JP2007067663A - Optical-wireless fusion communications system and its method - Google Patents

Optical-wireless fusion communications system and its method Download PDF

Info

Publication number
JP2007067663A
JP2007067663A JP2005249498A JP2005249498A JP2007067663A JP 2007067663 A JP2007067663 A JP 2007067663A JP 2005249498 A JP2005249498 A JP 2005249498A JP 2005249498 A JP2005249498 A JP 2005249498A JP 2007067663 A JP2007067663 A JP 2007067663A
Authority
JP
Japan
Prior art keywords
optical
signal
output
radio
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005249498A
Other languages
Japanese (ja)
Other versions
JP4540062B2 (en
Inventor
Tomohiro Taniguchi
友宏 谷口
Hisaya Sakurai
尚也 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005249498A priority Critical patent/JP4540062B2/en
Publication of JP2007067663A publication Critical patent/JP2007067663A/en
Application granted granted Critical
Publication of JP4540062B2 publication Critical patent/JP4540062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical-wireless fusion communications system for incoming/outgoing bidirectional communication by a storage station and a wireless base station, using an inexpensive and simple configuration. <P>SOLUTION: An optical signal from a first single spectrum light source 102 is branched in two in the storage station 100, and one is modulated by a carrier wave restriction both-side wave band with the use of the carrier wave signal of half value of a frequency in an outgoing wireless signal, and modulated by outgoing transmission data so as to be multiplexed with the other and transmitted to the wireless base station. The optical signal received is branched in two in the wireless base station 300; the outgoing wireless signal obtained by receiving one signal is transmitted to a wireless terminal 400, and the other is modulated by an incoming wireless signal from the wireless terminal 400 and returned to the storage station 100. The storage station 100 multiplexes the received modulation optical signal with a signal which is obtained by combining the optical signals from second and third single spectrum light sources 103, 104 with orthogonal polarized wave, performs square-law detection, and then reproduces uplink transmission data. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下りリンクは収容局から送信した光信号を無線基地局で無線信号に変換して無線端末に送信し、上りリンクは無線基地局で受信した高周波無線信号を光信号に変換して収容局に伝送する光−無線融合通信システムおよび光−無線融合通信方法に関する。   In the present invention, in the downlink, the optical signal transmitted from the accommodating station is converted into a radio signal by the radio base station and transmitted to the radio terminal, and in the uplink, the high-frequency radio signal received by the radio base station is converted into an optical signal. The present invention relates to an optical-radio fusion communication system and an optical-wireless fusion communication method for transmission to a receiving station.

図21は収容局、無線基地局および無線端末からなる従来の光−無線融合通信システムの一例を示したものであり、図22は従来の光−無線融合通信システムにおける各信号の周波数スペクトルの一例を示したものである。   FIG. 21 shows an example of a conventional optical-radio fusion communication system including a accommodating station, a radio base station, and a radio terminal. FIG. 22 shows an example of the frequency spectrum of each signal in the conventional optical-radio fusion communication system. Is shown.

従来、収容局0内の光送信器1では、単一スペクトル光源2の出力光信号0aを光変調器7で、電気発振器3からの電気搬送波信号を電気変調器5で下り送信データにより変調した下り無線信号0bと周波数fLOの電気搬送波信号0cとを電気加算器6で加算した電気信号によって光変調し、変調光信号0dを生成する。さらにこの変調光信号0dの上側波帯信号(もしくは下側波帯信号)を光フィルタ8で除去して得られる光信号0eを、光伝送路を介して無線基地局9に送信する。 Conventionally, in the optical transmitter 1 in the accommodation station 0, the output optical signal 0a of the single spectrum light source 2 is modulated by the optical modulator 7 and the electric carrier signal from the electric oscillator 3 is modulated by the downstream transmission data by the electric modulator 5. Optical modulation is performed by the electric signal obtained by adding the downstream radio signal 0b and the electric carrier signal 0c having the frequency f LO by the electric adder 6 to generate a modulated optical signal 0d. Further, an optical signal 0e obtained by removing the upper sideband signal (or lower sideband signal) of the modulated optical signal 0d by the optical filter 8 is transmitted to the radio base station 9 through the optical transmission line.

無線基地局9においては、光増幅器10で受信し増幅した光信号0eを光分岐器11で2分岐し、一方の出力光信号は受光器12で電気信号に変換した後、フィルタ13で所望の下り無線信号0f(0dに等しい)を抽出してアンテナ14から無線端末19に送出する。光分岐器11のもう一方の出力光信号は、受信した上り無線信号0gにより光変調器16で光変調された後、光フィルタ17で所望の光信号(0h)のみが抽出され、光増幅器18で増幅され、光伝送路を介して収容局0内の光受信器25に送信される。   In the radio base station 9, the optical signal 0 e received and amplified by the optical amplifier 10 is branched into two by the optical splitter 11, and one output optical signal is converted into an electrical signal by the optical receiver 12, and then the desired signal is output by the filter 13 The downlink radio signal 0f (equal to 0d) is extracted and transmitted from the antenna 14 to the radio terminal 19. The other output optical signal of the optical splitter 11 is optically modulated by the optical modulator 16 with the received upstream radio signal 0g, and then only a desired optical signal (0h) is extracted by the optical filter 17. And is transmitted to the optical receiver 25 in the accommodating station 0 through the optical transmission line.

光受信器25においては、無線基地局9から送信された光信号0hが受光器26で電気信号0iに変換され、フィルタ27を通すことで、上り送信データで変調された中間周波数信号0jを得ることができる。   In the optical receiver 25, the optical signal 0h transmitted from the radio base station 9 is converted into the electric signal 0i by the light receiver 26 and passed through the filter 27 to obtain the intermediate frequency signal 0j modulated by the upstream transmission data. be able to.

このように、従来の技術では、上りリンク/下りリンクで光源と光変調器を共用することができるため、低コストなシステムを構築することが可能である。また、光領域でミリ波ダウンコンバートを行っているため、光受信器においてミリ波帯部品を用意する必要が無いため、システム全体の構成を簡素化できるという特長がある。
特開2001−103015号公報「ミリ波無線双方向伝送方法およびミリ波無線双方向伝送装置」
As described above, in the conventional technique, the light source and the optical modulator can be shared in the uplink / downlink, so that a low-cost system can be constructed. In addition, since the millimeter wave down-conversion is performed in the optical region, it is not necessary to prepare millimeter wave band parts in the optical receiver, so that the configuration of the entire system can be simplified.
Japanese Patent Laid-Open No. 2001-103015 “Millimeter-Wave Wireless Bidirectional Transmission Method and Millimeter-Wave Wireless Bidirectional Transmission Device”

図21、図22に挙げた従来例では、複数の無線基地局に対応して収容局に複数の光送信器を設けた場合、それぞれの光送信器において無線信号の周波数の帯域を有する光変調器を用意する必要があり、構成が複雑になる。特に、広帯域信号を伝送する場合には、無線信号の周波数として広い信号帯域が確保できるミリ波帯を用いることが予想されるが、このような高周波の帯域を持つ光変調器は高価である。さらに、上りリンクにおいては、ファイバ伝送による損失と無線基地局内の光変調器の挿入損失を補填するため、各無線基地局もしくは光受信器に光増幅器が必要になり、構成が複雑かつ高価になる。   In the conventional examples shown in FIGS. 21 and 22, when a plurality of optical transmitters are provided in the accommodating station corresponding to a plurality of radio base stations, the optical modulation having the frequency band of the radio signal in each optical transmitter. It is necessary to prepare a vessel, and the configuration becomes complicated. In particular, when transmitting a broadband signal, it is expected to use a millimeter wave band capable of securing a wide signal band as a frequency of a radio signal. However, an optical modulator having such a high frequency band is expensive. Further, in the uplink, in order to compensate for the loss due to fiber transmission and the insertion loss of the optical modulator in the radio base station, an optical amplifier is required for each radio base station or optical receiver, and the configuration becomes complicated and expensive. .

本発明は、このような背景に行われたものであって、上りリンク/下りリンクで光源を共用しつつ、上りリンクにおいては安価かつ簡易な構成の光送受信器で高感度光受信を実現できる光−無線融合通信システム及びその方法を提供することを目的とする。   The present invention is made in such a background, and it is possible to realize high-sensitivity optical reception with an optical transceiver having a low-cost and simple configuration in the uplink while sharing a light source in the uplink / downlink. An object of the present invention is to provide an optical-wireless fusion communication system and method.

(第1の発明)
収容局に光信号発生部、光送信器および光受信器を備え、前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、前記無線基地局は、受信した光信号を光分岐器で2分岐し、該光分岐器の一方の出力光信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記光分岐器のもう一方の出力光信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信システムにおいて、光信号発生部、光送信器および光受信器はそれぞれ次のような構成である。
(First invention)
The accommodation station includes an optical signal generator, an optical transmitter, and an optical receiver, and the optical transmitter is configured to transmit a downlink optical radio signal modulated with downlink transmission data to the radio base station via an optical transmission path, and an uplink An optical carrier signal is transmitted, and the radio base station bifurcates the received optical signal with an optical branching device, and receives a downlink optical signal (frequency f) obtained by receiving one output optical signal of the optical branching device. RF-d ) to the wireless terminal, a radio signal modulated with uplink transmission data (frequency f RF-u ) is received, and the other output optical signal of the optical branching device is received with the received uplink radio signal. Optical-wireless communication that performs optical modulation and transmits the modulated optical signal to the accommodating station via an optical transmission line, and the optical receiver receives the modulated optical signal, detects it, and reproduces the upstream transmission data. In the system, the optical signal generator, optical transmitter, and optical receiver are each Is the next of such a configuration.

光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を出力する第1の単一スペクトル光源と、第2の単一スペクトルの光信号(中心周波数fc2)を出力する第2の単一スペクトル光源と、第3の単一スペクトルの光信号(中心周波数fc3)を出力する第3の単一スペクトル光源と、前記第1の単一スペクトルの光信号を2分岐する光分岐器と、該光分岐器の一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施す光変調器と、前記第2の単一スペクトルの光信号の偏波方向および光強度と、前記第3の単一スペクトルの光信号の偏波方向および光強度について、互いの偏波方向が直交し、かつ、等しい光強度になるように調節し、2波を直交偏波合成して偏波合成光信号として出力する偏波合成手段とを備える。
The optical signal generator
A first single spectrum light source that outputs a first single spectrum optical signal (center frequency f c1 ) and a second single that outputs a second single spectrum optical signal (center frequency f c2 ) A spectral light source, a third single spectral light source that outputs a third single spectral optical signal (center frequency f c3 ), an optical splitter that splits the first single spectral optical signal into two branches, One output optical signal of the optical splitter is subjected to optical carrier suppression double-sideband modulation with an electric carrier signal having a half value (f RF-d / 2) of a desired downlink radio signal frequency f RF-d. The polarization directions of the optical modulator, the polarization direction and the light intensity of the second single spectrum optical signal, and the polarization direction and the light intensity of the third single spectrum optical signal are orthogonal to each other. And adjust to equal light intensity and synthesize two waves with orthogonal polarization. And a polarization combining means for outputting as a polarization combiner optical signals.

前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御される。
The center frequencies f c1 , f c2 , and f c3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
It is controlled to become.

光信号発生部は、前記搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、前記光分岐器のもう一方の出力光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、前記偏波合成光信号を前記光受信器へ出力する構成である。   The optical signal generator inputs the carrier-suppressed double-sideband modulated optical signal to the optical transmitter, and inputs the other output optical signal of the optical splitter to the optical transmitter as the uplink optical carrier signal The polarization combined optical signal is output to the optical receiver.

光送信器は、入力された2系統の光信号のうち、搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施す光変調器を備え、その光変調器の出力光信号を下り光無線信号として、上りリンク用光搬送波信号と光合波器で合波した後、無線基地局へ送信する構成である。   The optical transmitter includes an optical modulator that optically modulates a carrier-suppressed double-sideband modulated optical signal with downstream transmission data, out of two input optical signals, and outputs the optical signal output from the optical modulator as downstream light In this configuration, an uplink optical carrier signal and an optical multiplexer are combined as a radio signal and then transmitted to a radio base station.

光受信器は、無線基地局から送信された変調光信号と、光信号発生部から出力された偏波合成光信号とを合波する光合波器と、光合波器で合波された光信号を受光し、中間周波数fIF1,fIF2の電気信号を出力する受光器と、受光器から出力された中間周波数fIF1,fIF2の電気信号を検波する電気検波器と、電気検波器の出力信号を低域濾過し、上り送信データを出力する低域濾過フィルタとを備える。 The optical receiver includes an optical multiplexer that combines the modulated optical signal transmitted from the radio base station and the polarization combined optical signal output from the optical signal generator, and an optical signal that is combined by the optical multiplexer. It receives a light receiver for outputting an electric signal of intermediate frequency f IF1, f IF2, an electric detector for detecting the electrical signals of an intermediate frequency f IF1, f IF2 outputted from the light receiver, the output of the electrical detector A low-pass filter that performs low-pass filtering of the signal and outputs upstream transmission data.

第1の発明によれば、光信号発生部は、第1の単一スペクトルの光信号を分岐し、一方を上りリンク用光搬送波信号として光送信器に入力するとともに、もう一方は光搬送波抑圧両側波帯変調を施した後に光送信器に入力し、第2の単一スペクトルの光信号と第3の単一スペクトルの光信号の2波を直交偏波合成した偏波合成光信号を光ローカル信号として光受信器へ出力する。これにより、光信号発生部において下り光無線信号、上りリンク用光搬送波信号および光ヘテロダイン検波に用いる光ローカル信号を同時に発生させることができる。また、光信号発生部では、無変調かつ減衰の無い光信号を基に周波数安定化制御を行うため、従来の高感度光受信法による光受信器において、伝送損失により減衰した変調光信号を基に周波数安定化制御を行う場合と比較して、容易に周波数安定化制御が可能となる。   According to the first invention, the optical signal generation unit branches the first single-spectrum optical signal, inputs one to the optical transmitter as an optical carrier signal for uplink, and the other is optical carrier suppression. After applying double-sideband modulation, it is input to the optical transmitter, and a polarization-combined optical signal obtained by orthogonally combining two waves of the second single-spectrum optical signal and the third single-spectrum optical signal is output as an optical signal. Output to the optical receiver as a local signal. As a result, the optical signal generator can simultaneously generate the downlink optical radio signal, the uplink optical carrier signal, and the optical local signal used for optical heterodyne detection. In addition, since the optical signal generator performs frequency stabilization control based on an unmodulated and non-attenuated optical signal, it is based on a modulated optical signal attenuated due to transmission loss in an optical receiver based on the conventional high-sensitivity optical reception method. Compared with the case where the frequency stabilization control is performed, the frequency stabilization control can be easily performed.

無線基地局へ送信する光信号(下り光無線信号と上りリンク用光搬送波信号との合波光信号)の電界Eopt-cと、光受信器へ出力する偏波合成光信号の電界Eopt-LOは、それぞれ次のように表すことができる。 An electric field E opt-c of an optical signal to be transmitted to the radio base station (combined optical signal of downlink optical radio signal and uplink optical carrier signal) and an electric field E opt- of the polarization combined optical signal output to the optical receiver Each LO can be expressed as:

opt-c=Add cos(2π(fc1−fRF-d/2)t+φ1(t))
+Add cos(2π(fc1+fRF-d/2)t+φ1(t))
+Au cos(2πfc1t+φ1(t)) …(1)
opt-LO=ALO cos(2πfc2t+φ2(t))
+ALO cos(2πfc3t+φ3(t)) …(2)
ここで、Ad,Au,ALOは電界振幅、φ(t)は単一スペクトル光源の出力光信号の位相雑音成分、adは下り送信データ(2値ディジタル信号:0,1)とする。また、(1)式の第1項と第2項は下り光無線信号を表し、第3項は上りリンク用光搬送波信号を表しており、(2)式の右辺の第1項と第2項は、互いに直交した偏波方向を有し、等振幅である。
E opt-c = A d a d cos (2π (f c1 −f RF−d / 2) t + φ 1 (t))
+ A d a d cos (2π (f c1 + f RF−d / 2) t + φ 1 (t))
+ A u cos (2πf c1 t + φ 1 (t)) (1)
E opt-LO = A LO cos (2πf c2 t + φ 2 (t))
+ A LO cos (2πf c3 t + φ 3 (t)) (2)
Here, A d , A u , and A LO are electric field amplitudes, φ (t) is a phase noise component of an output optical signal of a single spectrum light source, and a d is downlink transmission data (binary digital signal: 0, 1). To do. Also, the first and second terms in equation (1) represent downstream optical wireless signals, the third term represents uplink optical carrier signals, and the first and second terms on the right side of equation (2). The terms have equal polarization directions with orthogonal polarization directions.

無線基地局では、光送信器から送信された光信号((1)式)を、光分岐器で2分岐して、一方の出力光信号を受光して得られる下り無線信号を、無線端末に送信する。この下り無線信号の電界ERF-dは、次のように表すことができる。 In the radio base station, the optical signal (Equation (1)) transmitted from the optical transmitter is branched into two by the optical splitter, and the downlink radio signal obtained by receiving one of the output optical signals is transmitted to the radio terminal. Send. The electric field E RF-d of the downlink radio signal can be expressed as follows.

RF-d∝ Ad 2d(cos2πfRF-d(t+T)) …(3)
上式において、Tは光信号が収容局−無線基地局間の光伝送に要する時間を表す。
E RF-d α A d 2 a d (cos2πf RF-d (t + T)) ... (3)
In the above formula, T represents the time required for optical transmission of the optical signal between the accommodating station and the radio base station.

ここで、下り光無線信号は、単一の光信号を搬送波抑圧両側波帯変調することで発生させているため、無線基地局における受光の際に光信号の位相雑音(φ1(t))が相殺され、非常に周波数が安定した下り無線信号が生成されることが分かる。 Here, since the downstream optical wireless signal is generated by modulating the single optical signal with the carrier-suppressed double-sideband, the phase noise (φ 1 (t)) of the optical signal at the time of light reception at the wireless base station It can be seen that a downlink radio signal having a very stable frequency is generated.

光分岐器のもう一方の出力光信号は、無線端末から送信された無線信号で光強度変調した後に、光受信器へ送信する。2値ディジタル振幅変調により、光受信器へ送信される変調光信号の電界Eopt-modは、次のように表すことができる、
opt-mod∝(1+mau cos(2πfRF-ut))
・[Add cos(2π(fc1−fRF-d/2)(t+T)+φ1(t+T))
+Add cos(2π(fc1+fRF-d/2)(t+T)+φ1(t+T))
+Au cos(2πfc1(t+T)+φ1(t+T))] …(4)
ここで、mは光変調度、auは上り送信データ(2値ディジタル信号:0,1)を表す。
The other output optical signal of the optical branching device is optically modulated with the wireless signal transmitted from the wireless terminal and then transmitted to the optical receiver. The electric field E opt-mod of the modulated optical signal transmitted to the optical receiver by binary digital amplitude modulation can be expressed as follows:
E opt-mod ∝ (1 + ma u cos (2πf RF-u t))
・ [A d a d cos (2π (f c1 −f RF−d / 2) (t + T) + φ 1 (t + T))
+ A d a d cos (2π (f c1 + f RF−d / 2) (t + T) + φ 1 (t + T))
+ A u cos (2πf c1 (t + T) + φ 1 (t + T))] (4)
Here, m represents the degree of optical modulation, and a u represents uplink transmission data (binary digital signal: 0, 1).

光受信器では、光信号発生部から出力された偏波合成光信号((2)式)と、無線基地局から送信された変調光信号((4)式)とを合波した後に、受光器で自乗検波する。   In the optical receiver, the polarization combined optical signal (formula (2)) output from the optical signal generator and the modulated optical signal (formula (4)) transmitted from the radio base station are combined and then received. Square detection with the instrument.

合波した光信号の電界Eopt-coは、次のように表すことができる。 The electric field E opt-co of the combined optical signal can be expressed as follows.

opt-co∝ALO cos(2πfc2t+φ2(t))
+ALO cos(2πfc3t+φ3(t))
+(1/γ)(1+mau cos(2πfRF-ut))
・[Add cos(2π(fc1−fRF-d/2)(t+2T)+φ1(t+2T))
+Add cos(2π(fc1+fRF-d/2)(t+2T)+φ1(t+2T))
+Au cos(2πfc1(t+2T)+φ1(t+2T))] …(5)
ここで、γは無線基地局−光受信器間の光伝送損失や無線基地局内の光変調器の挿入損失などの損失の合計を表し、γ≫1である。
E opt-co ∝ A LO cos (2πf c2 t + φ 2 (t))
+ A LO cos (2πf c3 t + φ 3 (t))
+ (1 / γ) (1 + ma u cos (2πf RF-u t))
・ [A d a d cos (2π (f c1 −f RF−d / 2) (t + 2T) + φ 1 (t + 2T))
+ A d a d cos (2π (f c1 + f RF−d / 2) (t + 2T) + φ 1 (t + 2T))
+ A u cos (2πf c1 (t + 2T) + φ 1 (t + 2T))] (5)
Here, γ represents the total loss such as optical transmission loss between the radio base station and the optical receiver and insertion loss of the optical modulator in the radio base station, and γ >> 1.

(5)式の右辺の第1項および第2項の光信号は、光信号発生部から光受信器に直接入力されたために損失が無く、十分な光強度を有している。このため、(5)式の光信号を受光器で自乗検波することで、高感度光受信法として知られる光ヘテロダイン検波と同様に、無線基地局から送信された変調光信号((4)式)を高感度に受信することが可能となる。   The optical signals of the first term and the second term on the right side of the equation (5) are directly input from the optical signal generator to the optical receiver, and thus have no loss and have sufficient light intensity. For this reason, the optical signal of the formula (5) is square-detected by a photoreceiver, so that the modulated optical signal (formula (4)) transmitted from the radio base station is obtained in the same manner as the optical heterodyne detection known as a high sensitivity optical reception method. ) Can be received with high sensitivity.

受光器から出力される2波の中間周波数fIF1,fIF2の電気信号の電界EIFは、次のように表すことができる。 The electric field E IF of the electric signal having two intermediate frequencies f IF1 and f IF2 output from the light receiver can be expressed as follows.

IF=GauuLO[cosθ・cos(2πfIF1t+ψ1)+sinθ・cos(2πfIF2t+ψ2)]
但し、ψ1=±[4πfc1T+φ1(t+2T)−φ2(t)]
ψ2=±[4πfc1T+φ1(t+2T)−φ3(t)]
…(6)
ここで、Gは前記光ヘテロダイン検波の利得に依存する係数、ψ1,ψ2はそれぞれの中間周波数fIF1,fIF2の電気信号の位相成分、θは無線基地局から送信された変調光信号((4)式)の偏波方向と、光信号発生部から出力された偏波合成光信号のうち(2)式の第1項で表される光信号の偏波方向との間の角度を表すものとする。
E IF = Ga u A u A LO [cos θ · cos (2πf IF1 t + ψ 1 ) + sin θ · cos (2πf IF2 t + ψ 2 )]
However, ψ 1 = ± [4πf c1 T + φ 1 (t + 2T) −φ 2 (t)]
ψ 2 = ± [4πf c1 T + φ 1 (t + 2T) −φ 3 (t)]
(6)
Here, G is a coefficient depending on the gain of the optical heterodyne detection, ψ 1 and ψ 2 are phase components of electric signals of the intermediate frequencies f IF1 and f IF2 , and θ is a modulated optical signal transmitted from the radio base station. The angle between the polarization direction of (Expression (4)) and the polarization direction of the optical signal represented by the first term of Expression (2) among the polarization-combined optical signals output from the optical signal generator .

光信号発生部では、第1、第2および第3の単一スペクトルの光信号の中心周波数が設定した値となるよう制御しているため、光受信器では、複雑な構成の無線周波数帯部品や中間周波数安定化回路を用いることなく、安定な中間周波数の信号を得ることができる。   Since the optical signal generator controls the center frequency of the first, second and third single spectrum optical signals to be a set value, the optical receiver has a complicated configuration of radio frequency band components. In addition, a stable intermediate frequency signal can be obtained without using an intermediate frequency stabilization circuit.

2波の中間周波数fIF1,fIF2の電気信号を包絡線検波した後に、低域濾過フィルタを通して得られる電気信号の電界EBBは次のように表すことができる。 The electric field E BB of the electric signal obtained through the low-pass filter after detecting the electric signals of the two intermediate frequencies f IF1 and f IF2 can be expressed as follows.

BB∝G2u 2u 2LO 2(cos2θ+sin2θ)=G2uu 2LO 2 …(7)
ここで、光信号発生部から出力された偏波合成光信号((2)式)が互いに直交した偏波方向と等しい光強度を有するため、低域濾過フィルタの出力信号強度が、無線基地局から送信された変調光信号((4)式)に不感応であることが分かる。
E BB ∝G 2 a u 2 A u 2 A LO 2 (cos 2 θ + sin 2 θ) = G 2 a u A u 2 A LO 2 (7)
Here, since the polarization combined optical signal (formula (2)) output from the optical signal generator has the same optical intensity as the orthogonal polarization directions, the output signal intensity of the low-pass filter is the radio base station. It turns out that it is insensitive to the modulated optical signal (Equation (4)) transmitted from.

(第2の発明)
収容局に光信号発生部、光送信器および光受信器を備え、前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、前記無線基地局は、受信した光信号を光分岐器で2分岐し、該光分岐器の一方の出力光信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記光分岐器のもう一方の出力光信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信システムにおいて、光信号発生部、光送信器および光受信器はそれぞれ次のような構成である。
(Second invention)
The accommodation station includes an optical signal generator, an optical transmitter, and an optical receiver, and the optical transmitter is configured to transmit a downlink optical radio signal modulated with downlink transmission data to the radio base station via an optical transmission path, and an uplink An optical carrier signal is transmitted, and the radio base station bifurcates the received optical signal with an optical branching device, and receives a downlink optical signal (frequency f) obtained by receiving one output optical signal of the optical branching device. RF-d ) to the wireless terminal, a radio signal modulated with uplink transmission data (frequency f RF-u ) is received, and the other output optical signal of the optical branching device is received with the received uplink radio signal. Optical-wireless communication that performs optical modulation and transmits the modulated optical signal to the accommodating station via an optical transmission line, and the optical receiver receives the modulated optical signal, detects it, and reproduces the upstream transmission data. In the system, the optical signal generator, optical transmitter, and optical receiver are each Is the next of such a configuration.

光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を出力する第1の単一スペクトル光源と、第2の単一スペクトルの光信号(中心周波数fc2)を出力する第2の単一スペクトル光源と、第3の単一スペクトルの光信号(中心周波数fc3)を出力する第3の単一スペクトル光源と、前記第1の単一スペクトルの光信号を2分岐する光分岐器と、該光分岐器の一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施す光変調器と、前記第2の単一スペクトルの光信号の偏波方向および光強度と、前記第3の単一スペクトルの光信号の偏波方向および光強度について、互いの偏波方向が直交し、かつ、等しい光強度になるように調節し、2波を直交偏波合成して偏波合成光信号として出力する偏波合成手段とを備える。
The optical signal generator
A first single spectrum light source that outputs a first single spectrum optical signal (center frequency f c1 ) and a second single that outputs a second single spectrum optical signal (center frequency f c2 ) A spectral light source, a third single spectral light source that outputs a third single spectral optical signal (center frequency f c3 ), an optical splitter that splits the first single spectral optical signal into two branches, One output optical signal of the optical splitter is subjected to optical carrier suppression double-sideband modulation with an electric carrier signal having a half value (f RF-d / 2) of a desired downlink radio signal frequency f RF-d. The polarization directions of the optical modulator, the polarization direction and the light intensity of the second single spectrum optical signal, and the polarization direction and the light intensity of the third single spectrum optical signal are orthogonal to each other. And adjust to equal light intensity and synthesize two waves with orthogonal polarization. And a polarization combining means for outputting as a polarization combiner optical signals.

前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御される。
The center frequencies f c1 , f c2 , and f c3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
It is controlled to become.

光信号発生部は、前記搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、前記偏波合成光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、前記光分岐器のもう一方の出力光信号を前記光受信器へ出力する構成である。   The optical signal generation unit inputs the carrier-suppressed double-sideband modulated optical signal to the optical transmitter, inputs the polarization combined optical signal to the optical transmitter as the uplink optical carrier signal, and The other output optical signal of the receiver is output to the optical receiver.

光送信器は、入力された2系統の光信号のうち、搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施す光変調器を備え、その光変調器の出力光信号を下り光無線信号として、上りリンク用光搬送波信号と光合波器で合波した後、無線基地局へ送信する構成である。   The optical transmitter includes an optical modulator that optically modulates a carrier-suppressed double-sideband modulated optical signal with downstream transmission data, out of two input optical signals, and outputs the optical signal output from the optical modulator as downstream light In this configuration, an uplink optical carrier signal and an optical multiplexer are combined as a radio signal and then transmitted to a radio base station.

光受信器は、無線基地局から送信された変調光信号と、光信号発生部から出力された単一スペクトルの光信号とを合波する光合波器と、光合波器で合波された光信号を受光し、中間周波数fIF1,fIF2の電気信号を出力する受光器と、受光器から出力された中間周波数fIF1,fIF2の電気信号を検波する電気検波器と、電気検波器の出力信号を低域濾過し、上り送信データを出力する低域濾過フィルタとを備える。 The optical receiver includes an optical multiplexer that multiplexes the modulated optical signal transmitted from the radio base station and the single-spectrum optical signal output from the optical signal generator, and the light that is combined by the optical multiplexer. receiving a signal, and a photodetector for outputting an electrical signal having the intermediate frequency f IF1, f IF2, an electric detector for detecting the electrical signals of an intermediate frequency f IF1, f IF2 outputted from the light receiver, the electrical detector A low-pass filter for low-pass filtering the output signal and outputting upstream transmission data.

第2の発明によれば、光信号発生部は、第1の単一スペクトルの光信号を分岐し、一方を光ローカル信号として光受信器へ出力するとともに、もう一方は光搬送波抑圧両側波帯変調を施した後に光送信器に入力し、第2の単一スペクトルの光信号と第3の単一スペクトルの光信号の2波を直交偏波合成した偏波合成光信号を上りリンク用光搬送波信号として光送信器に入力する。これにより、光信号発生部において下り光無線信号、上りリンク用光搬送波信号および光ヘテロダイン検波に用いる光ローカル信号を同時に発生させることができる。また、光信号発生部では、無変調かつ減衰の無い光信号を基に周波数安定化制御を行うため、従来の高感度光受信法による光受信器において、伝送損失により減衰した変調光信号を基に周波数安定化制御を行う場合と比較して、容易に周波数安定化制御が可能となる。   According to the second invention, the optical signal generator branches the first single-spectrum optical signal, outputs one as an optical local signal to the optical receiver, and the other is an optical carrier-suppressed double sideband. After being modulated, the signal is input to the optical transmitter, and the polarization-combined optical signal obtained by orthogonally combining two waves of the second single-spectrum optical signal and the third single-spectrum optical signal is used as the uplink light. The carrier wave signal is input to the optical transmitter. As a result, the optical signal generator can simultaneously generate the downlink optical radio signal, the uplink optical carrier signal, and the optical local signal used for optical heterodyne detection. In addition, since the optical signal generator performs frequency stabilization control based on an unmodulated and non-attenuated optical signal, it is based on a modulated optical signal attenuated due to transmission loss in an optical receiver based on the conventional high-sensitivity optical reception method. Compared with the case where the frequency stabilization control is performed, the frequency stabilization control can be easily performed.

無線基地局へ送信する光信号(下り光無線信号と上りリンク用光搬送波信号との合波光信号)の電界Eopt-cと、光受信器へ出力する偏波合成光信号の電界Eopt-LOは、それぞれ次のように表すことができる。 An electric field E opt-c of an optical signal to be transmitted to the radio base station (combined optical signal of downlink optical radio signal and uplink optical carrier signal) and an electric field E opt- of the polarization combined optical signal output to the optical receiver Each LO can be expressed as:

opt-c=Add cos(2π(fc1−fRF-d/2)t+φ1(t))
+Add cos(2π(fc1+fRF-d/2)t+φ1(t))
+Au cos(2πfc2t+φ2(t))
+Au cos(2πfc3t+φ3(t)) …(8)
opt-LO=ALO cos(2πfc1t+φ1(t)) …(9)
ここで、Ad,Au,ALOは電界振幅、φ(t)は単一スペクトル光源の出力光信号の位相雑音成分、adは下り送信データ(2値ディジタル信号:0,1)とする。また、(8)式の第1項と第2項は下り光無線信号を表し、第3項と第4項は上りリンク用光搬送波信号を表しており、互いに直交した偏波方向を有し、等振幅である。
E opt-c = A d a d cos (2π (f c1 −f RF−d / 2) t + φ 1 (t))
+ A d a d cos (2π (f c1 + f RF−d / 2) t + φ 1 (t))
+ A u cos (2πf c2 t + φ 2 (t))
+ A u cos (2πf c3 t + φ 3 (t)) (8)
E opt-LO = A LO cos (2πf c1 t + φ 1 (t)) (9)
Here, A d , A u , and A LO are electric field amplitudes, φ (t) is a phase noise component of an output optical signal of a single spectrum light source, and a d is downlink transmission data (binary digital signal: 0, 1). To do. Also, the first and second terms in equation (8) represent downstream optical wireless signals, and the third and fourth terms represent uplink optical carrier signals, which have polarization directions orthogonal to each other. , Are of equal amplitude.

無線基地局では、光送信器から送信された光信号((8)式)を、光分岐器で2分岐して、一方の出力光信号を受光して得られる下り無線信号を、無線端末に送信する。この下り無線信号の電界ERF-dは、次のように表すことができる。 In the radio base station, the optical signal (Equation (8)) transmitted from the optical transmitter is branched into two by the optical splitter, and the downlink radio signal obtained by receiving one of the output optical signals is transmitted to the radio terminal. Send. The electric field E RF-d of the downlink radio signal can be expressed as follows.

RF-d∝ Ad 2d(cos2πfRF-d(t+T)) …(10)
上式において、Tは光信号が収容局−無線基地局間の光伝送に要する時間を表す。
E RF-d α A d 2 a d (cos2πf RF-d (t + T)) ... (10)
In the above formula, T represents the time required for optical transmission of the optical signal between the accommodating station and the radio base station.

ここで、下り光無線信号は、単一の光信号を搬送波抑圧両側波帯変調することで発生させているため、無線基地局における受光の際に光信号の位相雑音(φ1(t))が相殺され、非常に周波数が安定した下り無線信号が生成されることが分かる。 Here, since the downstream optical wireless signal is generated by modulating the single optical signal with the carrier-suppressed double-sideband, the phase noise (φ 1 (t)) of the optical signal at the time of light reception at the wireless base station It can be seen that a downlink radio signal having a very stable frequency is generated.

光分岐器のもう一方の出力光信号は、無線端末から送信された無線信号で光強度変調した後に、光受信器へ送信する。2値ディジタル振幅変調により、光受信器へ送信される変調光信号の電界Eopt-modは、次のように表すことができる。 The other output optical signal of the optical branching device is optically modulated with the wireless signal transmitted from the wireless terminal and then transmitted to the optical receiver. The electric field E opt-mod of the modulated optical signal transmitted to the optical receiver by binary digital amplitude modulation can be expressed as follows.

opt-mod∝(1+mau cos(2πfRF-ut))
・[Add cos(2π(fc1−fRF-d/2)(t+T)+φ1(t+T))
+Add cos(2π(fc1+fRF-d/2)(t+T)+φ1(t+T))
+Au cos(2πfc2(t+T)+φ2(t+T))
+Au cos(2πfc3(t+T)+φ3(t+T))] …(11)
ここで、mは光変調度、auは上り送信データ(2値ディジタル信号:0,1)を表す。
E opt-mod ∝ (1 + ma u cos (2πf RF-u t))
・ [A d a d cos (2π (f c1 −f RF−d / 2) (t + T) + φ 1 (t + T))
+ A d a d cos (2π (f c1 + f RF−d / 2) (t + T) + φ 1 (t + T))
+ A u cos (2πf c2 ( t + T) + φ 2 (t + T))
+ A u cos (2πf c3 ( t + T) + φ 3 (t + T))] ... (11)
Here, m represents the degree of optical modulation, and a u represents uplink transmission data (binary digital signal: 0, 1).

光受信器では、光信号発生部から出力された単一スペクトルの光信号((9)式)と、無線基地局から送信された変調光信号((11)式)とを合波した後に、受光器で自乗検波する。   In the optical receiver, after combining the single-spectrum optical signal (formula (9)) output from the optical signal generator and the modulated optical signal (formula (11)) transmitted from the radio base station, Square detection with a receiver.

合波した光信号の電界Eopt-coは、次のように表すことができる。 The electric field E opt-co of the combined optical signal can be expressed as follows.

opt-co∝ALO cos(2πfc1t+φ1(t))
+(1/γ)(1+mau cos(2πfRF-ut))
・[Add cos(2π(fc1−fRF-d/2)(t+2T)+φ1(t+2T))
+Add cos(2π(fc1+fRF-d/2)(t+2T)+φ1(t+2T))
+Au cos(2πfc2(t+2T)+φ2(t+2T))
+Au cos(2πfc3(t+2T)+φ3(t+2T))] …(12)
ここで、γは無線基地局−光受信器間の光伝送損失や無線基地局内の光変調器の挿入損失などの損失の合計を表し、γ≫1である。
E opt-co ∝ A LO cos (2πf c1 t + φ 1 (t))
+ (1 / γ) (1 + ma u cos (2πf RF-u t))
・ [A d a d cos (2π (f c1 −f RF−d / 2) (t + 2T) + φ 1 (t + 2T))
+ A d a d cos (2π (f c1 + f RF−d / 2) (t + 2T) + φ 1 (t + 2T))
+ A u cos (2πf c2 ( t + 2T) + φ 2 (t + 2T))
+ A u cos (2πf c3 (t + 2T) + φ 3 (t + 2T))] (12)
Here, γ represents the total loss such as optical transmission loss between the radio base station and the optical receiver and insertion loss of the optical modulator in the radio base station, and γ >> 1.

(12)式の右辺の第1項の光信号は、光信号発生部から光受信器に直接入力されたために損失が無く、十分な光強度を有している。このため、(12)式の光信号を受光器で自乗検波することで、高感度光受信法として知られる光ヘテロダイン検波と同様に、無線基地局から送信された変調光信号((11)式)を高感度に受信することが可能となる。   The optical signal of the first term on the right side of the equation (12) is directly input from the optical signal generator to the optical receiver, and thus has no loss and has sufficient light intensity. For this reason, the optical signal of the equation (12) is square-detected by the light receiver, and the modulated optical signal (the equation (11) is transmitted from the radio base station as in the case of the optical heterodyne detection known as the high-sensitivity optical reception method). ) Can be received with high sensitivity.

受光器から出力される2波の中間周波数fIF1,fIF2の電気信号の電界EIFは、次のように表すことができる。 The electric field E IF of the electric signal having two intermediate frequencies f IF1 and f IF2 output from the light receiver can be expressed as follows.

IF=GauuLO[cosθ・cos(2πfIF1t+ψ1)+sinθ・cos(2πfIF2t+ψ2)]
但し、ψ1=±[4πfc1T+φ1(t+2T)−φ2(t)]
ψ2=±[4πfc1T+φ1(t+2T)−φ3(t)]
…(13)
ここで、Gは前記光ヘテロダイン検波の利得に依存する係数、ψ1,ψ2はそれぞれの中間周波数fIF1,fIF2の電気信号の位相成分、θは無線基地局から送信された変調光信号((11)式)のうち第3項で表される光信号の偏波方向と、光信号発生部から出力された単一スペクトルの光信号((9)式)の偏波方向との間の角度を表すものとする。
E IF = Ga u A u A LO [cos θ · cos (2πf IF1 t + ψ 1 ) + sin θ · cos (2πf IF2 t + ψ 2 )]
However, ψ 1 = ± [4πf c1 T + φ 1 (t + 2T) −φ 2 (t)]
ψ 2 = ± [4πf c1 T + φ 1 (t + 2T) −φ 3 (t)]
... (13)
Here, G is a coefficient depending on the gain of the optical heterodyne detection, ψ 1 and ψ 2 are phase components of electric signals of the intermediate frequencies f IF1 and f IF2 , and θ is a modulated optical signal transmitted from the radio base station. (Equation (11)) between the polarization direction of the optical signal represented by the third term and the polarization direction of the single-spectrum optical signal (Equation (9)) output from the optical signal generator. Represents the angle of.

光信号発生部では、第1、第2および第3の単一スペクトルの光信号の中心周波数が設定した値となるよう制御しているため、光受信器では、複雑な構成の無線周波数帯部品や中間周波数安定化回路を用いることなく、安定な中間周波数の信号を得ることができる。   Since the optical signal generator controls the center frequency of the first, second and third single spectrum optical signals to be a set value, the optical receiver has a complicated configuration of radio frequency band components. In addition, a stable intermediate frequency signal can be obtained without using an intermediate frequency stabilization circuit.

2波の中間周波数fIF1,fIF2の電気信号を包絡線検波した後に、低域濾過フィルタを通して得られる電気信号の電界EBBは次のように表すことができる。 The electric field E BB of the electric signal obtained through the low-pass filter after detecting the electric signals of the two intermediate frequencies f IF1 and f IF2 can be expressed as follows.

BB∝G2u 2u 2LO 2(cos2θ+sin2θ)=G2uu 2LO 2 …(14)
ここで、光信号発生部から光送信器に入力された偏波合成光信号((8)式の第3項と第4項)が互いに直交した偏波方向と等しい光強度を有するため、低域濾過フィルタの出力信号強度が、無線基地局から送信された変調光信号((11)式)に不感応であることが分かる。
E BB ∝G 2 a u 2 A u 2 A LO 2 (cos 2 θ + sin 2 θ) = G 2 a u A u 2 A LO 2 (14)
Here, since the polarization-combined optical signal (the third term and the fourth term in the equation (8)) input from the optical signal generation unit to the optical transmitter has light intensity equal to the orthogonal polarization direction, the low It can be seen that the output signal strength of the diafiltration filter is insensitive to the modulated optical signal (Equation (11)) transmitted from the radio base station.

(第3の発明)
第3の発明は、第1または第2の発明の光−無線融合通信システムにおける光受信器の別の構成を示す。
(Third invention)
3rd invention shows another structure of the optical receiver in the optical-radio fusion communication system of 1st or 2nd invention.

光受信器は、第1または第2の発明における光受信器の電気検波器および低域濾過フィルタに代えて、受光器から出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号を分離するフィルタと、フィルタから出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波する第1の電気検波器および第2の電気検波器と、第1の電気検波器の出力信号と第2の電気検波器の出力信号とを加算し、上り送信データを出力する電気加算器とを備える。 In the optical receiver, instead of the electric detector and the low-pass filter in the optical receiver in the first or second invention, an electric signal of the intermediate frequency f IF1 and an electric signal of the intermediate frequency f IF2 output from the light receiver. , A first electric detector and a second electric detector for detecting the electric signal of the intermediate frequency f IF1 and the electric signal of the intermediate frequency f IF2 output from the filter, respectively, and the first electric detection And an electrical adder for adding the output signal of the second electrical detector and the output signal of the second electrical detector and outputting uplink transmission data.

第3の発明における光受信器では、(6)式または(13)式の中間周波数fIF1,fIF2の電気信号をフィルタで分離することにより、次式の2つの中間周波数fIF1,fIF2の電気信号EIF1,EIF2が得られる。 In the optical receiver according to the third aspect of the invention, by separating the electric signals of the intermediate frequencies f IF1 and f IF2 of the equation (6) or (13) with a filter, the two intermediate frequencies f IF1 and f IF2 of the following equation are obtained. Electrical signals E IF1 and E IF2 are obtained.

IF1=GauuLO cosθ・cos(2πfIF1t+ψ1) …(15)
IF2=GauuLO cosθ・cos(2πfIF2t+ψ2) …(16)
この中間周波数fIF1,fIF2の電気信号はそれぞれ包絡線検波され、得られた電気信号は電気加算器で加算される。電気加算器で得られる電気信号の電界EBBは、次のように表すことができる。
E IF1 = Ga u A u A LO cos θ · cos (2πf IF1 t + ψ 1 ) (15)
E IF2 = Ga u A u A LO cos θ · cos (2πf IF2 t + ψ 2 ) (16)
The electric signals of the intermediate frequencies f IF1 and f IF2 are respectively subjected to envelope detection, and the obtained electric signals are added by an electric adder. The electric field E BB of the electric signal obtained by the electric adder can be expressed as follows.

BB∝G2u 2u 2LO 2(cos2θ+sin2θ)=G2uu 2LO 2 …(17)
ここで、第1の発明では光信号発生部から光受信器へ出力された偏波合成光信号((2)式)が互いに直交した偏波方向と等しい光強度を有し、第2の発明では光信号発生部から無線基地局に送信された上りリンク用光搬送波信号((8)式の第3項と第4項)が互いに直交した偏波方向と等しい光強度を有するため、第3の発明における光受信器の電気加算器の出力は、無線基地局から送信された変調光信号((4)式、(11)式)の偏波方向に不感応であることが分かる。
E BB ∝G 2 a u 2 A u 2 A LO 2 (cos 2 θ + sin 2 θ) = G 2 a u A u 2 A LO 2 (17)
Here, in the first invention, the polarization combined optical signal (formula (2)) output from the optical signal generator to the optical receiver has the same light intensity as the orthogonal polarization directions, and the second invention Then, since the optical carrier signal for uplink transmitted from the optical signal generator to the radio base station (the third term and the fourth term in the equation (8)) has the same optical intensity as the polarization directions orthogonal to each other, It can be seen that the output of the electrical adder of the optical receiver in the invention is insensitive to the polarization direction of the modulated optical signal (Equation (4), Equation (11)) transmitted from the radio base station.

このように第3の発明によれば、光受信器において、無線周波数帯部品、中間周波数安定化回路および偏波ダイバーシティ回路を用いることなく、中間周波数帯の帯域を有する1つの受光器と2つの電気検波器からなる簡易な構成で高感度光受信が可能となる。   As described above, according to the third invention, in the optical receiver, without using the radio frequency band component, the intermediate frequency stabilization circuit, and the polarization diversity circuit, one light receiver and two High-sensitivity light reception is possible with a simple configuration comprising an electric detector.

(第4の発明)
第4の発明は、第1または第2の発明の光−無線融合通信システムにおける光受信器の別の構成を示す。
(Fourth invention)
4th invention shows another structure of the optical receiver in the optical-radio fusion communication system of 1st or 2nd invention.

光受信器は、第1または第2の発明における光受信器の電気検波器および低域濾過フィルタに代えて、受光器から出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号を分離するフィルタと、フィルタから出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波する第1の電気検波器および第2の電気検波器と、第1の電気検波器の出力信号と第2の電気検波器の出力信号の位相を揃えて加算し、送信データを出力する位相調整加算器とを備える。 In the optical receiver, instead of the electric detector and the low-pass filter in the optical receiver in the first or second invention, an electric signal of the intermediate frequency f IF1 and an electric signal of the intermediate frequency f IF2 output from the light receiver. , A first electric detector and a second electric detector for detecting the electric signal of the intermediate frequency f IF1 and the electric signal of the intermediate frequency f IF2 output from the filter, respectively, and the first electric detection And a phase adjustment adder that outputs the transmission data by adding the phases of the output signal of the detector and the output signal of the second electric detector in alignment.

第4の発明における光受信器では、第3の発明における光受信器と同様に、無線基地局から送信された変調光信号の偏波方向に不感応な一定の出力の受信信号を得ることができるとともに、次の機能が加わる。第1の電気検波器の出力信号と第2の電気検波器の出力信号との位相を揃えて加算することにより、光伝送路の分散により第1の電気検波器の出力信号と第2の電気検波器の出力信号との間に生じる時間差を補償することができる。   In the optical receiver according to the fourth invention, similarly to the optical receiver according to the third invention, it is possible to obtain a received signal with a constant output insensitive to the polarization direction of the modulated optical signal transmitted from the radio base station. The following functions are added as well as possible. By aligning and adding the phases of the output signal of the first electric detector and the output signal of the second electric detector, the output signal of the first electric detector and the second electric detector are distributed due to dispersion of the optical transmission line. A time difference generated between the output signal of the detector and the detector can be compensated.

このように第4の発明によれば、第3の発明と同様に高感度光受信が可能になるとともに、光伝送路の分散の影響で第1の電気検波器の出力信号と第2の電気検波器の出力信号との間に生じる時間差を補償することにより、分散の影響を受けない光受信が実現できる。なお、第1の発明のように、光送信器から無線基地局に対して上りリンク用光搬送波信号として1波の光信号((1)式の第3項)を送信し、無線基地局から光受信器に変調光信号((4)式)を送信する場合には、2つの側波帯成分を有する変調光信号に光伝送路の分散の影響が現れる。また第2の発明のように、光送信器から無線基地局に対して上りリンク用光搬送波信号として2波の偏波合成光信号((8)式の第3項と第4項)を送信し、無線基地局から光受信器に変調光信号((11)式)を送信する場合には、両光信号に光伝送路の分散の影響が現れる。   As described above, according to the fourth invention, high-sensitivity light reception is possible as in the third invention, and the output signal of the first electric detector and the second electric signal are influenced by the dispersion of the optical transmission line. By compensating for the time difference that occurs with the output signal of the detector, optical reception that is not affected by dispersion can be realized. As in the first aspect of the invention, an optical transmitter transmits a single-wave optical signal (the third term of equation (1)) as an uplink optical carrier signal to the radio base station, and the radio base station When a modulated optical signal (formula (4)) is transmitted to the optical receiver, the influence of dispersion of the optical transmission path appears on the modulated optical signal having two sideband components. Further, as in the second aspect of the invention, a two-wave polarization combined optical signal (the third and fourth terms in equation (8)) is transmitted from the optical transmitter to the radio base station as an optical carrier signal for uplink. When a modulated optical signal (formula (11)) is transmitted from the radio base station to the optical receiver, the influence of dispersion of the optical transmission path appears on both optical signals.

(第5の発明)
第5の発明は、第1の発明の光−無線融合通信システムにおいて、複数の無線基地局と、収容局に複数の無線基地局に下り光無線信号と上りリンク用光搬送波信号をそれぞれ送信する複数の光送信器と、複数の無線基地局から送信された変調光信号をそれぞれ受信する複数の光受信器とを備え、光信号発生部は、搬送波抑圧両側波帯変調光信号を複数に分岐し、複数の光送信器へそれぞれ入力する第1の光分岐器と、光分岐器のもう一方の出力光信号を複数に分岐し、上りリンク用光搬送波信号として複数の光送信器へそれぞれ入力する第2の光分岐器と、偏波合波光信号を複数に分岐し、複数の光受信器へそれぞれ出力する第3の光分岐器とを備える。
(Fifth invention)
In a fifth aspect of the optical-wireless communication system according to the first aspect, the fifth invention transmits a plurality of radio base stations and a downlink optical radio signal and an uplink optical carrier signal to the plurality of radio base stations to the accommodating station, respectively. The optical signal generator includes a plurality of optical transmitters and a plurality of optical receivers that respectively receive modulated optical signals transmitted from a plurality of radio base stations, and the optical signal generator branches the carrier-suppressed double-sideband modulated optical signals into a plurality The first optical branching device that is input to each of the plurality of optical transmitters, and the other output optical signal of the optical branching device are branched into a plurality of signals and input to the plurality of optical transmitters as optical carrier signals for the uplink, respectively. And a third optical splitter that branches the polarization-multiplexed optical signal into a plurality of signals and outputs them to the plurality of optical receivers.

第5の発明によれば、全ての光受信器において、無線周波数帯部品、中間周波数安定化回路および偏波ダイバーシティ回路を用いる必要がなく、システム全体の構成の大幅な簡略化が実現できる。   According to the fifth invention, it is not necessary to use radio frequency band components, an intermediate frequency stabilization circuit, and a polarization diversity circuit in all the optical receivers, and the configuration of the entire system can be greatly simplified.

(第6の発明)
第6の発明は、第2の発明の光−無線融合通信システムにおいて、複数の無線基地局と、収容局に複数の無線基地局に下り光無線信号と上りリンク用光搬送波信号をそれぞれ送信する複数の光送信器と、複数の無線基地局から送信された変調光信号をそれぞれ受信する複数の光受信器とを備え、光信号発生部は、偏波合波光信号を複数に分岐し、上りリンク用光搬送波信号として複数の光送信器へそれぞれ入力する第1の光分岐器と、搬送波抑圧両側波帯変調光信号を複数に分岐し、複数の光送信器へそれぞれ入力する第2の光分岐器と、光分岐器のもう一方の出力光信号を複数に分岐し、光受信器へそれぞれ出力する第3の光分岐器とを備える。
(Sixth invention)
In a sixth aspect of the present invention, there is provided the optical-wireless communication system according to the second aspect, wherein a plurality of radio base stations and a downlink optical radio signal and an uplink optical carrier signal are respectively transmitted to a plurality of radio base stations to a receiving station. A plurality of optical transmitters and a plurality of optical receivers that respectively receive the modulated optical signals transmitted from the plurality of radio base stations, and the optical signal generator divides the polarization multiplexed optical signal into a plurality of A first optical splitter that is input to a plurality of optical transmitters as an optical carrier signal for a link, and a second optical that is split into a plurality of carrier-suppressed double sideband modulated optical signals and is input to a plurality of optical transmitters. A branching device, and a third optical branching device that branches the other output optical signal of the optical branching device into a plurality of signals and outputs them to the optical receiver.

第6の発明によれば、全ての光受信器において、無線周波数帯部品、中間周波数安定化回路および偏波ダイバーシティ回路を用いる必要がなく、システム全体の構成の大幅な簡略化が実現できる。   According to the sixth invention, it is not necessary to use radio frequency band components, an intermediate frequency stabilization circuit, and a polarization diversity circuit in all optical receivers, and the configuration of the entire system can be greatly simplified.

(第7の発明)
第7の発明は、第1乃至第6のいずれかの発明の光−無線融合通信システムにおいて、無線基地局は、受信した光信号を2分岐する光分岐器と、この光分岐器の一方の出力光信号を受光し下り無線信号に変換する受光器と、光分岐器のもう一方の出力光信号に対し、上り無線信号にて光変調を施す光変調器とに代えて、受信した光信号の受光と、上り無線信号による光変調を同時に行う電界吸収型光変調器を備える。
(Seventh invention)
According to a seventh aspect of the present invention, in the optical-wireless fusion communication system according to any one of the first to sixth aspects, the wireless base station includes an optical branching unit that splits the received optical signal into two branches, and one of the optical branching units. The received optical signal instead of the optical receiver that receives the output optical signal and converts it to the downlink radio signal, and the optical modulator that performs optical modulation on the other output optical signal of the optical splitter by the uplink radio signal And an electro-absorption optical modulator that simultaneously performs light modulation and upstream optical signal modulation.

第7の発明によれば、無線基地局において光送信器から送信された光信号を受光して下り無線信号に変換する動作(光検波動作)と、光送信器から送信された光信号に対し、受信した上り無線信号で光強度変調を施す動作(光変調動作)を単一の電界吸収型光変調器で行えるため、無線基地局の構成の簡略化が実現できる。   According to the seventh aspect of the present invention, the optical base station receives the optical signal transmitted from the optical transmitter and converts it into a downlink radio signal (optical detection operation), and the optical signal transmitted from the optical transmitter Since the operation of performing optical intensity modulation on the received uplink radio signal (optical modulation operation) can be performed by a single electroabsorption optical modulator, the configuration of the radio base station can be simplified.

(第8の発明)
第8の発明は、第1乃至第7のいずれかの発明の光−無線融合通信システムにおいて、光送信器、無線基地局および光受信器は1芯の光伝送路を介して接続されており、収容局および無線基地局に、上り光信号と下り光信号とを分離する双方向光分離器を備える。
(Eighth invention)
An eighth invention is the optical-wireless fusion communication system according to any one of the first to seventh inventions, wherein the optical transmitter, the radio base station, and the optical receiver are connected via a single-core optical transmission line. The accommodation station and the radio base station are provided with a bidirectional optical separator that separates the upstream optical signal and the downstream optical signal.

第8の発明によれば、光送信器から無線基地局への下り無線信号の光伝送と、無線基地局から光受信器への上り無線信号の光伝送を1芯の光伝送路上で行うことができる。   According to the eighth invention, optical transmission of the downlink radio signal from the optical transmitter to the radio base station and optical transmission of the uplink radio signal from the radio base station to the optical receiver are performed on a single-core optical transmission path. Can do.

通常、このように1芯の光伝送路上で双方向光伝送を行う場合には、光送信器から送信する光信号の一部が光伝送路中において反射され、この反射光が上り光信号とともに光受信器に入力することで、受信特性を劣化させることが懸念される。   Usually, when bidirectional optical transmission is performed on a single optical transmission line in this way, a part of the optical signal transmitted from the optical transmitter is reflected in the optical transmission line, and this reflected light is combined with the upstream optical signal. There is a concern that the reception characteristic may be deteriorated by inputting to the optical receiver.

しかし、本発明の光受信器においては、無線基地局から送信される上り変調光信号((4)式、(11)式)は、収容局内の光信号発生部から入力される光ローカル信号((2)式、(9)式)との光ヘテロダイン検波により中間周波数帯信号に変換されるが、光送信器から無線基地局に送信する光信号の反射光((1)式、(8)式)と光ローカル信号((2)式、(9)式)を光ヘテロダイン検波することで得られるビート信号は、上記の中間周波数帯には入り込まないため、光送信器から無線基地局に送信する光信号の光伝送路中の反射による影響は受けない。   However, in the optical receiver of the present invention, the uplink modulated optical signal (formulas (4) and (11)) transmitted from the radio base station is an optical local signal (from the optical signal generator in the accommodating station) ( It is converted into an intermediate frequency band signal by optical heterodyne detection with (2) and (9)), but the reflected light of the optical signal transmitted from the optical transmitter to the radio base station (equation (1), (8) And the beat signal obtained by optical heterodyne detection of the optical local signal (equation (2), equation (9)) does not enter the above intermediate frequency band, and is transmitted from the optical transmitter to the radio base station. The optical signal is not affected by reflection in the optical transmission line.

(第9の発明)
第9の発明は、収容局に光信号発生部、光送信器および光受信器を備え、光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、無線基地局は、下り光無線信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で上りリンク用光搬送波信号を光変調し、その変調光信号を光伝送路を介して収容局に送信し、光受信器は変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信方法において、光信号発生部、光送信器および光受信器に特徴がある。
(9th invention)
According to a ninth aspect of the present invention, an optical signal generator, an optical transmitter, and an optical receiver are provided in a receiving station, and the optical transmitter is a downstream optical wireless signal modulated by downstream transmission data to a wireless base station via an optical transmission line. And the uplink optical carrier signal, the radio base station transmits the downlink radio signal (frequency f RF-d ) obtained by receiving the downlink optical radio signal to the radio terminal, and the uplink transmission data The radio signal modulated with the radio frequency (frequency f RF-u ) is received, the optical carrier signal for the uplink is optically modulated with the received uplink radio signal, and the modulated optical signal is transmitted to the accommodation station via the optical transmission line. The optical receiver is characterized by the optical signal generator, the optical transmitter, and the optical receiver in the optical-wireless combined communication method for receiving the modulated optical signal, detecting it, and reproducing the upstream transmission data.

光信号発生器は、第1の単一スペクトルの光信号(中心周波数fc1)を2分岐し、その一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施し、その搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、分岐されたもう一方の出力光信号を上りリンク用光搬送波信号として光送信器に入力し、第2の単一スペクトルの光信号(中心周波数fc2)、第3の単一スペクトルの光信号(中心周波数fc3)の偏波方向が直交し、かつ、等しい光強度になるように、2波を直交偏波合成した偏波合成光信号を光受信器へ出力し、第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるように制御する。
The optical signal generator splits the first single spectrum optical signal (center frequency f c1 ) into two, and half of the frequency f RF-d of the desired downlink radio signal (one half of the output optical signal) The optical carrier-suppressed double-sideband modulation is performed with the electric carrier signal of f RF-d / 2), the carrier-suppressed double-sideband modulated optical signal is input to the optical transmitter, and the other branched output optical signal Are input to the optical transmitter as an optical carrier signal for uplink, and the polarization directions of the second single spectrum optical signal (center frequency f c2 ) and the third single spectrum optical signal (center frequency f c3 ) So that the two waves are orthogonally polarized and combined to output an optical receiver, and the first, second and third single-spectrum optical signals are output. Center frequencies f c1 , f c2 , and f c3 are the frequencies f RF-u of the uplink radio signal, For frequency f IF1 and f IF2
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Control to be

光送信器は、入力された2系統の光信号のうち、搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施し、その出力光信号を下り光無線信号として、上りリンク用光搬送波信号と合波した後、無線基地局へ送信する。   The optical transmitter performs optical modulation on the carrier-suppressed double-sideband modulated optical signal of the two input optical signals with downlink transmission data, and uses the output optical signal as a downlink optical radio signal, thereby generating an optical carrier for uplink After combining with the signal, it is transmitted to the radio base station.

光受信器は、無線基地局から送信された変調光信号と、光信号発生部から出力された偏波合成光信号とを合波し、合波された光信号を受光して得られた中間周波数fIF1,fIF2の電気信号を検波し、その出力信号を低域濾過して上り送信データを生成する。 The optical receiver combines the modulated optical signal transmitted from the radio base station and the polarization combined optical signal output from the optical signal generator, and receives the combined optical signal to obtain an intermediate signal The electrical signals of the frequencies f IF1 and f IF2 are detected, and the output signal is low-pass filtered to generate upstream transmission data.

(第10の発明)
第10の発明は、収容局に光信号発生部、光送信器および光受信器を備え、光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、無線基地局は、下り光無線信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で上りリンク用光搬送波信号を光変調し、その変調光信号を光伝送路を介して収容局に送信し、光受信器は変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信方法において、光信号発生部、光送信器および光受信器に特徴がある。
(Tenth invention)
According to a tenth aspect of the present invention, an optical signal generator, an optical transmitter, and an optical receiver are provided in a receiving station, and the optical transmitter is a downstream optical wireless signal that is modulated with downstream transmission data by a wireless base station via an optical transmission line. And the uplink optical carrier signal, the radio base station transmits the downlink radio signal (frequency f RF-d ) obtained by receiving the downlink optical radio signal to the radio terminal, and the uplink transmission data The radio signal modulated with the radio frequency (frequency f RF-u ) is received, the optical carrier signal for the uplink is optically modulated with the received uplink radio signal, and the modulated optical signal is transmitted to the accommodation station via the optical transmission line. The optical receiver is characterized by the optical signal generator, the optical transmitter, and the optical receiver in the optical-wireless combined communication method for receiving the modulated optical signal, detecting it, and reproducing the upstream transmission data.

光信号発生器は、第1の単一スペクトルの光信号(中心周波数fc1)を2分岐し、その一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施し、その搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、分岐されたもう一方の出力光信号を光受信器に出力し、第2の単一スペクトルの光信号(中心周波数fc2)、第3の単一スペクトルの光信号(中心周波数fc3)の偏波方向が直交し、かつ、等しい光強度になるように、2波を直交偏波合成した偏波合成光信号を上りリンク用光搬送波信号として光送信器に入力し、第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるように制御する。
The optical signal generator splits the first single spectrum optical signal (center frequency f c1 ) into two, and half of the frequency f RF-d of the desired downlink radio signal (one half of the output optical signal) The optical carrier-suppressed double-sideband modulation is performed with the electric carrier signal of f RF-d / 2), the carrier-suppressed double-sideband modulated optical signal is input to the optical transmitter, and the other branched output optical signal Are output to the optical receiver, and the polarization directions of the second single spectrum optical signal (center frequency f c2 ) and the third single spectrum optical signal (center frequency f c3 ) are orthogonal and equal. A polarization-combined optical signal obtained by combining two waves with orthogonal polarization so as to obtain optical intensity is input to an optical transmitter as an optical carrier signal for uplink, and first, second, and third single-spectrum optical signals Center frequencies f c1 , f c2 , and f c3 are the frequencies f RF-u of the uplink radio signal, For frequency f IF1 and f IF2
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Control to be

光送信器は、入力された2系統の光信号のうち、搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施し、その出力光信号を下り光無線信号として、上りリンク用光搬送波信号と合波した後、無線基地局へ送信する。   The optical transmitter performs optical modulation on the carrier-suppressed double-sideband modulated optical signal of the two input optical signals with downlink transmission data, and uses the output optical signal as a downlink optical radio signal, thereby generating an optical carrier for uplink After combining with the signal, it is transmitted to the radio base station.

光受信器は、無線基地局から送信された変調光信号と、光信号発生部から出力された単一スペクトルの光信号とを合波し、合波された光信号を受光して得られた中間周波数fIF1,fIF2の電気信号を検波し、その出力信号を低域濾過して上り送信データを生成する。 The optical receiver is obtained by combining the modulated optical signal transmitted from the radio base station and the single-spectrum optical signal output from the optical signal generator, and receiving the combined optical signal. The electrical signals of the intermediate frequencies f IF1 and f IF2 are detected, and the output signal is low-pass filtered to generate upstream transmission data.

(第11の発明)
第11の発明は、第9または第10の発明において、光受信器は中間周波数fIF1,fIF2の電気信号を分離し、中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波し、各出力信号を加算して上り送信データを生成する。
(Eleventh invention)
In an eleventh aspect based on the ninth or tenth aspect, the optical receiver separates the electrical signals of the intermediate frequencies f IF1 and f IF2 and separates the electrical signal of the intermediate frequency f IF1 and the electrical signal of the intermediate frequency f IF2 respectively. Detection is performed, and each output signal is added to generate upstream transmission data.

(第12の発明)
第12の発明は、第9または第10の発明において、光受信器は中間周波数fIF1,fIF2の電気信号を分離し、中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波し、各出力信号の位相を揃えてから加算して上り送信データを生成する。
(Twelfth invention)
A twelfth aspect of the present invention is, respectively, in the ninth invention or the tenth, the optical receiver separates the electrical signal having the intermediate frequency f IF1, f IF2, an electrical signal of the electrical signal and the intermediate frequency f IF2 intermediate frequency f IF1 Detection is performed, and the phases of the output signals are aligned and then added to generate upstream transmission data.

以上説明したように、本発明の光−無線融合通信システムは、上り/下りで光信号発生部を共用し、かつ、光送信器に無線周波数帯の光変調器を用いることなく、また、光受信器に中間周波数安定化回路および偏波変動補償回路を用いることなく、1つの受光器で安定な中間周波数の変調信号を得ることができる。これにより、光−無線融合通信システムは、安価かつ簡単な構成で双方向光伝送を実現し、かつ、無線基地局から送信された変調光信号を高感度受信することができるので、無線エリアの拡大とシステムコストの削減が可能になる。   As described above, the optical-radio fusion communication system of the present invention shares an optical signal generation unit in uplink / downlink, and does not use an optical modulator in a radio frequency band for an optical transmitter. A stable intermediate frequency modulation signal can be obtained with a single light receiver without using an intermediate frequency stabilization circuit and a polarization fluctuation compensation circuit in the receiver. As a result, the optical-wireless fusion communication system can realize bidirectional optical transmission with an inexpensive and simple configuration and can receive the modulated optical signal transmitted from the wireless base station with high sensitivity. Expansion and system cost reduction are possible.

(第1の実施の形態)
図1は、本発明の光−無線融合通信システムの第1の実施の形態を示す。尚、本実施の形態では、収容局100に1つの無線基地局300が接続され、その無線基地局に1つの無線端末400が接続される構成例に基づいて説明する。
(First embodiment)
FIG. 1 shows a first embodiment of an optical-radio fusion communication system of the present invention. In the present embodiment, a description will be given based on a configuration example in which one radio base station 300 is connected to the accommodating station 100 and one radio terminal 400 is connected to the radio base station.

図1において、収容局100は、光信号発生部101、光送信器109および光受信器112を備える。   In FIG. 1, the accommodation station 100 includes an optical signal generator 101, an optical transmitter 109, and an optical receiver 112.

光信号発生部101は、それぞれ単一スペクトルの光信号(fc1,fc2,fc3)1a,1b,1cを出力する単一スペクトル光源102,103,104と、単一スペクトルの光信号1aを分岐する光分岐器105と、光分岐器105の一方の出力光信号を電気発振器106からの出力電気信号(周波数fRF-d/2)で光搬送波抑圧両側波帯変調を施す光変調器107と、単一スペクトルの光信号1b,1cを入力し、互いの偏波方向が直交し、かつ等しい光強度になるよう直交偏波合成した偏波合成光信号1eを出力する偏波合成手段108を備える。 The optical signal generator 101 includes single spectrum light sources 102, 103, and 104 that output single spectrum optical signals ( fc1 , fc2 , fc3 ) 1a, 1b, and 1c, respectively, and a single spectrum optical signal 1a. And an optical modulator for subjecting one output optical signal of the optical splitter 105 to optical carrier-suppressed double-sideband modulation with an output electrical signal (frequency f RF-d / 2) from the electrical oscillator 106 107, a single-spectrum optical signal 1b, 1c, and a polarization combining unit that outputs a polarization-combined optical signal 1e obtained by orthogonally combining the polarization directions so that their polarization directions are orthogonal and equal to each other. 108.

光変調器107の出力光信号1dと、光分岐器105のもう一方の出力光信号1aは光送信器109に入力し、偏波合成光信号1eは光受信器112に入力する。   The output optical signal 1d of the optical modulator 107 and the other output optical signal 1a of the optical splitter 105 are input to the optical transmitter 109, and the polarization combined optical signal 1e is input to the optical receiver 112.

光送信器109は、光信号発生部101から入力された搬送波抑圧両側波帯変調光信号1dを下り送信データで変調する光変調器110と、光信号発生部101から入力された単一スペクトルの光信号1aと光変調器110の出力光信号をそれぞれ上りリンク用光搬送波信号、下り光無線信号として合波する光合波器111を備える。光合波器111の出力合波光信号1fは、光伝送路201を介して無線基地局300へ送信される。   The optical transmitter 109 includes an optical modulator 110 that modulates the carrier-suppressed double-sideband modulated optical signal 1d input from the optical signal generator 101 with downlink transmission data, and a single spectrum input from the optical signal generator 101. An optical multiplexer 111 that multiplexes the optical signal 1a and the output optical signal of the optical modulator 110 as an uplink optical carrier signal and a downstream optical wireless signal is provided. The output combined optical signal 1 f of the optical multiplexer 111 is transmitted to the radio base station 300 via the optical transmission path 201.

無線基地局300は、光送信器から送信された光信号1fを分岐する光分岐器301を備える。光分岐器301の一方の出力光信号を、受光器302により受光することで下り無線信号(周波数fRF-d)1gに変換し、アンテナ303から無線端末400に送出する。光分岐器301のもう一方の出力光信号は、光変調器304によって無線端末400から送信された上り無線信号(周波数fRF-u)1hで光強度変調され、その変調光信号1iは光伝送路202を介して収容局100の光受信器112に送信される。 The radio base station 300 includes an optical branching unit 301 that branches the optical signal 1f transmitted from the optical transmitter. One output optical signal of the optical branching device 301 is received by the light receiving device 302 to be converted into a downlink wireless signal (frequency f RF-d ) 1 g and transmitted from the antenna 303 to the wireless terminal 400. The other output optical signal of the optical splitter 301 is optical intensity modulated by the upstream radio signal (frequency f RF-u ) 1h transmitted from the wireless terminal 400 by the optical modulator 304, and the modulated optical signal 1i is optically transmitted. The signal is transmitted to the optical receiver 112 of the accommodation station 100 via the path 202.

光受信器112は、無線基地局300の光変調器304から送信された変調光信号1iと、収容局100内の光信号発生部101の偏波合成手段108から出力された偏波合成光信号1eを入力し、無線端末400から無線基地局300を介して伝送された上り送信データ1mを再生する構成である。   The optical receiver 112 includes the modulated optical signal 1 i transmitted from the optical modulator 304 of the radio base station 300 and the polarization combined optical signal output from the polarization combining unit 108 of the optical signal generator 101 in the accommodating station 100. 1e is input, and the uplink transmission data 1m transmitted from the radio terminal 400 via the radio base station 300 is reproduced.

図2は、偏波合成手段108の構成例を示す。図2において、単一スペクトルの光信号1b,1cは、偏波調整器108−1,108−2で互いの偏波方向が直交するように調整され、出力調整器118−3,118−4で互いの光強度が等しくなるように調整され、偏波保持型の光合波器108−5で直交偏波合成され、偏波合成光信号1eとして出力される。尚、この構成は一例であり、例えば単一スペクトル光源103,104が偏波調整器108−1,108−2および出力調整器108−3,108−4の機能を有し、偏波合成手段108は偏波保持型の光合波器108−5のみで構成してもよい。   FIG. 2 shows a configuration example of the polarization beam combining means 108. In FIG. 2, single spectrum optical signals 1b and 1c are adjusted by the polarization adjusters 108-1 and 108-2 so that their polarization directions are orthogonal to each other, and output adjusters 118-3 and 118-4. Are adjusted so that their optical intensities are equal to each other, and are orthogonally polarized by the polarization-maintaining optical multiplexer 108-5 and output as a polarization-combined optical signal 1e. This configuration is an example. For example, the single spectrum light sources 103 and 104 have the functions of the polarization adjusters 108-1 and 108-2 and the output adjusters 108-3 and 108-4. The reference numeral 108 may be constituted only by the polarization maintaining type optical multiplexer 108-5.

図3は、光受信器112の第1の構成例を示す。図6は、第1の実施の形態および光受信器112の第1の構成例における各信号の周波数スペクトルの一例を示す。   FIG. 3 shows a first configuration example of the optical receiver 112. FIG. 6 shows an example of the frequency spectrum of each signal in the first embodiment and the first configuration example of the optical receiver 112.

図3において、光受信器112−1は、光合波器113、受光器114、電気検波器115および低域濾過フィルタ116により構成される。光合波器113は、無線基地局から送信された変調光信号1iと、光信号発生部101から出力された偏波合成光信号1eとを合波し、合波した光信号1jは受光器114で電気信号に変換される。   In FIG. 3, the optical receiver 112-1 includes an optical multiplexer 113, a light receiver 114, an electric detector 115, and a low-pass filter 116. The optical multiplexer 113 combines the modulated optical signal 1i transmitted from the radio base station and the polarization combined optical signal 1e output from the optical signal generator 101, and the combined optical signal 1j is received by the optical receiver 114. Is converted into an electrical signal.

ここで、光信号発生部101では、単一スペクトルの光信号1a,1b,1cの中心周波数fc1,fc2,fc3は、上り無線信号1hの周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御される。
Here, in the optical signal generation unit 101, the center frequencies f c1 , f c2 , and f c3 of the single-spectrum optical signals 1a, 1b, and 1c are the frequencies f RF-u and the predetermined intermediate frequency f of the upstream radio signal 1h. For IF1 and fIF2 ,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
It is controlled to become.

これにより、光受信器112−1でミリ波帯部品や中間周波数安定化回路を用いることなく、受光器114の出力として直接、安定な2波の中間周波数fIF1,fIF2の電気信号1kを得ることができる。さらに光信号発生部101から十分な光強度の偏波合成光信号1eを光受信器112−1に入力することにより、光ヘテロダイン検波による利得が得られる。受光器114から出力される電気信号1kは電気検波器115でまとめて検波され、その検波信号1lを低域濾過フィルタ116に通すことにより、上り送信データ1mを得ることができる。 As a result, the electric signal 1k having two stable intermediate frequencies f IF1 and f IF2 can be directly output as the output of the light receiver 114 without using the millimeter wave band component or the intermediate frequency stabilization circuit in the optical receiver 112-1. Obtainable. Furthermore, a gain by optical heterodyne detection can be obtained by inputting the polarization-combined optical signal 1e with sufficient light intensity from the optical signal generator 101 to the optical receiver 112-1. The electrical signal 1k output from the light receiver 114 is collectively detected by the electrical detector 115, and the upstream transmission data 1m can be obtained by passing the detection signal 1l through the low-pass filter 116.

ここで、光信号発生部101から出力される偏波合成光信号1eが互いに直交した偏波方向を有し、かつ等しい光強度を有するので、低域濾過フィルタ116から出力される上りデータ信号1mは、無線基地局300から送信された変調光信号1iの偏波方向に依存することなく、一定の値となる。   Here, since the polarization-combined optical signal 1e output from the optical signal generator 101 has the polarization directions orthogonal to each other and the same light intensity, the upstream data signal 1m output from the low-pass filter 116 Is a constant value without depending on the polarization direction of the modulated optical signal 1 i transmitted from the radio base station 300.

図4は、光受信器112の第2の構成例を示す。図7は、第1の実施の形態および光受信器112の第2の構成例における各信号の周波数スペクトルの一例を示す。   FIG. 4 shows a second configuration example of the optical receiver 112. FIG. 7 shows an example of the frequency spectrum of each signal in the first embodiment and the second configuration example of the optical receiver 112.

図4において、光受信器112−2は、光合波器113、受光器114、フィルタ117、電気検波器115−1,115−2および電気加算器118により構成される。光合波器113は、無線基地局から送信された変調光信号1iと、光信号発生部101から出力された偏波合成光信号1eとを合波し、合波した光信号1jは受光器114で電気信号に変換される。そして、上記の周波数関係により、受光器114の出力として直接、安定な2波の中間周波数fIF1,fIF2の電気信号1kを得ることができる。 In FIG. 4, the optical receiver 112-2 includes an optical multiplexer 113, a light receiver 114, a filter 117, electric detectors 115-1 and 115-2, and an electric adder 118. The optical multiplexer 113 combines the modulated optical signal 1i transmitted from the radio base station and the polarization combined optical signal 1e output from the optical signal generator 101, and the combined optical signal 1j is received by the optical receiver 114. Is converted into an electrical signal. Then, according to the above frequency relationship, it is possible to obtain a stable electric signal 1k having two intermediate frequencies f IF1 and f IF2 directly as an output of the light receiver 114.

フィルタ117は、中間周波数fIF1,fIF2の電気信号1kを入力し、中間周波数fIF1の電気信号1k1および中間周波数fIF2の電気信号1k2に分離する。各電気信号1k1,1k2は電気検波器115−1,115−2でそれぞれ検波され、それぞれの検波信号を電気加算器118で加算することにより、上り送信データ1mを得ることができる。 Filter 117 inputs the electric signal 1k intermediate frequency f IF1, f IF2, separates into an electric signal 1k 2 electrical signals 1k 1 and the intermediate frequency f IF2 intermediate frequency f IF1. The electrical signals 1k 1 and 1k 2 are detected by the electrical detectors 115-1 and 115-2, respectively, and the upstream transmission data 1m can be obtained by adding the respective detected signals by the electrical adder 118.

ここで、光信号発生部101から出力される偏波合成光信号1eが互いに直交した偏波方向を有し、かつ等しい光強度を有するので、電気加算器118から出力される上りデータ信号1mは、無線基地局300から送信された変調光信号1iの偏波方向に依存することなく、一定の値となる。   Here, since the polarization combined optical signal 1e output from the optical signal generation unit 101 has orthogonal polarization directions and equal optical intensities, the upstream data signal 1m output from the electrical adder 118 is It becomes a constant value without depending on the polarization direction of the modulated optical signal 1 i transmitted from the radio base station 300.

図5は、光受信器112の第3の構成例を示す。図7および図8は、第1の実施の形態および光受信器112の第3の構成例における各信号の周波数スペクトルおよびタイムチャートの一例を示す。   FIG. 5 shows a third configuration example of the optical receiver 112. 7 and 8 show an example of the frequency spectrum and time chart of each signal in the first embodiment and the third configuration example of the optical receiver 112. FIG.

図5において、光受信器112−3は、光合波器113、受光器114、フィルタ117、電気検波器115−1,115−2および位相調整電気加算器119により構成される。光合波器113、受光器114、フィルタ117により、中間周波数fIF1の電気信号1k1および中間周波数fIF2の電気信号1k2が出力され、電気検波器115−1,115−2でそれぞれ検波される構成は、光受信器112−2と同様である。 5, the optical receiver 112-3 includes an optical multiplexer 113, a light receiver 114, a filter 117, electric detectors 115-1 and 115-2, and a phase adjustment electric adder 119. Optical multiplexer 113, the photodetector 114, a filter 117, is output electrical signal 1k 2 electrical signals 1k 1 and the intermediate frequency f IF2 intermediate frequency f IF1 is, are detected respectively by electric detectors 115-1 and 115-2 The configuration is the same as that of the optical receiver 112-2.

本構成では、図8に示すように、光伝送路201,202の分散により、第1の電気検波器115−1の出力信号1l1と第2の電気検波器115−2の出力信号1l2との間に時間差ΔTが生じる場合を想定している。このとき、位相調整電気加算器119で出力信号1l1,1l2の位相を揃えて加算することにより、その時間差を補償し、光伝送路の分散の影響を受けない上り送信データ1mを得る。 In this configuration, as shown in FIG. 8, by the dispersion of the optical transmission line 201, the output signal 1l 2 between the output signal 1l 1 of the first electrical detector 115-1 second electrical detector 115-2 It is assumed that there is a time difference ΔT. At this time, the phase adjustment electrical adder 119 adds the output signals 1l 1 and 1l 2 with the same phase, thereby compensating for the time difference and obtaining the upstream transmission data 1m that is not affected by the dispersion of the optical transmission line.

(第2の実施の形態)
図9は、本発明の光−無線融合通信システムの第2の実施の形態を示す。尚、本実施の形態では、収容局100に1つの無線基地局300が接続され、その無線基地局に1つの無線端末400が接続される構成例に基づいて説明する。
(Second Embodiment)
FIG. 9 shows a second embodiment of the optical-radio fusion communication system of the present invention. In the present embodiment, a description will be given based on a configuration example in which one radio base station 300 is connected to the accommodating station 100 and one radio terminal 400 is connected to the radio base station.

図9において、収容局100は、光信号発生部101、光送信器109および光受信器112を備える。   In FIG. 9, the accommodating station 100 includes an optical signal generation unit 101, an optical transmitter 109, and an optical receiver 112.

光信号発生部101は、それぞれ単一スペクトルの光信号(fc1,fc2,fc3)2a,2b,2cを出力する単一スペクトル光源102,103,104と、単一スペクトルの光信号2aを分岐する光分岐器105と、光分岐器105の一方の出力光信号を電気発振器106からの出力電気信号(周波数fRF-d/2)で光搬送波抑圧両側波帯変調を施す光変調器107と、単一スペクトルの光信号2b,2cを入力し、互いの偏波方向が直交し、かつ等しい光強度になるよう直交偏波合成した偏波合成光信号2eを出力する偏波合成手段108を備える。 The optical signal generator 101 includes single spectrum light sources 102, 103, and 104 that output single spectrum optical signals ( fc1 , fc2 , fc3 ) 2a, 2b, and 2c, respectively, and a single spectrum optical signal 2a. And an optical modulator for subjecting one output optical signal of the optical splitter 105 to optical carrier-suppressed double-sideband modulation with an output electrical signal (frequency f RF-d / 2) from the electrical oscillator 106 107 and a single-spectrum optical signal 2b, 2c, and a polarization combining means for outputting a polarization-combined optical signal 2e obtained by orthogonally-polarizing the signals so that their polarization directions are orthogonal to each other and equal light intensity. 108.

光変調器107の出力光信号2dと、偏波合成光信号2eは光送信器109に入力し、光分岐器105のもう一方の出力光信号2aは光受信器112に入力する。   The output optical signal 2 d of the optical modulator 107 and the polarization combined optical signal 2 e are input to the optical transmitter 109, and the other output optical signal 2 a of the optical splitter 105 is input to the optical receiver 112.

光送信器109は、光信号発生部101から入力された搬送波抑圧両側波帯変調光信号2dを下り送信データで変調する光変調器110と、光信号発生部101から入力された偏波合成光信号2eと光変調器110の出力光信号をそれぞれ上りリンク用光搬送波信号、下り光無線信号として合波する光合波器111を備える。光合波器111の出力合波光信号2fは、光伝送路201を介して無線基地局300へ送信される。   The optical transmitter 109 includes an optical modulator 110 that modulates the carrier-suppressed double-sideband modulated optical signal 2 d input from the optical signal generator 101 with downlink transmission data, and a polarization-combined light input from the optical signal generator 101. An optical multiplexer 111 that multiplexes the signal 2e and the output optical signal of the optical modulator 110 as an uplink optical carrier signal and a downstream optical wireless signal, respectively. The output combined optical signal 2 f of the optical multiplexer 111 is transmitted to the radio base station 300 via the optical transmission path 201.

無線基地局300は、光送信器から送信された光信号2fを分岐する光分岐器301を備える。光分岐器301の一方の出力光信号を、受光器302により受光することで下り無線信号(周波数fRF-d)2gに変換し、アンテナ303から無線端末400に送出する。光分岐器301のもう一方の出力光信号は、光変調器304によって無線端末400から送信された上り無線信号(周波数fRF-u)2hで光強度変調され、その変調光信号2iは光伝送路202を介して収容局100の光受信器112に送信される。 The radio base station 300 includes an optical branching unit 301 that branches the optical signal 2f transmitted from the optical transmitter. One output optical signal of the optical branching device 301 is received by the light receiving device 302 to be converted into a downlink wireless signal (frequency f RF-d ) 2 g and transmitted from the antenna 303 to the wireless terminal 400. The other output optical signal of the optical splitter 301 is optical intensity modulated by the upstream radio signal (frequency f RF-u ) 2h transmitted from the wireless terminal 400 by the optical modulator 304, and the modulated optical signal 2i is optically transmitted. The signal is transmitted to the optical receiver 112 of the accommodation station 100 via the path 202.

光受信器112は、無線基地局300の光変調器304から送信された変調光信号2iと、収容局100内の光信号発生部101から出力された単一スペクトルの光信号2aを入力し、無線端末400から無線基地局300を介して伝送された上り送信データ2mを再生する構成である。   The optical receiver 112 receives the modulated optical signal 2i transmitted from the optical modulator 304 of the radio base station 300 and the single spectrum optical signal 2a output from the optical signal generator 101 in the accommodating station 100, In this configuration, uplink transmission data 2m transmitted from the wireless terminal 400 via the wireless base station 300 is reproduced.

図10は、偏波合成手段108の構成例を示す。図2において、単一スペクトルの光信号2b,2cは、偏波調整器108−1,108−2で互いの偏波方向が直交するように調整され、出力調整器118−3,118−4で互いの光強度が等しくなるように調整され、偏波保持型の光合波器108−5で直交偏波合成され、偏波合成光信号2eとして出力される。尚、この構成は一例であり、例えば単一スペクトル光源103,104が偏波調整器108−1,108−2および出力調整器108−3,108−4の機能を有し、偏波合成手段108は偏波保持型の光合波器108−5のみで構成してもよい。   FIG. 10 shows a configuration example of the polarization beam combining means 108. In FIG. 2, optical signals 2b and 2c having a single spectrum are adjusted by the polarization adjusters 108-1 and 108-2 so that their polarization directions are orthogonal to each other, and output adjusters 118-3 and 118-4. Are adjusted so that their optical intensities are equal to each other, and are orthogonally polarized by the polarization maintaining optical multiplexer 108-5, and output as a polarization combined optical signal 2e. This configuration is an example. For example, the single spectrum light sources 103 and 104 have the functions of the polarization adjusters 108-1 and 108-2 and the output adjusters 108-3 and 108-4. The reference numeral 108 may be constituted only by the polarization maintaining type optical multiplexer 108-5.

図11は、光受信器112の第1の構成例を示す。図14は、第2の実施の形態および光受信器112の第1の構成例における各信号の周波数スペクトルの一例を示す。   FIG. 11 shows a first configuration example of the optical receiver 112. FIG. 14 shows an example of the frequency spectrum of each signal in the second embodiment and the first configuration example of the optical receiver 112.

図11において、光受信器112−1は、光合波器113、受光器114、電気検波器115および低域濾過フィルタ116により構成される。光合波器113は、無線基地局から送信された変調光信号2iと、光信号発生部101から出力された単一スペクトルの光信号2aとを合波し、合波した光信号2jは受光器114で電気信号に変換される。   In FIG. 11, the optical receiver 112-1 includes an optical multiplexer 113, a light receiver 114, an electric detector 115, and a low-pass filter 116. The optical multiplexer 113 combines the modulated optical signal 2i transmitted from the radio base station and the single spectrum optical signal 2a output from the optical signal generator 101, and the combined optical signal 2j is received by the optical receiver. In 114, it is converted into an electrical signal.

ここで、光信号発生部101では、単一スペクトルの光信号2a,2b,2cの中心周波数fc1,fc2,fc3は、上り無線信号2hの周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御される。
Here, in the optical signal generation unit 101, the center frequencies f c1 , f c2 , and f c3 of the single-spectrum optical signals 2a, 2b, and 2c are the same as the frequency f RF-u of the uplink radio signal 2h and the predetermined intermediate frequency f. For IF1 and fIF2 ,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
It is controlled to become.

これにより、光受信器112−1でミリ波帯部品や中間周波数安定化回路を用いることなく、受光器114の出力として直接、安定な2波の中間周波数fIF1,fIF2の電気信号2kを得ることができる。さらに光信号発生部101から十分な光強度の単一スペクトルの光信号2aを光受信器112−1に入力することにより、光ヘテロダイン検波による利得が得られる。受光器114から出力される電気信号2kは電気検波器115でまとめて検波され、その検波信号2lを低域濾過フィルタ116に通すことにより、上り送信データ2mを得ることができる。 As a result, the electrical signal 2k of the stable two-wave intermediate frequencies f IF1 and f IF2 can be directly output as the output of the light receiver 114 without using the millimeter wave band components and the intermediate frequency stabilization circuit in the optical receiver 112-1. Obtainable. Furthermore, a gain by optical heterodyne detection is obtained by inputting a single spectrum optical signal 2a having sufficient light intensity from the optical signal generator 101 to the optical receiver 112-1. The electrical signal 2k output from the light receiver 114 is collectively detected by the electrical detector 115, and the upstream transmission data 2m can be obtained by passing the detection signal 21 through the low-pass filter 116.

ここで、光信号発生部101から光送信器に出力される偏波合成光信号2eが互いに直交した偏波方向を有し、かつ等しい光強度を有するので、低域濾過フィルタ116から出力される上りデータ信号2mは、無線基地局300から送信された変調光信号2iの偏波方向に依存することなく、一定の値となる。   Here, since the polarization-combined optical signal 2e output from the optical signal generation unit 101 to the optical transmitter has a polarization direction orthogonal to each other and equal optical intensity, it is output from the low-pass filter 116. The uplink data signal 2m has a constant value without depending on the polarization direction of the modulated optical signal 2i transmitted from the radio base station 300.

図12は、光受信器112の第2の構成例を示す。図15は、第2の実施の形態および光受信器112の第2の構成例における各信号の周波数スペクトルの一例を示す。   FIG. 12 shows a second configuration example of the optical receiver 112. FIG. 15 shows an example of the frequency spectrum of each signal in the second embodiment and the second configuration example of the optical receiver 112.

図12において、光受信器112−2は、光合波器113、受光器114、フィルタ117、電気検波器115−1,115−2および電気加算器118により構成される。光合波器113は、無線基地局から送信された変調光信号2iと、光信号発生部101から出力された単一スペクトルの光信号2aとを合波し、合波した光信号2jは受光器114で電気信号に変換される。そして、上記の周波数関係により、受光器114の出力として直接、安定な2波の中間周波数fIF1,fIF2の電気信号2kを得ることができる。 In FIG. 12, the optical receiver 112-2 includes an optical multiplexer 113, a light receiver 114, a filter 117, electric detectors 115-1 and 115-2, and an electric adder 118. The optical multiplexer 113 combines the modulated optical signal 2i transmitted from the radio base station and the single spectrum optical signal 2a output from the optical signal generator 101, and the combined optical signal 2j is received by the optical receiver. In 114, it is converted into an electrical signal. Then, according to the above frequency relationship, it is possible to directly obtain the stable electric signal 2k having two intermediate frequencies f IF1 and f IF2 as the output of the light receiver 114.

フィルタ117は、中間周波数fIF1,fIF2の電気信号2kを入力し、中間周波数fIF1の電気信号2k1および中間周波数fIF2の電気信号2k2に分離する。各電気信号2k1,2k2は電気検波器115−1,115−2でそれぞれ検波され、それぞれの検波信号を電気加算器118で加算することにより、上り送信データ2mを得ることができる。 Filter 117 receives the electrical signal 2k of the intermediate frequency f IF1, f IF2, it separates the electrical signal 2k 2 electrical signals 2k 1 and the intermediate frequency f IF2 intermediate frequency f IF1. The electric signals 2k 1 and 2k 2 are detected by the electric detectors 115-1 and 115-2, respectively, and the detected signals are added by the electric adder 118, whereby the upstream transmission data 2m can be obtained.

ここで、光信号発生部101から光送信器に出力される偏波合成光信号2eが互いに直交した偏波方向を有し、かつ等しい光強度を有するので、電気加算器118から出力される上りデータ信号2mは、無線基地局300から送信された変調光信号2iの偏波方向に依存することなく、一定の値となる。   Here, since the polarization-combined optical signal 2e output from the optical signal generation unit 101 to the optical transmitter has orthogonal polarization directions and equal optical intensities, the uplink output from the electric adder 118 The data signal 2m is a constant value without depending on the polarization direction of the modulated optical signal 2i transmitted from the radio base station 300.

図13は、光受信器112の第3の構成例を示す。図15および図16は、第2の実施の形態および光受信器112の第3の構成例における各信号の周波数スペクトルおよびタイムチャートの一例を示す。   FIG. 13 shows a third configuration example of the optical receiver 112. FIGS. 15 and 16 show an example of the frequency spectrum of each signal and a time chart in the second embodiment and the third configuration example of the optical receiver 112.

図13において、光受信器112−3は、光合波器113、受光器114、フィルタ117、電気検波器115−1,115−2および位相調整電気加算器119により構成される。光合波器113、受光器114、フィルタ117により、中間周波数fIF1の電気信号2k1および中間周波数fIF2の電気信号2k2が出力され、電気検波器115−1,115−2でそれぞれ検波される構成は、光受信器112−2と同様である。 In FIG. 13, an optical receiver 112-3 includes an optical multiplexer 113, a light receiver 114, a filter 117, electric detectors 115-1 and 115-2, and a phase adjustment electric adder 119. Optical multiplexer 113, the photodetector 114, a filter 117, is output electrical signal 2k 2 electrical signals 2k 1 and the intermediate frequency f IF2 intermediate frequency f IF1 is, are detected respectively by electric detectors 115-1 and 115-2 The configuration is the same as that of the optical receiver 112-2.

本構成では、図16に示すように、光伝送路201,202の分散により、第1の電気検波器115−1の出力信号2l1と第2の電気検波器115−2の出力信号2l2との間に時間差ΔTが生じる場合を想定している。このとき、位相調整電気加算器119で出力信号2l1,2l2の位相を揃えて加算することにより、その時間差を補償し、光伝送路の分散の影響を受けない上り送信データ2mを得る。 In this configuration, as shown in FIG. 16, the dispersion of the optical transmission line 201, the output signal of the output signal 2l 1 of the first electrical detector 115-1 second electrical detector 115-2 2l 2 It is assumed that there is a time difference ΔT. At this time, the phase adjustment electric adder 119 adds the phases of the output signals 2l 1 and 2l 2 in alignment, thereby compensating for the time difference and obtaining the upstream transmission data 2m that is not affected by the dispersion of the optical transmission line.

(第3の実施の形態)
図17は、本発明の光−無線融合通信システムの第3の実施の形態を示す。尚、本実施の形態では、収容局100に複数の無線基地局300−A〜300−Cが接続され、各無線基地局300にそれぞれ無線端末(図では省略)が接続される構成に基づいて説明する。
(Third embodiment)
FIG. 17 shows a third embodiment of the optical-radio fusion communication system of the present invention. In the present embodiment, based on a configuration in which a plurality of radio base stations 300-A to 300-C are connected to the accommodating station 100, and a radio terminal (not shown) is connected to each radio base station 300. explain.

図17において、収容局100は、光信号発生部101、複数の光送信器109−A〜109−Cおよび複数の光受信器112−A〜112−Cを備える。光信号発生部101は、それぞれ単一スペクトルの光信号(fc1,fc2,fc3)1a,1b,1cを出力する単一スペクトル光源102,103,104と、単一スペクトルの光信号1aを分岐する光分岐器105と、光分岐器105の出力光信号(1a)を複数に分岐する光分岐器120と、光分岐器105のもう一方の出力光信号を電気発振器106からの出力電気信号(周波数fRF-d/2)で光搬送波抑圧両側波帯変調を施す光変調器107と、光変調器107の出力光信号1dを複数に分岐する光分岐器121と、単一スペクトルの光信号1b,1cを入力し、互いの偏波方向が直交し、かつ等しい光強度になるよう直交偏波合成した偏波合成光信号1eを出力する偏波合成手段108と、偏波合成光信号1eを複数に分岐する光分岐器122を備える。 17, the accommodation station 100 includes an optical signal generation unit 101, a plurality of optical transmitters 109-A to 109-C, and a plurality of optical receivers 112-A to 112-C. The optical signal generator 101 includes single spectrum light sources 102, 103, and 104 that output single spectrum optical signals ( fc1 , fc2 , fc3 ) 1a, 1b, and 1c, respectively, and a single spectrum optical signal 1a. , An optical branching device 120 for branching the output optical signal (1a) of the optical branching device 105 into a plurality, and another output optical signal of the optical branching device 105 from the electric oscillator 106 An optical modulator 107 that performs optical carrier-suppressed double-sideband modulation with a signal (frequency f RF-d / 2), an optical splitter 121 that branches the output optical signal 1d of the optical modulator 107 into a plurality, and a single spectrum Polarization combining means 108 for inputting the optical signals 1b and 1c, outputting the polarization combined optical signal 1e obtained by combining the orthogonal polarizations so that the polarization directions thereof are orthogonal and equal in intensity, and polarization combined light Light that branches signal 1e into multiple Comprising a 岐器 122.

複数に分岐された単一スペクトルの光信号1aと、複数に分岐された光変調器107の出力光信号1dは、複数の光送信器109−A〜109−Cに入力し、複数に分岐された偏波合成光信号1eは複数の光受信器112−A〜112−Cに入力する。   The optical signal 1a having a single spectrum branched into a plurality and the output optical signal 1d of the optical modulator 107 branched into a plurality are input to a plurality of optical transmitters 109-A to 109-C and branched into a plurality. The polarization combined optical signal 1e is input to the plurality of optical receivers 112-A to 112-C.

光送信器109−A〜109−Cでは、光信号発生部101から入力された搬送波抑圧両側波帯変調光信号1dを下り送信データで光変調し、光信号発生部101から入力された単一スペクトルの光信号1aと合波して得られた光信号1f−A〜1f−Cを、光伝送路201−A〜201−Cを介して無線基地局300−A〜300−Cへ送信する。   In the optical transmitters 109 -A to 109 -C, the carrier-suppressed double-sideband modulated optical signal 1 d input from the optical signal generator 101 is optically modulated with downlink transmission data, and the single signal input from the optical signal generator 101 is input. Optical signals 1f-A to 1f-C obtained by combining with optical signal 1a in the spectrum are transmitted to radio base stations 300-A to 300-C via optical transmission lines 201-A to 201-C. .

無線基地局300−A〜300−Cは、光送信器から送信された光信号1f−A〜1f−Cを分岐し、一方の出力光信号を受光することで下り無線信号(周波数fRF-d)1gに変換し、アンテナ303から無線端末に送出する。光分岐器のもう一方の出力光信号は、無線端末から送信された上り無線信号(周波数fRF-u)1hで光強度変調され、得られた変調光信号1i−A〜1i−Cは光伝送路202−A〜202−Cを介して収容局100の光受信器112−A〜112−Cに送信される。 The radio base stations 300-A to 300-C branch the optical signals 1f-A to 1f-C transmitted from the optical transmitter, and receive one of the output optical signals to receive a downlink radio signal (frequency f RF− d ) Convert to 1 g and send from antenna 303 to wireless terminal. The other output optical signal of the optical branching unit is optical intensity modulated by the upstream radio signal (frequency f RF-u ) 1h transmitted from the radio terminal, and the obtained modulated optical signals 1i-A to 1i-C are optical signals. The signals are transmitted to the optical receivers 112-A to 112-C of the accommodation station 100 via the transmission paths 202-A to 202-C.

光受信器112−A〜112−Cは、無線基地局300−A〜300−Cから送信された変調光信号1i−A〜1i−Cと、収容局100内の光信号発生部101の光分岐器122で分岐された偏波合成光信号1eをそれぞれ入力し、それぞれ上り送信データ1m−A〜1m−Cを再生する構成である。   The optical receivers 112-A to 112-C are the modulated optical signals 1i-A to 1i-C transmitted from the radio base stations 300-A to 300-C and the light of the optical signal generator 101 in the accommodation station 100. Each of the polarization-coupled optical signals 1e branched by the branching device 122 is input, and the upstream transmission data 1m-A to 1m-C are reproduced.

本実施の形態の特徴は、図1に示す第1の実施の形態において、光信号発生部101に光信号1aを分岐する光分岐器120、光信号1dを分岐する光分岐器121および偏波合成光信号1eを分岐する光分岐器122を備え、複数の無線基地局300−A〜300−Cと複数の光送信器109−A〜109−C、複数の光受信器120−A〜120−Cの関係に拡張したところにある。1組の無線基地局300と、光送信器109、光受信器112の関係、特に光受信器112の構成および無線基地局300から送信された変調光信号1iから上り送信データ1mを再生する機能は、第1の実施の形態の場合と同様である。   The present embodiment is characterized in that, in the first embodiment shown in FIG. 1, the optical branching device 120 that branches the optical signal 1a to the optical signal generator 101, the optical branching device 121 that branches the optical signal 1d, and the polarization An optical branching device 122 that branches the combined optical signal 1e is provided, and a plurality of radio base stations 300-A to 300-C, a plurality of optical transmitters 109-A to 109-C, and a plurality of optical receivers 120-A to 120 are provided. It has been expanded to the -C relationship. The relationship between a set of radio base stations 300, the optical transmitter 109, and the optical receiver 112, particularly the configuration of the optical receiver 112 and the function of reproducing the uplink transmission data 1m from the modulated optical signal 1i transmitted from the radio base station 300 Is the same as in the case of the first embodiment.

(第4の実施の形態)
図18は、本発明の光−無線融合通信システムの第4の実施の形態を示す。尚、本実施の形態では、収容局100に複数の無線基地局300−A〜300−Cが接続され、各無線基地局300にそれぞれ無線端末(図では省略)が接続される構成に基づいて説明する。
(Fourth embodiment)
FIG. 18 shows a fourth embodiment of the optical-radio fusion communication system of the present invention. In the present embodiment, based on a configuration in which a plurality of radio base stations 300-A to 300-C are connected to the accommodating station 100, and a radio terminal (not shown) is connected to each radio base station 300. explain.

図18において、収容局100は、光信号発生部101、複数の光送信器109−A〜109−Cおよび複数の光受信器112−A〜112−Cを備える。光信号発生部101は、それぞれ単一スペクトルの光信号(fc1,fc2,fc3)2a,2b,2cを出力する単一スペクトル光源102,103,104と、単一スペクトルの光信号2aを分岐する光分岐器105と、光分岐器105の出力光信号(2a)を複数に分岐する光分岐器120と、光分岐器105のもう一方の出力光信号を電気発振器106からの出力電気信号(周波数fRF-d/2)で光搬送波抑圧両側波帯変調を施す光変調器107と、光変調器107の出力光信号2dを複数に分岐する光分岐器121と、単一スペクトルの光信号2b,2cを入力し、互いの偏波方向が直交し、かつ等しい光強度になるよう直交偏波合成した偏波合成光信号2eを出力する偏波合成手段108と、偏波合成光信号2eを複数に分岐する光分岐器122を備える。 18, the accommodation station 100 includes an optical signal generation unit 101, a plurality of optical transmitters 109-A to 109-C, and a plurality of optical receivers 112-A to 112-C. The optical signal generator 101 includes single spectrum light sources 102, 103, and 104 that output single spectrum optical signals ( fc1 , fc2 , fc3 ) 2a, 2b, and 2c, respectively, and a single spectrum optical signal 2a. The optical branching device 105 for branching the optical branching device, the optical branching device 120 for branching the output optical signal (2a) of the optical branching device 105 into a plurality, and the other output optical signal of the optical branching device 105 from the electric oscillator 106 An optical modulator 107 that performs optical carrier suppression double-sideband modulation with a signal (frequency f RF-d / 2), an optical splitter 121 that splits the output optical signal 2d of the optical modulator 107 into a plurality, and a single spectrum Polarization combining means 108 for inputting the optical signals 2b and 2c, outputting the polarization combined optical signal 2e obtained by combining the orthogonal polarizations so that the polarization directions thereof are orthogonal and equal in intensity, and polarization combined light Light that branches signal 2e into multiple Comprising a 岐器 122.

複数に分岐された光変調器107の出力光信号2dと複数に分岐された偏波合成光信号2eは、複数の光送信器109−A〜109−Cに入力し、複数に分岐された単一スペクトルの光信号2aは複数の光受信器112−A〜112−Cに入力する。   The output optical signal 2d of the optical modulator 107 branched into a plurality and the polarization combined optical signal 2e branched into a plurality are input to the plurality of optical transmitters 109-A to 109-C, The optical signal 2a having one spectrum is input to a plurality of optical receivers 112-A to 112-C.

光送信器109−A〜109−Cでは、光信号発生部101から入力された搬送波抑圧両側波帯変調光信号2dを下り送信データで光変調し、光信号発生部101から入力された偏波合成光信号2eと合波して得られた光信号2f−A〜2f−Cを、光伝送路201−A〜201−Cを介して無線基地局300−A〜300−Cへ送信する。   In the optical transmitters 109 -A to 109 -C, the carrier-suppressed double-sideband modulated optical signal 2 d input from the optical signal generation unit 101 is optically modulated with downlink transmission data, and the polarization input from the optical signal generation unit 101 Optical signals 2f-A to 2f-C obtained by combining with the combined optical signal 2e are transmitted to the radio base stations 300-A to 300-C via the optical transmission lines 201-A to 201-C.

無線基地局300−A〜300−Cは、光送信器から送信された光信号2f−A〜2f−Cを分岐し、一方の出力光信号を受光することで下り無線信号(周波数fRF-d)2gに変換し、アンテナ303から無線端末に送出する。光分岐器のもう一方の出力光信号は、無線端末から送信された上り無線信号(周波数fRF-u)2hで光強度変調され、得られた変調光信号2i−A〜2i−Cは光伝送路202−A〜202−Cを介して収容局100の光受信器112−A〜112−Cに送信される。 The radio base stations 300-A to 300-C branch the optical signals 2f-A to 2f-C transmitted from the optical transmitter and receive one of the output optical signals to receive a downlink radio signal (frequency f RF− d ) Convert to 2g, and send from antenna 303 to wireless terminal. The other output optical signal of the optical branching unit is optical intensity modulated by the uplink radio signal (frequency f RF-u ) 2h transmitted from the wireless terminal, and the obtained modulated optical signals 2i-A to 2i-C are optical signals. The signals are transmitted to the optical receivers 112-A to 112-C of the accommodation station 100 via the transmission paths 202-A to 202-C.

光受信器112−A〜112−Cは、無線基地局300−A〜300−Cから送信された変調光信号2i−A〜2i−Cと、収容局100内の光信号発生部101の光分岐器120で分岐された単一スペクトルの光信号2aをそれぞれ入力し、それぞれ上り送信データ2m−A〜2m−Cを再生する構成である。   The optical receivers 112-A to 112-C are optical signals from the modulated optical signals 2i-A to 2i-C transmitted from the radio base stations 300-A to 300-C and the optical signal generator 101 in the accommodating station 100. Each of the single-spectrum optical signals 2a branched by the branching device 120 is input, and uplink transmission data 2m-A to 2m-C are reproduced.

本実施の形態の特徴は、図9に示す第2の実施の形態において、光信号発生部101に光信号2aを分岐する光分岐器120、光信号2dを分岐する光分岐器121および偏波合成光信号2eを分岐する光分岐器122を備え、複数の無線基地局300−A〜300−Cと複数の光送信器109−A〜109−C、複数の光受信器120−A〜120−Cの関係に拡張したところにある。1組の無線基地局300と、光送信器109、光受信器112の関係、特に光受信器112の構成および無線基地局300から送信された変調光信号2iから上り送信データ2mを再生する機能は、第2の実施の形態の場合と同様である。   The feature of this embodiment is that in the second embodiment shown in FIG. 9, the optical branching device 120 for branching the optical signal 2a to the optical signal generator 101, the optical branching device 121 for branching the optical signal 2d, and the polarization An optical branching device 122 that branches the combined optical signal 2e is provided, and a plurality of radio base stations 300-A to 300-C, a plurality of optical transmitters 109-A to 109-C, and a plurality of optical receivers 120-A to 120 are provided. It has been expanded to the -C relationship. Relationship between one set of radio base station 300, optical transmitter 109, and optical receiver 112, particularly the configuration of optical receiver 112 and the function of reproducing uplink transmission data 2m from modulated optical signal 2i transmitted from radio base station 300 Is the same as in the case of the second embodiment.

(第5の実施の形態)
図19は、本発明の光−無線融合通信システムの第5の実施の形態の無線基地局300の構成を示す。
(Fifth embodiment)
FIG. 19 shows the configuration of a radio base station 300 according to the fifth embodiment of the optical-radio fusion communication system of the present invention.

本実施の形態の特徴は、第1〜第4の実施の形態において、無線基地局300に、光送信器109から送信された光信号1f,2fを分岐する光分岐器301、この光分岐器301の一方の出力光信号を受光して下り無線信号1g,2gに変換する受光器302、および光分岐器301のもう一方の出力光信号を上り無線信号1h,2hで光強度変調する光変調器304に代えて、電界吸収型光変調器306を備え、この単一の電界吸収型光変調器306で、光信号1f,2fの受光による下り無線信号1g,2gの生成と、上り無線信号1h,2hによる光変調を同時に行うところにある。電界吸収型光変調器306と送信アンテナ303および受信アンテナ305との間は、無線周波数帯のサーキュレータ、方向性結合器等を用いた双方向無線信号分離器307が接続され、電界吸収型光変調器306からアンテナ303に出力される下り無線信号1g,2gと、アンテナ305から電界吸収型光変調器306に入力される上り無線信号1h,2hが分離される。   The feature of this embodiment is that in the first to fourth embodiments, an optical branching device 301 for branching the optical signals 1f and 2f transmitted from the optical transmitter 109 to the radio base station 300, and this optical branching device A light receiving unit 302 that receives one output optical signal 301 and converts it into downlink radio signals 1g and 2g, and an optical modulation that modulates the other output optical signal of the optical splitter 301 with the upstream radio signals 1h and 2h. Instead of the unit 304, an electroabsorption optical modulator 306 is provided. With this single electroabsorption optical modulator 306, the generation of the downlink radio signals 1g and 2g by receiving the optical signals 1f and 2f, and the uplink radio signal The optical modulation by 1h and 2h is performed simultaneously. Between the electroabsorption optical modulator 306 and the transmitting antenna 303 and the receiving antenna 305, a bidirectional radio signal separator 307 using a radio frequency band circulator, a directional coupler or the like is connected, and the electroabsorption optical modulation is performed. Downlink radio signals 1g and 2g output from the antenna 306 to the antenna 303 and uplink radio signals 1h and 2h input from the antenna 305 to the electroabsorption optical modulator 306 are separated.

尚、無線基地局300と、光送信器109、光受信器112の関係、および光受信器112の構成と無線基地局300から送信された変調光信号1i,2iから上り送信データ1m,2mを再生する機能は、第1〜第4の実施の形態の場合と同様である。   The relationship between the radio base station 300, the optical transmitter 109 and the optical receiver 112, the configuration of the optical receiver 112, and the modulated optical signals 1i and 2i transmitted from the radio base station 300 are used to obtain upstream transmission data 1m and 2m. The function to reproduce is the same as in the first to fourth embodiments.

(第6の実施の形態)
図20は、本発明の光−無線融合通信システムの第6の実施の形態を示す。
(Sixth embodiment)
FIG. 20 shows a sixth embodiment of the optical-radio fusion communication system of the present invention.

本実施の形態の特徴は、第1の実施の形態において、収容局100および無線基地局300に、光送信器109から送信され、光伝送路203を介して無線基地局300内の光分岐器に入力される光信号1fと、無線基地局300内の光変調器304から出力され、光伝送路203を介して収容局100内の光受信器112に入力される光信号1iとを分離する双方向光分離器123,308を備え、光送信器109から無線基地局300への下り無線信号1gの光伝送と、無線基地局300から光受信器112への下り無線信号1hの光伝送の双方向光伝送を1芯の光伝送路203上で行うところにある。この双方向光分離器を実現する光部品の一例としては、光サーキュレータが挙げられる。   The feature of the present embodiment is that, in the first embodiment, the optical branching unit in the radio base station 300 is transmitted from the optical transmitter 109 to the accommodating station 100 and the radio base station 300, and is transmitted through the optical transmission path 203. And the optical signal 1 i output from the optical modulator 304 in the radio base station 300 and input to the optical receiver 112 in the accommodating station 100 via the optical transmission path 203 are separated. Bi-directional optical separators 123 and 308 are provided for optical transmission of the downlink radio signal 1g from the optical transmitter 109 to the radio base station 300 and optical transmission of the downlink radio signal 1h from the radio base station 300 to the optical receiver 112. Bidirectional optical transmission is performed on a single-core optical transmission path 203. An example of an optical component that realizes this bidirectional optical separator is an optical circulator.

尚、第2〜第5の実施の形態においても同様に、収容局100および無線基地局300において双方向光分離器123,308を用いて、光送信器109から無線基地局300に伝送する光信号1f,2fと、無線基地局300から光受信器112に伝送する光信号1i,2iを分離することで1芯の光伝送路203上で双方向光伝送を実現することが可能である。   Similarly, in the second to fifth embodiments, light transmitted from the optical transmitter 109 to the radio base station 300 using the bidirectional optical separators 123 and 308 in the accommodating station 100 and the radio base station 300 is used. By separating the signals 1f and 2f and the optical signals 1i and 2i transmitted from the radio base station 300 to the optical receiver 112, bidirectional optical transmission can be realized on the one-core optical transmission path 203.

本発明の光−無線融合通信システムの第1の実施の形態を示す図The figure which shows 1st Embodiment of the optical-radio fusion communication system of this invention. 第1の実施の形態における偏波合成手段の構成例を示す図The figure which shows the structural example of the polarization | polarized-light synthesis means in 1st Embodiment. 第1の実施の形態における光受信器の第1の構成例を示す図The figure which shows the 1st structural example of the optical receiver in 1st Embodiment. 第1の実施の形態における光受信器の第2の構成例を示す図The figure which shows the 2nd structural example of the optical receiver in 1st Embodiment. 第1の実施の形態における光受信器の第3の構成例を示す図The figure which shows the 3rd structural example of the optical receiver in 1st Embodiment. 第1の実施の形態および光受信器の第1の構成例における各信号の周波数スペクトルの一例を示す図The figure which shows an example of the frequency spectrum of each signal in 1st Embodiment and the 1st structural example of an optical receiver. 第1の実施の形態および光受信器の第2、第3の構成例における各信号の周波数スペクトルの一例を示す図The figure which shows an example of the frequency spectrum of each signal in the 2nd, 3rd structural example of 1st Embodiment and an optical receiver. 第1の実施の形態および光受信器の第3の構成例における各信号のタイムチャートTime chart of each signal in the first embodiment and the third configuration example of the optical receiver 本発明の光−無線融合通信システムの第2の実施の形態を示す図The figure which shows 2nd Embodiment of the optical-radio fusion communication system of this invention. 第2の実施の形態における偏波合成手段の構成例を示す図The figure which shows the structural example of the polarization | polarized-light synthesis means in 2nd Embodiment. 第2の実施の形態における光受信器の第1の構成例を示す図The figure which shows the 1st structural example of the optical receiver in 2nd Embodiment. 第2の実施の形態における光受信器の第2の構成例を示す図The figure which shows the 2nd structural example of the optical receiver in 2nd Embodiment. 第2の実施の形態における光受信器の第3の構成例を示す図The figure which shows the 3rd structural example of the optical receiver in 2nd Embodiment. 第2の実施の形態および光受信器の第1の構成例における各信号の周波数スペクトルの一例を示す図The figure which shows an example of the frequency spectrum of each signal in 2nd Embodiment and the 1st structural example of an optical receiver. 第2の実施の形態および光受信器の第2、第3の構成例における各信号の周波数スペクトルの一例を示す図The figure which shows an example of the frequency spectrum of each signal in 2nd Embodiment and the 2nd, 3rd structural example of an optical receiver. 第2の実施の形態および光受信器の第3の構成例における各信号のタイムチャートTime chart of each signal in the second embodiment and the third configuration example of the optical receiver 本発明の光−無線融合通信システムの第3の実施の形態を示す図The figure which shows 3rd Embodiment of the optical-radio fusion communication system of this invention. 本発明の光−無線融合通信システムの第4の実施の形態を示す図The figure which shows 4th Embodiment of the optical-radio fusion communication system of this invention. 本発明の光−無線融合通信システムの第5の実施の形態の無線基地局を示す図The figure which shows the wireless base station of 5th Embodiment of the optical-radio fusion communication system of this invention. 本発明の光−無線融合通信システムの第6の実施の形態を示す図The figure which shows 6th Embodiment of the optical-radio fusion communication system of this invention. 従来の光−無線融合通信システムの一例を示す構成図Configuration diagram showing an example of a conventional optical-wireless fusion communication system 従来の光−無線融合通信システムにおける各信号の周波数スペクトルの一例を示す図The figure which shows an example of the frequency spectrum of each signal in the conventional optical-radio fusion communication system

符号の説明Explanation of symbols

100:収容局、101:光信号発生部、102,103,104:単一スペクトル光源、105,120,121,122:光分岐器、106:電気発振器、107,110:光変調器、108:偏波合成手段、108−1,108−2:偏波調整器、108−3,108−4:出力調整器、109,109−A,109−B,109−C:光送信器、111,113,108−5:光合波器、112,112−1,112−2,112−3,112−A,112−B,112−C:光受信器、114:受光器、115,115−1,115−2:電気検波器、116:低域濾過フィルタ、117:フィルタ、118:電気加算器、119:位相調整電気加算器、123:双方向分離器、201,201−A,201−B,201−C,202,202−A,202−B,202−C:光伝送路、300,300−A,300−B,300−C:無線基地局、301:光分岐器、302:受光器、303,305:アンテナ、304:光変調器、306:電界吸収型光変調器、307:双方向無線信号分離器、308:双方向分離器、400:無線端末、401:電気発振器、402:電気変調器、403,405:アンテナ、404:電気復調器。   100: accommodation station, 101: optical signal generator, 102, 103, 104: single spectrum light source, 105, 120, 121, 122: optical splitter, 106: electric oscillator, 107, 110: optical modulator, 108: Polarization combining means, 108-1, 108-2: Polarization regulator, 108-3, 108-4: Output regulator, 109, 109-A, 109-B, 109-C: Optical transmitter, 111, 113, 108-5: optical multiplexer, 112, 112-1, 112-2, 112-3, 112-A, 112-B, 112-C: optical receiver, 114: light receiver, 115, 115-1 , 115-2: Electric detector, 116: Low-pass filter, 117: Filter, 118: Electric adder, 119: Phase adjustment electric adder, 123: Bidirectional separator, 201, 201-A, 201-B , 201-C, 2 2, 202-A, 202-B, 202-C: optical transmission line, 300, 300-A, 300-B, 300-C: wireless base station, 301: optical splitter, 302: light receiver, 303, 305 : Antenna, 304: Optical modulator, 306: Electroabsorption optical modulator, 307: Bidirectional wireless signal separator, 308: Bidirectional separator, 400: Wireless terminal, 401: Electric oscillator, 402: Electric modulator, 403, 405: Antenna, 404: Electric demodulator.

Claims (12)

収容局に光信号発生部、光送信器および光受信器を備え、
前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、
前記無線基地局は、受信した光信号を光分岐器で2分岐し、該光分岐器の一方の出力光信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記光分岐器のもう一方の出力光信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、
前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信システムにおいて、
前記光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を出力する第1の単一スペクトル光源と、
第2の単一スペクトルの光信号(中心周波数fc2)を出力する第2の単一スペクトル光源と、
第3の単一スペクトルの光信号(中心周波数fc3)を出力する第3の単一スペクトル光源と、
前記第1の単一スペクトルの光信号を2分岐する光分岐器と、該光分岐器の一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施す光変調器と、
前記第2の単一スペクトルの光信号の偏波方向および光強度と、前記第3の単一スペクトルの光信号の偏波方向および光強度について、互いの偏波方向が直交し、かつ、等しい光強度になるように調節し、2波を直交偏波合成して偏波合成光信号として出力する偏波合成手段とを備え、
前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御され、
前記搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、前記光分岐器のもう一方の出力光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、前記偏波合成光信号を前記光受信器へ出力する構成とし、
前記光送信器は、入力された2系統の光信号のうち、前記搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施す光変調器を備え、該光変調器の出力光信号を前記下り光無線信号として、前記上りリンク用光搬送波信号と光合波器で合波した後、前記無線基地局へ送信する構成とし、
前記光受信器は、
前記無線基地局から送信された前記変調光信号と、前記光信号発生部から出力された前記偏波合成光信号とを合波する光合波器と、
前記光合波器で合波された光信号を受光し、前記中間周波数fIF1,fIF2の電気信号を出力する受光器と、
前記受光器から出力された前記中間周波数fIF1,fIF2の電気信号を検波する電気検波器と、
前記電気検波器の出力信号を低域濾過し、前記上り送信データを出力する低域濾過フィルタとを備えた
ことを特徴とする光−無線融合通信システム。
The accommodation station is equipped with an optical signal generator, an optical transmitter and an optical receiver,
The optical transmitter transmits a downlink optical radio signal modulated with downlink transmission data and an optical carrier signal for uplink via an optical transmission path to a radio base station,
The radio base station bifurcates the received optical signal with an optical splitter, and receives a downlink radio signal (frequency f RF-d ) obtained by receiving one output optical signal of the optical splitter to the wireless terminal. Transmitting, receiving a radio signal (frequency f RF-u ) modulated with uplink transmission data, optically modulating the other output optical signal of the optical splitter with the received uplink radio signal, and modulating the optical signal To the accommodation station via an optical transmission line,
The optical receiver receives the modulated optical signal, detects and recovers the upstream transmission data in an optical-radio fusion communication system,
The optical signal generator is
A first single-spectrum light source that outputs a first single-spectrum optical signal (center frequency f c1 );
A second single spectrum light source for outputting a second single spectrum optical signal (center frequency f c2 );
A third single spectrum light source that outputs a third single spectrum optical signal (center frequency f c3 );
An optical branching device that branches the optical signal of the first single spectrum in two, and a half value (f RF− of the frequency f RF-d of a desired downlink radio signal with respect to one output optical signal of the optical branching device. an optical modulator for performing optical carrier suppressed double-sideband modulation with an electric carrier signal of d / 2),
The polarization direction and light intensity of the second single-spectrum optical signal and the polarization direction and light intensity of the third single-spectrum optical signal are orthogonal and equal to each other. Polarization adjustment means for adjusting the light intensity and orthogonally combining the two waves and outputting them as a polarization combined optical signal;
The center frequencies f c1 , f c2 , and f c3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Controlled to be
The carrier-suppressed double-sideband modulated optical signal is input to an optical transmitter, and the other output optical signal of the optical splitter is input to the optical transmitter as the uplink optical carrier signal, and the polarization combining It is configured to output an optical signal to the optical receiver,
The optical transmitter includes an optical modulator that optically modulates the carrier-suppressed double-sideband modulated optical signal with downlink transmission data among two input optical signals, and outputs an optical signal output from the optical modulator. As the downlink optical radio signal, after being combined with the optical carrier signal for uplink and an optical multiplexer, and configured to transmit to the radio base station,
The optical receiver is:
An optical multiplexer that combines the modulated optical signal transmitted from the radio base station and the polarization-combined optical signal output from the optical signal generator;
A light receiver that receives an optical signal combined by the optical multiplexer and outputs an electrical signal of the intermediate frequencies f IF1 and f IF2 ;
An electric detector for detecting electric signals of the intermediate frequencies f IF1 and f IF2 output from the light receiver;
An optical-radio fusion communication system comprising: a low-pass filter for low-pass filtering an output signal of the electric detector and outputting the upstream transmission data.
収容局に光信号発生部、光送信器および光受信器を備え、
前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、
前記無線基地局は、受信した光信号を光分岐器で2分岐し、該光分岐器の一方の出力光信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記光分岐器のもう一方の出力光信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、
前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信システムにおいて、
前記光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を出力する第1の単一スペクトル光源と、
第2の単一スペクトルの光信号(中心周波数fc2)を出力する第2の単一スペクトル光源と、
第3の単一スペクトルの光信号(中心周波数fc3)を出力する第3の単一スペクトル光源と、
前記第1の単一スペクトルの光信号を2分岐する光分岐器と、該光分岐器の一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施す光変調器と、
前記第2の単一スペクトルの光信号の偏波方向および光強度と、前記第3の単一スペクトルの光信号の偏波方向および光強度について、互いの偏波方向が直交し、かつ、等しい光強度になるように調節し、2波を直交偏波合成して偏波合成光信号として出力する偏波合成手段とを備え、
前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるよう制御され、
前記搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、前記偏波合成光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、前記光分岐器のもう一方の出力光信号を前記光受信器へ出力する構成とし、
前記光送信器は、入力された2系統の光信号のうち、前記搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施す光変調器を備え、該光変調器の出力光信号を前記下り光無線信号として、前記上りリンク用光搬送波信号と光合波器で合波した後、前記無線基地局へ送信する構成とし、
前記光受信器は、
前記無線基地局から送信された前記変調光信号と、前記光信号発生部から出力された単一スペクトルの光信号とを合波する光合波器と、
前記光合波器で合波された光信号を受光し、前記中間周波数fIF1,fIF2の電気信号を出力する受光器と、
前記受光器から出力された前記中間周波数fIF1,fIF2の電気信号を検波する電気検波器と、
前記電気検波器の出力信号を低域濾過し、前記上り送信データを出力する低域濾過フィルタとを備えた
ことを特徴とする光−無線融合通信システム。
The accommodation station is equipped with an optical signal generator, an optical transmitter and an optical receiver,
The optical transmitter transmits a downlink optical radio signal modulated with downlink transmission data and an optical carrier signal for uplink via an optical transmission path to a radio base station,
The radio base station bifurcates the received optical signal with an optical splitter, and receives a downlink radio signal (frequency f RF-d ) obtained by receiving one output optical signal of the optical splitter to the wireless terminal. Transmitting, receiving a radio signal (frequency f RF-u ) modulated with uplink transmission data, optically modulating the other output optical signal of the optical splitter with the received uplink radio signal, and modulating the optical signal To the accommodation station via an optical transmission line,
The optical receiver receives the modulated optical signal, detects and recovers the upstream transmission data in an optical-radio fusion communication system,
The optical signal generator is
A first single-spectrum light source that outputs a first single-spectrum optical signal (center frequency f c1 );
A second single spectrum light source for outputting a second single spectrum optical signal (center frequency f c2 );
A third single spectrum light source that outputs a third single spectrum optical signal (center frequency f c3 );
An optical branching device that branches the optical signal of the first single spectrum in two, and a half value (f RF− of the frequency f RF-d of a desired downlink radio signal with respect to one output optical signal of the optical branching device. an optical modulator for performing optical carrier suppressed double-sideband modulation with an electric carrier signal of d / 2),
The polarization direction and light intensity of the second single-spectrum optical signal and the polarization direction and light intensity of the third single-spectrum optical signal are orthogonal and equal to each other. Polarization adjustment means for adjusting the light intensity and orthogonally combining the two waves and outputting them as a polarization combined optical signal;
The center frequencies f c1 , f c2 , and f c3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Controlled to be
The carrier-suppressed double-sideband modulated optical signal is input to the optical transmitter, and the polarization combined optical signal is input to the optical transmitter as the uplink optical carrier signal, and the other output of the optical splitter It is configured to output an optical signal to the optical receiver,
The optical transmitter includes an optical modulator that optically modulates the carrier-suppressed double-sideband modulated optical signal with downlink transmission data among two input optical signals, and outputs an optical signal output from the optical modulator. As the downlink optical radio signal, after being combined with the optical carrier signal for uplink and an optical multiplexer, and configured to transmit to the radio base station,
The optical receiver is:
An optical multiplexer that combines the modulated optical signal transmitted from the wireless base station and the single-spectrum optical signal output from the optical signal generator;
A light receiver that receives an optical signal combined by the optical multiplexer and outputs an electrical signal of the intermediate frequencies f IF1 and f IF2 ;
An electric detector for detecting electric signals of the intermediate frequencies f IF1 and f IF2 output from the light receiver;
An optical-radio fusion communication system comprising: a low-pass filter for low-pass filtering an output signal of the electric detector and outputting the upstream transmission data.
請求項1または2に記載の光−無線融合通信システムにおいて、
前記光受信器は、前記電気検波器および前記低域濾過フィルタに代えて、
前記受光器から出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号を分離するフィルタと、
前記フィルタから出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波する第1の電気検波器および第2の電気検波器と、
前記第1の電気検波器の出力信号と前記第2の電気検波器の出力信号とを加算し、前記送信データを出力する加算器とを備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless fusion communication system according to claim 1 or 2,
The optical receiver, instead of the electric detector and the low-pass filter,
A filter that separates an electrical signal having an intermediate frequency f IF1 and an electrical signal having an intermediate frequency f IF2 output from the light receiver;
A first electric detector and a second electric detector that respectively detect an electric signal having an intermediate frequency f IF1 and an electric signal having an intermediate frequency f IF2 output from the filter;
An optical-radio fusion communication system comprising: an adder that adds the output signal of the first electric detector and the output signal of the second electric detector and outputs the transmission data.
請求項1または2に記載の光−無線融合通信システムにおいて、
前記光受信器は、前記電気検波器および前記低域濾過フィルタに代えて、
前記受光器から出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号を分離するフィルタと、
前記フィルタから出力される中間周波数fIF1の電気信号および中間周波数fIF2の電気信号をそれぞれ検波する第1の電気検波器および第2の電気検波器と、
前記第1の電気検波器の出力信号と前記第2の電気検波器の出力信号の位相を揃えて加算し、前記送信データを出力する位相調整加算器とを備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless fusion communication system according to claim 1 or 2,
The optical receiver, instead of the electric detector and the low-pass filter,
A filter that separates an electrical signal having an intermediate frequency f IF1 and an electrical signal having an intermediate frequency f IF2 output from the light receiver;
A first electric detector and a second electric detector that respectively detect an electric signal having an intermediate frequency f IF1 and an electric signal having an intermediate frequency f IF2 output from the filter;
A phase adjustment adder that outputs the transmission data by adding the phases of the output signal of the first electric detector and the output signal of the second electric detector in alignment with each other; Wireless fusion communication system.
請求項1に記載の光−無線融合通信システムにおいて、
複数の無線基地局と、前記収容局に前記複数の無線基地局に下り光無線信号と上りリンク用光搬送波信号をそれぞれ送信する複数の光送信器と、前記複数の無線基地局から送信された変調光信号をそれぞれ受信する複数の光受信器とを備え、
前記光信号発生部は、
前記搬送波抑圧両側波帯変調光信号を複数に分岐し、前記複数の光送信器へそれぞれ入力する第1の光分岐器と、
前記光分岐器のもう一方の出力光信号を複数に分岐し、前記上りリンク用光搬送波信号として前記複数の光送信器へそれぞれ入力する第2の光分岐器と、
前記偏波合波光信号を複数に分岐し、前記複数の光受信器へそれぞれ出力する第3の光分岐器とを備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless communication system according to claim 1,
A plurality of radio base stations, a plurality of optical transmitters respectively transmitting a downlink optical radio signal and an uplink optical carrier signal to the plurality of radio base stations to the accommodating station, and transmitted from the plurality of radio base stations A plurality of optical receivers for receiving the modulated optical signals,
The optical signal generator is
A first optical branching device that branches the carrier-suppressed double-sideband modulated optical signal into a plurality of signals and inputs the plurality of signals to the plurality of optical transmitters;
A second optical branching device for branching the other output optical signal of the optical branching device into a plurality of optical signals and inputting them to the plurality of optical transmitters as the uplink optical carrier signal;
And a third optical branching device for branching the polarization multiplexed optical signal into a plurality of signals and outputting the branched signals to the plurality of optical receivers, respectively.
請求項2に記載の光−無線融合通信システムにおいて、
複数の無線基地局と、前記収容局に前記複数の無線基地局に下り光無線信号と上りリンク用光搬送波信号をそれぞれ送信する複数の光送信器と、前記複数の無線基地局から送信された変調光信号をそれぞれ受信する複数の光受信器とを備え、
前記光信号発生部は、
前記偏波合波光信号を複数に分岐し、前記上りリンク用光搬送波信号として前記複数の光送信器へそれぞれ入力する第1の光分岐器と、
前記搬送波抑圧両側波帯変調光信号を複数に分岐し、前記複数の光送信器へそれぞれ入力する第2の光分岐器と、
前記光分岐器のもう一方の出力光信号を複数に分岐し、前記光受信器へそれぞれ出力する第3の光分岐器とを備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless communication system according to claim 2,
A plurality of radio base stations, a plurality of optical transmitters respectively transmitting a downlink optical radio signal and an uplink optical carrier signal to the plurality of radio base stations to the accommodating station, and transmitted from the plurality of radio base stations A plurality of optical receivers for receiving the modulated optical signals,
The optical signal generator is
A first optical branching device that branches the polarization-multiplexed optical signal into a plurality of optical signals, and inputs the optical signals as uplink optical carrier signals to the plurality of optical transmitters;
A second optical branching device for branching the carrier-suppressed double-sideband modulated optical signal into a plurality of signals and inputting the signals to the plurality of optical transmitters;
An optical-wireless fusion communication system comprising: a third optical branching device that branches the other output optical signal of the optical branching device into a plurality of signals and outputs each of the signals to the optical receiver.
請求項1乃至6のいずれかに記載の光−無線融合通信システムにおいて、
前記無線基地局は、
受信した光信号を2分岐する光分岐器と、該光分岐器の一方の出力光信号を受光し下り無線信号に変換する受光器と、前記光分岐器のもう一方の出力光信号に対し、上り無線信号にて光変調を施す光変調器とに代えて、
受信した光信号の受光と、上り無線信号による光変調を同時に行う電界吸収型光変調器を備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless fusion communication system according to any one of claims 1 to 6,
The radio base station is
An optical branching device that splits the received optical signal into two branches, a light receiving device that receives one output optical signal of the optical branching device and converts it into a downlink radio signal, and another output optical signal of the optical branching device, Instead of an optical modulator that performs optical modulation with an upstream radio signal,
An optical-radio fusion communication system comprising an electroabsorption optical modulator that simultaneously receives received optical signals and performs optical modulation with upstream radio signals.
請求項1乃至7のいずれかに記載の光−無線融合通信システムにおいて、
前記光送信器、前記無線基地局および前記光受信器は1芯の光伝送路を介して接続されており、
前記収容局および前記無線基地局に、前記光送信器から送信され前記無線基地局において受光され、下り無線信号に変換される下り光信号と、前記無線基地局から送信され前記光受信器において受信される上り光信号とを分離する双方向光分離器を備えた
ことを特徴とする光−無線融合通信システム。
The optical-wireless fusion communication system according to any one of claims 1 to 7,
The optical transmitter, the wireless base station, and the optical receiver are connected via a single-core optical transmission line,
A downstream optical signal transmitted from the optical transmitter to the accommodating station and the wireless base station, received by the wireless base station and converted into a downstream wireless signal, and transmitted from the wireless base station and received by the optical receiver An optical-radio fusion communication system comprising a bidirectional optical separator that separates an upstream optical signal.
収容局に光信号発生部、光送信器および光受信器を備え、
前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、
前記無線基地局は、下り光無線信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記上りリンク用光搬送波信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、
前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信方法において、
前記光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を2分岐し、その一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施し、その搬送波抑圧両側波帯変調光信号を光送信器に入力するとともに、分岐されたもう一方の出力光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、
第2の単一スペクトルの光信号(中心周波数fc2)、第3の単一スペクトルの光信号(中心周波数fc3)の偏波方向が直交し、かつ、等しい光強度になるように、2波を直交偏波合成した偏波合成光信号を前記光受信器へ出力し、
前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるように制御し、
前記光送信器は、入力された2系統の光信号のうち、前記搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施し、その出力光信号を前記下り光無線信号として、前記上りリンク用光搬送波信号と合波した後、前記無線基地局へ送信し、
前記光受信器は、
前記無線基地局から送信された前記変調光信号と、前記光信号発生部から出力された前記偏波合成光信号とを合波し、
合波された光信号を受光して得られた中間周波数fIF1,fIF2の電気信号を検波し、その出力信号を低域濾過して前記上り送信データを生成する
ことを特徴とする光−無線融合通信方法。
The accommodation station is equipped with an optical signal generator, an optical transmitter and an optical receiver,
The optical transmitter transmits a downlink optical radio signal modulated with downlink transmission data and an optical carrier signal for uplink via an optical transmission path to a radio base station,
The radio base station transmits a downlink radio signal (frequency f RF-d ) obtained by receiving a downlink optical radio signal to a radio terminal, and a radio signal (frequency f RF-u) modulated with uplink transmission data. ), Optically modulate the optical carrier signal for uplink with the received uplink radio signal, and transmit the modulated optical signal to the accommodating station via an optical transmission line,
In the optical-wireless fusion communication method in which the optical receiver receives the modulated optical signal, detects and reproduces the uplink transmission data,
The optical signal generator is
The first single-spectrum optical signal (center frequency f c1 ) is branched into two, and the half value (f RF-d / 2 ) of the frequency f RF-d of the desired downstream radio signal with respect to one of the output optical signals. ) Is applied to the optical carrier signal, and the carrier-suppressed double-sideband modulated optical signal is input to the optical transmitter, and the other branched output optical signal is used as the uplink light. Input to the optical transmitter as a carrier signal,
The polarization directions of the second single-spectrum optical signal (center frequency f c2 ) and the third single-spectrum optical signal (center frequency f c3 ) are orthogonal to each other and have the same light intensity. A polarization-combined optical signal obtained by combining the waves with orthogonal polarization is output to the optical receiver,
The center frequencies f c1 , f c2 , and f c3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Control to be
The optical transmitter performs optical modulation with downlink transmission data on the carrier-suppressed double-sideband modulated optical signal of two input optical signals, and uses the output optical signal as the downlink optical radio signal as the uplink optical signal. After combining with the optical carrier signal for link, transmit to the radio base station,
The optical receiver is:
The modulated optical signal transmitted from the radio base station and the polarization combined optical signal output from the optical signal generator are combined,
An optical signal characterized by detecting an electrical signal having intermediate frequencies f IF1 and f IF2 obtained by receiving the combined optical signal, and low-pass filtering the output signal to generate the upstream transmission data. Wireless fusion communication method.
収容局に光信号発生部、光送信器および光受信器を備え、
前記光送信器は光伝送路を介して、無線基地局に下り送信データで変調された下り光無線信号と、上りリンク用光搬送波信号とを送信し、
前記無線基地局は、下り光無線信号を受光して得られた下り無線信号(周波数fRF-d)を無線端末に送信するとともに、上り送信データで変調された無線信号(周波数fRF-u)を受信し、受信した上り無線信号で前記上りリンク用光搬送波信号を光変調し、その変調光信号を光伝送路を介して前記収容局に送信し、
前記光受信器は前記変調光信号を受信し、検波して前記上り送信データを再生する光−無線融合通信方法において、
前記光信号発生器は、
第1の単一スペクトルの光信号(中心周波数fc1)を2分岐し、その一方の出力光信号に対して、所望の下り無線信号の周波数fRF-dの半値(fRF-d/2)の電気搬送波信号にて光搬送波抑圧両側波帯変調を施し、その搬送波抑圧両側波帯変調光信号を前記光送信器に入力するとともに、分岐されたもう一方の出力光信号を前記光受信器に出力し、
第2の単一スペクトルの光信号(中心周波数fc2)、第3の単一スペクトルの光信号(中心周波数fc3)の偏波方向が直交し、かつ、等しい光強度になるように、2波を直交偏波合成した偏波合成光信号を前記上りリンク用光搬送波信号として前記光送信器に入力し、
前記第1、第2および第3の単一スペクトルの光信号の中心周波数fc1,fc2,fc3は、前記上り無線信号の周波数fRF-u、所定の中間周波数fIF1,fIF2に対して、
|fc1−fc2|=fRF-u±fIF1
|fc1−fc3|=fRF-u±fIF2
となるように制御し、
前記光送信器は、入力された2系統の光信号のうち、前記搬送波抑圧両側波帯変調光信号に下り送信データで光変調を施し、その出力光信号を前記下り光無線信号として、前記上りリンク用光搬送波信号と合波した後、前記無線基地局へ送信し、
前記光受信器は、
前記無線基地局から送信された前記変調光信号と、前記光信号発生部から出力された前記単一スペクトルの光信号とを合波し、
合波された光信号を受光して得られた中間周波数fIF1,fIF2の電気信号を検波し、その出力信号を低域濾過して前記上り送信データを生成する
ことを特徴とする光−無線融合通信方法。
The accommodation station is equipped with an optical signal generator, an optical transmitter and an optical receiver,
The optical transmitter transmits a downlink optical radio signal modulated with downlink transmission data and an optical carrier signal for uplink via an optical transmission path to a radio base station,
The radio base station transmits a downlink radio signal (frequency f RF-d ) obtained by receiving a downlink optical radio signal to the radio terminal, and a radio signal (frequency f RF-u) modulated with uplink transmission data. ), Optically modulate the optical carrier signal for uplink with the received uplink radio signal, and transmit the modulated optical signal to the accommodating station via an optical transmission line,
In the optical-wireless fusion communication method in which the optical receiver receives the modulated optical signal, detects and reproduces the uplink transmission data,
The optical signal generator is
The first single-spectrum optical signal (center frequency f c1 ) is branched into two, and the half value (f RF-d / 2) of the desired downlink radio signal frequency f RF-d with respect to one of the output optical signals. ) Is applied to the optical transmitter, and the carrier-suppressed double-sideband modulated optical signal is input to the optical transmitter, and the other branched output optical signal is input to the optical receiver. Output to
The polarization directions of the second single-spectrum optical signal (center frequency f c2 ) and the third single-spectrum optical signal (center frequency f c3 ) are orthogonal to each other and have the same light intensity. A polarization-combined optical signal obtained by combining the waves with orthogonal polarization is input to the optical transmitter as the uplink optical carrier signal,
The center frequencies f c1 , f c2 , and fc 3 of the first, second, and third single spectrum optical signals are set to the frequency f RF-u and the predetermined intermediate frequencies f IF1 and f IF2 of the uplink radio signal, respectively. for,
| F c1 −f c2 | = f RF−u ± f IF1
| F c1 -f c3 | = f RF-u ± f IF2
Control to be
The optical transmitter performs optical modulation with downlink transmission data on the carrier-suppressed double-sideband modulated optical signal of two input optical signals, and uses the output optical signal as the downlink optical radio signal. After combining with the optical carrier signal for link, transmit to the radio base station,
The optical receiver is:
The modulated optical signal transmitted from the wireless base station and the optical signal of the single spectrum output from the optical signal generator are combined,
An optical signal characterized by detecting an electrical signal having intermediate frequencies f IF1 and f IF2 obtained by receiving the combined optical signal and low-pass filtering the output signal to generate the upstream transmission data. Wireless fusion communication method.
請求項9または10に記載の光−無線融合通信方法において、
前記光受信器は、
前記中間周波数fIF1,fIF2の電気信号を分離し、
前記中間周波数fIF1の電気信号および前記中間周波数fIF2の電気信号をそれぞれ検波し、
各出力信号を加算して前記送信データを生成する
ことを特徴とする光−無線融合通信方法。
The optical-wireless fusion communication method according to claim 9 or 10,
The optical receiver is:
Separating the electrical signals of the intermediate frequencies f IF1 and f IF2 ,
Detecting the electric signal of the intermediate frequency f IF1 and the electric signal of the intermediate frequency f IF2 ,
Each of the output signals is added to generate the transmission data. A combined optical-wireless communication method.
請求項9または10に記載の光−無線融合通信方法において、
前記光受信器は、
前記中間周波数fIF1,fIF2の電気信号を分離し、
前記中間周波数fIF1の電気信号および前記中間周波数fIF2の電気信号をそれぞれ検波し、
各出力信号の位相を揃えてから加算して前記送信データを生成する
ことを特徴とする光−無線融合通信方法。
The optical-wireless fusion communication method according to claim 9 or 10,
The optical receiver is:
Separating the electrical signals of the intermediate frequencies f IF1 and f IF2 ,
Detecting the electric signal of the intermediate frequency f IF1 and the electric signal of the intermediate frequency f IF2 ,
The transmission data is generated by adding the output signals after aligning the phases of the output signals.
JP2005249498A 2005-08-30 2005-08-30 Optical-wireless fusion communication system and method Expired - Fee Related JP4540062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249498A JP4540062B2 (en) 2005-08-30 2005-08-30 Optical-wireless fusion communication system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249498A JP4540062B2 (en) 2005-08-30 2005-08-30 Optical-wireless fusion communication system and method

Publications (2)

Publication Number Publication Date
JP2007067663A true JP2007067663A (en) 2007-03-15
JP4540062B2 JP4540062B2 (en) 2010-09-08

Family

ID=37929378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249498A Expired - Fee Related JP4540062B2 (en) 2005-08-30 2005-08-30 Optical-wireless fusion communication system and method

Country Status (1)

Country Link
JP (1) JP4540062B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142955A1 (en) * 2007-09-26 2010-06-10 Huawei Technologies Co., Ltd. Optical line terminal, passive optical network and radio frequency signal transmission method
JP2012257020A (en) * 2011-06-08 2012-12-27 Nippon Telegr & Teleph Corp <Ntt> Relay device and communication system
JP2013009296A (en) * 2011-06-24 2013-01-10 Industrial Technology Research Institute System and method for optical fiber communication
JP2017139573A (en) * 2016-02-02 2017-08-10 Kddi株式会社 Optical transmission device
JP2020048160A (en) * 2018-09-21 2020-03-26 Kddi株式会社 Radio device and processing device of mobile communication network

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224427A (en) * 1987-03-13 1988-09-19 Hitachi Ltd Method and device for polarization diversity optical reception
JPS63228830A (en) * 1987-03-18 1988-09-22 Nec Corp Optical receiver
JPH1168675A (en) * 1997-08-08 1999-03-09 Tokin Corp Optical transmission reception system
JPH11205240A (en) * 1998-01-08 1999-07-30 Toshiba Corp Optical transmitter
JP2001103015A (en) * 1999-09-29 2001-04-13 Communication Research Laboratory Mpt Method and device for millimeter wave radio bidirectional transmission
JP2002217873A (en) * 2000-06-29 2002-08-02 Matsushita Electric Ind Co Ltd Optical transmission system for radio access, and high- frequency optical transmitter
JP2002314489A (en) * 2001-04-11 2002-10-25 Fujitsu Ltd Optical network system
JP2005073065A (en) * 2003-08-26 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter for optical-radio fusion communication system
JP2005073066A (en) * 2003-08-26 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter for optical-radio fusion communication system
JP2005191918A (en) * 2003-12-25 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224427A (en) * 1987-03-13 1988-09-19 Hitachi Ltd Method and device for polarization diversity optical reception
JPS63228830A (en) * 1987-03-18 1988-09-22 Nec Corp Optical receiver
JPH1168675A (en) * 1997-08-08 1999-03-09 Tokin Corp Optical transmission reception system
JPH11205240A (en) * 1998-01-08 1999-07-30 Toshiba Corp Optical transmitter
JP2001103015A (en) * 1999-09-29 2001-04-13 Communication Research Laboratory Mpt Method and device for millimeter wave radio bidirectional transmission
JP2002217873A (en) * 2000-06-29 2002-08-02 Matsushita Electric Ind Co Ltd Optical transmission system for radio access, and high- frequency optical transmitter
JP2002314489A (en) * 2001-04-11 2002-10-25 Fujitsu Ltd Optical network system
JP2005073065A (en) * 2003-08-26 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter for optical-radio fusion communication system
JP2005073066A (en) * 2003-08-26 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter for optical-radio fusion communication system
JP2005191918A (en) * 2003-12-25 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142955A1 (en) * 2007-09-26 2010-06-10 Huawei Technologies Co., Ltd. Optical line terminal, passive optical network and radio frequency signal transmission method
JP2010539759A (en) * 2007-09-26 2010-12-16 華為技術有限公司 Optical line terminator, passive optical network, and radio frequency signal transmission method
JP2012257020A (en) * 2011-06-08 2012-12-27 Nippon Telegr & Teleph Corp <Ntt> Relay device and communication system
JP2013009296A (en) * 2011-06-24 2013-01-10 Industrial Technology Research Institute System and method for optical fiber communication
US8705968B2 (en) 2011-06-24 2014-04-22 Industrial Technology Research Institute Optical fiber communication system and methods having a reflective optical network unit
JP2017139573A (en) * 2016-02-02 2017-08-10 Kddi株式会社 Optical transmission device
JP2020048160A (en) * 2018-09-21 2020-03-26 Kddi株式会社 Radio device and processing device of mobile communication network
JP7145709B2 (en) 2018-09-21 2022-10-03 Kddi株式会社 Radio equipment for mobile communication networks

Also Published As

Publication number Publication date
JP4540062B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP4295322B2 (en) Optical-wireless communication system and optical-wireless communication method
US9014575B2 (en) Sampling clock synchronizing apparatus, digital coherent receiving apparatus, and sampling clock synchronizing method
JP2012070051A (en) Coherent optical receiver and method for controlling the same
US20100086303A1 (en) High speed polmux-ofdm using dual-polmux carriers and direct detection
US9537579B2 (en) Analog phase noise compensation for coherent optical communication
US8306435B2 (en) Reception of signals transmitted over a dispersive optical channel
JP4540062B2 (en) Optical-wireless fusion communication system and method
CN109906568A (en) Digital coherent receiver and its deflection method of adjustment
JPH11205240A (en) Optical transmitter
US7734185B2 (en) Optical transmitter and optical transmission system
JP6739073B2 (en) Optical transmission method and optical transmission device
US7865085B2 (en) Optical transmitting device, optical transmission system, optical transmitting method and optical transmission method
US20110091217A1 (en) Apparatus and method for transporting multiple radio signals over optical fiber
JPH0746187A (en) Optical communication system
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
JP2006287433A (en) Fm modulation method, fm modulation apparatus, and optical transmission system
CN114826418B (en) Photon-assisted interference elimination and anti-dispersion transmission integrated device and method
JP2775692B2 (en) Optical communication system
EP3565144A1 (en) Method for transmitting an optical signal and associated equipment
CN113938204A (en) Signal transmission method and device and network equipment
JP2009278304A (en) Polarization multiplexed optical transmission method and optical transmission equipment
WO2023279330A1 (en) Coherent optical spectrum analysis
WO2016055118A1 (en) Coherent optical communication transceivers
JPS6124339A (en) Compensating system of cross polarized wave
JPH07109994B2 (en) Polarization diversity type optical heterodyne receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

R150 Certificate of patent or registration of utility model

Ref document number: 4540062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees