4 and the second heat conducting unit 5. It is configured. Since the curvature of this region is small, a surface contact state can be configured. For this reason, heat can be more efficiently conducted.

図5(c)に示す第3の使用条件E3では、第1の熱伝導部4、および第2の熱伝導部5は、ともに所定の設定温度以上になる。第1の熱伝導部4は、中央の領域がレンズ3の側に凸になるように変形する。一方、第2の熱伝導部5は、予めの湾曲をキャンセルするように、レンズ3側に変形する。   In the third use condition E3 shown in FIG. 5C, both the first heat conducting unit 4 and the second heat conducting unit 5 are equal to or higher than a predetermined set temperature. The first heat conducting unit 4 is deformed so that the central region is convex toward the lens 3 side. On the other hand, the second heat conducting unit 5 is deformed to the lens 3 side so as to cancel the pre-curvature.

この場合、図5(c)に示すように第1の熱伝導部4と第2の熱伝導部5は接触せず、レンズ3と外側保持部材1が非伝導状態になる。   In this case, as shown in FIG.5 (c), the 1st heat conductive part 4 and the 2nd heat conductive part 5 do not contact, but the lens 3 and the outer side holding member 1 will be in a non-conductive state.

第3の使用条件E3では、曇りが発生する可能性が低い。このような条件下においては、熱伝導手段が非伝導状態となることで、鏡筒2を介してレンズ3をあたためすぎ、光学性能に悪影響が生じるのを防ぐことができる。   In the third use condition E3, the possibility of fogging is low. Under such conditions, the heat conducting means is in a non-conducting state, so that it is possible to prevent the lens 3 from being warmed through the lens barrel 2 and adversely affecting the optical performance.

図5(d)に示す第4の使用条件E4では、第1の熱伝導部4は外側保持部材1に接続しているため、外側保持部材1を介して外部に熱を奪われる。したがって、第2の熱伝導部5より先に所定の設定温度以下になり、図5(d)に示すように外側保持部材1の側に変形して湾曲状態を脱する。一方、第2の熱伝導部5は伝熱が遅く、レンズ3の側の位置を保つ。   In the fourth use condition E4 shown in FIG. 5D, since the first heat conducting unit 4 is connected to the outer holding member 1, heat is taken to the outside through the outer holding member 1. Therefore, the temperature becomes equal to or lower than a predetermined set temperature prior to the second heat conducting portion 5, and is deformed to the outer holding member 1 side as shown in FIG. On the other hand, the second heat conducting unit 5 is slow in heat transfer and maintains the position on the lens 3 side.

この場合、第1の熱伝導部4と第2の熱伝導部5は接触せず、レンズ3と外側保持部材1が非伝導状態になる。   In this case, the 1st heat conduction part 4 and the 2nd heat conduction part 5 do not contact, but the lens 3 and the outer side holding member 1 will be in a non-conductive state.

仮にレンズ3と外側保持部材1が伝導状態のままで、外側保持部材1の外部の温度が急激に低下すると、非伝導状態と比較してレンズ3の熱が急激に奪われる。レンズ3と鏡筒2に囲まれる空間の空気が外気と平衡状態になる前に、レンズ3の表面の温度が該空間の空気の露点温度を下回ると、結露が生じはじめてしまう。   If the lens 3 and the outer holding member 1 remain in the conductive state, and the temperature outside the outer holding member 1 rapidly decreases, the heat of the lens 3 is rapidly taken away as compared with the non-conductive state. If the temperature of the surface of the lens 3 is lower than the dew point temperature of the air in the space before the air in the space surrounded by the lens 3 and the lens barrel 2 is in an equilibrium state with the outside air, condensation starts to occur.

そこで本実施例のように、外部温度が急激に低下した場合に非伝導状態をとることでレンズ3と外側保持部材1との熱伝導経路を減らし(矢印102のみにし)、レンズ3の熱が急激に奪われるのを防ぐ。このため、レンズ3の表面温度が露点温度よりも相対的に低くなる可能性を低減でき、レンズ3の表面における曇りの発生を抑制できる。   Therefore, as in the present embodiment, when the external temperature is drastically lowered, the heat conduction path between the lens 3 and the outer holding member 1 is reduced by taking a non-conductive state (only the arrow 102), and the heat of the lens 3 is reduced. Prevent sudden deprivation. For this reason, the possibility that the surface temperature of the lens 3 is relatively lower than the dew point temperature can be reduced, and the occurrence of fogging on the surface of the lens 3 can be suppressed.

(効果)
以上の構成によって、温度変化の大きい使用環境においても、レンズ装置のガラス温度を露点温度よりも高く保ち、曇りを防止することができる。
(effect)
With the above configuration, it is possible to keep the glass temperature of the lens apparatus higher than the dew point temperature and prevent fogging even in an environment where the temperature change is large.

図6は、本実施例におけるレンズ装置において、レンズ装置の外部の温度が前述の変化した際の、ガラス表面温度とレンズ装置内部の露点温度の変化の一例を示している。図6に示すように、外部の環境の温度変化に対しても、レンズ3の温度を露点温度よりも高く保つことができる。したがって、レンズ装置を活用できるシーンが増加し、利便性が向上する。   FIG. 6 shows an example of changes in the glass surface temperature and the dew point temperature inside the lens device when the temperature outside the lens device changes as described above. As shown in FIG. 6, the temperature of the lens 3 can be kept higher than the dew point temperature even when the temperature of the external environment changes. Accordingly, the number of scenes where the lens apparatus can be used increases, and convenience is improved.

さらに、簡易な構成であるため、レンズ装置が大型化や重量化を抑制することができる。   Furthermore, since the configuration is simple, the lens device can be prevented from being increased in size and weight.

また、電力を必要としないため、レンズ装置の消費電力が増加せず、レンズ装置が駆動していない場合にも結露を防止する効果が得られる。   Further, since no power is required, the power consumption of the lens device does not increase, and the effect of preventing condensation can be obtained even when the lens device is not driven.

更には、本実施例においては金属の熱膨張の性質を用いて熱伝導手段の接続、非接続の状態を切り替えているので、長寿命であり、乾燥材の充填等の従来の構成に比較すると頻繁なメンテナンスが不要であり、ユーザーの負担が小さくなる。   Furthermore, in this embodiment, since the state of connection of heat conduction means is switched using the property of thermal expansion of metal, the life is long, compared with the conventional configuration such as filling with a drying material. Frequent maintenance is not required, reducing the burden on the user.

(変形例)
本実施例では、第1の熱伝導部4と第2の熱伝導部5を、それぞれ一つずつ配置する構成について述べた。しかし、複数配置しても良い。この場合は接触面積が増加するため、より高い熱伝熱効果を得ることができる。
(Modification)
In the present embodiment, the configuration in which the first heat conducting unit 4 and the second heat conducting unit 5 are arranged one by one has been described. However, a plurality may be arranged. In this case, since the contact area increases, a higher heat transfer effect can be obtained.

また、本実施例では第1の熱伝導部4と第2の熱伝導部5を対向して用いる構成について述べた。しかし第1の熱伝導部4または第2の熱伝導部5のどちらか一方を用い、湾曲した部分が鏡筒2あるいは外側保持部材1に直接接触する構成でも一定の効果を得ることができる。   In the present embodiment, the configuration in which the first heat conducting unit 4 and the second heat conducting unit 5 are used facing each other has been described. However, a certain effect can be obtained even in a configuration in which either the first heat conducting unit 4 or the second heat conducting unit 5 is used and the curved portion is in direct contact with the lens barrel 2 or the outer holding member 1.

外側保持部材1のみに熱伝導手段を設置する場合は、所定の温度を上回った場合に鏡筒2に接触するように構成する。この場合、第3の使用環境E3の場合にも熱伝熱が発生する。しかし、この場合はレンズ3と外装部材1とが温度平衡状態に近づくので、一定の結露抑制の効果を得ることができる。   In the case where the heat conducting means is installed only on the outer holding member 1, it is configured so as to come into contact with the lens barrel 2 when the temperature exceeds a predetermined temperature. In this case, heat transfer also occurs in the third usage environment E3. However, in this case, since the lens 3 and the exterior member 1 approach the temperature equilibrium state, it is possible to obtain a certain dew condensation suppression effect.

逆に、鏡筒2のみに熱伝導手段を設置する場合は、予め外側保持部材1に接触するように湾曲させておくとともに、所定の温度を上回った場合に該接触を解除できるように構成する。この場合は、第1の使用環境E1下でも熱伝熱が発生する。しかし、この場合もレンズ3と外装部材1とが温度平衡状態に近づくので、一定の結露抑制の効果を得ることができる。   On the contrary, when the heat conducting means is installed only in the lens barrel 2, it is configured to be curved so as to contact the outer holding member 1 in advance and to be able to release the contact when the temperature exceeds a predetermined temperature. . In this case, heat transfer occurs even in the first use environment E1. However, in this case as well, the lens 3 and the exterior member 1 approach a temperature equilibrium state, so that a certain dew condensation suppression effect can be obtained.

本実施例においては、熱伝導手段の形状を板形状で説明した。板形状は変形が容易であり、接触面積も確保できる。しかし、形状はこれに限定されない。例えば、棒形状を用いて熱伝導手段を構成し、所望の熱伝熱量を得られるよう複数の棒形状を備えてもよい。   In this embodiment, the shape of the heat conducting means has been described as a plate shape. The plate shape can be easily deformed and a contact area can be secured. However, the shape is not limited to this. For example, the heat conduction means may be configured using a rod shape, and a plurality of rod shapes may be provided so as to obtain a desired amount of heat transfer.

本実施例では、熱伝導手段は外側保持部材1と、鏡筒2とを熱伝導させる。しかし、外側保持部材1の周りに更にカバーを設け、外側保持部材1と該カバーの間に熱伝導手段を構成しても良い。このように、光学部材と、外気に露出する外装部材とを熱伝導可能にするのであれば、熱伝導手段の接触する部材は限定されない。   In this embodiment, the heat conducting means conducts heat between the outer holding member 1 and the lens barrel 2. However, a cover may be further provided around the outer holding member 1, and a heat conducting means may be configured between the outer holding member 1 and the cover. As described above, as long as the optical member and the exterior member exposed to the outside air can conduct heat, the member that the heat conducting means contacts is not limited.

(実施例2)
以下、図7から図10を参照して、本発明の第2の実施例による、レンズ装置L2について説明する。図7は本発明の第2の実施例を適応したレンズ装置L2の全体を示す概略図である。一部、内部の様子を示している。図8は図7のB部の詳細を示す図である。図9は図8のB1方向矢視図である。
(Example 2)
Hereinafter, the lens device L2 according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a schematic view showing the entire lens apparatus L2 to which the second embodiment of the present invention is applied. Part of the inside is shown. FIG. 8 is a diagram showing the details of part B of FIG. FIG. 9 is a view in the direction of arrow B1 in FIG.

(レンズ装置の構成)
本実施例は実施例1と異なり、外装部材1が鏡筒(光学保持部材)2に対してレンズ3の光軸Oの方向に着脱可能に装着される構成である。外装部材1と鏡筒2との間には空間があり、外装部材1は鏡筒2全体をレンズ3の光軸O周りに囲むように覆う。本実施例においては、図7に示すように、熱伝熱手段(第1の熱伝導部210aおよび第2の熱伝導部210b)が、外装部材1と鏡筒2の間に設けられる。
(Configuration of lens device)
Unlike the first embodiment, the present embodiment has a configuration in which the exterior member 1 is detachably attached to the lens barrel (optical holding member) 2 in the direction of the optical axis O of the lens 3. There is a space between the exterior member 1 and the lens barrel 2, and the exterior member 1 covers the entire lens barrel 2 so as to surround the optical axis O of the lens 3. In the present embodiment, as shown in FIG. 7, heat heat transfer means (first heat conducting unit 210 a and second heat conducting unit 210 b) is provided between the exterior member 1 and the lens barrel 2.

鏡筒2は、外装部材1の側に設けられる外側鏡筒2aと、レンズ(光学部材)3の側に設けられる内側鏡筒2bを有し、これらは互いにビス7で連結される。   The lens barrel 2 has an outer lens barrel 2 a provided on the exterior member 1 side and an inner lens barrel 2 b provided on the lens (optical member) 3 side, which are connected to each other by screws 7.

以下、実施例1と同様の構成には同一番号を付し、説明は省略する。   Hereinafter, the same number is attached | subjected to the structure similar to Example 1, and description is abbreviate | omitted.

(熱伝導部の構成)
図8に示すように、第1の熱伝導部210aは、第1の接触部211a、熱変形部である第1の熱変形部材212aから構成される。第1の熱変形部材212aの一方の端が、ビス90によって外装部材1に固定される。
(Configuration of heat conduction part)
As shown in FIG. 8, the first heat conducting unit 210a includes a first contact part 211a and a first heat deforming member 212a which is a heat deforming part. One end of the first thermal deformation member 212 a is fixed to the exterior member 1 with a screw 90.

第2の熱伝導部210bは、第2の接触部211b、熱変形部としての第2の熱変形部材212bから構成される。第2の熱変形部材212bの一方の端が、ビス90によって固定される。   The second heat conducting unit 210b includes a second contact part 211b and a second heat deforming member 212b as a heat deforming part. One end of the second thermal deformation member 212b is fixed by a screw 90.

本実施例では各熱変形部の光軸O方向(所定の方向)への熱膨張、熱収縮を利用する。各熱変形部は線膨張係数の等しい材質であり、任意の温度における長さがほぼ等しく設定されている。各熱変形部は、レンズ装置の外部の温度、光学部材の温度に応じて熱膨張、熱収縮により変形し、各接触部を摺動させる。   In this embodiment, thermal expansion and contraction in the direction of the optical axis O (predetermined direction) of each thermal deformation portion are used. Each thermally deformable portion is made of a material having the same linear expansion coefficient, and the length at an arbitrary temperature is set to be approximately equal. Each thermal deformation portion is deformed by thermal expansion and thermal contraction according to the temperature outside the lens device and the temperature of the optical member, and slides each contact portion.

図8に示すように、第1の熱伝導部210aと第2の熱伝導部210bは、光軸O方向に所定の間隔δをずらした状態で固定される。間隔δは0であっても構わない。また各接触部は、光軸O方向から見て、互いに重ならない凸形状を備える(図9参照)。熱伝導部は、線膨張係数の小さい素材が好ましい。   As shown in FIG. 8, the first heat conducting unit 210a and the second heat conducting unit 210b are fixed in a state where a predetermined interval δ is shifted in the optical axis O direction. The interval δ may be 0. Moreover, each contact part is provided with the convex shape which does not mutually overlap seeing from the optical axis O direction (refer FIG. 9). The heat conduction part is preferably made of a material having a small linear expansion coefficient.

(動作と効果)
図10(a)はレンズ装置L2の内部と外部が所定の温度Ts以下の、任意の温度で平衡している状態を示している。図10(b)は外装部材1の温度が上昇した状態を示している。図10(c)はレンズ装置L2の内部と外部の温度が所定の温度Tsを越えて平衡している状態を示している。図10(d)は外装部材1の温度が低下した状態を示している。
(Operation and effect)
FIG. 10A shows a state in which the inside and the outside of the lens device L2 are balanced at an arbitrary temperature that is equal to or lower than a predetermined temperature Ts. FIG. 10B shows a state where the temperature of the exterior member 1 has increased. FIG. 10C shows a state in which the temperature inside and outside the lens device L2 is balanced beyond a predetermined temperature Ts. FIG. 10D shows a state where the temperature of the exterior member 1 is lowered.

図10(a)の状態では、レンズ装置L2全体の温度が均一の平衡状態のため、熱変形部の伸長(熱膨張)はほぼ等しい。このため、各接触部が所定の間隔δ(図8参照)をあけて接触しない相対関係を保つ。このように、外装部材1と鏡筒2の温度差が小さい場合は、熱伝熱手段によってこれらの間の熱伝経路を形成しない(非伝導状態)。   In the state of FIG. 10A, since the temperature of the entire lens device L2 is in a uniform equilibrium state, the expansion (thermal expansion) of the thermal deformation portion is substantially equal. For this reason, a relative relationship is maintained in which the contact portions do not contact each other with a predetermined interval δ (see FIG. 8). Thus, when the temperature difference between the exterior member 1 and the lens barrel 2 is small, the heat transfer path between them is not formed by the heat transfer means (non-conductive state).

図10(b)の状態では、レンズ装置L2外部の温度が上昇し、外装部材1を介して熱を吸収できる第1の熱伝導部210aの温度が相対的に高くなる。この場合、第1の熱変形部材212aは第2の熱変形部材212bよりも膨張する。例えば、外装部材1と鏡筒2の温度差をΔT1、第1の熱変形部材212aおよび第2の熱変形部材212bの線膨張係数をαとすると、この場合の第1の熱変形部材212aと第2の熱変形部材212bの伸縮量の差はαL0ΔT1となる。   In the state of FIG. 10B, the temperature outside the lens device L <b> 2 increases, and the temperature of the first heat conducting unit 210 a that can absorb heat via the exterior member 1 becomes relatively high. In this case, the first heat deformation member 212a expands more than the second heat deformation member 212b. For example, if the temperature difference between the exterior member 1 and the lens barrel 2 is ΔT1, and the linear expansion coefficient of the first thermal deformation member 212a and the second thermal deformation member 212b is α, the first thermal deformation member 212a in this case The difference in expansion / contraction amount of the second heat deformation member 212b is αL0ΔT1.

ΔT1が所望の温度差を越えると、第1の接触部211aと第2の接触部211bは接触する(伝導状態)。この時、接触は各接触部の側面Sにおいて生じる(図9参照)。接触面積は、ΔT1が大きくなるほど大きくなる。   When ΔT1 exceeds a desired temperature difference, the first contact portion 211a and the second contact portion 211b come into contact (conductive state). At this time, contact occurs on the side surface S of each contact portion (see FIG. 9). The contact area increases as ΔT1 increases.

伝導状態では、外装部材1からの熱伝導が生じ鏡筒2の温度は上昇する。これに伴いレンズ3の表面温度が上昇するため、結露を防ぐ効果が得られる。   In the conductive state, heat conduction from the exterior member 1 occurs and the temperature of the lens barrel 2 rises. As a result, the surface temperature of the lens 3 rises, so that the effect of preventing condensation is obtained.

図10(c)の状態は、外装部材に設けられた規制部材240によって、第1の熱伝導部210aがその最大の変形量を規制されている。一方、第2の熱伝導部210bは変形を続け、第1の熱伝導部210aとは接触しなくなる。つまり非伝導状態である。   In the state shown in FIG. 10C, the maximum amount of deformation of the first heat conducting unit 210a is regulated by the regulating member 240 provided on the exterior member. On the other hand, the second heat conducting unit 210b continues to be deformed and no longer comes into contact with the first heat conducting unit 210a. That is, it is a non-conductive state.

このように、レンズ装置L2全体の温度が所定の温度Tsを上回って高温になると、レンズ3が温度上昇の悪影響を受けるのを抑制できる。   As described above, when the temperature of the entire lens device L2 exceeds the predetermined temperature Ts and becomes high, it is possible to suppress the lens 3 from being adversely affected by the temperature rise.

図10(d)の状態では、外装部材1の温度は鏡筒2の温度より早く下がり、第1の熱変形部材212aは第2の熱変形部材212bよりも相対的に収縮する。その時の外装部材1と鏡筒2の温度差をΔT2とすると、第1の熱変形部材212aと第2の熱変形部材212bの収縮量の差はαL1ΔT2となる。   In the state shown in FIG. 10D, the temperature of the exterior member 1 is lowered earlier than the temperature of the lens barrel 2, and the first heat deformation member 212a contracts relative to the second heat deformation member 212b. If the temperature difference between the exterior member 1 and the lens barrel 2 at that time is ΔT2, the difference in shrinkage between the first thermal deformation member 212a and the second thermal deformation member 212b is αL1ΔT2.

この場合、熱伝導部210bと第1の熱伝導部210aとは接触せず(非伝導状態)、鏡筒2の熱が外装部材1に奪われるのを抑制するので、レンズ3を冷やしすぎる恐れがない。   In this case, the heat conducting part 210b and the first heat conducting part 210a are not in contact (non-conducting state), and the heat of the lens barrel 2 is suppressed from being taken away by the exterior member 1, so that the lens 3 may be cooled too much. There is no.

(まとめ)
以上の構成によって、レンズ装置L2に結露が発生しやすい環境において、レンズ装置L2のガラス温度を高く保つことができ、曇りを防止することができる。
(Summary)
With the above configuration, the glass temperature of the lens device L2 can be kept high in an environment in which condensation is likely to occur in the lens device L2, and fogging can be prevented.

本実施例は絶対温度ではなく、レンズ装置の外部と内部の温度差に応じて、伝導状態と非伝導状態を切り替える構成である。すなわち、外部の温度が高くても低くても、温度差が生じる場合には熱伝導手段が機能するので、より多くの環境において結露を防止することが可能である。   In this embodiment, the conduction state and the non-conduction state are switched according to the temperature difference between the outside and the inside of the lens device, not the absolute temperature. That is, if the temperature difference occurs regardless of whether the external temperature is high or low, the heat conduction means functions, so that condensation can be prevented in more environments.

(変形例)
本実施例では、図9に示すように、本実施例における第1の接触部211aと第2の接触部211bは、光軸O方向から見て重ならない配置となっている。これにより、熱伝導手段が変形する所定の方向である、光軸O方向に直交する面において、熱伝導手段が熱伝導経路を形成する。該構成によって、レンズ装置の内外の温度差が非常に大きいと、第1の接触部211aと第2の接触部211bの熱膨張の差によってつきあたり、互いに大きな力を及ぼし合うことを抑制できる。
(Modification)
In the present embodiment, as shown in FIG. 9, the first contact portion 211a and the second contact portion 211b in the present embodiment are arranged so as not to overlap each other when viewed from the optical axis O direction. Thereby, the heat conduction means forms a heat conduction path in a plane orthogonal to the optical axis O direction, which is a predetermined direction in which the heat conduction means is deformed. With this configuration, when the temperature difference between the inside and the outside of the lens device is very large, it is possible to suppress contact between the first contact portion 211a and the second contact portion 211b and exert a large force on each other.

また該構成によって、外装部材1を着脱する際に第1の接触部211aと第2の接触部211bが引っ掛かることがない。   Moreover, by this structure, when attaching / detaching the exterior member 1, the 1st contact part 211a and the 2nd contact part 211b are not caught.

なお、構成はこれに限られない。所定の方向(本実施例では光軸O方向)に接触せず、これと直交する方向において接触するように構成すれば、本実施例の構成と同じ効果を得ることができる。   The configuration is not limited to this. If it is configured not to contact a predetermined direction (in the present embodiment, the optical axis O direction) but to contact in a direction orthogonal thereto, the same effect as the configuration of the present embodiment can be obtained.

本実施例は実施例1と異なり、絶対温度に関わらず、所定の温度差が生じた場合に、熱的な外装部材1とレンズ3との接続、非接続を切り替えることができる構成である。但し、所定の温度Tsよりも高温になった場合には、絶対温度に応じて規制部材240が機能する。   Unlike the first embodiment, the present embodiment has a configuration in which the connection / disconnection between the thermal exterior member 1 and the lens 3 can be switched when a predetermined temperature difference occurs regardless of the absolute temperature. However, when the temperature is higher than the predetermined temperature Ts, the regulating member 240 functions according to the absolute temperature.

第1の熱伝導部210aと第2の熱伝導部210bは、光軸O方向に所定の間隔δ(図9参照)をずらした状態で固定される。このずらし量を調整することで、熱的な接触を開始する温度差を調整できる。また規制部材240の位置を調整することで、所定の温度Tsを変更することができる。   The first heat conducting unit 210a and the second heat conducting unit 210b are fixed in a state where a predetermined interval δ (see FIG. 9) is shifted in the optical axis O direction. By adjusting the shift amount, the temperature difference at which thermal contact is started can be adjusted. Further, the predetermined temperature Ts can be changed by adjusting the position of the regulating member 240.

(実施例3)
以下、図11から図12を参照して、本発明の第3の実施例による、レンズ装置L2について説明する。図11は本発明の第2の実施例を適応したレンズ装置L3の全体を示す概略図である。図12は図11のC部詳細図である。
(Example 3)
Hereinafter, a lens device L2 according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a schematic diagram showing the entire lens apparatus L3 to which the second embodiment of the present invention is applied. FIG. 12 is a detailed view of part C of FIG.

本実施例は、実施例2と比較して熱変形部が異なる。以下、実施例2と共通の構成には同じ番号を付し、説明を省略する。   The present embodiment is different from the second embodiment in the thermal deformation portion. Hereinafter, the same number is attached | subjected to the same structure as Example 2, and description is abbreviate | omitted.

(構成)
本実施例における熱伝導手段は、第1の熱伝導部310a、第2の熱伝導手段310bから構成されている。
(Constitution)
The heat conducting means in this embodiment is composed of a first heat conducting unit 310a and a second heat conducting means 310b.

図12に示すように、第1の熱変形部は、第1の管部材320aと、第1の充填部材321a、および第1の可動部材322aから構成される。第1の管部材320aはその一端に開口を有し、そこから第1の充填部材321aが充填されたのち、第1の可動部材322aによって密閉される。第1の可動部材322aは、温度変化による第1の充填部材321aの体積変化に応じて摺動する。上記のメカニズムによって、第1の熱変形部は全体として変形する。   As shown in FIG. 12, the first thermal deformation section includes a first tube member 320a, a first filling member 321a, and a first movable member 322a. The first tube member 320a has an opening at one end thereof, and after being filled with the first filling member 321a, the first tube member 320a is sealed by the first movable member 322a. The first movable member 322a slides according to the volume change of the first filling member 321a due to the temperature change. Due to the above mechanism, the first heat-deformed portion is deformed as a whole.

第2の熱変形普段は、第2の管部材320b、第2の充填部材321b、および第2の可動部材322bから構成される。変形のメカニズムは同様である。   The second heat deformation usual is composed of a second tube member 320b, a second filling member 321b, and a second movable member 322b. The deformation mechanism is the same.

第1の充填部材321aおよび第2の充填部材321bは同じ体膨張係数とし、かつ、第1の管部材320aおよび第2の管部材320bに充填される体積が任意の温度において同じである。   The first filling member 321a and the second filling member 321b have the same body expansion coefficient, and the volumes filled in the first tube member 320a and the second tube member 320b are the same at an arbitrary temperature.

第1の管部材320aは、所定の方向である光軸Oの方向に変形するように外装部材1の内周面に配置される。本実施例では、第1の管部材320aを長くし、外装部材1との接触面積を増やすとともに、光軸O方向への変形量を大きくしている。第2の管部材320bは、第1の管部材320aと同じ方向に駆動力を発生するように鏡筒2の外周面に対して巻きつける(周方向に接触している)ように配置される。本実施例では、第2の管部材320bを長くし、鏡筒2との接触面積を増やすとともに、光軸O方向への変形量を大きくしている。   The 1st pipe member 320a is arrange | positioned at the internal peripheral surface of the exterior member 1 so that it may deform | transform in the direction of the optical axis O which is a predetermined direction. In the present embodiment, the first tube member 320a is lengthened, the contact area with the exterior member 1 is increased, and the amount of deformation in the direction of the optical axis O is increased. The second tube member 320b is disposed so as to be wound around (in contact with the circumferential direction) around the outer peripheral surface of the lens barrel 2 so as to generate a driving force in the same direction as the first tube member 320a. . In the present embodiment, the second tube member 320b is lengthened, the contact area with the lens barrel 2 is increased, and the amount of deformation in the direction of the optical axis O is increased.

(効果)
本実施例では熱変形部の変形をより大きくすることができるので、温度差に対する熱伝熱量をさらに増加させることができる。また、外装部材1、鏡筒2との接触面積が大きくでき、温度変化により敏感になる。
(effect)
In the present embodiment, the deformation of the heat-deformed portion can be further increased, so that the amount of heat transfer with respect to the temperature difference can be further increased. Further, the contact area between the exterior member 1 and the lens barrel 2 can be increased, and it becomes more sensitive to temperature changes.

(実施例4)
以下、図13から図15を参照して、本発明の第3の実施例による、レンズ装置L2について説明する。第3の実施例は、その他の実施例に対して熱伝導手段の構成が異なる。その他の実施例と同一の構成には同一の番号を付し、説明は省略する。
Example 4
A lens device L2 according to a third embodiment of the present invention will be described below with reference to FIGS. The third embodiment differs from the other embodiments in the configuration of the heat conducting means. The same components as those in the other embodiments are denoted by the same reference numerals, and description thereof is omitted.

(構成)
図13は、本発明の第3の実施例におけるレンズ装置L2の全体を示す概略図である。図14は図13のD方向矢視図である。図15は、図13のE部拡大図である。
(Constitution)
FIG. 13 is a schematic view showing the entire lens device L2 in the third embodiment of the present invention. 14 is a view in the direction of arrow D in FIG. FIG. 15 is an enlarged view of a portion E in FIG.

本実施例における熱伝導手段は、熱変形部の伸縮を増幅させる増幅機構を有している。増幅機構は、接触部と熱変形部の間に設けられる。   The heat conducting means in this embodiment has an amplifying mechanism that amplifies the expansion and contraction of the heat deforming portion. The amplification mechanism is provided between the contact portion and the thermal deformation portion.

図13に示すように、増幅機構は第1の増幅部材30a、第2の増幅部材30bから構成される。   As shown in FIG. 13, the amplifying mechanism includes a first amplifying member 30a and a second amplifying member 30b.

図14に示すように、第1の増幅部材30aは、梃子部材31a、回転軸32a、梃子部材31aと熱伝導部と接続する第1の接続部材33a、梃子部材31aと熱変形部とを接続する第2の接続部材34aから構成される。   As shown in FIG. 14, the first amplifying member 30a connects the insulator member 31a, the rotating shaft 32a, the insulator member 31a and the first connecting member 33a connected to the heat conducting part, and the insulator member 31a and the heat deforming part. The second connecting member 34a.

梃子部材31aは、外装部材1に設けられた回転軸32aを中心に回動する。梃子部材31aの一方の端には第1の接続部材33aが取付けられ、第1の接触部411aに接続する。梃子部材31aの他方の端には、第2の接続部材34aが取付けられ、第1の熱変形部412aに接続する。   The lever member 31 a rotates around a rotation shaft 32 a provided on the exterior member 1. A first connecting member 33a is attached to one end of the lever member 31a and is connected to the first contact portion 411a. A second connection member 34a is attached to the other end of the lever member 31a, and is connected to the first thermal deformation portion 412a.

図15に示すように、第1の接続部材33aは第1の接触部411aに形成された長穴に係合している。第2の接続部材34aは、第1の熱変形部412aに形成された長穴に係合している。この構成により梃子部材31aは回動可能である。   As shown in FIG. 15, the first connection member 33a is engaged with a long hole formed in the first contact portion 411a. The second connection member 34a is engaged with an elongated hole formed in the first thermal deformation portion 412a. With this configuration, the lever member 31a is rotatable.

図15を用いて第1の増幅部材30aの動作を説明する。   The operation of the first amplifying member 30a will be described with reference to FIG.

温度変化によって第1の熱変形部412aが矢印G方向に伸縮すると、第2の接続部材34aが矢印Hの方向に移動される。これによって梃子部材31aおよび第1の接続部材33aは回転軸32a中心にθ方向に回動される。第1の接続部材33aを介して、第1の接触部411aは矢印I方向に移動する。   When the first thermal deformation portion 412a expands and contracts in the direction of arrow G due to a temperature change, the second connecting member 34a is moved in the direction of arrow H. As a result, the lever member 31a and the first connecting member 33a are rotated in the θ direction about the rotation shaft 32a. The first contact portion 411a moves in the direction of arrow I through the first connection member 33a.

いま、梃子部材31aにおける回転軸32aから第2の接続部材34aの距離をR1、回転軸32aから第1の接続部材33aの距離をR2(R2>R1)、第1の熱変形部412aの変形量をΔL1、第1の接触部411aの移動量ΔL2とする。このとき、本実施例の増幅機構により、第1の熱変形部412aの変形量ΔL1は、ΔL2=(R2/R1)×ΔL1となるように増幅される。   Now, the distance from the rotary shaft 32a to the second connecting member 34a in the lever member 31a is R1, the distance from the rotary shaft 32a to the first connecting member 33a is R2 (R2> R1), and the first thermal deformation portion 412a is deformed. The amount is ΔL1, and the movement amount ΔL2 of the first contact portion 411a. At this time, the deformation amount ΔL1 of the first thermal deformation portion 412a is amplified by the amplification mechanism of the present embodiment so that ΔL2 = (R2 / R1) × ΔL1.

第2の増幅部材30bは、同じく梃子部材31bとその回転軸32b、梃子部材31bと熱伝導部とを接続する第1の接続部材33b、梃子部材31bと熱変形部と接続する第2の接続部材34bから構成される。第2の増幅部材30bの動作は、第1の増幅部材30aと同様であり、説明を省略する。   Similarly, the second amplifying member 30b includes a lever member 31b and its rotating shaft 32b, a first connecting member 33b that connects the lever member 31b and the heat conducting portion, and a second connection that connects the lever member 31b and the heat deforming portion. It is comprised from the member 34b. The operation of the second amplifying member 30b is the same as that of the first amplifying member 30a, and a description thereof will be omitted.

(効果)
本実施例では熱変形部の変形を増幅できるので、温度差に対する熱伝熱量をさらに増加させることができる。
(effect)
In this embodiment, the deformation of the heat deformable portion can be amplified, so that the amount of heat transfer with respect to the temperature difference can be further increased.

(変形例)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
(Modification)
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

本実施形態においては、レンズ装置を例に説明した。しかし、撮像素子を有するカメラと、該撮像素子に被写体の像を結ぶレンズ装置と、を有する撮像装置にも、本発明は適用可能である。この場合、様々な温度環境下で利用しても、結露の生じにくい撮像装置を提供することができる。このような撮像装置に本発明を用いる場合は、撮像素子に被写体の像を結ぶレンズ装置として、本実施例のレンズ装置を用いることが望ましい。   In the present embodiment, the lens device has been described as an example. However, the present invention can also be applied to an image pickup apparatus having a camera having an image pickup element and a lens device that connects an image of a subject to the image pickup element. In this case, it is possible to provide an imaging device in which condensation does not easily occur even when used in various temperature environments. When the present invention is used for such an image pickup apparatus, it is desirable to use the lens apparatus of this embodiment as a lens apparatus for connecting an image of a subject to the image pickup element.

1 外装部材(外装部材)
2 鏡筒(光学保持部材)
3 ガラス(光学部材)
4、210a、310a、411a、412a 第1の熱伝導部
5、210b、310b、411b、412b 第2の熱伝導部
1 Exterior member (exterior member)
2 Lens barrel (optical holding member)
3 Glass (optical member)
4, 210a, 310a, 411a, 412a 1st heat conduction part 5, 210b, 310b, 411b, 412b 2nd heat conduction part

Claims (13)

光学部材と、
前記光学部材を保持する光学保持部材と、
前記光学保持部材を覆う外装部材と、を有するレンズ装置であって、
前記外装部材を介して前記レンズ装置の外部の熱を前記光学部材に伝導可能な熱伝導手段を有し、
前記熱伝導手段は、前記レンズ装置の外部の温度、前記光学部材の温度の一方あるいは両方に応じて、前記外部の熱を前記光学部材に伝導する伝導状態と、伝導しない非伝導状態を切り替える
ことを特徴とするレンズ装置。
An optical member;
An optical holding member for holding the optical member;
An exterior member that covers the optical holding member,
Heat conduction means capable of conducting heat outside the lens device to the optical member through the exterior member;
The heat conducting means switches between a conductive state in which the external heat is conducted to the optical member and a non-conductive state in which the heat is not conducted according to one or both of the temperature outside the lens device and the temperature of the optical member. A lens device.
前記熱伝導手段は、温度に応じて変形するように熱膨張率が互いに異なる部材を貼り付けて構成されており、前記光学部材の側の部材の方が熱膨張率の大きい部材となるように、前記外装部材もしくは前記光学保持部材に接続され、
前記熱伝導手段は、前記外部の温度が前記光学部材の温度よりも高い場合に、該熱伝導手段が接続されていない側の部材に接触し、前記伝導状態となる
ことを特徴とする請求項1に記載のレンズ装置。
The heat conducting means is configured by attaching members having different thermal expansion coefficients so as to be deformed according to temperature, so that the member on the optical member side is a member having a higher thermal expansion coefficient. , Connected to the exterior member or the optical holding member,
The heat conducting means contacts the member on the side to which the heat conducting means is not connected when the external temperature is higher than the temperature of the optical member, and enters the conducting state. 2. The lens device according to 1.
前記熱伝導手段は板形状を有する第1、第2の熱伝導部を備え、
前記第1、第2の熱伝導部はいずれも、熱膨張率が互いに異なる部材を貼り付けた構成であり、
前記第1の熱伝導部の両端は前記外装部材に、前記第2の熱伝導部の両端は、前記外装部材の側に凸となるように湾曲した状態で前記光学保持部材に、いずれも光学部材の側の方が熱膨張率の大きい部材となるように接続され、
前記第1の熱伝導部は前記外部の温度が第1の温度より高い場合に、前記光学部材の側に凸となるように変形し、前記第2の熱伝導部は前記光学部材の温度が第2の温度より高い場合に、前記光学部材の側に変形し、
前記外部の温度が前記第1の温度より高く、前記光学部材の温度が前記第2の温度より低い場合に、前記第1、第2の熱伝導部が互いに接触し前記伝導状態となり、
前記外部の温度が前記第1の温度より低い場合、もしくは前記光学部材の温度が前記第2の温度より高い場合には接触せず前記非伝導状態となる
ことを特徴とする請求項2に記載のレンズ装置。
The heat conducting means includes first and second heat conducting portions having a plate shape,
Each of the first and second heat conducting parts has a configuration in which members having different coefficients of thermal expansion are attached to each other.
Both ends of the first heat conducting portion are optically attached to the exterior member, and both ends of the second heat conducting portion are optically curved to the optical holding member in a state of being convex toward the exterior member. The side of the member is connected so as to be a member having a larger coefficient of thermal expansion,
When the external temperature is higher than the first temperature, the first heat conducting unit is deformed so as to protrude toward the optical member, and the second heat conducting unit has a temperature of the optical member. When the temperature is higher than the second temperature, it is deformed to the optical member side,
When the external temperature is higher than the first temperature and the temperature of the optical member is lower than the second temperature, the first and second heat conducting parts come into contact with each other and enter the conductive state,
3. The non-conductive state without contact when the external temperature is lower than the first temperature or when the temperature of the optical member is higher than the second temperature. 4. Lens device.
前記第1の部材は、第2の部材の両端に貼り付けられており、
前記外部の温度が前記第1の温度より高く、前記光学部材の温度が前記第2の温度より低い場合に、前記第1の熱伝導部における前記第2の部材と、前記第2の熱伝導部における前記第2の部材とが互いに接触し前記伝導状態となる
ことを特徴とする請求項3に記載のレンズ装置。
The first member is attached to both ends of the second member;
When the external temperature is higher than the first temperature and the temperature of the optical member is lower than the second temperature, the second member in the first heat conducting unit and the second heat conduction The lens device according to claim 3, wherein the second member in the portion comes into contact with each other and enters the conductive state.
前記熱伝導手段は第1、第2の熱伝導部を備え、
前記第1、第2の熱伝導部は、それぞれ接触部と、所定の方向に熱膨張および熱収縮する熱変形部と、を有しており、
前記第1の熱伝導部の熱変形部は前記外装部材に、前記第2の熱伝導部の熱変形部は前記光学保持部材にそれぞれ固定され、
前記接触部は、前記所定の方向に摺動が可能かつ前記所定の方向に間隔をあけて前記熱変形部によって保持され、
前記外部の温度と前記光学部材の温度の差が所定の温度差より大きい場合に、前記熱変形部が変形することで前記接触部が前記所定の方向へ移動され、互いに接触し前記伝導状態となるように構成されている
ことを特徴とする請求項1に記載のレンズ装置。
The heat conducting means includes first and second heat conducting portions,
Each of the first and second heat conducting portions includes a contact portion and a thermally deformable portion that thermally expands and contracts in a predetermined direction.
The heat deformation part of the first heat conduction part is fixed to the exterior member, and the heat deformation part of the second heat conduction part is fixed to the optical holding member, respectively.
The contact portion is slidable in the predetermined direction and is held by the thermal deformation portion with an interval in the predetermined direction,
When the difference between the external temperature and the temperature of the optical member is larger than a predetermined temperature difference, the contact portion is moved in the predetermined direction due to the deformation of the thermal deformation portion, and is brought into contact with the conductive state. The lens device according to claim 1, wherein the lens device is configured as follows.
前記熱変形部は、
開口が形成された管部材と、前記管部材に充填された充填部材と、前記開口を塞いでおり、前記接触部に接続する可動部材と、から構成され、
前記可動部材は、前記充填部材の熱膨張および熱収縮により、前記接触部を移動させる
ことを特徴する請求項5に記載のレンズ装置。
The thermal deformation portion is
A tube member in which an opening is formed, a filling member filled in the tube member, a movable member that closes the opening and connects to the contact portion,
The lens apparatus according to claim 5, wherein the movable member moves the contact portion by thermal expansion and contraction of the filling member.
前記管部材は、前記外装部材の内周面もしくは前記光学保持部材の外周面に対して周方向に接触している
ことを特徴とする請求項6に記載のレンズ装置。
The lens device according to claim 6, wherein the tube member is in contact with the inner peripheral surface of the exterior member or the outer peripheral surface of the optical holding member in the circumferential direction.
前記第1、第2の熱伝導部は、前記熱変形部の変形量を増幅して、前記接触部を移動させる増幅手段を有する
ことを特徴とする請求項5乃至7のいずれか一項に記載のレンズ装置。
The said 1st, 2nd heat conduction part has an amplification means to amplify the deformation amount of the said heat deformation part, and to move the said contact part. The lens device described.
前記接触部は、前記所定の方向に直交する方向で互いに接触し、前記伝導状態となる
ことを特徴とする請求項5乃至8のいずれか一項に記載のレンズ装置。
The lens device according to any one of claims 5 to 8, wherein the contact portions are in contact with each other in a direction orthogonal to the predetermined direction to be in the conductive state.
前記接触部は凸部を有しており、前記凸部は前記所定の方向から見て重ならないように配置されている
ことを特徴とする請求項9に記載のレンズ装置。
The lens device according to claim 9, wherein the contact portion has a convex portion, and the convex portion is disposed so as not to overlap when viewed from the predetermined direction.
前記第1の熱伝導部の熱変形部の変形量を規制する規制部材を有する
ことを特徴とする請求項5乃至10のいずれか一項に記載のレンズ装置。
11. The lens device according to claim 5, further comprising a regulating member that regulates a deformation amount of the heat deformation portion of the first heat conducting portion.
前記外部の温度として前記外装部材の温度を、前記光学部材の温度として前記光学保持部材の温度を、それぞれ用いる
ことを特徴とする請求項1乃至11のいずれか一項に記載のレンズ装置。
The lens apparatus according to claim 1, wherein the temperature of the exterior member is used as the external temperature, and the temperature of the optical holding member is used as the temperature of the optical member.
撮像素子を有するカメラと、請求項1乃至12のいずれか一項に記載のレンズ装置を有し、該レンズ装置により前記カメラの撮像素子に被写体の像を形成することを特徴とする撮像装置。   An imaging apparatus comprising: a camera having an imaging element; and the lens apparatus according to claim 1, wherein the lens apparatus forms an image of a subject on the imaging element of the camera.
JP2017148616A 2017-07-31 2017-07-31 Lens device and imaging apparatus having the same Pending JP2019028319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148616A JP2019028319A (en) 2017-07-31 2017-07-31 Lens device and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148616A JP2019028319A (en) 2017-07-31 2017-07-31 Lens device and imaging apparatus having the same

Publications (1)

Publication Number Publication Date
JP2019028319A true JP2019028319A (en) 2019-02-21

Family

ID=65478384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148616A Pending JP2019028319A (en) 2017-07-31 2017-07-31 Lens device and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP2019028319A (en)

Similar Documents

Publication Publication Date Title
US4194119A (en) Self-adjusting cryogenic thermal interface assembly
US11579516B2 (en) Heat spreader for camera
US7479986B2 (en) Imaging apparatus including a cooled imaging element which is shifted to perform high-definition imaging
EP3411741B1 (en) Camera lens actuation arrangement
CN205670799U (en) A kind of heat abstractor and there is its video camera
KR102079533B1 (en) Flow volume control valve and mass flow controller using same
KR20180063275A (en) Magnetic fluid seal
JP5317624B2 (en) Retaining device, telescope and optical device
KR102236109B1 (en) black body system for calibration of infrared detector installed on satellite
JP2010521708A (en) Optical mount and optical element with this type of mount
EP2074374B1 (en) Thermal calibrating system
JP2019028319A (en) Lens device and imaging apparatus having the same
JP4159730B2 (en) Temperature compensation device for lens focus adjustment
CN106482834B (en) A kind of inteference imaging spectrometer that can actively focus
US11957303B2 (en) Apparatus for heat dissipation and use of such apparatus
JP2019028318A (en) Lens device and imaging apparatus having the same
US20030198434A1 (en) Power efficient assemblies for applying a temperature gradient to a refractive index grating
US11079281B2 (en) Cold stage actuation of optical elements including an optical light shield and a lenslet array connected to a cold finger
JPH07237599A (en) Shape memory alloy actuator for space equipment
JP2019502889A5 (en)
TWI730254B (en) A camera
EP3438592B1 (en) Temperature calibration system comprising a valve in a closed fluidic system
JP6800000B2 (en) Heating object measurement system
SE1050478A1 (en) Mechanical temperature compensation element, method of mounting thereof, and method of mechanical temperature compensation
US11846392B1 (en) Intra-Dewar structure