JP2019027912A - Abnormality diagnostic device - Google Patents

Abnormality diagnostic device Download PDF

Info

Publication number
JP2019027912A
JP2019027912A JP2017147365A JP2017147365A JP2019027912A JP 2019027912 A JP2019027912 A JP 2019027912A JP 2017147365 A JP2017147365 A JP 2017147365A JP 2017147365 A JP2017147365 A JP 2017147365A JP 2019027912 A JP2019027912 A JP 2019027912A
Authority
JP
Japan
Prior art keywords
vibration
fluid machine
abnormality
abnormality diagnosis
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017147365A
Other languages
Japanese (ja)
Other versions
JP7073057B2 (en
Inventor
青柳 則夫
Norio Aoyanagi
則夫 青柳
憲 梅田
Ken Umeda
憲 梅田
大地 岡
Daichi Oka
大地 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2017147365A priority Critical patent/JP7073057B2/en
Publication of JP2019027912A publication Critical patent/JP2019027912A/en
Application granted granted Critical
Publication of JP7073057B2 publication Critical patent/JP7073057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To allow a vibration threshold for abnormality diagnosis to be easily adjusted.SOLUTION: The abnormality diagnostic device diagnoses an abnormality from the detection vibration value of the vibration of a fluid machine, and the monitoring device of the fluid machine controls the fluid machine according to the result of the abnormality diagnosis. The abnormality diagnostic device determines whether the fluid machine is in an adjustable state and adjusts a vibration threshold value as a reference of the abnormality diagnosis.SELECTED DRAWING: Figure 2

Description

本発明は、圧縮装置などの流体機械の異常を監視する異常診断装置に係わる。   The present invention relates to an abnormality diagnosis apparatus for monitoring an abnormality of a fluid machine such as a compression apparatus.

従来から、流体機械は幅広い産業で用いられており、異常の予兆現象である異常振動を検知し、流体機械を停止させる技術が知られている。   Conventionally, fluid machines have been used in a wide range of industries, and techniques for detecting abnormal vibrations, which are predictive phenomena of abnormalities, and stopping fluid machines are known.

流体機械の応用製品の一つである空気調和機の異常監視装置が特許文献1に開示されている。   Patent Document 1 discloses an abnormality monitoring device for an air conditioner that is one of applied products of fluid machinery.

特許文献1の[0027]乃至[0029]には、「…以上に説明したように本実施例の空気調和機は筐体2と、この筐体2に設けられた送風装置10と、この送風装置10の振動を検知する振動検知手段(振動センサ103)と、送風装置10は、ファン100と、ファン100を回転軸を介して駆動するモータ101と、を有する。また冷媒を圧縮する圧縮機300の制御を含めた空気調和機1全体を制御する制御装置(製品制御基板500)とは別に設けられ、振動検知手段(振動センサ103)からの出力に基づいて送風装置10の異常を診断する異常診断装置(異常検知用制御モジュール501)を備える。そして、異常診断装置(異常検知用制御モジュール501)は、送風装置10の異常を検知した際に、制御装置(製品制御基板500)へ通知を行い、該制御装置(製品制御基板500)は異常診断装置(異常検知用制御モジュール501)からの通知があった場合に送風装置10の運転を停止させるものである。
更に本実施例では、異常検知用制御モジュール501上に、ディップスイッチ、ロータリースイッチ等による感度調整用スイッチ601が設けられている。振動センサ103はセンサ取り付け位置の振動量を検出しているため、製品の運転仕様や構造、センサ取り付け位置等により検出量が違ってくる。つまり適用製品には、ビル用、店舗用、設備用、冷凍機、チラー等、多種多様な製品形態があり、夫々に構造が異なったり、送風機の種類や回転数が異なり、発生する振動の大きさも異なるため、異常と判断するための閾値も本来は異なる。
図6に示した異常検知装置のように製品毎に専用設計するのであれば異常判定の閾値を調整すればよいが、本実施例では、様々な機種に適用できるように異常検知部分をモジュール化したものである。この場合には、感度調整機能を備えることにより、汎用性を高めておくのが望ましい。つまり、製品やユーザーの設置状況等にあわせて、閾値を調整できる機能を設けることで、適用可能な範囲が広がり、汎用性が高まる。このような構成とすることで、安価でかつ効率的に送風機の異常検知機能を拡張することができる空気調和機の室外機を提供できる。 」と記載されている。
[0027] to [0029] of Patent Document 1 include: “... As described above, the air conditioner of the present embodiment includes the housing 2, the air blower 10 provided in the housing 2, and the air blower. The vibration detection means (vibration sensor 103) for detecting the vibration of the device 10 and the blower device 10 include a fan 100 and a motor 101 that drives the fan 100 via a rotating shaft, and a compressor that compresses the refrigerant. 300, including the control of 300, is provided separately from the control device (product control board 500) for controlling the entire air conditioner 1, and diagnoses the abnormality of the blower 10 based on the output from the vibration detection means (vibration sensor 103). An abnormality diagnosis device (abnormality detection control module 501) is provided, and when the abnormality diagnosis device (abnormality detection control module 501) detects an abnormality of the blower 10, the control device (product control board 5). 00), the control device (product control board 500) stops the operation of the blower device 10 when notified from the abnormality diagnosis device (abnormality detection control module 501).
Furthermore, in this embodiment, a sensitivity adjustment switch 601 such as a dip switch or a rotary switch is provided on the abnormality detection control module 501. Since the vibration sensor 103 detects the vibration amount at the sensor mounting position, the detection amount varies depending on the operation specifications and structure of the product, the sensor mounting position, and the like. In other words, there are various product forms such as buildings, stores, equipment, refrigerators, chillers, etc., and the products are different in structure, the type of blower and the number of rotations are different, and the generated vibration is large. In addition, since the thresholds are different, the threshold value for determining an abnormality is also originally different.
If it is designed exclusively for each product like the abnormality detection device shown in FIG. 6, the abnormality determination threshold value may be adjusted. In this embodiment, the abnormality detection part is modularized so that it can be applied to various models. It is a thing. In this case, it is desirable to improve versatility by providing a sensitivity adjustment function. In other words, by providing a function that can adjust the threshold according to the installation status of the product and the user, the applicable range is expanded and versatility is enhanced. By setting it as such a structure, the outdoor unit of the air conditioner which can expand the abnormality detection function of a fan efficiently efficiently can be provided. Is described.

特開2014−211143号公報JP 2014-2111143 A

特許文献1のような、機種毎にスイッチによる異常振動閾値の調整を行うことは煩雑であり、スイッチの組み合わせだけでは調整できる異常振動閾値の調整代は小さい。そのため異常検知精度を容易に向上できているとはいえない。   It is complicated to adjust the abnormal vibration threshold value with a switch for each model as in Patent Document 1, and the adjustment margin of the abnormal vibration threshold value that can be adjusted only with a combination of switches is small. Therefore, it cannot be said that the abnormality detection accuracy can be easily improved.

また、産業用の流体機械の場合、過酷な設置環境(例、環境温度)に配置されることも多く、出荷前に調整した異常振動閾値では、装置自体に異常がなくても、設置環境により異常振動閾値を超えて異常検出してしまうことがある。したがって、設置環境で、異常検知閾値の調整が可能な監視装置があれば、誤検出回数を減らすことができる。   In addition, in the case of industrial fluid machines, they are often placed in harsh installation environments (eg, environmental temperature), and the abnormal vibration threshold adjusted before shipment depends on the installation environment even if there is no abnormality in the equipment itself. An abnormal vibration threshold may be exceeded and an abnormality may be detected. Therefore, if there is a monitoring device that can adjust the abnormality detection threshold in the installation environment, the number of erroneous detections can be reduced.

本発明の目的は、流体機械の異常検知精度が高い異常診断装置を提供することにある。   An object of the present invention is to provide an abnormality diagnosis device with high abnormality detection accuracy of a fluid machine.

本発明は、上記課題に対して、異常診断装置の異常振動閾値を自動調整する機能を付加するものである。   The present invention adds a function of automatically adjusting the abnormal vibration threshold of the abnormality diagnosis apparatus to the above problem.

本発明によれば、流体機械の異常検知精度が高い異常診断装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the abnormality diagnosis apparatus with high abnormality detection precision of a fluid machine can be provided.

実施例1における流体機械の監視システム構成図である。1 is a configuration diagram of a fluid machine monitoring system in Embodiment 1. FIG. 実施例1における流体機械に用いる異常診断装置の回路構成例である。1 is a circuit configuration example of an abnormality diagnosis device used for a fluid machine in Embodiment 1. 実施例1における流体機械に用いる異常診断装置の制御の流れを示す図である。It is a figure which shows the flow of control of the abnormality diagnosis apparatus used for the fluid machine in Example 1. FIG. 実施例1における流体機械の正常時の振動波形と運転状態を示す図である。It is a figure which shows the vibration waveform and driving | running state at the time of normal of the fluid machine in Example 1. FIG. 実施例2における流体機械に用いる異常診断装置の回路構成例である。It is a circuit structural example of the abnormality diagnosis apparatus used for the fluid machine in Example 2. FIG. 実施例2における流体機械の正常時の振動波形と振動の信号波形および運転状態を示す図である。It is a figure which shows the vibration waveform at the time of the normal of the fluid machine in Example 2, the signal waveform of a vibration, and an operation state.

本発明は、異常診断装置に対して異常振動閾値を自動調整する機能を付加するものであり、ほとんどの場合、異常検知精度を容易に向上させることができた。   The present invention adds a function of automatically adjusting an abnormal vibration threshold to an abnormality diagnosis apparatus, and in most cases, abnormality detection accuracy can be easily improved.

ただ中には、自動調整前よりも誤検出が増える場合もあった。これは、産業用流体機械は設置環境や運転状況によって大きな振動が発生するからである。すなわち、産業用流体機械は、流体機械駆動部(例、モータ)や流体機械本体(例えば圧縮機)の周期的な微小振動(回転数に応じた周波数の微小振動)が発生するが、アンロード運転時、起動/停止時など、負荷が大きく変動する場合には、ロード運転モードの定常運転時よりも大きな振動または小さな振動が発生する。具体的には、圧縮機の機能消失や機構部の異常による駆動手段のロックなどの機構的な異常が発生した場合と同レベルの振動(数倍乃至10倍)が生じる。   In some cases, however, false detections increased more than before automatic adjustment. This is because industrial fluid machines generate large vibrations depending on the installation environment and operating conditions. That is, in an industrial fluid machine, periodic micro vibrations (micro vibrations having a frequency corresponding to the number of rotations) of a fluid machine driving unit (eg, a motor) and a fluid machine main body (eg, a compressor) are generated, but unloaded. When the load fluctuates greatly, such as during operation and at start / stop, larger or smaller vibrations are generated than during steady operation in the load operation mode. More specifically, the same level of vibration (several times to 10 times) occurs when a mechanical abnormality such as loss of the function of the compressor or locking of the driving means due to abnormality of the mechanical part occurs.

そこで、異常検知閾値調整に適する運転状態か否かを判定する機能を流体機械の異常診断装置に設け、異常振動閾値の調整に適しない状態(例えば、周期的な微小振動状態)の場合、異常振動閾値の調整を行わず、異常振動閾値の調整に適する状態になってから異常振動閾値の調整を行う機能を設けることにした。   Therefore, a function for determining whether or not the operating state is suitable for adjusting the abnormality detection threshold is provided in the fluid machine abnormality diagnosis device, and in the case of a state that is not suitable for adjusting the abnormal vibration threshold (for example, a periodic minute vibration state), The function of adjusting the abnormal vibration threshold is provided after the vibration threshold is not adjusted and the state is suitable for the adjustment of the abnormal vibration threshold.

以下、本発明の実施例について図面を用いて以下説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本実施例の流体機械の監視システム構成図である。   FIG. 1 is a configuration diagram of a monitoring system for a fluid machine of this embodiment.

流体機械の監視システムは、電源1、電磁開閉器2、サーマルリレー3、モータ4、圧縮機本体5、制御装置6、タンク10、圧力センサ11、逆止弁12、バルブ13及び異常診断装置14を有する。   The fluid machine monitoring system includes a power source 1, an electromagnetic switch 2, a thermal relay 3, a motor 4, a compressor body 5, a control device 6, a tank 10, a pressure sensor 11, a check valve 12, a valve 13, and an abnormality diagnosis device 14. Have

電源1から供給される交流電力は、電磁開閉器2とサーマルリレー3を介してモータ4に供給され、圧縮機本体5が該モータ4によって駆動される。   The AC power supplied from the power source 1 is supplied to the motor 4 via the electromagnetic switch 2 and the thermal relay 3, and the compressor body 5 is driven by the motor 4.

制御装置6は、遮断回路7、マイコン8、記憶回路9を有する。   The control device 6 includes a cutoff circuit 7, a microcomputer 8, and a storage circuit 9.

マイコン8は、圧力センサ11および異常診断装置14からの信号を受信する機能と、記憶回路9の情報の記録、読み取りを行う機能を有する。   The microcomputer 8 has a function of receiving signals from the pressure sensor 11 and the abnormality diagnosis device 14 and a function of recording and reading information in the storage circuit 9.

さらに、マイコン8は、圧力センサ11から得られた圧力の情報を演算し、所望の圧力になるように遮断回路7を制御することで、モータ4の回転を間接的に制御して、流体機械の運転と停止を制御している。   Further, the microcomputer 8 calculates the information of the pressure obtained from the pressure sensor 11 and controls the shutoff circuit 7 so as to obtain a desired pressure, thereby indirectly controlling the rotation of the motor 4, so that the fluid machine Controls the operation and stop of the.

圧縮機本体5の近傍に配置された異常診断装置14は、圧縮機本体5(またはモータ4)の異常振動を監視しており、異常振動の発生の有無を知らせる信号をマイコン8に送信する。   The abnormality diagnosis device 14 disposed in the vicinity of the compressor main body 5 monitors abnormal vibration of the compressor main body 5 (or the motor 4), and transmits a signal notifying the occurrence of abnormal vibration to the microcomputer 8.

マイコン8は、異常振動の発生を知らせる信号を受信すると、遮断回路7を制御することによって、圧縮機流本体(またはモータ)を停止させる。   When the microcomputer 8 receives a signal notifying the occurrence of abnormal vibration, the microcomputer 8 controls the shut-off circuit 7 to stop the compressor flow main body (or motor).

該圧縮機本体5から吐出された圧縮空気は、一時貯留タンク10で一時的に貯留される。   The compressed air discharged from the compressor body 5 is temporarily stored in the temporary storage tank 10.

この一時貯留タンク10には、タンク内圧力を測定する圧力センサ11が付されている。   The temporary storage tank 10 is provided with a pressure sensor 11 for measuring the tank internal pressure.

圧力センサ11は圧力値を測定し、圧力の情報をマイコン8に送信している。   The pressure sensor 11 measures the pressure value and transmits pressure information to the microcomputer 8.

さらに、この一時貯留タンク10から出される圧縮流体は、逆止弁12、バルブ13を介して外部へ供給される。   Further, the compressed fluid discharged from the temporary storage tank 10 is supplied to the outside through the check valve 12 and the valve 13.

図2に、異常診断装置14の回路構成図を示す。   FIG. 2 shows a circuit configuration diagram of the abnormality diagnosis device 14.

異常診断装置14は、圧電素子101、増幅回路102、フィルタ103、包絡線検波104、AD変換器105付きマイコン108、記憶回路109、信号出力回路107を有する。   The abnormality diagnosis device 14 includes a piezoelectric element 101, an amplifier circuit 102, a filter 103, an envelope detection 104, a microcomputer 108 with an AD converter 105, a storage circuit 109, and a signal output circuit 107.

圧電素子101は、モータ4または圧縮機本体5の近傍に配置され、流体機械の振動を測定するセンサであり、測定した振動値を信号で出力する。   The piezoelectric element 101 is a sensor that is arranged in the vicinity of the motor 4 or the compressor main body 5 and measures the vibration of the fluid machine, and outputs the measured vibration value as a signal.

増幅回路102は、圧電素子101の出力信号を信号処理用に増幅する。   The amplifier circuit 102 amplifies the output signal of the piezoelectric element 101 for signal processing.

増幅回路102で増幅された信号は、フィルタ103に接続され、異常振動検知に必要な周波数成分のみを通過させる。   The signal amplified by the amplifier circuit 102 is connected to the filter 103 and passes only the frequency component necessary for detecting abnormal vibration.

フィルタ103から出力された信号は、振幅信号を保持する包絡線検波回路104を介してマイコン108に内蔵されたA/D変換器105に入力される。   The signal output from the filter 103 is input to an A / D converter 105 built in the microcomputer 108 via an envelope detection circuit 104 that holds an amplitude signal.

記憶回路109は、流体機械の正常時の振動振幅値、異常振動閾値、および異常振動閾値の調整が行われた日時を含む調整履歴が格納されている。この調整履歴の情報の日時はすでに実施されたか否かを示すデータに代えてもよい。   The storage circuit 109 stores an adjustment history including the vibration amplitude value when the fluid machine is normal, the abnormal vibration threshold value, and the date and time when the abnormal vibration threshold value was adjusted. The date and time of this adjustment history information may be replaced with data indicating whether or not the adjustment history has already been implemented.

次に、異常診断装置14の制御の流れについて図3に示す。異常診断装置14はモータ4の運転・停止に関係なく、異常診断装置14への通電開始とともに動作を開始し、記憶回路109に記録された調整履歴を読込む。   Next, the flow of control of the abnormality diagnosis device 14 is shown in FIG. Regardless of whether the motor 4 is operated or stopped, the abnormality diagnosing device 14 starts operation when the abnormality diagnosing device 14 is energized and reads the adjustment history recorded in the storage circuit 109.

続くステップ2では、調整履歴から自動調整済みか否かを「YES(調整済)」「NO(未調整)」を判定し、「NO」と判定した場合、続けて異常振動閾値の調整を実施する。なお、本実施例では自動調整済か否かのみを判定したが、一定期間を過ぎた実施日時は削除する機能を付加したり、実施日時と現在日時を比較することにより所定期間内に自動調整されたかを判断することにより、自動で再調整させる機能に変更することも本発明の範疇である。このような機能とすることで、定期的な再調整が可能になるので、流体機械の経年変化を反映した高精度な調整が可能となる。   In the subsequent step 2, it is determined “YES (adjusted)” or “NO (unadjusted)” from the adjustment history, and if “NO” is determined, the abnormal vibration threshold value is adjusted continuously. To do. In this embodiment, only whether or not automatic adjustment has been completed is determined. However, a function for deleting the execution date and time after a certain period has been added, or automatic adjustment within a predetermined period by comparing the execution date and time with the current date and time. It is also within the scope of the present invention to change the function to automatically readjustment by determining whether it has been done. With such a function, periodic readjustment is possible, and therefore, highly accurate adjustment reflecting the secular change of the fluid machine is possible.

また、上記機能を用いて、流体機械や異常診断装置に表示パネルを設けて、そこに再調整の要否を表示させたり、再調整「要」の警告音を発生させたりすることで、ステップ3以降の再調整を促すことも本発明の範疇である。   In addition, by using the above functions, a display panel is provided on the fluid machine or abnormality diagnosis device to display whether or not readjustment is necessary, or to generate a warning sound for readjustment “necessary”. It is also within the scope of the present invention to prompt readjustment after 3.

ステップ3では、A/D変換器105によって電気信号をデジタル信号に変換して読込む。   In step 3, the A / D converter 105 converts the electrical signal into a digital signal and reads it.

続くステップ4では(1)調整可能な状態か、(2)調整不可能な状態か、のどちらの状態に流体機械(モータ4または圧縮機本体5)があるか判定する。本実施例では、上記(1)の調整可能な状態を、周期的な微小運動が生じる状態とする。そして、本実施例では、装置構成を簡単にするため、流体機械振動を入力に用いて調整可能な状態であるか否かを判定する。   In the subsequent step 4, it is determined whether the fluid machine (the motor 4 or the compressor main body 5) is in one of (1) an adjustable state and (2) an unadjustable state. In this embodiment, the adjustable state (1) is a state in which periodic micromotion occurs. In this embodiment, in order to simplify the apparatus configuration, it is determined whether or not it is in an adjustable state using fluid mechanical vibration as an input.

このため、ステップ5で、第0電圧値V0(例えばV0=0V)から第1電圧値V1(上限値、例えば通常発生しうる振動の電圧の+20%程度)を超えたときに、モータの運転開始時(流体機械の起動時)であるため、調整不可能な状態であると判断すると共に、ステップ3に戻って引き続き振動の信号を監視する。この運転開始時以降に振動の信号が第1電圧値V1以下となる定常運転の振動信号に収束するまでの間、つまり起動動作が完了するまではステップ6において起動時であると判定しステップ3へ戻り引き続き振動の信号を監視する。一方、起動時と判定されないときには、起動状態が終わり、定常運転状態になったと判定し、ステップ7へ移行する。   For this reason, when the 0th voltage value V0 (for example, V0 = 0V) exceeds the 1st voltage value V1 (upper limit value, for example, about + 20% of the voltage of vibration that can be normally generated) in step 5, the motor is operated. Since it is the start time (when the fluid machine is started), it is determined that the adjustment is impossible, and the process returns to step 3 to continuously monitor the vibration signal. After the start of the operation, until the vibration signal converges to the vibration signal of the steady operation that becomes the first voltage value V1 or less, that is, until the start-up operation is completed, it is determined in step 6 that it is the start-up time. Return to and continue to monitor the vibration signal. On the other hand, when it is not determined that the vehicle is being activated, it is determined that the activated state is over and the steady operation state is reached, and the process proceeds to step 7.

ここで、流体機械の圧縮機5がアンローダ式である場合、アンロード運転はロード運転に比べて振動が小さい。このため、より精度を高める場合には、アンロード運転を定常状態に含めずに振動の信号がV2より小さい場合にはアンロード運転中で調整不可能な状態であると判定し、振動の信号がV1からV2までの範囲内になった場合には、調整可能な状態になったと判断するようにする。このように、下限値を設けることも本発明の範疇である。   Here, when the compressor 5 of the fluid machine is an unloader type, the unload operation has less vibration than the load operation. For this reason, in order to increase the accuracy, if the vibration signal is smaller than V2 without including the unload operation in the steady state, it is determined that the adjustment is not possible during the unload operation, and the vibration signal Is in the range from V1 to V2, it is determined that an adjustable state has been reached. Thus, providing the lower limit is also within the scope of the present invention.

ステップ7では運転時の振動信号を取得し、ステップ8において通常振動値の演算を実施する。このステップ8の演算では、記憶回路109の定常状態時の振動の最大値を記録または更新を行う。ここで、振動の信号には流体機械の外部からの衝撃や電気的ノイズなどにより異常値が入力されることもあるから、異常値カットや最大値の時間平均化などの処理により、異常な入力信号の除去を実施することが望ましい。ステップ8では振動の最大値が一定期間更新されなくなった場合には、通常振動値の最大値が演算できたと判断し、次のステップ9へ移行する。   In step 7, a vibration signal during operation is acquired, and in step 8, a normal vibration value is calculated. In the calculation of step 8, the maximum value of vibration in the steady state of the storage circuit 109 is recorded or updated. Here, abnormal values may be input to the vibration signal due to impacts from outside the fluid machine, electrical noise, etc., so abnormal input is performed by processing such as abnormal value cutting or maximum time averaging. It is desirable to perform signal removal. In step 8, when the maximum value of vibration is not updated for a certain period, it is determined that the maximum value of normal vibration value has been calculated, and the process proceeds to next step 9.

ステップ9ではステップ8で得られた通常振動の最大値から異常振動の判定基準となる異常振動閾値の演算を行う。ここで、流体機械に異常が発生した場合、通常の振動に比べて数倍〜数十倍の異常振動が発生する。そのため、異常振動閾値は振動のレベルと破損度合や流体機械の破損による他の設備や生産への影響度を考慮しながら、最大負荷での動作状態を推定し、定常状態の通常振動の数倍(たとえば3〜5倍)に冤罪、設定し、ステップ10にて記憶回路109に新たな異常振動閾値として記憶する。   In step 9, an abnormal vibration threshold value that is a criterion for abnormal vibration is calculated from the maximum value of normal vibration obtained in step 8. Here, when an abnormality occurs in the fluid machine, an abnormal vibration several times to several tens of times higher than a normal vibration occurs. Therefore, the abnormal vibration threshold is estimated several times the normal vibration in the steady state by estimating the operating state at the maximum load while taking into consideration the level of vibration, the degree of breakage, and the impact on other equipment and production due to breakage of the fluid machine. (For example, 3 to 5 times), the accusation is set and stored as a new abnormal vibration threshold value in the memory circuit 109 in step 10.

最後にステップ11においてステップ1でも使用された記憶回路109の調整履歴の情報を更新し、ステップ12に移行して流体機械の異常監視を実施する。   Finally, in step 11, the information of the adjustment history of the storage circuit 109 used also in step 1 is updated, and the process proceeds to step 12 to monitor the abnormality of the fluid machine.

これにより、流体装置の振動のみを測定することにより、運転状態の判定と定常状態の振動値の測定および異常判定閾値の調整と異常判定ができる。   Thus, by measuring only the vibration of the fluid device, it is possible to determine the operating state, measure the vibration value in the steady state, adjust the abnormality determination threshold value, and determine the abnormality.

かくして、本実施の形態によれば、異常診断装置14は振動検知する圧電素子101によって検出された定常状態の振動検出信号の値に基づいて、異常判定の閾値の設定ができるから、流体機械(流体機械駆動部であるモータ4または流体機械本体である圧縮機5)に異常があると判定した場合には、流体機械の運転を速やかに停止することができる。   Thus, according to the present embodiment, the abnormality diagnosis device 14 can set a threshold value for abnormality determination based on the value of the steady state vibration detection signal detected by the piezoelectric element 101 that detects vibration. When it is determined that there is an abnormality in the motor 4 that is the fluid machine drive unit or the compressor 5 that is the fluid machine body, the operation of the fluid machine can be stopped quickly.

したがって異常振動の閾値設定のために例えばディップスイッチやロータリースイッチおよびシリアル通信機能(通信用のコネクタや回路)のような周辺機器が不要となり、低廉な異常診断装置14を提供することができる。また、検知器の寸法が大きくなり、閾値の書き込みに要する作業工数も減らすことができる。   Therefore, peripheral devices such as a dip switch, a rotary switch, and a serial communication function (communication connector or circuit) are not required for setting the abnormal vibration threshold, and an inexpensive abnormality diagnosis device 14 can be provided. Further, the size of the detector is increased, and the number of work steps required for writing the threshold value can be reduced.

また、本実施例では異常診断装置14から異常信号を制御装置6に出力し、間接的に流体機械を停止させる例について説明したが、電源からの電力をそのままモータ4に供給するような安価な流体機械に対しても、直接電磁開閉器3を操作することにより、異常診断装置14を適用することができる。このため、モータ4や流体機械等の構造変更や改修が殆ど要らないため、既存の圧縮装置に対しても本実施の形態による異常診断装置14を容易に追加することができる。   In this embodiment, an example in which an abnormality signal is output from the abnormality diagnosis device 14 to the control device 6 to indirectly stop the fluid machine has been described. The abnormality diagnosis device 14 can also be applied to the fluid machine by directly operating the electromagnetic switch 3. For this reason, almost no structural change or refurbishment of the motor 4 or the fluid machine is required, so that the abnormality diagnosis device 14 according to the present embodiment can be easily added to the existing compression device.

さらに、本実施例では定常状態時の振動最大値から異常振動の判定閾値を決定する構成としたが、これに加えて非定常状態の振動値の2つの値から判定閾値を決定する構成としてもよい   Furthermore, in this embodiment, the determination threshold value for abnormal vibration is determined from the vibration maximum value in the steady state, but in addition to this, the determination threshold value may be determined from two values of vibration values in the unsteady state. Good

次に図5に第2の実施例の回路構成例を示す。本実施の形態の特徴は、2系統の包絡線検波回路104および106からの信号をA/D変換器105で読込む構成としたことにある。なお、第2の実施の形態では第1の実施の形態と同一の構成要素には同一の符号を付し、その説明を省略するものとする。   Next, FIG. 5 shows a circuit configuration example of the second embodiment. The feature of the present embodiment is that the A / D converter 105 reads signals from the two envelope detection circuits 104 and 106. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

異常診断装置54は、第1の実施の形態による異常診断装置14ほぼ同様に構成されている。このため、異常診断装置54は、第1の実施の形態と同様に、図3に示す流体機械の振動値の演算と異常判定閾値の演算処理を実行する。     The abnormality diagnosis device 54 is configured in substantially the same manner as the abnormality diagnosis device 14 according to the first embodiment. For this reason, the abnormality diagnosis device 54 performs the calculation processing of the vibration value of the fluid machine and the calculation processing of the abnormality determination threshold shown in FIG. 3 as in the first embodiment.

ただし、異常診断装置54はフィルタ103にてノイズ除去された気体流体の振動信号を時定数の異なる包絡線検波回路の一方104の時間変化量を演算し、運転状態を推定する目的として使用し、包絡線検波回路106を実際の振動信号の演算用として計測する。   However, the abnormality diagnosis device 54 uses the vibration signal of the gas fluid from which noise has been removed by the filter 103 to calculate the amount of time change of one of the envelope detection circuits 104 having different time constants and to estimate the operating state, The envelope detection circuit 106 is measured for calculation of an actual vibration signal.

図6に実施例2における流体機械の正常時の振動波形と振動の信号波形および運転状態を示す。具体的には、流体機械を起動したときに、包絡線検波信号1の前回の値との差分である検波信号変化量を演算し、前記検波信号変化量(差分)が所定値以上であった場合には、運転モードの変更で再調整不可能な状態であると判定し、再調整可能となるまで再調整は行わない。ここで運転モードの変更状態とは、流体機械の停止から定常運転の変更、ロード運転からアンロード運転への変更、定常運転から停止への変更など、ロード運転でない運転モードへの変更またはロード運転への変更中の状態をさす。   FIG. 6 shows a normal vibration waveform, a vibration signal waveform, and an operating state of the fluid machine in the second embodiment. Specifically, when the fluid machine is started, a detection signal change amount that is a difference from the previous value of the envelope detection signal 1 is calculated, and the detection signal change amount (difference) is equal to or greater than a predetermined value. In this case, it is determined that the readjustment is impossible due to the change of the operation mode, and the readjustment is not performed until the readjustment is possible. Here, the operation mode change state refers to a change to a non-load operation mode or a load operation, such as a change from stationary to normal operation, a change from load operation to unload operation, a change from steady operation to stop, etc. Indicates the state during the change to.

次に流体機械が前記切り替え状態から所定時間経過し、定常運転の状態に近づくにつれて、検波1信号変化量は徐々に減少し、発生頻度も減少してゆく。したがって、前記検波1信号変化量が所定の値(たとえば50mV)以下となり、所定時間経過した場合には定常運転へ移行したと判断し、包絡線検波信号2を用いて流体機械の振動値の演算と異常判定閾値の演算処理ならびに異常監視を実施する。   Next, as the fluid machine passes a predetermined time from the switching state and approaches the state of steady operation, the detection 1 signal change amount gradually decreases and the occurrence frequency also decreases. Accordingly, when the detection 1 signal change amount becomes a predetermined value (for example, 50 mV) or less and a predetermined time has elapsed, it is determined that the operation has shifted to the steady operation, and the envelope detection signal 2 is used to calculate the vibration value of the fluid machine. And the abnormality determination threshold calculation process and abnormality monitoring.

かくして、第2の実施の形態でも第1の実施の形態と同様の作用効果を得ることができる。また、第2の実施の形態では、時定数の短い包絡線検波2信号から振動を演算することにより、より正確な振動値が演算できるようになる。   Thus, the second embodiment can provide the same effects as those of the first embodiment. In the second embodiment, a more accurate vibration value can be calculated by calculating vibration from the envelope detection 2 signal having a short time constant.

また前記各実施の形態では信号のフィルタ103や包絡線検波回路104および106をハードウェアにて実現した構成としているが、たとえばA/D変換器105で読込んだデジタル信号に対しソフトウェアでフィルタや包絡線検波の機能を実現してもよい。   In each of the above embodiments, the signal filter 103 and the envelope detection circuits 104 and 106 are configured by hardware. For example, the digital signal read by the A / D converter 105 is filtered by software. The function of envelope detection may be realized.

1…電源、2…電磁開閉装置、3…サーマルリレー、4…モータ、5…流体機械、6…制御装置、8…マイコン、10…タンク、11…圧力計、12…逆止弁、13…バルブ、14、54…異常診断装置、101…振動検知手段、102…信号増幅回路、103…フィルタ、104…包絡線検波回路、105…A/D変換器、106…包絡線検波回路、108…マイコン、109…記憶回路 DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... Electromagnetic switching device, 3 ... Thermal relay, 4 ... Motor, 5 ... Fluid machine, 6 ... Control apparatus, 8 ... Microcomputer, 10 ... Tank, 11 ... Pressure gauge, 12 ... Check valve, 13 ... Valves 14, 54 ... Abnormality diagnosis device, 101 ... Vibration detecting means, 102 ... Signal amplification circuit, 103 ... Filter, 104 ... Envelope detection circuit, 105 ... A / D converter, 106 ... Envelope detection circuit, 108 ... Microcomputer 109 ... Memory circuit

Claims (10)

流体機械の振動の測定振動値から異常を診断する異常診断装置において、
前記流体機械が調整可能な状態か否か判定する機能と、
異常診断の基準となる異常振動閾値を調整することを特徴とする異常診断装置。
In the abnormality diagnosis device for diagnosing abnormality from the measured vibration value of the vibration of the fluid machine,
A function of determining whether or not the fluid machine is in an adjustable state;
An abnormality diagnosing device that adjusts an abnormal vibration threshold value that serves as a reference for abnormality diagnosis.
請求項1において、
前記流体機械が調整可能な状態か否かを、前記測定振動値に基づいて判定することを特徴とする異常診断装置。
In claim 1,
An abnormality diagnosis device that determines whether or not the fluid machine is in an adjustable state based on the measured vibration value.
請求項1または2において、
前記流体機械が調整可能な状態には、前記流体機械の起動時が含まれないことを特徴とする異常診断装置。
In claim 1 or 2,
The abnormality diagnosing apparatus according to claim 1, wherein the state in which the fluid machine can be adjusted does not include a start-up time of the fluid machine.
請求項3において、
前記異常振動閾値の調整を、起動動作中は行わず、起動動作完了後に行うことを特徴とする異常診断装置。
In claim 3,
An abnormality diagnosis apparatus, wherein the abnormal vibration threshold is adjusted after the start-up operation is completed, not during the start-up operation.
請求項1または2において、
前記流体機械が調整可能な状態には、前記アンロード運転が含まれないことを特徴とする異常診断装置。
In claim 1 or 2,
The abnormality diagnosis apparatus according to claim 1, wherein the state in which the fluid machine can be adjusted does not include the unload operation.
請求項5において、
前記異常振動閾値の調整を、前記アンロード運転中は行わず、アンロード運転後に行うことを特徴とする異常診断装置。
In claim 5,
The abnormality diagnosis apparatus characterized in that the adjustment of the abnormal vibration threshold is not performed during the unload operation but after the unload operation.
請求項1または2において、
前記流体機械が調整可能な状態には前記流体機械の運転モードの変更時が含まれないことを特徴とする異常診断装置。
In claim 1 or 2,
The abnormality diagnosing apparatus according to claim 1, wherein the state in which the fluid machine can be adjusted does not include a change in the operation mode of the fluid machine.
請求項7において、
前記異常状態の振動閾値の調整は前記運転モードの変更動作の終了後に行うことを特徴とする異常診断装置。
In claim 7,
The abnormality diagnosis apparatus according to claim 1, wherein the adjustment of the vibration threshold value in the abnormal state is performed after the operation mode changing operation is completed.
請求項7において、
前記測定振動値から時間特性の異なる2種類以上の信号を生成し、
前記2種類の信号の一方を前記運転モードの変更時の推定に利用し、
前記2種類の信号の他方を前記定常状態の振動数とすることを特徴とした異常診断装置。
In claim 7,
Generating two or more types of signals having different time characteristics from the measured vibration values;
One of the two types of signals is used for estimation when the operation mode is changed,
An abnormality diagnosis apparatus, wherein the other of the two types of signals is set to the steady state frequency.
請求項2において、
前記定常状態の振動値から前記検知手段は流体機械の最大負荷での動作状態を推定し、前記機械装置の定常状態での最大振動値を演算することを特徴とした異常診断装置。
In claim 2,
The abnormality diagnosing apparatus characterized in that the detection means estimates an operating state of the fluid machine at a maximum load from the vibration value in the steady state and calculates a maximum vibration value in the steady state of the mechanical device.
JP2017147365A 2017-07-31 2017-07-31 Abnormality diagnostic device Active JP7073057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147365A JP7073057B2 (en) 2017-07-31 2017-07-31 Abnormality diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147365A JP7073057B2 (en) 2017-07-31 2017-07-31 Abnormality diagnostic device

Publications (2)

Publication Number Publication Date
JP2019027912A true JP2019027912A (en) 2019-02-21
JP7073057B2 JP7073057B2 (en) 2022-05-23

Family

ID=65478132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147365A Active JP7073057B2 (en) 2017-07-31 2017-07-31 Abnormality diagnostic device

Country Status (1)

Country Link
JP (1) JP7073057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112901546A (en) * 2021-02-24 2021-06-04 东风马勒热系统有限公司 Indirect measuring method and device for performance of electric control silicone oil fan

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270623A (en) * 1988-04-22 1989-10-27 Toshiba Corp Apparatus for diagnosing vibration of rotary machine
JPH0579903A (en) * 1991-09-19 1993-03-30 Hitachi Ltd Abnormality diagnostic method and device for rotating machine
JPH06307921A (en) * 1993-04-27 1994-11-04 Toshiba Corp Diagnostic monitoring system for rotating machine
JPH07229787A (en) * 1994-02-22 1995-08-29 Toshiba Corp Rotary body oscillation monitoring device
JPH07286892A (en) * 1994-04-18 1995-10-31 Toshiba Corp Device for monitoring/diagnosing rotating machine
JP2011127527A (en) * 2009-12-18 2011-06-30 Tokyo Electric Power Co Inc:The Vibration monitoring device for rotor
JP5293300B2 (en) * 2009-03-16 2013-09-18 富士電機株式会社 Vibration monitoring device and vibration monitoring method for rotating machine
JP2015081693A (en) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270623A (en) * 1988-04-22 1989-10-27 Toshiba Corp Apparatus for diagnosing vibration of rotary machine
JPH0579903A (en) * 1991-09-19 1993-03-30 Hitachi Ltd Abnormality diagnostic method and device for rotating machine
JPH06307921A (en) * 1993-04-27 1994-11-04 Toshiba Corp Diagnostic monitoring system for rotating machine
JPH07229787A (en) * 1994-02-22 1995-08-29 Toshiba Corp Rotary body oscillation monitoring device
JPH07286892A (en) * 1994-04-18 1995-10-31 Toshiba Corp Device for monitoring/diagnosing rotating machine
JP5293300B2 (en) * 2009-03-16 2013-09-18 富士電機株式会社 Vibration monitoring device and vibration monitoring method for rotating machine
JP2011127527A (en) * 2009-12-18 2011-06-30 Tokyo Electric Power Co Inc:The Vibration monitoring device for rotor
JP2015081693A (en) * 2013-10-21 2015-04-27 日立アプライアンス株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112901546A (en) * 2021-02-24 2021-06-04 东风马勒热系统有限公司 Indirect measuring method and device for performance of electric control silicone oil fan

Also Published As

Publication number Publication date
JP7073057B2 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
US20210396238A1 (en) Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
US8763464B2 (en) Method and apparatus for determining an operating point of a work machine
JP5039508B2 (en) Monitoring and diagnosis system for rotating machinery
US20100269522A1 (en) System and method of diagnosis through detection of mechanical waves in refrigeration systems and/or household appliances
JP2006281421A (en) Robot and abnormality detection method of robot
US9512851B2 (en) Electronic apparatus with fan motor
US10556485B2 (en) Systems and methods for blower control
CN108139367B (en) Abnormality detection device for rotary machine, abnormality detection method for rotary machine, and rotary machine
US20190339120A1 (en) State Monitoring System for Rotating Machine, Method of Monitoring State of Rotating Machine, Program, and Recording Medium
JP6857814B2 (en) Microcomputer type gas meter
JP7073057B2 (en) Abnormality diagnostic device
JP7401327B2 (en) Diagnostic equipment, diagnostic methods, diagnostic programs and diagnostic systems
EP1401076B1 (en) System and method for detecting loss of phase in a compressor system
JP2014222150A (en) Electric component monitoring apparatus and electric component monitoring method
JP2016065679A (en) Device and method for detecting abnormality for power transmission belt of air conditioner
JP4462059B2 (en) Controller temperature diagnosis device and motor temperature diagnosis device
JP6556398B1 (en) Diagnostic device and threshold generation method
EP4249753A2 (en) Surge control systems and methods for dynamic compressors
US11428233B2 (en) Surge control systems and methods for dynamic compressors
KR102538313B1 (en) Apparatus for controlling compressor and method thereof
KR100580523B1 (en) A method of detecting a failure of a refrigerant pressure sensor in an air conditioner
JPH08179826A (en) Stop factor diagnosing method for machine
JP2018155210A (en) Fluid machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150