JP2019028082A - Optical receiver and coherent light receiving method - Google Patents

Optical receiver and coherent light receiving method Download PDF

Info

Publication number
JP2019028082A
JP2019028082A JP2017143402A JP2017143402A JP2019028082A JP 2019028082 A JP2019028082 A JP 2019028082A JP 2017143402 A JP2017143402 A JP 2017143402A JP 2017143402 A JP2017143402 A JP 2017143402A JP 2019028082 A JP2019028082 A JP 2019028082A
Authority
JP
Japan
Prior art keywords
light
polarization
component
local
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017143402A
Other languages
Japanese (ja)
Other versions
JP6761782B2 (en
Inventor
昇太 石村
Shota Ishimura
昇太 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2017143402A priority Critical patent/JP6761782B2/en
Publication of JP2019028082A publication Critical patent/JP2019028082A/en
Application granted granted Critical
Publication of JP6761782B2 publication Critical patent/JP6761782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an optical receiver for configuring a coherent light communication system at lower cost.SOLUTION: An optical receiver includes: a light source for generating local light; adjustment means for adjusting at least one amplitude of the local light and signal light so as to coincide the amplitude of the local light with the amplitude of the signal light to be received; output means for outputting multiplexed light including the local light and the signal light whose polarization planes intersect with each other at right angles based on the local light and the signal light after adjustment by the adjustment means; and measurement means for measuring stokes parameters Sand Sof the multiplexed light.SELECTED DRAWING: Figure 1

Description

本発明は、コヒーレント光通信システムの光受信機及びコヒーレント光受信方法に関する。   The present invention relates to an optical receiver and a coherent optical reception method of a coherent optical communication system.

通信容量の増大に対応するためコヒーレント光通信システムが利用されている。コヒーレント光通信システムの光受信機は、複雑な光回路と信号処理を必要とし、例えば、比較的短距離を接続するシステムにおいては、相対的に、光受信機のコストが高くなる。このため、コヒーレント光通信システムに利用できる安価な光受信機が求められている。非特許文献1は、120°光ハイブリッドと、3つのフォトダイオード(PD)及び3つのアナログ・デジタル変換器(ADC)を備えたホモダイン光受信機を開示している。   A coherent optical communication system is used to cope with an increase in communication capacity. An optical receiver of a coherent optical communication system requires a complicated optical circuit and signal processing. For example, in a system connecting relatively short distances, the cost of the optical receiver is relatively high. Therefore, there is a demand for an inexpensive optical receiver that can be used in a coherent optical communication system. Non-Patent Document 1 discloses a homodyne optical receiver including a 120 ° optical hybrid, three photodiodes (PD), and three analog-digital converters (ADC).

K.Y.Cho et al,"Long−reach coherent WDM PON employing self−polarization−stabilization technique",IEEE JLT,vol.29,456−462,2011年K. Y. Cho et al., “Long-reach coherent WDM PON Employing self-polarization-stabilization technique”, IEEE JLT, vol. 29,456-462, 2011

しかしながら、コヒーレント光通信システムをより安価に構成することが求められている。   However, it is required to configure the coherent optical communication system at a lower cost.

本発明は、安価な光受信機及びコヒーレント光受信方法を提供するものである。   The present invention provides an inexpensive optical receiver and coherent optical receiving method.

本発明の一態様によると、光受信機は、局所光を生成する光源と、受信する信号光の振幅を一致させる様に、前記局所光及び前記信号光の少なくとも1つの振幅を調整する調整手段と、前記調整手段による調整後の前記局所光及び前記信号光に基づき、偏波面が互いに直交する前記局所光と前記信号光を含む合波光を出力する出力手段と、前記合波光のストークスパラメータS及びSを測定する測定手段と、を備えていることを特徴とする。 According to an aspect of the present invention, the optical receiver adjusts at least one amplitude of the local light and the signal light so that the light source that generates the local light matches the amplitude of the received signal light. And output means for outputting the combined light including the local light and the signal light whose polarization planes are orthogonal to each other based on the local light and the signal light after adjustment by the adjusting means, and a Stokes parameter S of the combined light measuring means for measuring the 2 and S 3, characterized in that it comprises.

本発明によると、コヒーレント光通信システムをより安価に構成することができる。   According to the present invention, a coherent optical communication system can be configured at a lower cost.

一実施形態による光受信機の構成図。The block diagram of the optical receiver by one Embodiment. ストークスパラメータ測定の説明図。Explanatory drawing of Stokes parameter measurement. 図1の光受信機の置換形態を示す図。The figure which shows the substitution form of the optical receiver of FIG. 図1の光受信機の置換形態を示す図。The figure which shows the substitution form of the optical receiver of FIG. 図1の光受信機の置換形態を示す図。The figure which shows the substitution form of the optical receiver of FIG.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment is an illustration and does not limit this invention to the content of embodiment. In the following drawings, components that are not necessary for the description of the embodiments are omitted from the drawings.

図1は、本実施形態による光受信機の構成図である。光受信機は、変調された信号光を受信して復調する。なお、信号光の偏波をY偏波とする。光源1は、コヒーレント受信のための局所光を生成して射出する。なお、局所光は、Y偏波と直交するX偏波とする。光可変減衰器(光可変ATT)21は局所光の振幅を調整し、振幅調整後の局所光を2×2光カップラ3に出力する。同様に、光可変ATT22は信号光の振幅を調整し、振幅調整後の信号光を2×2光カップラ3に出力する。なお、光可変ATT21及び22は、調整後の局所光及び信号光の振幅が同じとなる様に、局所光及び信号光の振幅の調整を行う。   FIG. 1 is a configuration diagram of an optical receiver according to the present embodiment. The optical receiver receives and demodulates the modulated signal light. Note that the polarization of the signal light is Y polarization. The light source 1 generates and emits local light for coherent reception. Note that the local light is X-polarized light orthogonal to Y-polarized light. The optical variable attenuator (optical variable ATT) 21 adjusts the amplitude of the local light, and outputs the local light after the amplitude adjustment to the 2 × 2 optical coupler 3. Similarly, the optical variable ATT 22 adjusts the amplitude of the signal light, and outputs the signal light after the amplitude adjustment to the 2 × 2 optical coupler 3. The optical variable ATTs 21 and 22 adjust the amplitudes of the local light and the signal light so that the adjusted local light and the signal light have the same amplitude.

2×2光カップラ3は、入力される局所光及び信号光を合波し、合波光を、それぞれ、45度偏光子51と、1/4波長板4に出力する。したがって、45度偏光子51に入力される合波光と、1/4波長板4に入力される合波光に含まれる局所光及び信号光の振幅は同じであり、かつ、局所光及び信号光の偏波面は直交している。本実施形態において、1/4波長板4は、X偏波の光に対してY偏波の光を1/4波長だけ遅延させて45度偏光子52に出力する。なお、1/4波長板4は、Y偏波の光に対してX偏波の光を1/4波長だけ遅延させるものであっても良い。   The 2 × 2 optical coupler 3 combines the input local light and signal light, and outputs the combined light to the 45-degree polarizer 51 and the quarter wavelength plate 4, respectively. Therefore, the amplitude of the local light and the signal light included in the combined light input to the 45-degree polarizer 51 and the combined light input to the quarter wavelength plate 4 are the same, and the local light and the signal light The planes of polarization are orthogonal. In the present embodiment, the quarter-wave plate 4 delays Y-polarized light by ¼ wavelength with respect to X-polarized light and outputs the delayed light to the 45-degree polarizer 52. The quarter-wave plate 4 may delay the X-polarized light by a quarter wavelength with respect to the Y-polarized light.

45度偏光子51及び52は、それぞれ、X偏波及びY偏波の偏波面それぞれに対して45度の角度を持った偏波面の成分のみを通過させる。したがって、光電気変換部であるフォトダイオード(PD)61は、X偏波及びY偏波の偏波面それぞれに対して45度の角度を持った偏波面の局所光成分及び信号光成分を含む合波光を受信し、この2つの成分のビート信号を電気信号として出力する。同様に、PD62も、X偏波及びY偏波の偏波面それぞれに対して45度の角度を持った偏波面の局所光成分及び信号光成分を含む合波光を受信し、この2つの成分のビート信号を電気信号として出力する。ただし、1/4波長板4により、PD62に入力される信号光成分は、1/4波長だけ遅延されている。PD61及びPD62が出力する電気信号は、それぞれ、アナログ・デジタル変換器(ADC)71及び72でデジタル信号に変換され、これらデジタル信号は処理部8に出力される。   The 45 degree polarizers 51 and 52 pass only the components of the polarization plane having an angle of 45 degrees with respect to the polarization planes of the X polarization and the Y polarization, respectively. Therefore, the photodiode (PD) 61 that is the photoelectric conversion unit includes a local light component and a signal light component having a polarization plane having an angle of 45 degrees with respect to each of the polarization planes of the X polarization and the Y polarization. Wave light is received, and the beat signal of these two components is output as an electrical signal. Similarly, the PD 62 also receives the combined light including the local light component and the signal light component of the polarization plane having an angle of 45 degrees with respect to the polarization planes of the X polarization and the Y polarization, respectively. The beat signal is output as an electrical signal. However, the signal light component input to the PD 62 is delayed by ¼ wavelength by the ¼ wavelength plate 4. The electrical signals output from the PD 61 and the PD 62 are converted into digital signals by analog / digital converters (ADC) 71 and 72, respectively, and these digital signals are output to the processing unit 8.

続いて、2×2光カップラ3が出力する合波光のストークスパラメータについて説明する。X偏波の局所光を複素数Exで表し、Y偏波の信号光を複素数Eyで表すと、2×2光カップラ3が出力する合波光のストークスパラメータS、S、S及びSは、それぞれ、以下の式で表される。
=|Ex|+|Ey| (1)
=|Ex|−|Ey| (2)
=2Re[Ex*Ey] (3)
=2Im[Ex*Ey] (4)
なお、式(3)及び(4)のEx*は、Exの共役複素数であり、Re及びImは、それぞれ、実数部分及び虚数部分を取り出すことを意味している。式(3)及び(4)から明らかな様に、S+jSは、信号光Eyをコヒーレント検出して得た信号に対応し、S+jSにより信号光を復調できる。
Next, the Stokes parameters of the combined light output from the 2 × 2 optical coupler 3 will be described. When the X-polarized local light is represented by a complex number Ex and the Y-polarized signal light is represented by a complex number Ey, the Stokes parameters S 0 , S 1 , S 2 and S 3 of the combined light output from the 2 × 2 optical coupler 3 are used. Are represented by the following equations, respectively.
S 0 = | Ex | 2 + | Ey | 2 (1)
S 1 = | Ex | 2 − | Ey | 2 (2)
S 2 = 2Re [Ex * Ey] (3)
S 3 = 2Im [Ex * Ey] (4)
In Expressions (3) and (4), Ex * is a conjugate complex number of Ex, and Re and Im mean that a real part and an imaginary part are extracted, respectively. As is apparent from the equations (3) and (4), S 2 + jS 3 corresponds to a signal obtained by coherent detection of the signal light Ey, and the signal light can be demodulated by S 2 + jS 3 .

なお、ストークスパラメータS、S、S及びSには、以下の関係がある。
=S +S +S (5)
The Stokes parameters S 0 , S 1 , S 2 and S 3 have the following relationship.
S 0 2 = S 1 2 + S 2 2 + S 3 2 (5)

続いて、ストークスパラメータの測定について説明する。測定対象の光信号を4分岐し、それぞれ、図2(A)〜(D)に示す回路に入力する。なお、分岐後の4つの光信号の振幅は等しいものとする。図2(A)の回路において、PDは、分岐光の全体の受光量に対応する電流Iを出力する。図2(B)の回路においては、分岐光の基準偏波面の光成分のみを0度偏光子で取り出し、PDは、この光成分に対応する電流Iを出力する。図2(C)の回路においては、基準偏波面に対して45度の角度を有する偏波面の光成分を分岐光から取り出し、PDは、この光成分に対応する電流Iを出力する。図2(D)の回路においては、基準偏波面に対して90度の角度の偏波面の光成分の位相を1/4波長だけ遅延させ、その後、基準偏波面に対して45度の角度を有する偏波面の光成分を分岐光から取り出し、PDは、この光成分に対応する電流Iを出力する。よく知られている様に、ストークスパラメータは、電流I、I、I、Iから以下の式で求められる。
=I (6)
=2×I−I (7)
=2×I−I (8)
=2×I−I (9)
Next, measurement of Stokes parameters will be described. The optical signal to be measured is branched into four and input to the circuits shown in FIGS. It is assumed that the four optical signals after branching have the same amplitude. In the circuit of FIG. 2A, the PD outputs a current I 0 corresponding to the total amount of the branched light. In the circuit of FIG. 2B, only the light component of the reference polarization plane of the branched light is extracted by the 0 degree polarizer, and the PD outputs a current I 1 corresponding to this light component. In the circuit of Fig. 2 (C), extraction of light components of the polarization plane having an angle of 45 degrees with respect to the reference plane of polarization from the branched light, PD outputs a current I 2 corresponding to the optical component. In the circuit of FIG. 2D, the phase of the light component of the polarization plane at an angle of 90 degrees with respect to the reference polarization plane is delayed by ¼ wavelength, and then the angle of 45 degrees with respect to the reference polarization plane is set. The light component having the polarization plane is extracted from the branched light, and the PD outputs a current I 3 corresponding to the light component. As is well known, the Stokes parameter is obtained from the currents I 0 , I 1 , I 2 , and I 3 by the following equation.
S 0 = I 0 (6)
S 1 = 2 × I 1 −I 0 (7)
S 2 = 2 × I 2 −I 0 (8)
S 3 = 2 × I 3 −I 0 (9)

ここで、図1の45度偏光子51及びPD61は、図2(C)の回路に対応し、図1の1/4波長板4、45度偏光子52及びPD62は、図2(D)の回路に対応する。つまり、図1のPD61は、合波光についての上記電流Iを出力し、PD62は、合波光についての上記電流Iを出力する。 Here, the 45-degree polarizer 51 and the PD 61 in FIG. 1 correspond to the circuit in FIG. 2C, and the quarter-wave plate 4, the 45-degree polarizer 52 and the PD 62 in FIG. Corresponds to the circuit. That is, the PD 61 in FIG. 1 outputs the current I 2 for the combined light, and the PD 62 outputs the current I 3 for the combined light.

したがって、PD61が出力する電流をIと表記し、PD62が出力する電流をIと表記すると、合波光のストークスパラメータS及びSは、以下の式で求められる。
=2×I−I (10)
=2×I−I (11)
式(10)及び(11)に式(6)を代入すると、以下の式が得られる。
=2×I−S (12)
=2×I−S (13)
Therefore, when the current output from the PD 61 is expressed as I 2 and the current output from the PD 62 is expressed as I 3 , the Stokes parameters S 2 and S 3 of the combined light can be obtained by the following equations.
S 2 = 2 × I 2 −I 0 (10)
S 3 = 2 × I 3 −I 0 (11)
Substituting equation (6) into equations (10) and (11) yields the following equation:
S 2 = 2 × I 2 −S 0 (12)
S 3 = 2 × I 3 −S 0 (13)

また、上述した様に、本実施形態において、光可変ATT21及び22は、調整後の局所光及び信号光の振幅が同じとなる様に、局所光及び信号光の振幅の調整を行っている。つまり、|Ex|=|Ey|であり、式(2)よりS=0である。S=0を式(5)に代入すると、以下の式を得る。
=S +S (14)
Further, as described above, in the present embodiment, the optical variable ATTs 21 and 22 adjust the amplitudes of the local light and the signal light so that the amplitudes of the adjusted local light and the signal light are the same. That is, | Ex | = | Ey |, and S 1 = 0 from Equation (2). Substituting S 1 = 0 into equation (5) yields:
S 0 2 = S 2 2 + S 3 2 (14)

式(12)〜(14)の連立方程式を解くことで、PD61が出力する電流I及びPD62が出力する電流Iから、S及びSを求めることができ、これにより、信号光の復調を行うことができる。なお、図1の処理部8は、ADC71及びADC72が出力する電流I及びIを示すデジタル信号から、式(12)〜(14)の連立方程式を解くことで、S及びSを求めて復調を行う。 By solving the simultaneous equations of Expressions (12) to (14), S 2 and S 3 can be obtained from the current I 2 output from the PD 61 and the current I 3 output from the PD 62, and thereby the signal light Demodulation can be performed. The processing unit 8 in FIG. 1 solves the simultaneous equations of Expressions (12) to (14) from digital signals indicating the currents I 2 and I 3 output from the ADC 71 and the ADC 72, thereby obtaining S 2 and S 3 . Find and demodulate.

以上、本実施形態では、PD及びADCの数が2つであり、非特許文献1に記載の構成より、PD及びADCの数を1つずつ削減することができる。なお、本実施形態では、信号光及び局所光それぞれに対応させて光可変ATT21及び22を設けたが、どちらか一方、例えば、通常、信号光の振幅は局所光の振幅より小さいため、光可変ATT21のみを設ける構成であっても良い。また、光可変ATT21及び22での減衰量は、サービス開始前に手動で設定しても良いが、例えば、光可変ATT21及び22が出力する光信号の振幅を監視し、目標振幅となる様に自動的に減衰量を調整する構成とすることもできる。   As described above, in this embodiment, the number of PDs and ADCs is two, and the number of PDs and ADCs can be reduced one by one from the configuration described in Non-Patent Document 1. In the present embodiment, the optical variable ATTs 21 and 22 are provided corresponding to the signal light and the local light, respectively. However, for example, since the amplitude of the signal light is usually smaller than the amplitude of the local light, the optical variable is possible. A configuration in which only the ATT 21 is provided may be used. Further, the attenuation amount in the optical variable ATTs 21 and 22 may be set manually before starting the service. For example, the amplitude of the optical signal output from the optical variable ATTs 21 and 22 is monitored and becomes the target amplitude. A configuration in which the attenuation amount is automatically adjusted may be employed.

また、図1の2×2光カップラ3を、図3に示す様に、偏光ビームスプリッタ31及び1×2光カップラ32に置換することもできる。偏光ビームスプリッタ31は、X偏波の局所光とY偏波の信号光を合波して1×2光カップラ32に出力し、1×2光カップラ32は、合波光を分岐して、それぞれ、図1の45度偏光子51と、1/4波長板4に出力する。   Further, the 2 × 2 optical coupler 3 of FIG. 1 can be replaced with a polarizing beam splitter 31 and a 1 × 2 optical coupler 32 as shown in FIG. The polarization beam splitter 31 combines the X-polarized local light and the Y-polarized signal light and outputs them to the 1 × 2 optical coupler 32. The 1 × 2 optical coupler 32 branches the combined light, respectively. 1 is output to the 45-degree polarizer 51 of FIG.

なお、図1の構成において、信号光は、局所光と直交する偏波であるものとした。これは、例えば、光伝送路に偏波保持ファイバを使用することで達成され得る。また、偏波保持ファイバを使用できない場合であっても、例えば、偏波コントローラを使用することで信号光の偏波面を局所光に直交させることができる。さらに、偏波保持ファイバを使用できない場合であっても、図4に示す構成とすることで信号光の偏波面を局所光に直交させることができる。   In the configuration of FIG. 1, the signal light has a polarization orthogonal to the local light. This can be achieved, for example, by using a polarization maintaining fiber in the optical transmission line. Even when the polarization maintaining fiber cannot be used, for example, the polarization plane of the signal light can be orthogonal to the local light by using the polarization controller. Furthermore, even when the polarization maintaining fiber cannot be used, the polarization plane of the signal light can be made orthogonal to the local light by adopting the configuration shown in FIG.

図4において、光源1は、X偏波の局所光を1×2光カップラ91に出力し、1×2光カップラ91は、X偏波の局所光を光可変ATT21と偏光ビームスプリッタ92それぞれに出力する。偏光ビームスプリッタ92は、X偏波の局所光を光伝送路100に出力する。光伝送路100のもう一方の端部に接続されている光送信機は、受信する局所光を、例えば、反射型反動体光増幅器(RSOA)を用いて反射・増幅し、この反射光を変調して光受信機に送信する。なお、この際、光送信機は、ファラデーローテータを往復通過させることにより反射光の偏波面を90度だけ回転させる。   In FIG. 4, the light source 1 outputs X-polarized local light to the 1 × 2 optical coupler 91, and the 1 × 2 optical coupler 91 supplies the X-polarized local light to the optical variable ATT 21 and the polarization beam splitter 92, respectively. Output. The polarization beam splitter 92 outputs X-polarized local light to the optical transmission line 100. The optical transmitter connected to the other end of the optical transmission line 100 reflects and amplifies the received local light using, for example, a reflective reaction body optical amplifier (RSOA), and modulates the reflected light. And transmit to the optical receiver. At this time, the optical transmitter rotates the polarization plane of the reflected light by 90 degrees by reciprocating the Faraday rotator.

光伝送路100を構成する光ファイバは偏波保持型ではないため、光受信機が光伝送路100に送信したX偏波の局所光は、光伝送路100においてその偏波面が変動し得る。しかしながら、光信号は光伝送路を往復するので偏波面の変動は相殺される。したがって、光送信機による90度の偏波面の回転のみが残り、よって、光受信機はY偏波の信号光を受信する。そして、光受信機の偏光ビームスプリッタ92は、Y偏波の信号光を光可変ATT22に出力する。この構成により、偏波保持型の光ファイバを使用することなく、局所光と信号光の偏波面を直交させることが可能になる。なお、この場合、光受信機はホモダイン光受信機となる。しかしながら、偏波保持型の光ファイバを使用する場合等、信号光と局所光を個別に生成する構成において、本発明は、ヘテロダイン光受信機及びホモダイン光受信機の両方に適用可能である。   Since the optical fiber constituting the optical transmission line 100 is not a polarization maintaining type, the plane of polarization of the X-polarized local light transmitted from the optical receiver to the optical transmission line 100 can vary in the optical transmission line 100. However, since the optical signal reciprocates in the optical transmission line, the fluctuation of the polarization plane is canceled out. Therefore, only the 90-degree rotation of the polarization plane by the optical transmitter remains, and thus the optical receiver receives Y-polarized signal light. Then, the polarization beam splitter 92 of the optical receiver outputs Y-polarized signal light to the optical variable ATT 22. With this configuration, the polarization planes of the local light and the signal light can be made orthogonal without using a polarization maintaining optical fiber. In this case, the optical receiver is a homodyne optical receiver. However, the present invention can be applied to both a heterodyne optical receiver and a homodyne optical receiver in a configuration in which signal light and local light are separately generated, such as when a polarization maintaining optical fiber is used.

図5は、図1の光受信機の変形形態を示す図である。図5の構成において、局所光と信号光は同じZ偏波であり、Z偏波の偏波面はX偏波及びY偏波それぞれの偏波面と45度の角度である。偏光ビームスプリッタ33は、X偏波成分については、直進させ、Y偏波成分については反射して出力する。つまり、偏光ビームスプリッタ33は、光可変ATT21から出力されるZ偏波の局所光のX偏波成分については、ポート#4から出力し、Y偏波成分についてはポート#3から出力する。また、偏光ビームスプリッタ33は、光可変ATT22から出力されるZ偏波の信号光のY偏波成分については、ポート#4から出力し、X偏波成分についてはポート#3から出力する。したがって、偏光ビームスプリッタ33のポート#3からは、X偏波の信号光とY偏波の局所光の合波光が出力される。一方、偏光ビームスプリッタ33のポート#4からは、Y偏波の信号光とX偏波の局所光の合波光が出力される。つまり、偏光ビームスプリッタ33は、互いに直交し、その振幅が同じ信号光と局所光の合波光を出力する。偏光ビームスプリッタ33のポート#3から出力される合波光は、45度偏光子51を通過後、PD61で光電変換される。なお、45度偏光子51は、Z偏波成分を通過させる。一方、偏光ビームスプリッタ33のポート#4から出力される合波光は、1/4波長板4及び45度偏光子52を通過後、PD62で光電変換される。なお、45度偏光子52は、Z偏波成分を通過させる。   FIG. 5 is a diagram showing a modification of the optical receiver of FIG. In the configuration of FIG. 5, the local light and the signal light have the same Z polarization, and the polarization plane of the Z polarization is an angle of 45 degrees with the polarization plane of each of the X polarization and the Y polarization. The polarization beam splitter 33 linearly advances the X polarization component and reflects and outputs the Y polarization component. That is, the polarization beam splitter 33 outputs the X polarization component of the Z-polarized local light output from the optical variable ATT 21 from the port # 4 and outputs the Y polarization component from the port # 3. Further, the polarization beam splitter 33 outputs the Y-polarized component of the Z-polarized signal light output from the optical variable ATT 22 and outputs the X-polarized component from the port # 3. Therefore, the combined light of the X-polarized signal light and the Y-polarized local light is output from the port # 3 of the polarization beam splitter 33. On the other hand, from the port # 4 of the polarization beam splitter 33, the combined light of the Y-polarized signal light and the X-polarized local light is output. That is, the polarization beam splitter 33 outputs combined light of signal light and local light that are orthogonal to each other and have the same amplitude. The combined light output from the port # 3 of the polarization beam splitter 33 passes through the 45-degree polarizer 51 and is then photoelectrically converted by the PD 61. Note that the 45 degree polarizer 51 allows the Z polarization component to pass through. On the other hand, the combined light output from the port # 4 of the polarization beam splitter 33 passes through the quarter-wave plate 4 and the 45-degree polarizer 52 and is then photoelectrically converted by the PD 62. Note that the 45-degree polarizer 52 passes the Z-polarized component.

なお、図5の構成において、局所光と信号光は同じZ偏波としたが、局所光がZ偏波であり、信号光がZ偏波と直交するZ´偏波であっても良い。この場合においても、偏光ビームスプリッタ33は、ポート#3及びポート4から、互いに直交し、その振幅が同じ信号光と局所光の合波光を出力する。但し、この場合、45度偏光子51と45度偏光子が通過させる偏波成分の偏波面は、互いに直交する様になる。なお、図5においては、偏光ビームスプリッタ33のポート#3から出力される合波光を45度偏光子51に出力し、ポート#4から出力される合波光を1/4波長板4に出力した。しかしながら、ポート#3から出力される合波光を2分岐して45度偏光子51及び1/4波長板4に出力することも、ポート#4から出力される合波光を2分岐して45度偏光子51及び1/4波長板4に出力することもできる。   In the configuration of FIG. 5, the local light and the signal light have the same Z polarization, but the local light may be a Z polarization and the signal light may be a Z ′ polarization orthogonal to the Z polarization. Also in this case, the polarization beam splitter 33 outputs the combined light of the signal light and the local light that are orthogonal to each other and have the same amplitude from the port # 3 and the port 4. However, in this case, the polarization planes of the polarization components that the 45-degree polarizer 51 and the 45-degree polarizer pass through are orthogonal to each other. In FIG. 5, the combined light output from the port # 3 of the polarization beam splitter 33 is output to the 45-degree polarizer 51, and the combined light output from the port # 4 is output to the quarter wavelength plate 4. . However, the combined light output from the port # 3 is branched into two and output to the 45 degree polarizer 51 and the quarter wavelength plate 4, or the combined light output from the port # 4 is branched into two and 45 degrees. The light can also be output to the polarizer 51 and the quarter-wave plate 4.

1:光源、21、22:光可変減衰器、3:2×2光カップラ、4:1/4波長板、51、52:45度偏光子、61、62:フォトダイオード、71、72:アナログ・デジタル変換器、8:処理部   1: Light source, 21, 22: Optical variable attenuator, 3: 2 × 2 optical coupler, 4: 1/4 wavelength plate, 51, 52: 45 degree polarizer, 61, 62: Photodiode, 71, 72: Analog・ Digital converter, 8: Processing unit

Claims (9)

局所光を生成する光源と、
前記局所光の振幅と、受信する信号光の振幅を一致させる様に、前記局所光及び前記信号光の少なくとも1つの振幅を調整する調整手段と、
前記調整手段による調整後の前記局所光及び前記信号光に基づき、偏波面が互いに直交する前記局所光と前記信号光を含む合波光を出力する出力手段と、
前記合波光のストークスパラメータS及びSを測定する測定手段と、
を備えていることを特徴とする光受信機。
A light source that generates local light;
An adjusting means for adjusting the amplitude of at least one of the local light and the signal light so that the amplitude of the local light and the amplitude of the received signal light coincide with each other;
Based on the local light and the signal light after adjustment by the adjustment means, output means for outputting the combined light including the local light and the signal light whose polarization planes are orthogonal to each other;
Measuring means for measuring the Stokes parameters S 2 and S 3 of the combined light;
An optical receiver comprising:
前記測定手段は、
前記合波光のうち、前記局所光及び前記信号光の偏波面それぞれと45度の角度の偏波面の成分を通過させる第1偏光手段と、
前記第1偏光手段を通過した前記合波光の成分を電気信号に変換する第1変換手段と、
前記合波光に含まれる前記局所光又は前記信号光を1/4波長だけ遅延させる遅延手段と、
前記遅延手段を通過した前記合波光のうち、前記局所光及び前記信号光の偏波面それぞれと45度の角度の偏波面の成分を通過させる第2偏光手段と、
前記第2偏光手段を通過した前記合波光の成分を電気信号に変換する第2変換手段と、
を備えていることを特徴とする請求項1に記載の光受信機。
The measuring means includes
A first polarization means for passing a component of a polarization plane at an angle of 45 degrees with each of the polarization planes of the local light and the signal light among the combined light;
First conversion means for converting a component of the combined light that has passed through the first polarization means into an electrical signal;
Delay means for delaying the local light or the signal light included in the combined light by a quarter wavelength;
A second polarization means for passing a component of a polarization plane at an angle of 45 degrees with each of the polarization planes of the local light and the signal light among the combined light that has passed through the delay means;
Second conversion means for converting the component of the combined light that has passed through the second polarization means into an electrical signal;
The optical receiver according to claim 1, further comprising:
前記測定手段は、
前記第1変換手段及び前記第2変換手段それぞれの出力をデジタル信号に変換するデジタル変換手段をさらに備えており、
前記デジタル変換手段の出力に基づき前記合波光のストークスパラメータS及びSを測定することを特徴とすする請求項2に記載の光受信機。
The measuring means includes
Digital conversion means for converting the output of each of the first conversion means and the second conversion means into a digital signal;
The optical receiver of claim 2 sipping and measuring the Stokes parameters S 2 and S 3 of the multiplexed light based on an output of the digital conversion means.
前記測定手段は、前記合波光のストークスパラメータS及びSを測定しないことを特徴とする請求項1から3のいずれか1項に記載の光受信機。 4. The optical receiver according to claim 1, wherein the measuring unit does not measure the Stokes parameters S 0 and S 1 of the combined light. 5. 前記光源が生成する局所光と前記受信する信号光の偏波は互いに直交しており、
前記出力手段は、前記調整手段による調整後の前記局所光及び前記信号光を合波することで前記合波光を生成することを特徴とする請求項1から4のいずれか1項に記載の光受信機。
The local light generated by the light source and the polarization of the received signal light are orthogonal to each other,
5. The light according to claim 1, wherein the output unit generates the combined light by combining the local light and the signal light that have been adjusted by the adjusting unit. Receiving machine.
前記光源が生成する局所光と前記受信する信号光の偏波は互いに直交しており、
前記出力手段は、前記調整手段による調整後の前記局所光を第1偏波の第1成分と前記第1偏波とは直交する第2偏波の第2成分に分離し、前記調整手段による調整後の前記信号光を前記第1偏波の第3成分と前記第2偏波の第4成分に分離し、前記第1成分及び前記第4成分を合波することで、前記第2成分及び前記第3成分を合波することで、或いは、前記第1成分及び前記第4成分を合波し、かつ、前記第2成分及び前記第3成分を合波することで、前記合波光を生成し、
前記局所光及び前記受信する信号光の偏波は、前記第1偏波及び前記第2偏波それぞれと45度だけ異なることを特徴とする請求項1から4のいずれか1項に記載の光受信機。
The local light generated by the light source and the polarization of the received signal light are orthogonal to each other,
The output means separates the local light after the adjustment by the adjustment means into a first component of the first polarization and a second component of the second polarization orthogonal to the first polarization, and the adjustment means The adjusted signal light is separated into the third component of the first polarization and the fourth component of the second polarization, and the second component is combined by combining the first component and the fourth component. And combining the third component, or combining the first component and the fourth component, and combining the second component and the third component, thereby combining the combined light. Generate
5. The light according to claim 1, wherein polarizations of the local light and the received signal light differ from each of the first polarization and the second polarization by 45 degrees. Receiving machine.
前記光源が生成する局所光と前記受信する信号光の偏波は同じであり、
前記出力手段は、前記調整手段による調整後の前記局所光を第1偏波の第1成分と前記第1偏波とは直交する第2偏波の第2成分に分離し、前記調整手段による調整後の前記信号光を前記第1偏波の第3成分と前記第2偏波の第4成分に分離し、前記第1成分及び前記第4成分を合波することで、前記第2成分及び前記第3成分を合波することで、或いは、前記第1成分及び前記第4成分を合波し、かつ、前記第2成分及び前記第3成分を合波することで、前記合波光を生成し、
前記局所光及び前記受信する信号光の偏波は、前記第1偏波及び前記第2偏波それぞれと45度だけ異なることを特徴とすることを特徴とする請求項1から4のいずれか1項に記載の光受信機。
The local light generated by the light source and the polarization of the received signal light are the same,
The output means separates the local light after the adjustment by the adjustment means into a first component of the first polarization and a second component of the second polarization orthogonal to the first polarization, and the adjustment means The adjusted signal light is separated into the third component of the first polarization and the fourth component of the second polarization, and the second component is combined by combining the first component and the fourth component. And combining the third component, or combining the first component and the fourth component, and combining the second component and the third component, thereby combining the combined light. Generate
The polarization of the local light and the received signal light is different from the first polarization and the second polarization by 45 degrees, respectively. The optical receiver according to item.
前記受信する信号光は、前記光源が生成する前記局所光を、光伝送路を介して光送信機に送信し、前記光送信機において、前記局所光の変調及び偏波面の90度の回転が行われた後、前記光送信機により前記光伝送路を介して前記光受信機に送信されたものであることを特徴とする請求項1から6のいずれか1項に記載の光受信機。   The received signal light transmits the local light generated by the light source to an optical transmitter via an optical transmission path, and the optical transmitter modulates the local light and rotates the polarization plane by 90 degrees. The optical receiver according to claim 1, which is transmitted to the optical receiver by the optical transmitter via the optical transmission path after being performed. 局所光を生成することと、
前記局所光の振幅と、受信する信号光の振幅を一致させる様に、前記局所光及び前記信号光の少なくとも1つの振幅を調整することと、
振幅調整後の前記局所光及び前記信号光に基づき、偏波面が互いに直交する前記局所光と前記信号光を含む合波光を出力することと、
前記合波光のストークスパラメータS及びSを測定することと、
を含むことを特徴とするコヒーレント光受信方法。
Generating local light,
Adjusting the amplitude of at least one of the local light and the signal light so as to match the amplitude of the local light and the amplitude of the received signal light;
Based on the local light and the signal light after amplitude adjustment, outputting the combined light including the local light and the signal light whose polarization planes are orthogonal to each other;
Measuring the Stokes parameters S 2 and S 3 of the combined light;
A coherent light receiving method.
JP2017143402A 2017-07-25 2017-07-25 Optical receiver and coherent optical reception method Active JP6761782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017143402A JP6761782B2 (en) 2017-07-25 2017-07-25 Optical receiver and coherent optical reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017143402A JP6761782B2 (en) 2017-07-25 2017-07-25 Optical receiver and coherent optical reception method

Publications (2)

Publication Number Publication Date
JP2019028082A true JP2019028082A (en) 2019-02-21
JP6761782B2 JP6761782B2 (en) 2020-09-30

Family

ID=65478311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017143402A Active JP6761782B2 (en) 2017-07-25 2017-07-25 Optical receiver and coherent optical reception method

Country Status (1)

Country Link
JP (1) JP6761782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031919A (en) * 2019-12-25 2021-06-25 山东国迅量子芯科技有限公司 Quantum random number generating device, method and equipment based on coherent optical receiver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081186A (en) * 2011-04-15 2013-05-02 Nec Corp Coherent receiver
WO2014189107A1 (en) * 2013-05-24 2014-11-27 国立大学法人東京大学 Signal processing method, detection method, and detection device
US20150110486A1 (en) * 2013-10-22 2015-04-23 Exfo Inc. In-band osnr measurement on polarization-multiplexed signals
JP2015518329A (en) * 2012-04-13 2015-06-25 アルカテル−ルーセント Nonlinear cross polarization mitigation algorithm
JP2015173379A (en) * 2014-03-12 2015-10-01 日本電気株式会社 Optical receiving device and optical receiving method
US20160204894A1 (en) * 2015-01-14 2016-07-14 Alcatel-Lucent Usa Inc. Stokes-vector-based transmission and detection of optical polarization-division-multiplexed signals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081186A (en) * 2011-04-15 2013-05-02 Nec Corp Coherent receiver
JP2015518329A (en) * 2012-04-13 2015-06-25 アルカテル−ルーセント Nonlinear cross polarization mitigation algorithm
WO2014189107A1 (en) * 2013-05-24 2014-11-27 国立大学法人東京大学 Signal processing method, detection method, and detection device
US20150110486A1 (en) * 2013-10-22 2015-04-23 Exfo Inc. In-band osnr measurement on polarization-multiplexed signals
JP2015173379A (en) * 2014-03-12 2015-10-01 日本電気株式会社 Optical receiving device and optical receiving method
US20160204894A1 (en) * 2015-01-14 2016-07-14 Alcatel-Lucent Usa Inc. Stokes-vector-based transmission and detection of optical polarization-division-multiplexed signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHO,K.Y., ET AL.: ""Long-Reach Coherent WDM PON Employing Self-Polarization-Stabilization Technique"", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 29, no. 4, JPN6020026023, 15 February 2011 (2011-02-15), US, pages 456 - 462, XP011329360, ISSN: 0004311968, DOI: 10.1109/JLT.2010.2096800 *
LUNDBERG, L., ET AL.: "In-band OSNR monitoring of PM-QPSK using the Stokes parameters", 2015 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), vol. W4D.5, JPN6020026021, 22 March 2015 (2015-03-22), US, pages 1 - 3, XP032784741, ISSN: 0004311967, DOI: 10.1364/OFC.2015.W4D.5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031919A (en) * 2019-12-25 2021-06-25 山东国迅量子芯科技有限公司 Quantum random number generating device, method and equipment based on coherent optical receiver

Also Published As

Publication number Publication date
JP6761782B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP5029794B1 (en) Coherent optical receiver, interchannel skew detection apparatus and detection method in coherent optical receiver
US9100139B2 (en) Optical communication link employing coherent detection and out of band channel identification
US9246599B2 (en) Coherent optical receiver, apparatus and method for detecting interchannel skew in coherent optical receiver
JP7121887B2 (en) Digital coherent receiver and its skew adjustment method
CN110896328B (en) Continuous variable quantum key distribution system based on single reference light pulse single homodyne detection
JP5291143B2 (en) Optical transmission system and optical transmission method
US10090933B2 (en) Polarization insensitive self-homodyne detection receiver
WO2012103832A2 (en) Method for processing signals, optical receiver and optical network system
US10389450B2 (en) Optical bandwidth interleaving
JP6761782B2 (en) Optical receiver and coherent optical reception method
JP5301026B2 (en) Optical downconverter calibration
CN110945803B (en) Optical receiver and coherent optical receiving method
US20140071531A1 (en) Optical device
EP3957005A1 (en) Polarization-diversity kramers-kronig heterodyne receiver and method
JP2007067663A (en) Optical-wireless fusion communications system and its method
US20140111804A1 (en) Heterodyne Optical Spectrum Analyzer
JP2022042290A (en) Measurement device of laser linewidth
WO2022170839A1 (en) Coherent detection method and apparatus, and optical transmission system
JP2021061508A (en) Optical reception device
JP2023547483A (en) Optical transmission devices and systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6761782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150