JP2017139573A - Optical transmission device - Google Patents

Optical transmission device Download PDF

Info

Publication number
JP2017139573A
JP2017139573A JP2016018208A JP2016018208A JP2017139573A JP 2017139573 A JP2017139573 A JP 2017139573A JP 2016018208 A JP2016018208 A JP 2016018208A JP 2016018208 A JP2016018208 A JP 2016018208A JP 2017139573 A JP2017139573 A JP 2017139573A
Authority
JP
Japan
Prior art keywords
optical
signal
frequency
polarization plane
tone signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016018208A
Other languages
Japanese (ja)
Other versions
JP6434433B2 (en
Inventor
アブデルモウラ ベッカリ
Bekkali Abdelmoula
アブデルモウラ ベッカリ
西村 公佐
Kosuke Nishimura
公佐 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2016018208A priority Critical patent/JP6434433B2/en
Publication of JP2017139573A publication Critical patent/JP2017139573A/en
Application granted granted Critical
Publication of JP6434433B2 publication Critical patent/JP6434433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission device capable of suppressing frequency variations of an electric modulation signal obtained by performing photoelectric conversion upon an optical modulation signal on which polarization multiplexing has been performed, to be transmitted.SOLUTION: The optical transmission device comprises: a light source which generates a continuous light; means for generating from the continuous light a first optical signal including a light tone signal in a first frequency and a light tone signal in a second frequency that is different from the first frequency; means for performing polarization demultiplexing upon the first optical signal to generate a second optical signal of a first polarization plane and a third optical signal of a second polarization plane that is orthogonal with the first polarization plane; means for modulating one light tone signal of the second optical signal with transmission data, thereby generating a fourth optical signal including an optical modulation signal and a light tone signal; means for modulating one light tone signal of the third optical signal with transmission data and shifting a frequency of the other light tone signal of the third optical signal, thereby generating a fifth optical signal including an optical modulation signal and a light tone signal; and means for multiplexing the fourth optical signal and the fifth optical signal.SELECTED DRAWING: Figure 1

Description

本発明は、レディオ・オーバ・ファイバ(RoF:Radio over Fiber)システムの光送信装置に関する。   The present invention relates to an optical transmission apparatus for a radio over fiber (RoF) system.

光伝送路と無線伝送路を含む伝送路においてRoF技術が用いられている。具体的には、RoFシステムにおいては、光伝送路に光変調信号を含む光信号を送信し、無線伝送路への変換点において、この光信号を光電変換して無線周波数帯の信号とし、この無線周波数帯の信号を無線により送信する。非特許文献1は、光伝送路において偏波多重(PDM)した2つの光変調信号と、各偏波面それぞれの光トーン信号を送信し、これら、光変調信号と光トーン信号を含む光信号を光電変換することで、2つの異なる周波数の電気変調信号、つまり、周波数多重(FDM)された2つの電気変調信号とし、この2つの電気変調信号を無線伝送路に送信する構成を開示している。   RoF technology is used in a transmission line including an optical transmission line and a wireless transmission line. Specifically, in the RoF system, an optical signal including an optical modulation signal is transmitted to the optical transmission line, and at the conversion point to the wireless transmission line, the optical signal is photoelectrically converted into a radio frequency band signal. Radio frequency band signals are transmitted wirelessly. Non-Patent Document 1 transmits two optical modulation signals that are polarization multiplexed (PDM) in an optical transmission line and optical tone signals for each polarization plane, and these optical signals including the optical modulation signal and the optical tone signal are transmitted. A configuration is disclosed in which two electrical modulation signals having two different frequencies, that is, two electrical modulation signals that are frequency-multiplexed (FDM), are transmitted to the wireless transmission path by photoelectric conversion. .

Y.Kawaguchi et al.,"Conceptual Study on Seamless Optical and Wireless Transmission using PDM−FDM Conversion,"Proc.,OECC,paper TH10A−2,2014年7月.Y. Kawaguchi et al. , “Conceptual Study on Seamless Optical and Wireless Transmission using PDM-FDM Conversion,” Proc. , OECC, paper TH10A-2, July 2014.

非特許文献1の光送信装置は、偏波多重される光変調信号のための1つの光源と、異なる周波数の2つの光トーン信号を生成するための2つの光源の合計3つの光源を使用する。光電変換においては、同じ偏波面の光変調信号と光トーン信号のビート信号、つまり、同じ偏波面の光変調信号と光トーン信号の周波数差をその周波数とする電気変調信号が得られる。しかしながら、各光源の周波数変動は独立して生じるため、非特許文献1の構成では、光電変換して得られる電気変調信号の周波数も変動し、品質が劣化する。   The optical transmitter of Non-Patent Document 1 uses a total of three light sources: one light source for polarization-modulated optical modulation signals and two light sources for generating two optical tone signals of different frequencies. . In the photoelectric conversion, an optical modulation signal having the same polarization plane and a beat signal of the optical tone signal, that is, an electric modulation signal having the frequency difference between the optical modulation signal and the optical tone signal having the same polarization plane as the frequency is obtained. However, since the frequency variation of each light source occurs independently, in the configuration of Non-Patent Document 1, the frequency of the electrical modulation signal obtained by photoelectric conversion also varies and the quality deteriorates.

本発明は、送信する偏波多重された光変調信号を光電変換して得る電気変調信号の周波数変動を抑えることができる光送信装置を提供するものである。   The present invention provides an optical transmitter capable of suppressing frequency fluctuations of an electrical modulation signal obtained by photoelectric conversion of a polarization multiplexed optical modulation signal to be transmitted.

本発明の一側面によると、光送信装置は、連続光を生成する光源と、前記連続光から第1周波数の光トーン信号及び前記第1周波数とは異なる第2周波数の光トーン信号を含む第1光信号を生成する第1生成手段と、前記第1光信号を偏波分離し、第1偏波面の第2光信号と、前記第1偏波面とは直交する第2偏波面の第3光信号を生成する第2生成手段と、前記第2光信号の一方の光トーン信号を送信データで変調し、光変調信号及び光トーン信号を含む第4光信号を生成する第3生成手段と、前記第3光信号の一方の光トーン信号を送信データで変調し、前記第3光信号の他方の光トーン信号を周波数シフトして、光変調信号及び光トーン信号を含む第5光信号を生成する第4生成手段と、前記第4光信号と前記第5光信号を合波する合波手段と、を備えていることを特徴とする。   According to an aspect of the present invention, an optical transmission device includes a light source that generates continuous light, an optical tone signal having a first frequency from the continuous light, and an optical tone signal having a second frequency different from the first frequency. A first generation means for generating one optical signal; a third optical polarization that separates the first optical signal by polarization; a second optical signal having a first polarization plane; and a third polarization plane that is orthogonal to the first polarization plane Second generation means for generating an optical signal; third generation means for modulating one optical tone signal of the second optical signal with transmission data and generating a fourth optical signal including the optical modulation signal and the optical tone signal; The first optical tone signal of the third optical signal is modulated with transmission data, the other optical tone signal of the third optical signal is frequency-shifted, and the fifth optical signal including the optical modulation signal and the optical tone signal is obtained. A fourth generation means for generating, a combination for combining the fourth optical signal and the fifth optical signal; Characterized in that it comprises a means.

本発明によると、送信する偏波多重された光変調信号を光電変換して得る電気変調信号の周波数変動を抑えることができる。   According to the present invention, it is possible to suppress frequency fluctuations of an electrical modulation signal obtained by photoelectric conversion of a polarization multiplexed optical modulation signal to be transmitted.

一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment. FIG. 一実施形態による光送信装置内の機能ブロックが出力する光信号のスペクトラムを示す図。The figure which shows the spectrum of the optical signal which the functional block in the optical transmitter by one Embodiment outputs. 一実施形態による光送信装置が出力する光信号のスペクトラムを示す図。The figure which shows the spectrum of the optical signal which the optical transmitter by one Embodiment outputs. 一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment. FIG. 一実施形態による光送信装置内の機能ブロックが出力する光信号のスペクトラムを示す図。The figure which shows the spectrum of the optical signal which the functional block in the optical transmitter by one Embodiment outputs. 一実施形態による光送信装置が出力する光信号を光電変換することで得られる電気変調信号を示す図。The figure which shows the electric modulation signal obtained by carrying out photoelectric conversion of the optical signal which the optical transmitter by one Embodiment outputs.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment is an illustration and does not limit this invention to the content of embodiment. In the following drawings, components that are not necessary for the description of the embodiments are omitted from the drawings.

<第1実施形態>
図1は、本実施形態の光送信装置の構成図である。光源1は周波数fの連続光を生成する。ツートーン生成部2は、光源1が出力する連続光を発振器12から受信する周波数fの正弦波で振幅変調し、振幅変調して得られる上側帯波及び下側帯波を含む光信号を生成する。図2(A)は、ツートーン生成部2が生成する光信号のスペクトラムである。図2(A)に示す様に、ツートーン生成部2は、キャリア成分である周波数fを抑圧し、周波数f+fの上側帯波と、周波数f−fの下側帯波の2つの光トーン信号を含む光信号を出力する。
<First Embodiment>
FIG. 1 is a configuration diagram of an optical transmission apparatus according to the present embodiment. The light source 1 generates a continuous light having a frequency f 0. The two-tone generator 2 amplitude-modulates the continuous light output from the light source 1 with a sine wave having a frequency f 1 received from the oscillator 12, and generates an optical signal including an upper sideband and a lower sideband obtained by the amplitude modulation. . FIG. 2A shows the spectrum of the optical signal generated by the two-tone generator 2. As shown in FIG. 2 (A), the two-tone generator 2 suppresses the frequency f 0 that is the carrier component, and 2 of the upper side band of the frequency f 0 + f 1 and the lower side band of the frequency f 0 -f 1. An optical signal including two optical tone signals is output.

偏波分離部3は、ツートーン生成部2が出力する光信号を、第1偏波面の光信号と、第1偏波面に直交する第2偏波面の光信号に分離する。偏波分離部3は、第1偏波面の光信号と第2偏波面の光信号の各成分の振幅が等しくなる様に、例えば、第1偏波面と第2偏波面それぞれとの角度が45°になる偏波面(基準偏波面)を基準に光信号を偏波分離する。このため、ツートーン生成部2は、偏波分離部3の基準偏波面の光信号を出力する様に調整される。   The polarization separation unit 3 separates the optical signal output from the two-tone generation unit 2 into an optical signal having a first polarization plane and an optical signal having a second polarization plane orthogonal to the first polarization plane. For example, the polarization separation unit 3 has an angle between the first polarization plane and the second polarization plane of 45 so that the amplitudes of the components of the first polarization plane optical signal and the second polarization plane optical signal are equal. The optical signal is polarization-separated with reference to the polarization plane (reference polarization plane) that becomes °. For this reason, the two-tone generator 2 is adjusted so as to output the optical signal of the reference polarization plane of the polarization separator 3.

分波部4は、偏波分離部3が出力する第1偏波面の光信号を波長分離し、周波数f−fの光トーン信号を変調部6に出力し、周波数f+fの光トーン信号を合波部9に出力する。なお、変調部6に出力する光トーン信号と、合波部9に出力する光トーン信号は逆であっても良い。同様に、分波部5は、偏波分離部3が出力する第2偏波面の光信号を波長分離し、周波数f−fの光トーン信号を変調部7に出力し、周波数f+fの光トーン信号を周波数シフト部8に出力する。なお、変調部7に出力する光トーン信号と、周波数シフト部8に出力する光トーン信号は逆であっても良い。図2(B)は、分波部4及び分波部5が出力する一方の光トーン信号のスペクトラムであり、図2(C)は、分波部4及び分波部5が出力する他方の光トーン信号のスペクトラムである。なお、分波部4及び分波部5が出力する光信号の偏波面は上述した様に、互いに直交している。 The demultiplexing unit 4 wavelength-separates the optical signal of the first polarization plane output from the polarization demultiplexing unit 3, outputs an optical tone signal having a frequency f 0 -f 1 to the modulation unit 6, and has a frequency f 0 + f 1 . The optical tone signal is output to the multiplexing unit 9. The optical tone signal output to the modulation unit 6 and the optical tone signal output to the multiplexing unit 9 may be reversed. Similarly, the demultiplexing unit 5 wavelength-separates the optical signal of the second polarization plane output from the polarization demultiplexing unit 3, outputs the optical tone signal of frequency f 0 -f 1 to the modulation unit 7, and outputs the frequency f 0. The optical tone signal of + f 1 is output to the frequency shift unit 8. The optical tone signal output to the modulation unit 7 and the optical tone signal output to the frequency shift unit 8 may be reversed. 2B is a spectrum of one optical tone signal output from the demultiplexing unit 4 and the demultiplexing unit 5, and FIG. 2C is the other spectrum output from the demultiplexing unit 4 and the demultiplexing unit 5. It is a spectrum of an optical tone signal. The polarization planes of the optical signals output from the demultiplexing unit 4 and the demultiplexing unit 5 are orthogonal to each other as described above.

変調部6は、入力される光信号を送信データで変調し、光変調信号を合波部9に出力し、合波部9は、この光変調信号及び周波数f+fの光トーン信号を合波して出力する。図2(D)は、変調部6が出力する光変調信号のスペクトラムであり、図2(E)は、合波部9が出力する光信号のスペクトラムである。 The modulation unit 6 modulates the input optical signal with the transmission data, and outputs the optical modulation signal to the multiplexing unit 9. The multiplexing unit 9 receives the optical modulation signal and the optical tone signal having the frequency f 0 + f 1. Combine and output. FIG. 2D shows the spectrum of the optical modulation signal output from the modulation unit 6, and FIG. 2E shows the spectrum of the optical signal output from the multiplexing unit 9.

変調部7は、入力される光信号を送信データで変調し、光変調信号を合波部10に出力する。周波数シフト部8は、発振器13から受信する周波数fの正弦波により、分波部5からの光トーン信号の周波数をfだけシフトさせ、周波数f+f+fの光トーン信号を合波部10に出力する。周波数シフト部8は、例えば、マハツエェンダ干渉計で構成することができる。なお、本実施形態では、fだけ周波数を高くシフトさせるものとするが、fだけ周波数を低くシフトさせても良い。より具体的には、周波数シフト部8が出力する光トーン信号の周波数が、変調部7が出力する光変調信号の帯域内になければよい。図2(D)は、変調部7が出力する光変調信号のスペクトラムであり、図2(F)は、合波部10が出力する光信号のスペクトラムである。 The modulation unit 7 modulates the input optical signal with the transmission data, and outputs the optical modulation signal to the multiplexing unit 10. Frequency shifter 8, the sine wave of frequency f 2 to be received from the oscillator 13, the frequency of the light tone signal from the demultiplexing unit 5 is shifted by f 2, if the light tone signal having a frequency f 0 + f 1 + f 2 Output to the wave unit 10. The frequency shift unit 8 can be configured by, for example, a Mahahendender interferometer. In the present embodiment, it is assumed to be shifted higher frequency by f 2, it may be shifted lower frequency by f 2. More specifically, the frequency of the optical tone signal output from the frequency shift unit 8 may not be within the band of the optical modulation signal output from the modulation unit 7. FIG. 2D shows the spectrum of the optical modulation signal output from the modulation unit 7, and FIG. 2F shows the spectrum of the optical signal output from the multiplexing unit 10.

合波部11は、合波部9及び合波部10が出力する光信号を合波して出力する。なお、図2(E)に示す、合波部9が出力する光信号の偏波面と、図2(F)に示す、合波部10が出力する光信号の偏波面は、互いに直交しているため、合波部11が出力する光信号のスペクトラムは、図3に示す様になる。具体的には、合波部11が出力する光信号は、周波数f−fを中心周波数とする互いに直交する偏波の2つの光変調信号と、周波数f+fの第1偏波面の光トーン信号と、周波数f+f+fの第2偏波面の光トーン信号と、を含んでいる。この光信号を、光電変換すると、同じ偏波面の光変調信号と光トーン信号の周波数差をその周波数とする電気変調信号が得られる。つまり、合波部11が出力する光信号を光電変換すると、図6に示す、周波数多重された2つの電気変調信号を得ることができる。周波数2f及び2f+fが無線周波数帯(RF帯)の周波数となる様に、周波数f及び周波数fを選択することで、RoFシステムにおける光信号から無線信号への変換点においては、光電変換及び増幅のみを行う簡易な構成とすることができる。なお、図6に示す2つの電気変調信号の中心周波数の差はfである。よって、周波数fについては、2つの電気変調信号の帯域幅の合計の半分より大きい値とする。つまり、周波数fは、変調部6が出力する光変調信号の帯域幅と変調部7が出力する光変調信号の帯域幅の合計の半分より大きい値とする。 The multiplexing unit 11 multiplexes and outputs the optical signals output from the multiplexing unit 9 and the multiplexing unit 10. 2E and the polarization plane of the optical signal output from the multiplexing section 9 and the polarization plane of the optical signal output from the multiplexing section 10 shown in FIG. 2F are orthogonal to each other. Therefore, the spectrum of the optical signal output from the multiplexing unit 11 is as shown in FIG. Specifically, the optical signal output from the multiplexing unit 11 includes two optical modulation signals having polarizations orthogonal to each other with the frequency f 0 -f 1 as the center frequency and the first polarization plane having the frequency f 0 + f 1 . And an optical tone signal of the second polarization plane having the frequency f 0 + f 1 + f 2 . When this optical signal is photoelectrically converted, an electric modulation signal having a frequency difference between the optical modulation signal and the optical tone signal having the same polarization plane is obtained. That is, when the optical signal output from the multiplexing unit 11 is photoelectrically converted, two frequency-multiplexed electric modulation signals shown in FIG. 6 can be obtained. By selecting the frequency f 1 and the frequency f 2 so that the frequencies 2f 1 and 2f 1 + f 2 become the frequencies of the radio frequency band (RF band), at the conversion point from the optical signal to the radio signal in the RoF system, A simple configuration that performs only photoelectric conversion and amplification can be achieved. Incidentally, the difference between the center frequencies of the two electrical modulation signal shown in FIG. 6 is a f 2. Therefore, the frequency f 2 is set to a value larger than half of the total bandwidth of the two electric modulation signals. That is, the frequency f 2 is set to a value larger than half the sum of the bandwidth of the optical modulation signal output from the modulation unit 6 and the bandwidth of the optical modulation signal output from the modulation unit 7.

本実施形態では、1つの光源1のみを使用するため、光源1が出力する連続光に周波数変動が生じても、合波部11が出力する光信号に含まれる光変調信号及び光トーン信号の周波数差には影響せず、光電変換後の電気変調信号の品質劣化を防ぐことができる。   In the present embodiment, since only one light source 1 is used, even if frequency fluctuation occurs in the continuous light output from the light source 1, the optical modulation signal and the optical tone signal included in the optical signal output from the multiplexing unit 11 are used. It does not affect the frequency difference and can prevent deterioration of the quality of the electrical modulation signal after photoelectric conversion.

<第2実施形態>
第1実施形態においては、変調部6及び7において、それぞれ、異なる送信データで光トーン信号を変調していた。つまり、第1実施形態は、異なる送信データを2つの光変調信号で送信するものであった。本実施形態は、無線区間における周波数ダイバーシチのため、2つの光変調信号で同じ送信データを送信するものである。
Second Embodiment
In the first embodiment, the modulation units 6 and 7 modulate the optical tone signal with different transmission data, respectively. That is, in the first embodiment, different transmission data is transmitted with two optical modulation signals. In the present embodiment, the same transmission data is transmitted using two optical modulation signals because of frequency diversity in the wireless section.

図4は、本実施形態の光送信装置の構成図である。光源1は周波数fの連続光を生成する。ツートーン生成部2は、光源1が出力する連続光を発振器12から受信する周波数fの正弦波で振幅変調し、振幅変調して得られる上側帯波及び下側帯波を含む光信号を生成する。図2(A)は、ツートーン生成部2が生成する光信号のスペクトラムである。図2(A)に示す様に、ツートーン生成部2は、キャリア成分である周波数fを抑圧し、周波数f+fの上側帯波と、周波数f−fの下側帯波の2つの光トーンを含む光信号を出力する。 FIG. 4 is a configuration diagram of the optical transmission apparatus of this embodiment. The light source 1 generates a continuous light having a frequency f 0. The two-tone generator 2 amplitude-modulates the continuous light output from the light source 1 with a sine wave having a frequency f 1 received from the oscillator 12, and generates an optical signal including an upper sideband and a lower sideband obtained by the amplitude modulation. . FIG. 2A shows the spectrum of the optical signal generated by the two-tone generator 2. As shown in FIG. 2 (A), the two-tone generator 2 suppresses the frequency f 0 that is the carrier component, and 2 of the upper side band of the frequency f 0 + f 1 and the lower side band of the frequency f 0 -f 1. Outputs an optical signal containing two optical tones.

分波部14は、ツートーン生成部2が出力する光信号を波長分離し、周波数f−fの光トーン信号を変調部15に出力し、周波数f+fの光トーン信号を偏波分離部16に出力する。なお、変調部15に出力する光トーン信号と、偏波分離部16に出力する光トーン信号は互いに逆であっても良い。変調部15は、周波数f−fの光トーン信号を送信データで変調し、光変調信号を合波部19に出力する。図2(D)は、変調部15が出力する光変調信号のスペクトラムである。偏波分離部16は、分波部14が出力する周波数f+fの光トーン信号を、第1偏波面の光トーン信号と、第1偏波面に直交する第2偏波面の光トーン信号に分離し、第1偏波面の光トーン信号を合波部18に出力し、第2偏波面の光トーン信号を周波数シフト部17に出力する。偏波分離部16は、第1偏波面の光トーン信号と第2偏波面の光トーン信号の振幅が等しくなる様に、例えば、第1偏波面と第2偏波面それぞれとの角度が45°になる偏波面(基準偏波面)を基準に光信号を偏波分離する。このため、分波部14は、偏波分離部16の基準偏波面の光信号を出力する様に調整される。言い換えると、分波部14が変調部15に出力する周波数f−fの光トーン信号の偏波面と、分波部14が偏波分離部16に出力する周波数f+fの光トーン信号の偏波面は同じであり、第1偏波面と第2偏波面のそれぞれとの角度は45°である。 The demultiplexing unit 14 wavelength-separates the optical signal output from the two-tone generation unit 2, outputs the optical tone signal of frequency f 0 -f 1 to the modulation unit 15, and polarizes the optical tone signal of frequency f 0 + f 1 Output to the separator 16. Note that the optical tone signal output to the modulation unit 15 and the optical tone signal output to the polarization separation unit 16 may be opposite to each other. The modulation unit 15 modulates the optical tone signal of the frequency f 0 -f 1 with the transmission data, and outputs the optical modulation signal to the multiplexing unit 19. FIG. 2D shows a spectrum of an optical modulation signal output from the modulation unit 15. The polarization separation unit 16 outputs the optical tone signal of the frequency f 0 + f 1 output from the demultiplexing unit 14, the optical tone signal of the first polarization plane, and the optical tone signal of the second polarization plane orthogonal to the first polarization plane. The optical tone signal of the first polarization plane is output to the multiplexing unit 18, and the optical tone signal of the second polarization plane is output to the frequency shift unit 17. For example, the angle between the first polarization plane and the second polarization plane is 45 ° so that the amplitude of the optical tone signal of the first polarization plane is equal to the amplitude of the optical tone signal of the second polarization plane. The optical signal is polarized and separated with reference to the polarization plane (reference polarization plane). For this reason, the demultiplexing unit 14 is adjusted so as to output the optical signal of the reference polarization plane of the polarization separation unit 16. In other words, the polarization plane of the optical tone signal of frequency f 0 -f 1 output from the demultiplexing unit 14 to the modulation unit 15 and the optical tone of frequency f 0 + f 1 output from the demultiplexing unit 14 to the polarization separation unit 16. The polarization plane of the signal is the same, and the angle between each of the first polarization plane and the second polarization plane is 45 °.

周波数シフト部17は、発振器13から受信する周波数fの正弦波により、偏波分離部16からの光トーン信号の周波数をfだけシフトさせ、周波数f+f+fの光トーン信号を合波部18に出力する。なお、本実施形態では、fだけ周波数を高くシフトさせるものとするが、fだけ周波数を低くシフトさせても良い。より詳しくは、周波数シフト部13が出力する光トーン信号の周波数が、変調部15が出力する光変調信号の帯域内になければよい。合波部18は、偏波分離部16からの周波数がf+fであり、かつ、第1偏波面の光トーン信号と、周波数シフト部17からの周波数がf+f+fであり、かつ、第2偏波面の光トーン信号を合波して合波部19に出力する。図5は、合波部18が出力する光信号を示している。 Frequency shifting unit 17, the sine wave of frequency f 2 to be received from the oscillator 13, the frequency of the light tone signal from the polarization splitter 16 is shifted by f 2, a light tone signal having a frequency f 0 + f 1 + f 2 The signal is output to the multiplexing unit 18. In the present embodiment, it is assumed to be shifted higher frequency by f 2, it may be shifted lower frequency by f 2. More specifically, the frequency of the optical tone signal output from the frequency shift unit 13 may not be within the band of the optical modulation signal output from the modulation unit 15. The multiplexing unit 18 has a frequency from the polarization separation unit 16 of f 0 + f 1 , an optical tone signal of the first polarization plane, and a frequency from the frequency shift unit 17 of f 0 + f 1 + f 2 . In addition, the optical tone signal of the second polarization plane is multiplexed and output to the multiplexing unit 19. FIG. 5 shows an optical signal output from the multiplexing unit 18.

合波部19は、合波部18が出力する2つの光トーン信号を含む光信号と、変調部15が出力する光変調信号を合波して出力する。既に説明した様に、分波部14が変調部15に出力する光トーン信号の偏波面は、第1偏波面及び第2偏波面のそれぞれに対して45°だけ傾いている。よって、変調部15が出力する光変調信号の偏波面も、第1偏波面及び第2偏波面のそれぞれに対して45°だけ傾いている。変調部15が出力する光変調信号を、第1偏波面の成分と、第2偏波面の成分に分けると、合波部19が出力する光信号のスペクトラムは、図3と同じになる。したがって、合波部19が出力する光信号を光電変換することで、図6に示す周波数多重された2つの電気変調信号を得ることができる。   The multiplexing unit 19 combines the optical signal including the two optical tone signals output from the multiplexing unit 18 and the optical modulation signal output from the modulation unit 15 and outputs the combined signal. As already described, the polarization plane of the optical tone signal output from the demultiplexing section 14 to the modulation section 15 is inclined by 45 ° with respect to each of the first polarization plane and the second polarization plane. Therefore, the polarization plane of the optical modulation signal output from the modulation unit 15 is also inclined by 45 ° with respect to each of the first polarization plane and the second polarization plane. When the optical modulation signal output from the modulation unit 15 is divided into a first polarization plane component and a second polarization plane component, the spectrum of the optical signal output from the multiplexing unit 19 is the same as that in FIG. Therefore, two optical modulation signals frequency-multiplexed as shown in FIG. 6 can be obtained by photoelectrically converting the optical signal output from the multiplexing unit 19.

したがって、第一実施形態と同様に、周波数2f及び2f+fが無線周波数帯(RF帯)の周波数となる様に、周波数f及び周波数fを選択することで、RoFシステムにおける光信号から無線信号への変換点においては、光電変換及び増幅のみを行う簡易な構成とすることができる。また、本実施形態においても、1つの光源1のみを使用するため、光源1が出力する連続光に周波数変動が生じても、合波部19が出力する光信号に含まれる光変調信号及び光トーン信号の周波数差には影響せず、光電変換後の電気変調信号の品質劣化を防ぐことができる。 Therefore, similarly to the first embodiment, by selecting the frequency f 1 and the frequency f 2 so that the frequencies 2f 1 and 2f 1 + f 2 become the frequencies of the radio frequency band (RF band), the light in the RoF system At a conversion point from a signal to a radio signal, a simple configuration that performs only photoelectric conversion and amplification can be employed. Also in this embodiment, since only one light source 1 is used, even if frequency fluctuation occurs in the continuous light output from the light source 1, the optical modulation signal and the light included in the optical signal output from the multiplexing unit 19 are used. The quality difference of the electric modulation signal after photoelectric conversion can be prevented without affecting the frequency difference of the tone signal.

1:光源、2:ツートーン生成部、3:偏波分離部、6、7:変調部、8:周波数シフト部、11:合波部   1: Light source, 2: Two-tone generator, 3: Polarization separator, 6, 7: Modulator, 8: Frequency shifter, 11: Multiplexer

Claims (6)

連続光を生成する光源と、
前記連続光から第1周波数の光トーン信号及び前記第1周波数とは異なる第2周波数の光トーン信号を含む第1光信号を生成する第1生成手段と、
前記第1光信号を偏波分離し、第1偏波面の第2光信号と、前記第1偏波面とは直交する第2偏波面の第3光信号を生成する第2生成手段と、
前記第2光信号の一方の光トーン信号を送信データで変調し、光変調信号及び光トーン信号を含む第4光信号を生成する第3生成手段と、
前記第3光信号の一方の光トーン信号を送信データで変調し、前記第3光信号の他方の光トーン信号を周波数シフトして、光変調信号及び光トーン信号を含む第5光信号を生成する第4生成手段と、
前記第4光信号と前記第5光信号を合波する合波手段と、
を備えていることを特徴とする光送信装置。
A light source that generates continuous light;
First generation means for generating a first optical signal including an optical tone signal of a first frequency and an optical tone signal of a second frequency different from the first frequency from the continuous light;
A second generating means for splitting the first optical signal to generate a second optical signal having a first polarization plane and a third optical signal having a second polarization plane orthogonal to the first polarization plane;
Third generation means for modulating one optical tone signal of the second optical signal with transmission data and generating a fourth optical signal including the optical modulation signal and the optical tone signal;
One optical tone signal of the third optical signal is modulated with transmission data, and the other optical tone signal of the third optical signal is frequency-shifted to generate a fifth optical signal including the optical modulation signal and the optical tone signal. Fourth generation means for
A multiplexing means for multiplexing the fourth optical signal and the fifth optical signal;
An optical transmission device comprising:
前記第5光信号に含まれる光変調信号と光トーン信号の周波数の差である第1の値は、前記第4光信号に含まれる光変調信号と光トーン信号の周波数の差である第2の値とは異なることを特徴とする請求項1に記載の光送信装置。   The first value, which is the difference between the frequency of the optical modulation signal and the optical tone signal included in the fifth optical signal, is the second difference between the frequency of the optical modulation signal and the optical tone signal included in the fourth optical signal. The optical transmission device according to claim 1, wherein the optical transmission device is different from the value of. 前記第1の値と前記第2の値との差は、前記第4光信号に含まれる光変調信号と前記第5光信号の帯域幅の合計の半分より大きいことを特徴とする請求項2に記載の光送信装置。   The difference between the first value and the second value is greater than half of the total bandwidth of the optical modulation signal and the fifth optical signal included in the fourth optical signal. An optical transmitter according to claim 1. 連続光を生成する光源と、
前記連続光から第1周波数の光トーン信号及び前記第1周波数とは異なる第2周波数の光トーン信号を含む第1光信号を生成する第1生成手段と、
前記第1周波数の光トーン信号を送信データで変調して光変調信号を生成する変調手段と、
前記第2周波数の光トーン信号を偏波分離し、第1偏波面の光トーン信号と、前記第1偏波面とは直交する第2偏波面の光トーン信号を生成する第2生成手段と、
前記第2偏波面の光トーン信号を周波数シフトして前記第1周波数及び前記第2周波数とは異なる第3周波数の光トーン信号を生成する第3生成手段と、
前記光変調信号と、前記第1偏波面で前記第2周波数の光トーン信号と、前記第2偏波面で前記第3周波数の光トーン信号を合波する合波手段と、
を備えていることを特徴とする光送信装置。
A light source that generates continuous light;
First generation means for generating a first optical signal including an optical tone signal of a first frequency and an optical tone signal of a second frequency different from the first frequency from the continuous light;
Modulation means for modulating an optical tone signal of the first frequency with transmission data to generate an optical modulation signal;
A second generation means for performing polarization separation of the optical tone signal of the second frequency, generating an optical tone signal of a first polarization plane, and an optical tone signal of a second polarization plane orthogonal to the first polarization plane;
A third generation means for generating an optical tone signal having a third frequency different from the first frequency and the second frequency by frequency shifting the optical tone signal of the second polarization plane;
Multiplexing means for multiplexing the optical modulation signal, the optical tone signal of the second frequency on the first polarization plane, and the optical tone signal of the third frequency on the second polarization plane;
An optical transmission device comprising:
前記光変調信号の偏波面は、前記第1偏波面及び前記第2偏波面とは異なる偏波面であることを特徴とする請求項4に記載の光送信装置。   The optical transmission device according to claim 4, wherein a polarization plane of the optical modulation signal is a polarization plane different from the first polarization plane and the second polarization plane. 前記光変調信号の偏波面と前記第1偏波面との角度差は45°であり、前記光変調信号の偏波面と前記第2偏波面との角度差は45°であることを特徴とする請求項5に記載の光送信装置。   The angle difference between the polarization plane of the optical modulation signal and the first polarization plane is 45 °, and the angle difference between the polarization plane of the optical modulation signal and the second polarization plane is 45 °. The optical transmission device according to claim 5.
JP2016018208A 2016-02-02 2016-02-02 Optical transmitter Active JP6434433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018208A JP6434433B2 (en) 2016-02-02 2016-02-02 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018208A JP6434433B2 (en) 2016-02-02 2016-02-02 Optical transmitter

Publications (2)

Publication Number Publication Date
JP2017139573A true JP2017139573A (en) 2017-08-10
JP6434433B2 JP6434433B2 (en) 2018-12-05

Family

ID=59565233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018208A Active JP6434433B2 (en) 2016-02-02 2016-02-02 Optical transmitter

Country Status (1)

Country Link
JP (1) JP6434433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145316A (en) * 2020-03-13 2021-09-24 株式会社Kddi総合研究所 Processing unit, wireless device, and base station device
JPWO2022085136A1 (en) * 2020-10-21 2022-04-28

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248218A (en) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmitting method
JP2007067663A (en) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical-wireless fusion communications system and its method
JP2015070546A (en) * 2013-09-30 2015-04-13 Kddi株式会社 Optical transmission system, optical transmitter, radio transmitter, and radio receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248218A (en) * 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmitting method
JP2007067663A (en) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical-wireless fusion communications system and its method
JP2015070546A (en) * 2013-09-30 2015-04-13 Kddi株式会社 Optical transmission system, optical transmitter, radio transmitter, and radio receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. KAMIYA ET AL.: "Study on signal modulation schemes for millimeter-wave band RoF transmission systems with optical si", 2014 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP) AND THE 2014 9TH ASIA-PACIFIC MICROW, JPN6018042138, 2014, US, pages 9 - 12, XP032712396, ISSN: 0003906338, DOI: 10.1109/MWP.2014.6994476 *
Y. KAWAGUCHI ET AL.: "Conceptual study on seamless optical and wireless transmission using PDM-FDM conversion", OECC/ACOFT 2014, JPN6018042137, July 2014 (2014-07-01), pages 858 - 860, ISSN: 0003906337 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145316A (en) * 2020-03-13 2021-09-24 株式会社Kddi総合研究所 Processing unit, wireless device, and base station device
JP7216036B2 (en) 2020-03-13 2023-01-31 株式会社Kddi総合研究所 Processing equipment, radio equipment and base station equipment
JPWO2022085136A1 (en) * 2020-10-21 2022-04-28
WO2022085136A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Transmission/reception system and transmission/reception method
JP7204061B2 (en) 2020-10-21 2023-01-13 三菱電機株式会社 Transmission/reception system and transmission/reception method

Also Published As

Publication number Publication date
JP6434433B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US9553674B2 (en) Optical transmitter and method of optical transmission
US8437638B2 (en) Optical modulation circuit and optical transmission system
US8406638B2 (en) Coherent light receiving system
CN102342046A (en) Method and arrangement for transmitting signals in a point to multipoint network
JP5467686B2 (en) Optical communication apparatus and optical communication method
WO2018198873A1 (en) Optical transmission method and optical transmission device
JP6434433B2 (en) Optical transmitter
JP4905951B2 (en) Optical modulation circuit and optical transmission system
US7734185B2 (en) Optical transmitter and optical transmission system
JP4730560B2 (en) Optical transmission system, optical transmission method, and optical transmitter
JP6739073B2 (en) Optical transmission method and optical transmission device
JP6133745B2 (en) Optical transmission system, optical transmitter, wireless transmitter, and wireless receiver
JP2008219253A (en) Optical transmission apparatus and method
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
JP2018049214A (en) High frequency modulation signal generation device and phase fluctuation suppression method
JP2008206063A (en) Optical transmission device and method
JP6403521B2 (en) Optical transmitter
JP4728275B2 (en) Optical SSB transmitter
JP2017133969A (en) Optical signal processing device and optical signal processing method
JP6383592B2 (en) Optical transmission device, wireless transmission device, and wireless reception device
JP4728276B2 (en) Optical SSB transmitter
JP5182154B2 (en) Optical communication system
JP2011244436A (en) Optical communication system
JP4230888B2 (en) Frequency converter, frequency conversion method, and optical wireless device using the same
JP2021064861A (en) Optical transmitter and wireless device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181108

R150 Certificate of patent or registration of utility model

Ref document number: 6434433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150